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Abstract The aim of this paper is to verify efficiency of two acceleration
methods for orthogonal series (more strictly, for series defined at the beginning
of Section 1). These methods are quite different although they use the same
transform of such a series given there. The first method (Section 3) has some
features common with Levin’s and Weniger’s methods. It may be profitably
used in numerical calculations for a vast class of series. The second one
(Sections 4 and 5) is somewhat similar to the Euler–Knopp transform of power
series. Also this method is numerically realizable but more important is that for
a narrower class of series, including some ones having applications in physics,
it gives explicit analytic formulae of their transform.

Keywords Orthogonal series · Trigonometric series ·
Orthogonal polynomials · Convergence acceleration

Mathematics Subject Classifications (2000) 33C45 · 42A32 · 42C10 ·
42C20 · 65B10

1 Basic transform of orthogonal series

In the sequel we consider infinite series
∞∑

j=l

α j f j, (1)
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where l is a nonnegative integer (as a rule, l = 1) and the sequence { f j} satisfies
a linear homogeneous difference equation of the second order

f j + λj f j+1 + μj f j+2 = 0 ( j = 0, 1, . . .). (2)

Its coefficients λj and μj, where μj �= 0, as well as initial conditions defining
uniquely this sequence are given. We suppose that series (1) converges. Its
sum is denoted by s.

It is known that (2) is satisfied if f j = Wj(x), where Wj is the jth orthogonal
polynomial Wj in a given interval I and with a given weight ω(x). In particular,
if Wj is

(1) The j th Chebyshev polynomial of the first kind Tj (I = [−1, 1], ω(x) =
(1 − x2)−1/2) or the j th Chebyshev polynomial of the second kind Uj (I =
[−1, 1], ω(x) = (1 − x2)1/2), then λj and μj do not depend on j : λj = −2x,
μj = 1,

(2) The j th Legendre polynomial P j (I = [−1, 1], ω(x) ≡ 1), then

λj = −2 j + 3

j + 1
x, μj = j + 2

j + 1
(3)

(more generally, Wj can be the j th Jacobi polynomial),
(3) The j th Laguerre polynomial L(a)

j (x) (I = [0, +∞), ω(x) = xae−x, where
a > −1), then

λj = −2 j − x + a + 3

j + a + 1
, μj = j + 2

j + a + 1
. (4)

Difference (2) is also satisfied when f j = cos jx or f j = sin jx, i.e. for trigono-
metric series, cosine or sine ones. For both cases is λj = −2 cos x, μj = 1. In
view of known expressions for the polynomials Tn and Un these series are in
fact identical with Chebyshev series, where f j := Tj(x), λj = −2x and μj = 1.

A special feature of series (1) is that (even for the coefficients α j depending
very regularly on j ) partial sums

sn :=
n∑

j=0

α j f j (n = 0, 1, . . .) (5)

vary in a capricious manner and it is difficult to estimate the deviations sn − s.
In particular, for a series with respect to orthogonal polynomials oscillations of
the sums sn round s depend on distribution (in general, unknown) of zeros of
these polynomials. Therefore standard methods of convergence acceleration
are rarely sufficiently efficient in case of the series (1). Whereas using (2)
in a suitable manner we can find methods which take into account a specific
character of such series and therefore are more useful.

The starting point for announced methods is an obvious fact: by (2) we can
subtract from (1) an arbitrary multiplicity of f j + λj f j+1 + μj f j+2. The sum of
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series remains unchanged. More generally, for any factors pj ( j � l) we have,
at least formally,

∞∑

j=l

α j f j −
∞∑

j=l

p j( f j + λj f j+1 + μj f j+2)

= (αl − pl) fl + (αl+1 − λl pl − pl+1) fl+1 +
∞∑

j=l+2

α′
j f j, (6)

where

α′
j := α j − μj−2 pj−2 − λ j−1 pj−1 − pj ( j = l + 2, l + 3, . . .). (7)

More strictly, if the series on the right in (6) converges, then its sum is identical
with the sum of (1). This new series is more useful than the previous one if the
coefficients α′

j are much less in modulus from α j. In the sequel it was explained
how we can obtain such result when the sequence {α j} is sufficiently regular.

It is worthwhile to remark that if f j = Wj(x), where Wj is an orthogonal
polynomial, then λj and μj in (2) depend in general on x. The same is true for
the coefficients α′

j of the new series. Thus it is only a quasiorthogonal series
(cf. quasipower series, defined in [12]).

Remark also that a similar reasoning leads to the classical Euler–Knopp
transform of a power series

∞∑

j=0

α j f j
(

f j := x j ) (8)

having s as its sum into series

1

1 − x

∞∑

k=0

�kα0

(
x

1 − x

)k

. (9)

If, namely, λj := −x−1, then f j + λj f j+1 = 0. For any pj series (8) can be
expressed in the form

∞∑

j=0

α j f j −
∞∑

j=0

pj( f j + λj f j+1) = (α0 − p0) f0 +
∞∑

j=1

α′
j f j,

where

α′
j := α j − λ j−1 pj−1 − pj ( j = 1, 2, . . .).

This gives, in particular, for x �= 1 and

pj := − x
1 − x

α j

the relation

s = 1

1 − x

⎛

⎝α0 + x
∞∑

j=0

�α jx j

⎞

⎠ .
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Transforming the obtained series in the same way and repeating such
a process we obtain formally (9). It is known that (8) and (9) have the same
sum only in a common part of convergence domains of these two series; see,
e.g., [3]).

2 Test series

Methods described below were applied, among others, to some orthogonal
series such that λj, μj in (2) depend on j [see (3) and (4)]:

∞∑

j=1

1

j + 1
P j(x) = log

(√
2

1 − x
+ 1

)
− 1, (10)

∞∑

j=1

1

(2 j − 1)(2 j + 3)
P j(x) = 1

3
−

√
1 − x

8
, (11)

∞∑

j=1

log
(
1 + 2 j−1) P j(x), (12)

∞∑

j=1

(2 j + 1)q j P j(x) = 1 − q2

(1 − 2qx + q2)3/2
− 1 (|q| < 1), (13)

∞∑

j=0

1

j + 1
L(a)

j (x) = x−aex�(a, x). (14)

[NB. Sum of (13) in [4, 8.922.7] is erroneous. Also paper [5] contains an error:
in Legendre series (61) given there 2n − 1 should be replaced by 2n + 1.]

The same methods were tested for a few trigonometric series for which
λj, μj do not depend on j. This case is somewhat simpler. A cosine series after
a suitable change of variable becomes a Chebyshev one.

∞∑

j=1

q j

j + c

{cos
sin

}
jx (|q| � 1), (15)

∞∑

j=1

(−1) j

j2
cos jx = 3x2 − π2

12
(−π < x < π) (16)

∞∑

j=1

(
1
2

)
j

( j + 1)!
{cos

sin

}
jx, (17)

∞∑

j=1

log(1 + 2 j−1)
{cos

sin

}
jx. (18)
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Two series (15) for q = 1 represent the indirect interaction energy of a periodic
configuration of adsorbed atoms (for details, see [11]).

If the sum of a tested series is known we may verify accuracy of obtained
approximants. As a measure of precision of σ approaching the sum s �= 0 we
choose

acc σ := − log10

∣∣∣
σ

s
− 1

∣∣∣ ,

i.e. the number of exact decimal digits in this approximant. All calculations
were performed using Turbo Pascal and variables of the type Extended. Thus
in the best case we may obtain approximants with about 17–18 exact digits. The
accuracy is much worse (as for other convergence acceleration methods), for
instance, for series (10) and (11) when x is close to the singular point 1.

3 Recursive optimalization of the factors pj

Transformation (6) of an orthogonal series (1) is optimal when the factors pj

are such that all the α′
j defined by (7) vanish:

μj p j + λ j+1 pj+1 + pj+2 = α j+2 ( j = 1, 2, . . .). (19)

In other words, the sequence {pj} should verify a linear nonhomogeneous
difference equation of second order with parameters λj, μj appearing in (2)
and α j from the transformed series. For such pj the sum of this series is
equal to

s̃ := α1 − p1) f1 + (α2 − λ1 p1 − p2) f2. (20)

Equation 19 has a two-parameter family of solutions. Its form is here
important. Consider a simple example, namely the Chebyshev series with the
coefficients α j := 1/( j)2. This equation has then the following form:

pj − 2xpj+1 + pj+2 = 1

( j + 2)2
(−1 � x � 1). (21)

If x < 1, then its certain solution pj can be formally developed, for instance,
into a power series

∞∑

l=2

bl

( j + 1)l
. (22)

Equation 21 permits us determine recursively the coefficients b2, b3, . . . In
particular, b2 = 1/[2(1 − x)]. The homogeneous equation q j − 2xq j+1 + q j+2 =
0 has a general solution

q j = c+
(

x + i
√

1 − x2
) j + c−

(
x − i

√
1 − x2

) j
.

Each solution of (21) is a sum of series (22) and some q j. As
∣∣x ± i

√
1 − x2

∣∣ = 1,
if |c+| + |c−| > 0, then |pj| doesn’t converge to 0 and usefulness of transform
(6) is questionable. Therefore the factors pj have to be such that c+ = c− = 0.



40 Numer Algor (2008) 47:35–62

In most cases is rather impossible to investigate in detail solutions of (19) but
in all tests numerical methods described below distinguish solution which is
suitable in a sense.

If x = 1, then (21) has the form �2 pj = 1/( j + 2)2 and each its solution pj is
such that

pj = f j + g −
j+1∑

l=1

1

l
( f, g arbitrary constants),

i.e. |pj| is at least of order log j and transformation (6) lost a sense.
For orthogonal series useful in practice the parameters λj, μj of (2) are

rational in j. If the coefficients α j behave also sufficiently regularly, then
a solution {pj} of (19) interesting for us has the same property and its founding
should be easier. By contrast, partial sums (5) of an orthogonal series do not
have such property. Therefore assumption, as in [8, (8)], that sn − s behaves
similarly to ωngn, where {gn} is a solution of difference equation (2) and ωn

equals for instance αn, seems to be rather unjustified; cf. also [6–8], where
a direct transferring onto orthogonal series of Levin’s methods bases on some
expansions of sn − s.

Bearing in mind remarks concerning model example (19) we assume, sim-
ilarly as for numerous known convergence acceleration methods, that in the
method L(r, ω j) defined below is, for some ω j �= 0 and an integer r at least
formally

pj

ω j
=

∞∑

l=r

bl

( j + 1)l
( j = 1, 2, . . .) (23)

(convergence of this series is not supposed). In Levin’s methods [2, Section
2.7]) used to accelerate convergence of a series such an assumption concerns
its remainders.

For the second method, denoted by W(r, ω j), we assume that, also at least
formally,

pj

ω j
=

∞∑

l=r

al

( j + 1)l
( j = 1, 2, . . .). (24)

Instead of a power series we have here a factorial series. A similar assumption
concerns remainders of a series in Weniger’s methods [14, Section 8].

Power series from (23) can be formally transformed into factorial series
from (24) and conversely but each of these two relations are used in a different
manner and therefore two methods give different results. However, remark
that factorial series is in a sense more natural. In fact, it is easy, e.g., to
transform pj+1 into a series with terms a′

l/( j + 1)l and we may use it in some
analytic manipulations. In both announced methods j + 1 is often replaced
by more general sum j + β, but choosing of β �= 1 rarely affects results in an
essential manner or even leaves theirs without change; cf. a comment given
below in this section about series (14).
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In general, using announced methods is justified if we may choose such
parameters r and ω j that initial coefficients a j or bj can be calculated recur-
rently with the aid of (19). This is the case for very many series (1). Both
the definitions take into account that for all interesting orthogonal series the
coefficients λj, μj in (19) are rational in j and are such that

λj = λ + c1 j−1 + . . . , μj = μ + d1 j−1 + . . . (25)

(1) Let the coefficients α j be such that (formally)

α j+1

α j
= q

∞∑

l=0

πl( j + 1)l (π0 = 1, q �= 0). (26)

In particular this is the case when above quotient is rational in j, with the num-
erator and the denominator of the same degree. For series (17) this quotient
equals

(
j + 1

2

)
/( j + 2). Write (19) in the form

μj
pj

ω j
+ λ j+1

pj+1

ω j+1

ω j+1

ω j
+ pj+2

ω j+2

ω j+1

ω j

ω j+2

ω j+1
= α j+2

α j+1

α j+1

ω j
. (27)

If r := 0 and ω j := α j+1, then right-hand side of this relation equals α j+2/α j+1,
i.e. is similar to (26). The quotients of quantities ω. can be expressed in the
same manner. Thus, suppose that pj/ω j has form (24). Then also the left-hand
side of (27) can be transform into a series similar to (26). Equating coefficients
of two sides of (27) of ( j + 1)l for l = 0, 1, . . . we may compute successively
a0, a1, . . .. More strictly, this is possible if

μ + λq + q2 �= 0 (28)

because it should be a0 = q/(μ + λq + q2). One can verify that the same
assumption permits to determine uniquely all the next al. This is the case for
series (12). Putting r = −1, ω j = q j, x = 1

2 and q = 2
3 we obtain

a−1 = 8

7
, a0 = 76

49
, a1 = −120

343
, a2 = 60

2401
.

These al give some approximants of p1 and p2, and as a consequence some
approximant of the sum of (12), but the last one has only one exact decimal
digit. Methods L i W are more efficient.

(2) Assumption (26) is fulfilled, among others, if α j = q jR( j) where q �= 0
and, at least formally,

R( j ) =
∞∑

l=r

ρl( j + 1)l (ρr �= 0).

In particular this is the case if R is a rational function in j, with the numerator
of degree l and the denominator of degree m and if r := m − l [cf. series (10–
12), (15), (16) and (18)]. For such r we put ω j := q j. It should be

μj
p j

q j
+ qλ j+1

pj+1

q j+1
+ pj+2

q j+2
= q2

∞∑

l=r

ρl( j + 3)l.
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If (28) holds, then for selected r and ω j one can evaluate successively the
coefficients al from (24).

If assumption (28) is not fulfilled, then the above definitions of the para-
meters r and ω j are incorrect. One can prove that for f j = P j(1) and α j =
1/( j + 1)3; series (1) evidently converges to 1

12 and (26) holds for q = 1. As we
have also λ = −2 and μ = 1, (25) is false. System (19) is satisfied by the factors
pj = ( j + 1)/[4( j + 2)2], then pj/α j+1 = 1

4 ( j + 1)( j + 4), i.e. in the variant (1) it
should be r = −2, and not r = 0, whereas for ω j ≡ 1 [variant (2)] it should be
r = 1, and not r = 3.

Now, methods W and L will be described in details. In both cases for given
natural numbers n and k we restrict system (19) to k equations for j = n,

n + 1, . . . , n + k − 1 containing the factors

pn, pn+1, . . . , pn+k+1. (29)

To fix ideas, at first we discuss method W. For L a considerable part of
arguments is very similar. We truncate each series in (24) to the sum of k initial
terms, i.e. we assume that (approximately)

pj

ω j
=

k+r−1∑

l=r

al

( j + 1)l
.

In this case

( j + 1)k+r−1
pj

ω j
=

k+r−1∑

l=r

al( j + l + 1)k+r−l−1.

As usual, Pochhammer symbol (l)m for m < 0 (possibly k + r − 1 < 0) is
defined by the formula (l)m := 1/(l + m)−m. The right-hand side of above
relation is a polynomial in j, of degree � k − 1 and consequently

(−1)k�k
[
( j + 1)k+r−1

pj

ω j

]
= 0

(the sign (−1)k affects only auxiliary quantities). Factors (29) appear only in
two such equations which we adjoin to k selected equations (19):

μj p j + λ j+1 pj+1 + pj+2 = α j+2 ( j = n, n + 1, . . . , n + k − 1), (30)

(−1)k�k
[
( j + 1)k+r−1

pj

ω j

]∣∣∣
j=n,n+1

= 0. (31)

Considering method L instead of W it should be replaced equations (31) by

(−1)k �k
[
( j + 1)k+r−1 pj

ω j

]∣∣∣∣
j=n,n+1

= 0. (32)

Let Sk
n denote the system composed of k linear equations (30) as well as two

equations (31) or (32) and containing k + 2 unknowns pj.
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Construction of some approximants with the aid of truncated systems of
equations relative to truncated sequence of unknowns is typical for con-
vergence acceleration methods. Systems Sk

n are however untypical and they
require a special treatment.

All the systems

S1
n, S2

n−1, . . . ,Sn
1 (33)

lying on nth antidiagonal of the two-dimensional array contain the unknowns
up to pn+2. We describe now a method of constructing and solving such systems
from consecutive antidiagonals (33), on each of them from left to right.

The simplest system S1
n contains only one (30) which implies the relation

pn+2 = αn+2 − μn pn − λn+1 pn+1.

Using in succession such equalities for n = 1, 2, . . . we express p3, p4, . . .

by p1 i p2:

pn = γn + δn p1 + ζn p2 (n = 3, 4, . . .). (34)

The coefficients γn, δn, ζn satisfy recurrence formulae

γn = αn − μn−2γn−2 − λn−1γn−1,

δn = −μn−2δn−2 − λn−1δn−1,

ζn = −μn−2ζn−2 − λn−1ζn−1

⎫
⎪⎬

⎪⎭
(n = 3, 4, . . .), (35)

where

γ1 = γ2 = δ2 = ζ1 = 0, δ1 = ζ2 = 1. (36)

Quantities γn, δn, ζn do not depend on chosen method and only γn depends
on coefficients of series (1). It is worthwhile to remark that these quantities,
similarly to elements f j, depend very irregularly on n. This property carry over
into coefficients of system (43) but this is rather unimportant.

By (34) each system Sk
n reduces to two equations (31) [or (32)] with the

unknowns p1 and p2; cf. (43). Due to (20) solving these equations leads to
certain approximate value s(k)

n of the sum of series (1).
Two mentioned equations can be constructed recursively in a manner

similar to that used in Levin’s and Weniger’s methods. For (31) we define ϕ
(k)

nl
such that

(−1)k �k
[
( j + 1)k+r−1

pj

ω j

]∣∣∣∣
j=n

= (n + k + 1)r−1

k∑

l=0

ϕ
(k)

nl

pn+l

ωn+l
. (37)

Thus

ϕ
(k)

nl = (−1)l
(

k
l

)
(n + l + 1)k−l(n + k + r)l (l = 0, 1, . . . , k).

Let

ϕ
(0)
n0 = 1, ϕ

(k)
n,−1 = ϕ

(k)

n,k+1 = 0 (k � 0) (38)
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(the first relation results of course from general definition of ϕ
(k)

nl ). It is easy to
prove that coefficients ϕ

(k)

nl for k > 0 satisfy a recurrence formula:

ϕ
(k)

nl = (n + k)ϕ
(k−1)

nl − (n + 2k + r − 1)ϕ
(k−1)

n+1,l−1 (l = 0, 1, . . . , k); (39)

cf. [14, (8.3–8.5)] where r = 0.
Two equations (32) correspond to method L. Therefore the quantities ϕ

(k)

nl
should be now defined differently:

(−1)k �k
[
( j + 1)k+r−1 pj

ω j

]∣∣∣∣
j=n

=
k∑

l=0

ϕ
(k)

nl

pn+l

ωn+l
, (40)

i.e.

ϕ
(k)

nl = (−1)l
(

k
l

)
(n + l + 1)k+r−1 (l = 0, 1, . . . , k).

If

ϕ
(0)
n0 = (n + 1)r−1, ϕ

(k)
n,−1 = ϕ

(k)

n,k+1 = 0 (k � 0), (41)

then for k = 1, 2, . . .

ϕ
(k)

nl = (n + 1)ϕ
(k−1)

nl − (n + k + 1)ϕ
(k−1)

n+1,l−1 (l = 0, 1, . . . , k). (42)

For both the defined methods substitution of (34) into (31) or (32) leads to
the equations

γ (k)
n + δ(k)

n p1 + ζ (k)
n p2 = 0, γ

(k)
n+1 + δ

(k)
n+1 p1 + ζ

(k)
n+1 p2 = 0 (43)

where by virtue of (37) or (40) we have

η(k)
n :=

k∑

l=0

ϕ
(k)

nl

ηn+l

ωn+l
(η ≡ γ, δ, ζ ).

We conclude from here and from (38) or (41) that recurrence formulae (39)
and (42) lead to similar formulae for η(k)

n used respectively in methods W

and L:

η(k)
n = (n + k)η(k−1)

n − (n + 2k + r − 1)η
(k−1)
n+1 , (44)

η(k)
n = (n + 1)η(k−1)

n − (n + k + 1)η
(k−1)
n+1 . (45)

Initial conditions result from (38) and (41), respectively, and from (36):

η(0)
n = ϕ

(0)
n0

ηn

ωn
(46)

where ϕ
(0)
n0 equals (n + 1)r−1 (method L) or 1 (method W). The remaining

quantities ϕ
(k)

nl are not calculated.
As usual in convergence acceleration methods we construct successively

antidiagonals (33) for n = 1, 2, . . ., and for each of them corresponding
approximants s(1)

n , s(2)
n−1, . . . , s(n)

1 of the sum of series (1). We begin by quantities
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η1, η
(0)
1 , η2, η

(0)
2 (from here η ≡ γ, δ, ζ ) evaluated from (36) and (46). Next

actions can be described as follows:

for n = 1, 2, . . .

for k = 1, 2, . . . , n and m := n − k + 1

1. if k = 1, then computing ηn+2 from (35) and η
(0)
n+2 from (46),

2. if k = n, then computing η
(n)
1 by means of (45) (method L) or (44)

(method W),
3. computing η

(k)
m+1 by means of (45) (method L) or (44) (method W),

4. finding solution p1, p2 of system Sk
m reduced to equations such

as (43),
5. expressing value s(k)

m by p1, p2 according to (20).

To avoid a confusion we emphasize that e.g. for n = k = 1 it is necessary to
execute all the steps 1–5 and for n = 2, k = 1 only 2 should be omitted.

The above algorithm has a remarkable feature: in the steps 1–4 is needed,
apart from coefficients α j of series (1), only indirect information about
sequence { f j}, namely coefficients λj and μj of difference equation (2). Only
the step 5 requires values f1 and f2 of the two initial elements of sequence { f j},
the remaining ones are superfluous. This is important at least for trigonometric
series because after the steps 1–4 a few additional arithmetic operations give
approximate values of the sum for two series, cosine one and sine one:

∞∑

j=1

α j cos jx,

∞∑

j=1

α j sin jx.

Such pairs of series are applied in physics; see [11].
If we execute calculations for n � nmax, then a program uses three one-

dimensional arrays sg,sd,sz[1 .. nmax + 1]. Quantities γ (k)
n , δ(k)

n , ζ (k)
n for each k

are stored as sg[n],sd[n],sz[n], respectively (the order of steps 1–3 is es-
sential). The cost of all calculations is little greater than for Levin’s and
Weniger’s algorithms (where only two auxiliary arrays are needed). Here we
have additional steps 4 and 5, but we calculate only two initial elements of
sequence { f j}.

For both methods L and W some properties of the table of approximants s(k)
n

are such as for many known convergence acceleration methods. In particular
on each antidiagonal (33) (depending on the same initial coefficients α j)
successively evaluated approximants are in general more and more accurate.
Therefore in the sequel we analyse only the final approximants: s(k) := s(k)

1 .
Accuracy acc s(k) in general grow with k, at least up to certain limit quantity
dependent of properties of a series. This growth may be however irregular.
Example: for series (11), x = 0.97, for method W(0, α j+1) and k = 5, 6, . . . , 21
accuracies acc s(k) are equal to

5.31, 5.80, 5.31, 5.85, 7.08, 7.86, 7.91, 8.16, 8.99,

10.42, 10.85, 10.60, 11.20, 12.09, 12.09, 11.52, 10.74,
(47)
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and the next ones are less and less. These are other corollaries arising
from tests:

• Methods W are in general only a little more efficient than L.
• For α j = q jR( j) (cf. above) method W(r, q j) is a little more efficient

than W(0, α j+1). Further informations concern method W with reasonably
chosen parameters.

• For series such that (10), i.e. having a singularity at a point (here, at the
point 1), both the methods are the less efficient the x is closer to this point.
Consider, as an example, method W(1, 1). For (10) and x � 0.5 it gives
accuracies acc s(k) growing with k (local exceptions to the rule are possi-
ble) and attaining at least level of 17 digits for k = 11, 12, 13, 15, 15 when
x = −0.7, −0.3, 0.1, 0.3, 0.5, respectively. This limit accuracy is attained at
least for a few next k and one can accept stability of the method. If x > 0.5,
then the greatest acc s(k) is less and equals, say, 16.7, 16.1, 13.4, 12.2, 8.9
for x = 0.75, 0.8, 0.9, 0.95, 0.99 and k = 17, 16, 16, 18, 22, respectively. For
greater k this accuracy decreases and the method is unstable.

• Series (11) has at the point 1 a weaker singularity (it converges there but
its first derivative is infinite) and probably for this reason near this point
maximal accuracies are greater than for (10); they equal 14.0, 13.2, 10.3 for
x = 0.9, 0.95, 0.99, respectively.

• Series (13) depends on two parameters, q and x. It converges obviously
very slowly when at least one parameter is close to 1. Also two methods
described above are then not much efficient. The table below concerns
results of calculation with the aid of method W(−1, q j). It contains for
many pairs (q, x) the greatest accuracy obtained for the sum of the series.
In each case it suffices to calculate s(k) for k � 19.

q�x 0.5 0.7 0.8 0.9 0.95 0.99

0.8 17.3 15.6 15.7 14.1 14.0 13.4
0.9 17.2 15.5 13.6 12.9 11.8 9.4
0.95 17.3 16.8 14.6 12.0 12.0 10.0
0.99 16.8 15.7 14.1 12.9 11.5 7.3

• Methods of Section 5 do not apply to the Laguerre and Hermite series (cf.
Th. 6 where for them σ = 0). To verify efficiency of the above described
methods in such case series (14) was used. It is exceptional in a sense,
namely its sum can be expressed by a continued fraction:

1
x

+
∞
K

k=1

[
k − a

1
+ k

x

]

[10, p. 576]. It is then evident that for any natural integer a this sum is
a rational function (equal, for example, to (x2 + 2x + 2)/x3 if a = 3). For
such a also method W(0, 1) gives this result in a finite number of steps. This
is effect of particularly simple expression of factors pj. If a = 3, then

pj = 1

x
+ 2(1 + x)

x2( j + 2)
+ 2(2 + x)

x3( j + 2)2
. (48)
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So, in this case series (24) with j + 2 instead of j + 2 and for r = 0, ω j ≡ 1
reduces to three initial terms. Since

1

( j + 2)1
= 1

( j + 1)1
− 1

( j + 1)2
,

1

( j + 2)2
= 1

( j + 1)2
− 2

( j + 1)3
,

the original series (24) contains four terms. Of course, in the considered
example pj doesn’t have finite expansion of type (23). From (19) results
that some {α j} correspond to any {pj}. Then such expansions are possible
only for artificial orthogonal series.
For a �= 1, 2, . . . continued fraction (48) is infinite. It converges very slowly
for a and x close to 0, but in practice it always permits to evaluate its
value with maximal accuracy. Efficiency of method W(0, 1) for such a, x is
also low. For, e.g., a = 0.5 and x = 2, 4, 6 the method gives 13.2, 14.6, 14.6
accurate digits, and for a = 2.5 and x = 2, 4, 6 it gives 12.5, 14.5, 16.4
accurate digits.

• For cosine series (16) method W(0, α j+1) was used. If 0 � x � 0.5π , then
accuracies acc s(k) grow enough regularly and at least from k = 16 on-
wards stabilize on a level exceeding 17. When x changes from 0.5π to π ,
efficiency of the method diminishes. In particular the greatest acc s(k)

equals 16.9, 15.5, 13.6, 13.5, 10.2 for x/π = 0.7, 0.8, 0.85, 0.9, 0.95 and
k = 19, 19, 18, 21, 18, respectively. If however x � 0.5π , then an initial
Oleksy’s transform, cited in the next section, permits us to obtain the sum
of a series with greater accuracy. The same transform is recommended
for cosine series (15), if |x| < 0.5π and q is close or equal to 1. Methods
applied directly to this series give its sum for x = 0.1π, 0.2π, 0.3π with
11.2, 13.2, 15.0 exact digits.

• Method W(0, α j+1) applied to series (17) and (18) with irrational coeffi-
cients gives results with accuracy depending from x as for (16).

• It is rather surprising that for all investigated series it suffices to evaluate
approximants s(k) for k � kmax := 30, because the next ones do not give
additional informations about the sum of series. A reasonable value of kmax

probably depends, among others, on accuracy of variables applied in the
algorithm.

A model sequence (47) of accuracies acc s(k) testifies that for a series with
unknown sum is difficult to choose optimal approximant s(k) and to estimate
its accuracy. In [1, Section 6.6.2] the following advice is formulated about
a sequence {xn} of approximants of a root of equation: xn equals this root with
(probably) the best attainable accuracy if at the same time two inequalities
are satisfied, namely |xn+1 − xn| � |xn − xn−1| and |xn − xn−1| < δ. The last
parameter is a rough tolerance protecting us against a too early stopping of
computations. In the case of summing of the Legendre series a reasonable
tolerance depends, in a manner difficult to predict, on coefficients α j and
variable x. The difference s(k) − s(k−1) is often locally small even when these
two approximants are very inaccurate. Therefore, taking into account many
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tests executed for series with known sum, we adopt a modified criterion of
probably the optimal s(k):

(1) For a certain kmax (in the tests kmax = 30 was a reasonable value) we
evaluate s(1), s(2), . . . , s(kmax).

(2) We define κ as that k, for which the sum σk := |�s(k−1)| + |�s(k)| is
smallest.

(3) We accept s(κ) as a reasonable approximant of the sum of series and σ
κ

as (rough) estimate of its absolute error.

Of course also this criterion, as each other, is disputable. Sum in (2) smooths
local irregularities of the sequence {s(k)} and in general the quantities σk

decrease and attain their minimum for such κ that s(κ) is the best or almost
the best approximant of s. A little other situation is also possible: for series
(16), x = 0.74 and k = 16, 17, . . . , 22 the quantities 1018σk and acc s(k) are as
follows:

514 111 149 300 263 58 378
16.00 16.21 15.97 15.66 15.63 15.71 15.58

In spite of inequality 149 > 111 the above criterion tells us to examine further
σk and to put κ = 21 although the approximant s(17) is a little more accurate
than s(21).

A connection between σ
κ

and acc s(κ) was also examined. More strictly,
the quantities − log10 |σ

κ
/s| and acc s(κ) were compared. For (16) and x =

0.60, 0.61, . . . , 0.96 in 30 cases the estimate is correct, i.e. the first number
is less than the second one (usually slightly and in the extreme case by
1.22). On the other hand, for x = 0.60, 0.62, 0.69, 0.72, 0.74, 0.76, 0.85 the
estimate is over-optimistic: the first number is greater than the second one by
0.18, 0.45, 0.11, 0.27, 0.25, 0.13, 0.22, respectively.

4 Equation 2 with constant coefficients

Relation (6) serves also as a basis for transform of a given orthogonal series
into other infinite series which converges more rapidly than the first one. To
this end one should choose pj in a special manner. For a restricted class of
series repeating such transform leads finally to a series of quite different type
which converges very rapidly and whose coefficients have a simple analytic
expression.

In this section we suppose that λj, μj in (2) do not depend on j : λj = λ, μj = μ

where 1 + λ + μ �= 0. This is the case for the Chebyshev and trigonometric
series. Methods proposed below are useful at least if α j = q jR( j) where |q| � 1
and R is a rational function in j. For |q| < 1 such a series converges (but slowly
for |q| close to 1) even if the degree of the numerator of R is not less than the
degree of its denominator. For |q| = 1 this series converges very slowly or even



Numer Algor (2008) 47:35–62 49

diverges at certain points. Only for some q and R the sum of such a series is
known. Examples: series (16) and

∞∑

j=1

q j

j
Tj(x) = −1

2
log

(
1 − 2qx + q2) .

Cosine and sine series with the coefficients 1/( j + c), i.e. (15), can be expressed
by a hypergeometric series 2 F1(c, 1; c + 1; eix), which in turn can be expanded
into a Gauss continued fraction [10, pp. 295–296]. Also this fraction converges
slowly for x close to 1.

Now we consider several variants of choice of factors pj occurring in (6).
Transform (6) may be useful if the new coefficients α′

j are small in comparison
with α j. If the last ones are defined as above this is the case only for q = 1.
Otherwise, however, the series

∑
α j f j can be expressed in the form

∑
R( j ) f̃ j

where f̃ j := q j f j. Equation 2 implies that the sequence { f̃ j} verifies the equa-
tion f̃ j + λ̃ f j+1 + μ̃ f j+2 = 0 where λ̃ := λq−1, μ̃ := μq−2. Thus also for q �= 1
the announced methods are applicable; however, as we will see, change of the
parameters λ and μ has some important consequences.

Variant u. First, we verify for which u the definition

pj := uα j+1

is reasonable. In this case (7) implies the formula

α′
j = −μuα j−1 + (1 − λu)α j − uα j+1.

If

u := 1

1 + λ + μ
, (49)

then α′
j depends only on differences of the coefficients α j:

α′
j = u(μ�α j−1 − �α j).

Remark also that for μ = 1 (this is the case for the Chebyshev and trigono-
metric series, of course without the above mentioned transform of { f j}) this
formula is better still:

α′
j = − 1

2 + λ
�2α j−1.

For such μ transform (6) is expressed as follows:

∞∑

j=l

α j f j = 1

2 + λ

⎧
⎨

⎩[(λ + 1)αl − �αl] fl + (αl+1 − �αl+1) fl+1 −
∞∑

j=l+2

�2α j−1 f j

⎫
⎬

⎭ .

Definition (49) of the factor u is reasonable also for pj chosen a little
differently. Let, for example, pj := uα j+2. Then, however, for μ = 1 and u =
1/(2 + λ) we have α′

j = −u[(1 + λ)�α j + �α j+1] and we can’t express α′
j by the

second differences �2α j.
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Variant uv. The definition

pj := u(α j+1 + v�α j+1),

with u as in (49) and at the moment arbitrary v, may be more efficient. Then

α′
j = u

[
μ(1 − v)�α j−1 − (1 + λv)�α j − v�α j+1

]

and for v := u(μ − 1) this α′
j depends on the second differences, even if μ �= 1:

α′
j = −u

[
μ(1 − v)�2α j−1 + v�2α j

]
.

If μ = 1, then v = 0 and variant uv reduces to the former one. For arbitrary μ

it follows from (6) that

∞∑

j=l

α j f j = u

⎧
⎨

⎩[(λ + μ)αl − �αl − v�αl+1] fl

+ [μαl+1 − (1 + λv)�αl+1 − v�αl+2] fl+1

−
∞∑

j=l+2

[
μ(1 − v)�2α j−1 + v�2α j

]
f j

⎫
⎬

⎭ . (50)

Passing from series (1), i.e. the left-hand side of (50), to its right-hand side
may be iterated. This is especially simple for μ = 1 because then the result of
this procedure (for l = 1) is the following:

∞∑

j=1

α j f j =
∞∑

k=1

(−1)k−1

(2 + λ)k

{[
(λ + 1)�2k−2αk − �2k−1αk

]
f2k−1

+ (
�2k−2αk+1 − �2k−1αk+1

)
f2k

}
. (51)

m-th partial sum of this series depends on f1, f2, . . . , f2m and on α1, α2,

. . . , α3m. The above transform (as well as other transform of this type given
below) is useful first of all if an analytic form of the differences �mαk is known
and the number of used coefficients α j is immaterial. On the numerical point
of view is important that (51) contains only such differences �mαk for which
m ≈ 2k. In fact, if e.g. α j = 1/( j + c), then

�mαk = (−1)mm!
(k + c)m+1

(52)

and |�mαk| decreases rapidly to 0, but only when both indices m and k
increase. More generally, this is the case if α j is any rational function in j. If
the degree of its numerator is less than degree of its denominator, then the
Chebyshev series with coefficients α j converges (at least for −1 � x < 1), but
very slowly.

Example 1 Let

α j := 1

j + c
(c �= −1, −2, . . .).
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Then (51) and (52) imply that

∞∑

j=1

1

j + c
f j =

∞∑

k=1

(−1)k−1(2k − 2)!
(2 + λ)k(k + c + 1)2k−1

×
{

(3λ + 5)k + λc − λ + c − 2

k + c
f2k−1 + 5k + c − 1

3k + c
f2k

}
. (53)

Let βk denote the factor multiplied on the right-hand side by the linear combi-
nation in { }. As in the most interesting cases (the Chebyshev and trigonometric
series) | f j| � 1, just properties of βk determine speed of convergence of the
new series. One can prove that

|βk| ∼
√

3π

4k
3−cϕk, gdzie ϕ := 4

27(2 + λ)
. (54)

Then the series with coefficients βk behaves a little better than a geometric
series with common ratio ±ϕ. A similar property is typical also for series
resulting from (60) by means of a modified Euler–Knopp transform (as well
as series obtained in [9] by transformations of some hypergeometric series).
However a value of ϕ is essential. Let f j = Tj(x) and| |x| � 1. Then | f j| � 1 and
λ = −2x. Thus ϕ = 1, 1

2 , 1
4 , 1

10 , 1
20 for x non greater than 25

27 , 23
27 , 19

27 , 7
27 , − 13

27 ,
respectively. Hence, though the series

∞∑

j=1

1

j + c
Tj(x) (55)

(diverging for x = 1) converges very slowly for each x ∈ [−1, 1), the trans-
formed series converges at least geometrically already, e.g., if x = 0.9, and for
x � 7

27 joining a term to is partial sum (i.e. growing k by 1) gives one additional
exact decimal digit. It was verified for c = 0 when series (55) has the sum
− 1

2 log(2 − 2x). Below is given the number of initial terms of the transformed
series needed for computing its sum with at least 17 exact significant digits.

x : −1.0 −0.5 −0.25 0
7

27
0.6

19

27

23

27
0.9

max k : 12 13 14 15 17 24 28 55 123

For x = 25
27 the new series is useless as its partial sums behave irregularly and

the most accurate from them gives only two significant digits of its sum. Finally,
we can regard using this series and another ones of the same type as worthwhile
for x � 0.7.

Let now μ in identity (50) be arbitrary. Then passing from the left-hand side
of (50) to its right-hand side is more difficult to repeat. Even in a series resulting
from first iteration each coefficient depends on three fourth differences of α j.
Next series are more and more complicated. To avoid this difficulty we
regroup terms of the series appearing (50) on the right so that each term
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depends on only one difference �2α j. Furthermore we eliminate there the
terms −v�αl+1 fl, −λv�αl+1 fl+1 and μv�αl+1 fl+2 whose sum equals 0:

∞∑

j=l

α j f j = u

⎧
⎨

⎩[(λ + μ)αl − �αl] fl + [μαl+1 − �αl+1 − v�αl+2] fl+1

+ μ[�αl+1 − (1 − v)�αl+2] fl+2 −
∞∑

j=l+2

�2α j f ′
j

⎫
⎬

⎭ , (56)

where f ′
j := v f j + μ(1 − v) f j+1. The sequence { f ′

j} satisfies, as { f j}, relation
(2). The transform resulting from (56) can be easily iterated:

∞∑

j=1

α j f j =
∞∑

k=1

(−1)k−1uk

×
{[

(λ + μ)�2k−2α2k−1 − �2k−1α2k−1
]

f (k−1)

2k−1

+ [
μ�2k−2α2k − �2k−1α2k − v�2k−1α2k+1

]
f (k−1)

2k

+μ
[
�2k−1α2k − (1 − v)�2k−1α2k+1

]
f (k−1)

2k+1

}
, (57)

where

f (0)

j := f j, f (m)

j := v f (m−1)

j + μ(1 − v) f (m−1)

j+1 (m = 1, 2, . . .).

Remark that mth partial sum of a series after transform depends on
f1, f2, . . . , f3m (for v = 1 only on f1, f2, . . . , f2m+1) and on α1, α2, . . ., α4m, i.e.
this sum uses larger information that analogous sum in (51). This is immaterial
if this transform is executed analytically.

Transform (57) is the simplest one for v = 0 and v = 1; cf. respectively
Examples 2 and 3.

Example 2 Consider again the series from Example 1. We have then μ = 1,
u = 1/(2 + λ), v = 0 and for this reason f (m)

j = fm+ j. One can prove that

∞∑

j=1

1

j + c
f j =

∞∑

k=1

(−1)k−1(2k − 2)!
(2 + λ)k(2k + c)2k

×
{

(4k + c − 1)[(1 + λ)(4k + c − 2) + 2k − 1]
2k + c − 1

f3k−2

+ (6k + c − 2) f3k−1 − (2k − 1)2

4k + c
f3k

}
, (58)

As

(2k − 2)!
(2k + c)2k

∼
√

π

2k3
2−c16−k,

one can say that the above series is better than that in the previous example
(16 > 27

4 ). It is true at least when the sum in { } simplifies in a substantial
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manner. Suppose that f j = Tj
(− 1

2

)
in (58). Then due to the equalities f3k−2 =

f3k−1 = − 1
2 , f3k = 1 we have

−1

2
log 3 =

∞∑

j=1

1

j
Tj

(
−1

2

)
=

∞∑

k=1

2(−1)k(7k − 2)(2k − 2)!
3k(2k)2k

.

Series (53) doesn’t simplify as much as above. However, it may be important
how a consecutive term of the sequence { f j} improves the accuracy of the new
series. In this sense series (58) is better than (53) only if 39(2 + λ) < 214, i.e.
(for the Chebyshev series) if x � 0.584.

Example 3 Section 4 explains how we should process when α j = q jR( j), where
|q| � 1 and R is a rational function. According to that if we wish accelerate
convergence of the series

∞∑

j=1

q j

j + c
Tj(x) (c �= −1, −2, . . .) (59)

[cf. (15)] we use the equation f j − 2q−1xf j+1 + q−2 f j+2 = 0 satisfied by the
quantities f j := q jTj(x). Then

λ = −2q−1x, μ = q−2, u = q2

1 − 2qx + q2
, v = 1 − q2

1 − 2qx + q2
.

In particular, for q = x we have u = q2/(1 − q2), v = 1, and then f (m)

j doesn’t

depend on m: f (m)

j = q jTj(q). In such case it is worth simplifying the right-
hand side of (57). To this end we combine two terms containing f j with odd j.
For c = 0 and x = q, when series (59) has the sum − 1

2 log(1 − q2), this leads to
the series

2q − 3q3

2(1 − q2)
T1(q) +

∞∑

k=1

(−1)k−1(2k − 2)!
(2k + 1)2k+1

(
q4

1 − q2

)k

×
{
(4k + 1)[q−2(8k − 2) + 6k − 3]T2k(q)

−(2k − 1)

[
2q − 3q3

1 − q2
k + 2q−1(4k + 1)

]
T2k+1(q)

}
.

Coefficients of T2k(q) and T2k+1(q) are of order

1√
k

(
q4

16(1 − q2)

)k

.

For q very close to 1 (strictly, for q �
√√

80 − 8 ≈ 0.9717) the above series
may be divergent, for q < 4/

√
17 ≈ 0.9701 it converges more rapidly than the

previous one, and for q �
√√

2.24 − 0.8 ≈ 0.8347 adding a term to a partial
sum increases its accuracy at least by one decimal digit.
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Remark also that for x �= q passing from { f (m−1)

j } to { f (m)

j } can increase these
elements about by the factor σ , where

σ := v + μ(1 − v) = −2q−1x + 3 − q2

1 − 2qx + q2
, σ − 1 = 2

(
q−1 − q

)
(q − x)

1 − 2qx + q2
.

It is important when we estimate advantages of transform (57).

Variant uvw. Finally, we consider a third definition of the auxiliary fac-
tors pj:

pj := u
(
α j + v�α j + w�2α j

)
.

Here u is defined as in (49) and parameters v, w should be chosen in this way
that α′

j depends only on differences �kα j of possibly high order (as we may
verify, the definition pj := u(α j+1 + v�α j+1 + w�2α j+1) is not so profitable).
Elementary manipulations lead us to the formula

α′
j = u{μ(1 − v + w)�α j−2 + [λ(1 − v + w) + μ(1 − w)]�α j−1

− (λw + v − w)�α j − w�α j+1}.
α′

j depends only on the differences �2α j if the coefficients of this linear
combination sum up to 0. This is the case for v = u(λ + 2μ). Then α′

j can be
expressed by the differences �3α j if

3μ(1 − v + w) + 2[λ(1 − v + w) + μ(1 − w)] − (λw + v − w) = 0,

i.e. if w = −(λ + 3μ − μ2)u2. For such u, v, w

α′
j = u

[
μ(1 − v + w)�3α j−2 − w�3α j−1

]
.

Under known assumption μ = 1 we have

u = 1

2 + λ
, v = 1, w = − 1

2 + λ
, α′

j = 1

(2 + λ)2
�4α j−2,

pj = 1

2 + λ

(
α j+1 − 1

2 + λ
�2α j

)

and finally

∞∑

j=l

α j f j = 1

(2 + λ)2

⎧
⎨

⎩
[
(1 + λ)2αl − (2 + λ)�αl + �2αl

]
fl

+ [
λαl + 2αl+1 − 2�αl+1 + �2αl+1

]
fl+1 +

∞∑

j=l+2

�4α j−2 f j

⎫
⎬

⎭ .

Remark that on the right coefficient of fl+2 depends among others on αl.
The same dependence concerns series which result by natural iterating the
above relation. Hence a final transform, e.g. for the series with coefficients
α j = 1/( j + c) is equally inefficient as the original Euler–Knopp transform of
the power series with the same coefficients [cf. Section 1, (8) and (9)]. For
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this reason in each iteration we should adjoin at least one term of the series
on the right to the terms with fl and fl+1 [transform (57) is constructed in
the same way and even for μ = 1 it differs from (51)]. A similar modification
of aforementioned classical transform has in some particular cases following
form:

1

1 − x

∞∑

k=0

(
x2

1 − x

)k (
�kαk + �k+1αkx

)
,

1

1 − x

∞∑

k=0

(
x3

1 − x

)k (
�kα2k + �k+1α2kx + �k+1α2k+1x2

)
.

The Euler–Knopp transform and such its modifications for the series

∞∑

j=0

1

j + 1
x j (60)

converging to −x−1 log(1 − x) for −1 � x < 1 give respectively the series

1

1 − x

∞∑

k=0

1

k + 1

(
− x

1 − x

)k

,
2 − x
1 − x

∞∑

k=0

k!
(k + 2)k+1

(
− x2

1 − x

)k

,

1

3(1 − x)

∞∑

k=0

k!
(2k + 1)k+2

(
− x3

1 − x

)k {
3[3k + 2 − (k + 1)x] − (2k + 1)x2

}
.

The first of them converges for each x � 1
2 (i.e. also for x < −1 although

series (60) is there divergent), for −1 � x < 0 converges more rapidly than
the original series and diverges for x > 1

2 . The second series converges for
−√

8 − 2 � x �
√

8 − 2 roughly as a geometrical series with the common ratio
−x2/[4(1 − x)] and for −1 � x � 1

2 its each term gives one additional octal
digit. The third series converges for −3 � x � ξ where ξ ≈ 0.89410745 is the
unique real zero of the polynomial 4x3 + 27x − 27.

Also for the orthogonal series distinct procedures lead to series having
different properties. In particular a procedure recommended above gives the
following result:

∞∑

j=1

α j f j =
∞∑

k=1

1

(2 + λ)2k

×
{[

(1 + λ)2�
4k−4αk − (2 + λ)�4k−3αk + �4k−2αk

]
f3k−2

+ [
λ�4k−4αk + 2�4k−4αk+1 − 2�4k−3αk+1 + �4k−2αk+1

]
f3k−1

+ �4kαk f3k

}
.

It is worth comparing it with (51). Here mth partial sum of the new series
depends on f1, f2, . . . , f3m and α1, α2, . . . , α5k−1.
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In particular for c �= −1, −2, . . .

∞∑

j=1

1

j + c
f j =

∞∑

k=1

(4k − 4)!
(2 + λ)2k(k + c)4k

×
{
(5k + c − 1)[(1 + λ)2(5k + c − 3)2

+ (2 + λ)(4k − 3)(5k + c − 2) + (4k − 3)2] f3k−2

+ [λ(5k + c − 3)3 + 2(k + c)(5k + c − 2)2

+ 2(4k − 3)(k + c)(5k + c − 1) + (4k − 3)2(k + c)] f3k−1

+ (4k − 3)4

5k + c
f3k

}
.

Factor appearing here before { } is equal asymptotically to

51−c

64k3

√
π

10k

(
256

3125(2 + λ)2

)k

,

i.e. the last series is roughly a geometrical series with common ratio equal
about to 0.0091 and 0.082 respectively for λ = 1, −1.

Example 4 The last relation implies that

∞∑

j=1

1

j
Tj

(
−1

2

)
= − 1

10

∞∑

k=1

(6,293k3 − 7,527k2 + 2,698k − 282)(k − 1)!
9k(4k − 3)k+3

,

∞∑

j=1

1

j
Tj

(
1

2

)
= − 1

10

∞∑

k=1

(−1)k−1(483k3 − 797k2 + 358k − 42)(k − 1)!
(4k − 3)k+3

.

The first series (where λ = 1) has the sum − 1
2 log 3. The partial sums of

the series on the right with k � 1, 2, 3 give this value respectively with
2.42, 4.59, 6.71 significant decimal digits. The second series (λ = −1) has the
sum 0. In this case analogous partial sums of the new series are equal to

1
120 , − 1

1,680 , 31
720,720 . Their behaviour agrees with the general informations given

before the example.

As is mentioned in Section 1, summing of orthogonal series is troublesome
because even the signs of f j vary irregularly. This is the case for example if
f j = Tj(x) and x is close to 1. The above defined transforms for such x and
even very regular coefficients α j (as 1/( j + c)) are also weakly efficient. Oleksy
[11, (4–7)] proposed a preliminary transform which for a trigonometrical series
removes this drawback:

∞∑

j=1

α j

{
cos
sin

}
jx = 2

∞∑

j=1

α2 j

{
cos
sin

}
j(2x) −

∞∑

j=1

α j

{
cos
sin

}
j(x + π) (61)
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(the sum x + π may be replaced by the difference x − π). The essence of this
transform is then passing from an argument x, for which summing of a series is
particularly difficult, to “better” arguments 2x and x + π . For the Chebyshev
series an analogous transform

∞∑

j=1

α jTj(x) = 2
∞∑

j=1

α2 jTj
(
T2(x)

) −
∞∑

j=1

α jTj(−x) (62)

results from the relations Tj
(
T2(x)

) = T2 j(x), Tj(−x) = (−1) jTj(x). Identities
(61) and (62) are trivial if all α2 j vanish. Otherwise the first series on the right in
these identities may be transformed in the same way. After k iterations of such
procedure we obtain a linear combination of k + 1 series. Oleksy [11] suggests
using a standard convergence acceleration method (e.g. the ε-algorithm or
Levin’s t-transform) to each of these series and not to the original series. He
informs also for which k this process is the most reasonable [op. cit., (15)]. For
the Chebyshev series with coefficients α j = 1/( j + c) and x close to 1 optimal k
is very large:

k :=
[
log2

π

arccos x

]
− 1. (63)

The same is true for cosine or sine series with identical coefficients and for
some x; these series are important in physics [op. cit., (27), (28)].

Series resulting from k-fold application of Oleksy’s transform may be
of course evaluated with the aid of reasonably chosen numerical methods
from Section 3. For the simplest rational coefficients more recommended are
analytical methods from this section. Let

S(c; x) :=
∞∑

j=1

( j + c)−1Tj(x).

Identity (62) is here particularly simple:

S(c; x) = S
(
c/2; T2(x)

) − S(c; −x). (64)

Series S converges very slowly for x ∈ [−1, 1) and is divergent if x = 1. For
each x ∈ [−1, 1) the quasiorthogonal series Q(c; x) defined as the right-hand
side of (53) for f j := Tj(x) and λ = −2x corresponds formally to S. This new
series diverges for x � 25

27 ≈ 0.926 and for another values of x it behaves
roughly as a geometrical series with the common ratio ϕ := 2/[27(1 − x)].
Therefore series Q(c; x) converges very slowly for, say, x = 0.9, but, say,
for x = 0.5 and first of all for x < 0 it converges rapidly. As T2(0.9) = 0.62,
for x = 0.9 the quasiorthogonal series Q(c/2; T2(x)) and Q(c; −x) converge
sufficiently rapidly (we have respectively ϕ = 100

513 and ϕ = 20
513 ). Thus, by (64),

in place to S(c; 0.9) it is worthwhile to compute Q(c/2; 0.62) − Q(c; −0.9).
Now let x = 0.95, from where x � 25

27 . In view of (64) one has S(c; 0.95) =
S(c/2; 0.805) − S(c; −0.95). Series Q(c/2; 0.805) converges very slowly but the
same identity gives us

S(c/2; 0.805) = S(c/4; 0.29605) − S(c/2; −0.805).
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For both the series on the right corresponding quasiorthogonal series converge
sufficiently rapidly. Therefore we use finally the relation

S(c; 0.95) = Q(c/4; 0.29605) − Q(c/2; −0.805) − Q(c; −0.95).

More generally, the value of S(c, x) can be calculated as follows:

(1) If x < 1/
√

2, then we calculate Q(c; x).
(2) Otherwise we iterate (as above) identity (64) k times, where k is defined

in (63) and we replace each series S by the corresponding Q:

S(c; x) = Q
(
c/2m; −T2m(x)

) −
k−1∑

m=0

Q
(
c/2m; −T2m(x)

)
,

where T2k(x) � 1/
√

2 and all the −T2m(x) are negative. Values T2m(x)

obviously are computed iteratively: T1(x) = x, T2m(x) = 2T2m−1(x) − 1
(m = 1, 2, . . .).

Parameter k in (63) for x = 1 − 10−l and l = 1, 2, . . . , 6 is equal respectively
to 1, 3, 5, 6, 8, 10. Then we know how series Q should be summed for such
x close to 1, for which direct evaluating S(c; x) is the most expensive. Suppose
we wish evaluate the sum of each series Q with the absolute error less than
10−17. In this case for c = 0 in each series Q

(
c/2m; −T2m(x)

)
it suffices to take

13 initial terms and in Q
(
c/2m; −T2m(x)

)
at most 27 terms. In view of (54) the

cost of computation is still less for c > 0.
The above arguments remain in force when a series Q results from (58).

5 Equation (2) with variable coefficients

Suppose now that the parameters λj and μj of (2) are rational functions in j
such that (25) holds and σ := 1 + λ + μ �= 0. This is the case for the Jacobi
orthogonal series provided that x �= 1; it is important also that for them μ = 1.
For the Laguerre and Hermite series λj and μj are rational but σ = 0.

It turns out that if the λj and μj depend on j, then factors pj chosen similarly
as in Section 4 do not decrease the coefficients α′

j (in comparison with α j) as
well as earlier. Furthermore, analytical iterating of transform (6) is here rather
unfeasible even for the simplest pj.

Variant u. We may reason as in Section 4 but in a definition of a factor
pj in (6) and (7) a quantity u should be now dependent of j. We take then
pj := u jα j+1. Therefore

α′
j = −μ j−2u j−2α j−1 + (1 − λ j−1u j−1)α j − u jα j+1 ( j � 3). (65)

If

1 − μ j−2u j−2 − λ j−1u j−1 − u j = 0,

i.e. the sequence {u j} satisfies a nonhomogeneous difference equation of the
second order, then α′

j is expressed by the differences �α j−1 and �α j, and
hence is small compared with α j. Generally it is impossible to solve exactly
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this equation (identical with (19) for α j = 1). An approximate solution is as
follows [cf. (49)]:

u j = 1

1 + λj + μj
. (66)

Lemma 5 If u j is defined by (66), then

α′
j = μ j−2u j−2�α j−1 − u j�α j − [�u j−2 + �u j−1 + �(λ j−2u j−2)]α j. (67)

Thus, in comparison with the case of constant λj and μj, a combination of the
differences �α j−1 and �α j should be now decreased by the sum of differences
of expressions dependent only of the parameters of difference equation (2),
multiplied by α j. Remark that α′

j depends on α j−1, α j, α j+1.

Proof (65) implies than

α′
j = μ j−2u j−2�α j−1 − u j�α j + (1 − μ j−2u j−2 − λ j−1u j−1 − u j)α j.

For u j from (66) the factor multiplied by α j may be expressed as in (67). 
�

For the Legendre series λju j = const and formula (67) simplifies into

α′
j = 1

1 − x

[
j

2 j − 1
�α j−1 − j + 1

2 j + 3
�α j − 2

(2 j − 1)(2 j + 3)
α j

]
.

These new coefficients are rather complicated even for α j := 1/( j + c):

α′
j = − 8 j2 + (6c + 5) j + 2c2 + c − 3

(1 − x)(2 j − 1)(2 j + 3)( j + c − 1)3
. (68)

However, due to Lemma 5 one can prove that for some series (1) the coeffi-
cients α′

j from (7) are small compared to α j. In such cases it is worth iterating
transform (6).

Theorem 6 Let σ := 1 + λ + μ �= 0, τ := (c1 + d1)/σ . If α j is such rational
function in j that α j = a0 j−m + a1 j−m−1 + . . . (m natural, a0 �= 0), that for the
factors u j defined in (66) α′

j is also a rational function in j and

α′
j = 1

σ
ma0(1 − μ) j−m−1

+ 1

σ

{
[(m + 1)a1 − mτa0](1 − μ) − ma0d1 − 1

2
(m)2a0(1 + μ)

− a0[(λ + 2)τ − c1]
}

j−m−2 + O
(

j−m−3
)
.

If in (1) f j is the j th Jacobi polynomial, then

α′
j = − a0

2(1 − x)
(m + 1)2 j−m−2 + O( j−m−3). (69)



60 Numer Algor (2008) 47:35–62

It was to be expected that also for λj, μj dependent of j and rational α j the
transformed series has the best properties for μ = 1, at least in the sense that
then α′

j = O( j−m−2) (remark however that the coefficient of j−m−2 in α′
j is of

order m2).
An elementary proof can be omitted.
As in Section 4, passing from a series

∑∞
j=l α j f j to the series on the right

in (6) can be repeated:

Algorithm 7 At least formally the equality
∞∑

j=1

α j f j =
∞∑

l=1

βl fl,

holds, where for α
(0)

j := α j ( j = 1, 2, . . .) the coefficients βl are recurrently
computed by the following formulae used for k = 1, 2, . . .:

p(k−1)

j := α
(k−1)

j+1

1 + λj + μj
( j � 2k − 1),

α
(k)

j := α
(k−1)

j − μ j−2 p(k−1)

j−2 − λ j−1 p(k−1)

j−1 − p(k−1)

j ( j � 2k + 1),

β2k−1 := α
(k−1)

2k−1 − p(k−1)

2k−1 ,

β2k := α
(k−1)

2k − λ2k−1 p(k−1)

2k−1 − p(k−1)

2k .

To find the coefficients βl for l � 2kmax we compute successively for k =
1, 2, . . . , kmax row by row, from left to right, quantities

α
(0)

3k−2 p(0)

3k−3 α
(1)

3k−3 p(1)

3k−4 . . . p(k−2)

2k−1 α
(k−1)

2k−1

α
(0)

3k−1 p(0)

3k−2 α
(1)

3k−2 p(1)

3k−3 . . . p(k−2)

2k α
(k−1)

2k p(k−1)

2k−1 β2k−1

α
(0)

3k p(0)

3k−1 α
(1)

3k−1 p(1)

3k−2 . . . p(k−2)

2k+1 α
(k−1)

2k+1 p(k−1)

2k β2k

(among them there are the coefficients α j of the original series for j � 3kmax).
They are stored in the arrays

alpha[1 .. 3 × kmax], p[0 .. 2, 0 .. kmax − 1]
(α(k)

m = alpha[m], p(k)
m = p[m mod 3, k]). Algorithm 7 uses many times the

coefficients λj, μj for j � 3kmax − 1 and it is worth storing them. The quantities
f j for j � 2kmax are also needed.

The algorithm was verified, among others, for series (10–12). In three
different cases, namely for x � 0.1, x � 0.2 and x � −0.2, the sum of each
series after its transform was computed with at least 17 accurate digits. To
this end coefficients βl for at most l � 32 were used. Generally, evaluating
this sum with maximal attainable accuracy requires more coefficients α j than
for methods from Section 3. On the other hand, the above algorithm has an
important advantage: accuracy of results is more easily controllable. In fact, the
coefficients βl quite rapidly converge to 0 until they are perturbed by rounding
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errors. As |P j(x)| � 1 [13, Section 7.21] one can recommend the following
procedure:

(1) We finish computations when for some k

|β2k+1| + |β2k+2| � |β2k−1| + |β2k|,
(2) We accept the quantity

∑2k
l=1 βl fl as the best approximant of the sum of

a given series,
(3) We assume that left-hand side of above inequality gives us error of this

approximant.

As for methods from Section 3, efficiency of Algorithm 7 decreases when x
tends to a singular point of our series. For series (10) (diverging at x = 1) and
x = 0.2, 0.3, . . . , 0.8 probably the best approximant of its sum has respectively
15.5, 13.9, 14.3, 12.9, 11.3, 9.4, 7.5 exact digits. For series (11) (which very
slowly converges at x = 1) accuracy is a little greater. Also for these x methods
from Section 3 are more efficient.

Variant uv. Passing of the variant u to the uv consists in adjoining to α′
j

from (65) the sum

S j := −μ j−2u j−2v j−2�α j−1 − λ j−1u j−1v j−1�α j − u jv j�α j+1.

If for certain v and integer n we have v j = v j−n + O( j−n−1), then

S j ≈ mva0 j−m−n−1.

Variant uv is a priori reasonable if leads to a qualitative reducing of the
coefficients α′

j. If f j is the j th Jacobi polynomial one must then remove in
expression (69) the term with j−m−2, i.e. put

n = 1, v = 1

2(1 − x)

(m + 1)2

m
.

In this case, however, iterating variant uv requires knowledge in each step of
the value m (assumption that m systematically decreases by 3 not always is
reasonable). The same concerns the case when μ �= 1. The after-mentioned
(untypical) definition of v j doesn’t have this drawback.

We suppose again that f j is the j th Jacobi polynomial, i.e. (69) holds. Let

pj := u j

{
α j+1 + 1

σ 2

[
�

(
α j

j + c

)
− �2α j

]} (
σ := 2(1 − x), c > 0

)
. (70)

Denote by v j the term added above to α j+1. Its introducing increases α′
j from

Th. 6 by −μ j−2u j−2v j−2 − λ j−1u j−1v j−1 − v j. As

�

(
α j

j + c

)
= −(m + 1)a0 j−m−2 + . . . , �2α j = (m)2a0 j−m−2 + . . . ,
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α′
j increases by (a0/σ)(m + 1)2 j−m−2 + . . . and now is equal (for any c) to

O( j−m−3). Effects of this modification can be estimated for the Legendre series
∞∑

j=1

1

j + 1
P j

(
1

2

)
.

The coefficients α′
j in the variant u result here from (68) for c = 1 and x = 1

2 ;
two values of them are given below in the first row. The second one contains
the analogous coefficients in variant uv:

α′
6 = − 59

4620
≈ −0.01277, α′

7 = − 67

7956
≈ −0.008421,

α′
6 = 73

20790
≈ 0.003511, α′

7 = 37

41580
≈ 0.0008899.

However, please note that in the second variant α′
j depends, by (70), on five

coefficients of the original series, namely α j−2, . . . , α j+2.
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