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Abstract Many radial basis function (RBF) methods contain a free shape
parameter that plays an important role for the accuracy of the method. In most
papers the authors end up choosing this shape parameter by trial and error or
some other ad hoc means. The method of cross validation has long been used in
the statistics literature, and the special case of leave-one-out cross validation
forms the basis of the algorithm for choosing an optimal value of the shape
parameter proposed by Rippa in the setting of scattered data interpolation
with RBFs. We discuss extensions of this approach that can be applied in
the setting of iterated approximate moving least squares approximation of
function value data and for RBF pseudo-spectral methods for the solution of
partial differential equations. The former method can be viewed as an efficient
alternative to ridge regression or smoothing spline approximation, while the
latter forms an extension of the classical polynomial pseudo-spectral approach.
Numerical experiments illustrating the use of our algorithms are included.
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1 Introduction

Many radial basis functions (RBFs) contain a free shape parameter ε that
can be tuned by the user. In the traditional RBF approach (as described in
Section 2 below) the problem boils down to the solution of a system of linear
equations with a system matrix A whose condition number grows as the shape
parameter ε goes to zero. On the other hand, standard error estimates via the
so-called power function indicate better accuracy for decreasing ε. This inter-
dependence is known in the literature (see, e.g., [31]) as the uncertainty or
trade-off principle and has been recognized as an important issue by many
researchers.

More recent research conducted mostly by Fornberg and co-workers (see,
e.g., [2, 15, 16, 22, 23]) has shown that one may be able to overcome the condi-
tioning problems of the traditional RBF approach by using other techniques
such as the Contour–Padé algorithm of [15]. This research has confirmed
that – even when circumventing the ill-conditioning of the system matrix –
there usually is a value of the shape parameter which results in optimal
approximation errors.

Due to a connection between RBF interpolation and polynomial interpo-
lation (also studied in some of the papers listed above) it is likely that RBF
interpolation also suffers from a phenomenon that is similar to the well-known
Runge phenomenon for polynomial interpolation, and that the choice of the
shape parameter can alleviate this effect. Of course, other factors such as
center placement are likely to play an important role in successfully dealing
with this Runge phenomenon, also. Nevertheless, once a set of RBF centers
has been chosen, it is of importance to find the corresponding optimal shape
parameter ε.

In summary, regardless of whether one follows the traditional RBF ap-
proach (and therefore looks for a good balance between accuracy and stabil-
ity), or whether one applies stabilization techniques such as the Contour–Padé
algorithm (which is applicable only to rather small problems), the flexibility
and potential for improved accuracy offered by the shape parameter present
in many RBFs should be exploited by the user. It is somewhat ironic that this
freedom is often viewed as a disadvantage since the user is forced to make
a decision on the choice of the shape parameter. This leads to the fact that
the authors of many papers end up choosing ε by a rather costly trial and
error approach performing their numerical experiments over and over again
until they end up with a satisfactory result. Alternatively, the shape parameter
is picked by some (non-optimal) ad-hoc criterion. For example, in one of
the earliest RBF papers on (inverse) multiquadric RBF interpolation in R

2

Hardy [18] suggests the use of ε = 1/(0.815d), where d = 1
N

∑ N
i=1 di, and di is

the distance from the data point xi to its nearest neighbor. Franke [17] on the
other hand recommends ε = 0.8

√
N

D , where D is the diameter of the smallest
circle containing all data points. Here ε is used as in the examples listed in
Section 2 below, and thus may differ slightly from the discussion in the original
papers.
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The method of cross validation has long been used in the statistics literature,
and the special case of leave-one-out cross validation (LOOCV) forms the
basis of the algorithm for choosing an optimal value of the RBF shape parame-
ter proposed by Rippa [26] in the setting of scattered data interpolation. We
will review this algorithm below in Section 2 as it forms the starting point for
our work.

In particular, we discuss extensions of Rippa’s LOOCV algorithm that can
be applied in the setting of iterated approximate moving least squares (AMLS)
approximation and for RBF pseudo-spectral (PS) methods for the solution of
partial differential equations. In Section 4 we will discuss how an LOOCV
strategy can be used in the context of iterated AMLS approximation (which
we review in Section 3) to find both the optimal number of iterations and the
optimal shape parameter. As our numerical experiments presented in Section 5
will show, this iterative approach can be viewed as an efficient alternative to
ridge regression or smoothing spline approximation. In Section 6 we switch
to our second application and briefly review the RBF-PS method showing
that it generalizes the classical polynomial pseudo-spectral method. Rippa’s
algorithm is modified in Section 7 to yield the optimal shape parameter for the
RBF-PS approach, and some numerical experiments are included in Section 8.

2 Some background information

In the standard RBF interpolation problem we are given generally scattered
data sites X = {x1, . . . , xN} ⊂ � and associated real function values f (xi), i =
1, . . . , N. Here � is usually some bounded domain in R

s. It is our goal to find
a (continuous) function Pf : R

s → R that interpolates the given data, i.e., such
that

Pf (xi) = f (xi), i = 1, . . . , N. (1)

In the RBF literature (see, e.g., [8, 31]) one assumes that this interpolant is of
the form

Pf (x) =
N∑

j=1

cjϕ(‖x − x j‖), (2)

where the basic function ϕ is (in this paper) assumed to be strictly positive
definite and the coefficients c = [c1, . . . , cN]T are found by enforcing the
interpolation constraints (1). This implies that

c = A−1f,

where Aij = ϕ(‖xi − x j‖) and f = [ f (x1), . . . , f (xN)]T .
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The kind of RBFs � = ϕ(‖ · ‖) we will be mostly interested in are the
Gaussians �(x) = e−ε2‖x‖2

, Matérn functions such as

�(x) = e−ε‖x‖,

�(x) = (1 + ε‖x‖)e−ε‖x‖,

�(x) = (3 + 3ε‖x‖ + ε2‖x‖2)e−ε‖x‖,

or the multiquadrics �(x) = (1 + ε2‖x‖2)β , β /∈ N. While this latter family of
functions is quite popular, only those multiquadrics for β < 0 are strictly
positive definite. Other commonly used RBFs such as polyharmonic splines
or compactly supported functions will not play a role in this paper.

Many nice properties of the RBF interpolant are emphasized in the RBF
literature. For example, Pf is the minimum norm interpolant to f in a Hilbert
space H, i.e.,

Pf = argmin {‖s‖H : s ∈ H, s(xi) = f (xi), i = 1, . . . , N} .

Here H is actually a reproducing kernel Hilbert space with reproducing kernel
ϕ(‖ · − · ‖) – sometimes referred to as the native space of ϕ. Moreover, the
interpolant Pf is even a best approximation to f in the sense that

‖ f − Pf ‖H ≤ ‖ f − s‖H

for all s ∈ HX = {s = ∑N
j=1 ajϕ(‖ · −x j‖), x j ∈ X}.

Clearly, the space H varies with the choice of shape parameter ε present in
all of the RBFs listed above, and one will want to find the “best” Hilbert space
in which the interpolant Pf is optimal.

A popular strategy for estimating this shape parameter based on the given
data (xi, f (xi)), i = 1, . . . , N, is the method of cross validation well-known in
statistics. In [26] an algorithm is described that corresponds to a variant of cross
validation known as leave-one-out cross validation (LOOCV). In this algorithm
an optimal value of ε is selected by minimizing a cost function that collects the
errors for a sequence of partial fits to the data. Even though the true error of
the full RBF interpolant is not known in general, we can estimate this error
by splitting the data set into two parts: one to base an approximation to the
interpolant on, and the other to base an estimate for the error on. In LOOCV
one splits off only a single data point at which to compute the error, and then
bases the approximation to the interpolant on the remaining N − 1 data points.
This procedure is in turn repeated for each one of the N data points. The result
is a vector of error estimates and the cost function that is used to find the
“optimal” value of ε is provided by some norm of this error vector. One of
the main contributions of [26] was to show that this procedure can be executed
efficiently without having to compute all of the N partial interpolants based on
subsets of N − 1 data points (cf. formula (5) below).

Since the LOOCV method is based on errors computed on the given data,
the predicted “optimal” shape parameter is usually close to the actual optimum
value (which, of course, can only be found if we already know the function to
be reconstructed).
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For the following discussion we define

x[k] = [x1, . . . , xk−1, xk+1, . . . , xN]T ,

the vector of datasites with the point xk removed (indicated by the superscript
[k]). Similarly, we define f [k], P[k]

f , c[k] and all other quantities appearing in
LOOCV-like algorithms later on.

Specifically, if P [k]
f is the partial RBF interpolant to the data f [k], i.e.,

P[k]
f (x) =

N−1∑

j=1

c[k]
j ϕ(‖x − x[k]

j ‖),

and if ek is the error estimator

ek = f (xk) − P[k]
f (xk),

then the quality of the overall fit to the entire data set will be determined by
the norm of the vector of errors e = [e1, . . . , eN]T obtained by removing in turn
each one of the data points and comparing the resulting fit with the (known)
value at the removed point as described above. As mentioned earlier, the norm
of e as a function of ε will serve as a cost function for the shape parameter. In
principle any vector norm can be used. In [26] the author presented examples
based on use of the �1 and �2 norms. We will base all of our numerical
experiments on the use of the �2 norm.

According to the ideas presented so far the LOOCV algorithm for RBF
interpolation can be summarized as follows:

Algorithm 1
Fix ε

For k = 1, . . . , N
Let

P[k]
f (x) =

N−1∑

j=1

c[k]
j ϕ

(
‖x − x[k]

j ‖
)

(3)

Compute the error estimator at the kth data point

ek =
∣
∣
∣ f (xk) − P[k]

f (xk)

∣
∣
∣ (4)

end
Form the cost vector e = [e1, . . . , eN]T

The optimal ε is given by minimizing ‖e‖
While this naive implementation of the leave-one-out algorithm would be

rather expensive (on the order of N4), Rippa showed that the algorithm can
be simplified to a single formula by which

ek = ck

A−1
kk

, (5)
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where ck is the kth coefficient in the expansion of the interpolant Pf based on
the full data set, and A−1

kk is the kth diagonal element of the inverse of the
corresponding interpolation matrix.

Note that only a single interpolant (on the entire data set) needs to be
computed for this formulation. Thus, this results in O(N3) computational
complexity. Moreover, all entries in the error vector e can be computed in a
single statement in MATLAB provided we vectorize the component formula
(5) (see line 4 in Program 2 below). In order to determine a good value of
the shape parameter as quickly as possible we can use the Matlab function
fminbnd to find the minimum of the cost function for ε.

A possible implementation of the cost function in the form of the subroutine
CostEps.m is displayed in Program 2.

Program 2 CostEps.m

1 function ceps = CostEps(ep,rbf,DM,rhs)
2 A = rbf(ep,DM);
3 invA = pinv(A);
4 errorvector=(invA*rhs)./diag(invA);
5 ceps = norm(errorvector);

Here rbf needs to provide a MATLAB function that can generate the
interpolation matrix A based on a shape parameter ep and a matrix DM of all
the pairwise distances ‖xi − x j‖ among the datasites. For a Gaussian kernel the
function rbf could look like

rbf = @(ep,r) exp(-(ep*r).^2);

A possible calling sequence for the cost function CostEps is given by

[ep,fval] = fminbnd(@(ep)CostEps(ep,rbf,DM,rhs),minep,maxep);
where minep and maxep define the interval to search in for the optimal
ε value.

3 Iterated approximate MLS approximation

In [9] it was shown that iterated approximate moving least squares (AMLS)
approximation yields the RBF interpolant in the limit. The algorithm can be
interpreted as a variant of iterative refinement. The AMLS method is based on
quasi-interpolants of the form

Q f (x) =
N∑

j=1

f jϕ(‖x − x j‖),

where f j = f (x j) are the given data values, and the generating function ϕ(‖ · ‖)
is required to satisfy a number of conditions. In order to guarantee a desired
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order of approximation ϕ has to satisfy certain continuous moment conditions.
The number of vanishing moments determines the precise approximation or-
der of the scheme. Moreover, the generating function ϕ needs to satisfy a mild
decay condition. If no connection to RBF interpolation is desired, then ϕ is not
subject to any further restrictions. However, if this connection is desired, then
we need to ensure further that ϕ generates the same function space as the RBF,
i.e., the function is strictly positive definite. Finally, we can ensure convergence
of the iterative algorithm by an appropriate scaling of the generating function.
Details of the basic AMLS method are provided in [8] and the iterative method
is described in [9]. A specific family of generating functions that satisfy all
of the requirements just mentioned is listed in (11) below. We note that, in
general, ϕ need not be a radial function. However, in this paper we concentrate
on the radial case.

The iterative algorithm proceeds as follows:

Algorithm 3
Compute the initial approximation

Q(0)

f (x) =
N∑

j=1

f jϕ(‖x − x j‖)

For n = 1, 2, . . .

For j = 1, . . . , N
Compute residuals at the data sites

r(n)

j = f j − Q(n−1)

f (x j)

end
Compute the correction

u(x) =
N∑

j=1

r(n)

j ϕ(‖x − x j‖)

Update Q(n)

f (x) = Q(n−1)

f (x) + u(x)

end

As pointed out above, we expect the sequence of approximants
{

Q(n)

f

}
to

verge to the RBF interpolant Pf . For the following discussion it will be
convenient to introduce some more abbreviations:

Pf = [Pf (x1), . . . , Pf (xN)]T , (6)

Q(n)

f = [Q(n)

f (x1), . . . , Q(n)

f (xN)]T . (7)

With this additional notation one can derive an explicit formula for the iterated
AMLS approximant as

Q(n)

f (x) =
N∑

j=1

[
n∑

i=0

(I − A)
i f

]

j

ϕ(‖x − x j‖) (8)
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(see [9] for details). By evaluating the approximant on the data sites we obtain
the vectorized expression

Q(n)

f = A
n∑

i=0

(I − A)
i f =

(
I − (I − A)

n+1
)

f, (9)

where the latter equality holds due to

n∑

i=0

(I − A)
i = A−1

(
I − (I − A)

n+1
)

,

which in turn is a consequence of
∞∑

i=0

(I − A)
i = A−1, (10)

the standard Neumann series for the matrix inverse.
The sufficient scaling condition mentioned above that guarantees con-

vergence of the iteratively computed AMLS approximant to the RBF inter-
polant is

max
i=1,2,...,N

⎧
⎨

⎩

N∑

j=1

|Bij|
⎫
⎬

⎭
< 2,

where the matrix B is a scaled version of A, i.e.,

Bij = εsϕ
( ε

h
‖xi − x j‖

)
.

Here h is a data-dependent scale parameter which we take to be h = 1/(N1/s −
1), i.e., for uniformly spaced data in R

s h behaves just like the fill distance
(see [9]).

One of the features of the iterative approximate MLS approximation al-
gorithm is that it automatically adapts to non-uniformly spaced data since it
converges to the RBF interpolant which is known to work reasonably well
with non-uniform data. Without the residual iteration it is well known that
approximate MLS approximation does not perform well on scattered data
unless a complicated non-uniform scaling is performed for the generating
function (see, e.g., [5]).

Finally, the most critical point for our application is to actually have generat-
ing functions that satisfy both the continuous moment conditions required for
the approximate MLS method and are strictly positive definite – as required
for RBF interpolation.

The Laguerre–Gaussians given by

�(x) = e−‖x‖2
Ls/2

n (‖x‖2), x ∈ R
s, (11)
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with generalized Laguerre polynomials Ls/2
n are strictly positive definite on R

s.
Specific examples are:

�(x) = 1√
π s

e−‖x‖2
, x ∈ R

s,

�(x) = 1

π

(
2 − ‖x‖2

)
e−‖x‖2

, x ∈ R
2,

�(x) = 1

π

(

3 − 3‖x‖2 − 1

2
‖x‖4

)

e−‖x‖2
, x ∈ R

2.

These functions provide approximation order O(h2), O(h4), and O(h6), re-
spectively (see, e.g., [4]).

4 LOOCV for the optimization of iterated AMLS

As explained in Section 2, Rippa originally designed the leave-one-out cross-
validation algorithm to optimize the shape parameter for a standard RBF
interpolation problem.

We now propose two LOOCV schemes that have been adapted to the
situation that arises in iterated AMLS approximation. Our task now becomes
to find not only a good value of the shape parameter ε, but also a good stopping
criterion that results in an optimal number of iterations. For the latter to make
sense it needs to be noted that for noisy data the iteration acts like a noise filter.
However, after a certain number of iterations the noise will begin to feed on
itself and the quality of the approximant will degrade.

4.1 Direct LOOCV for iterated AMLS approximation

Since the basic Rippa algorithm for LOOCV was designed to deal with the
interpolation setting we now convert the iterated AMLS approximation to a
similar formulation. From (9) we know that

A
n∑

i=0

(I − A)
i f = Q(n)

f . (12)

This formulation is similar to the linear system for an interpolation problem
with system matrix A, coefficient vector

∑n
i=0 (I − A)

i f, and right-hand side
Q(n)

f . In this formulation the right-hand side vector is obtained by evaluating
the quasi-interpolant at the data sites instead of by the given data values
themselves. If we multiply both sides of (12) by

[
n∑

i=0

(I − A)
i

]−1

A−1
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then we obtain

[
n∑

i=0

(I − A)
i

]−1 (
n∑

i=0

(I − A)
i f

)

= f, (13)

where the right-hand side of (13) is itself a consequence of (12). Note that
(13) now is in the form of a standard interpolation system with system matrix
[∑n

i=0 (I − A)
i
]−1

, the same coefficient vector
∑n

i=0 (I − A)
i f as above, and the

usual right-hand side f given by the data.
As a consequence of the Neumann series expansion (10) it turns out that

the system matrix
[∑n

i=0 (I − A)
i
]−1

of (13) is an approximation to the RBF
interpolation matrix A. More details of the connection between these two
interpolation matrices as it pertains to smoothing and preconditioning will be
discussed elsewhere.

In light of the reformulation of the iterative AMLS approximation described
above one will expect that an LOOCV optimization of the system (13) will
yield good parameter values for the iterated AMLS scheme. This means that
in our current setting the Rippa formula (5) applied to compute an error vector
for Q(n)

f is given by

ek =
[∑n

i=0 (I − A)
i f

]

k[∑n
i=0 (I − A)

i
]

kk

. (14)

Note that – in contrast to the RBF interpolation setting – in (14) we do not
have to compute a matrix inverse. In fact, the numerator and denominator
in (14) can be accumulated iteratively. Namely, if we let v(0) = f then the
recursion

v(n) = f + (I − A) v(n−1)

will generate the coefficient vector whose kth component appears in the
numerator of (14).

Moreover, the complexity of the matrix powers in the denominator can be
reduced by using an eigen-decomposition, i.e., we first compute

I − A = X	X−1,

where 	 is the diagonal matrix of eigenvalues, and the columns of X are given
by the eigenvectors of I − A. At this point it is worthwhile to note that not
only the matrix A is symmetric and positive definite (by our assumptions on
the generating functions ϕ(‖ · ‖)), but the matrix I − A has the same properties
due to the scaling assumption required for convergence of the iterated AMLS
method (see [9]).
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Then, starting with M(0) = I we can iteratively generate the denominator of
(14) via

M(n) = 	M(n−1) + I (15)

so that, for any fixed n,

[
n∑

i=0

(I − A)
i

]

= XM(n)X−1.

Note that the matrix–matrix product in (15) involves only diagonal matrices.
Moreover, the diagonal elements of XM(n)X−1 can also be obtained without
full matrix–matrix multiplications since M(n) is diagonal.

We summarize everything we derived for the direct LOOCV strategy of
iterated AMLS approximation in

Algorithm 4

Fix ε. Perform an eigen-decomposition

I − A = X	X−1

Initialize v(0) = f and M(0) = I
For n = 1, 2, . . .

Perform the updates

v(n) = (I − A) v(n−1) + f

M(n) = 	M(n−1) + I

Compute the cost vector e(n) as the componentwise quotient of v(n) and
the diagonal of XM(n)X−1 (cf. line 4 of the MATLAB Program 2)

If
∥
∥e(n)

∥
∥ − ∥

∥e(n−1)
∥
∥ < tol

Stop the iteration
end

end

An optimal value of the shape parameter ε is given by minimizing the norm
of the cost vector e(n) with respect to ε. This can again be done using the
MATLAB function fminbnd. Note that an optimal stopping value for n is
automatically generated by the above algorithm.

4.2 Iterative LOOCV for iterated AMLS approximation

A second – albeit different – LOOCV strategy for the iterated AMLS algo-
rithm is to follow the basic leave-one-out paradigm of Algorithm 2. Since
the quasi-interpolation approach does not involve the solution of any linear
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systems it is conceivable to consider a straightforward implementation. This
leads to

Algorithm 5
Fix ε

For k = 1, . . . , N
Let

Q(0)[k]
f (x) =

N∑

j=1

f [k]
j ϕ

(
‖x − x[k]

j ‖
)

For n = 1, 2, . . .

For j = 1, . . . , N
Compute residuals at the data sites

r(n)[k]
j = f [k]

j − Q(n−1)[k]
f (x[k]

j )

end
Compute the correction

u(x) =
N∑

j=1

r(n)[k]
j ϕ(‖x − x[k]

j ‖)

Update Q(n)[k]
f (x) = Q(n−1)[k]

f (x) + u(x)

Compute the error estimate for the kth data point

e(n)[k]
k =

∣
∣
∣ f (xk) − Q(n)[k]

f (xk)

∣
∣
∣ (16)

end

Form the cost vector e(n) =
[
e(n)[1]

1 , . . . , e(n)[N]
N

]T

If
∥
∥e(n)

∥
∥ − ∥

∥e(n−1)
∥
∥ < tol

stop the iteration
end

end

As in the previous algorithm, an optimal ε is given by minimizing ‖e(n)‖.
Note that this algorithm essentially performs N copies of Algorithm 3 inside
the leave-one-out loop over k.

In order to speed up this computation and simplify computer programming
we now derive a simpler formulation for this iterative LOOCV process.
Clearly, the residual computation (16) can actually be performed at all data
points besides the kth one. Thus, we extend the notation for residuals to

e(n)[k]
j =

∣
∣
∣ f (x j) − Q(n)[k]

f (x j)

∣
∣
∣ , j, k = 1, . . . , N, (17)
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and then form a residual matrix E(n) with entries E(n)

jk = e(n)[k]
j . Consequently,

the cost vector e(n) actually lies along the diagonal of E(n).
A component-wise examination of the relation between the iterated vectors

and matrices reveals the following iterative procedure for computing the
residual matrix E(n) (whose derivation is less obvious but quite straightforward
to verify).

Algorithm 6

Fix ε

Initialize E(0)

jk = f (xj), j, k = 1, . . . , N
For n = 1, 2, . . .

Let D(n−1) = diag(E(n−1))

Update

E(n) = E(n−1) − A
(
E(n−1) − D(n−1)

)

end

The interpolation matrix A during each iteration. Fortunately, the matrix
multiplication can be avoided since we need only the diagonal entries of the
residual matrix E(n). This gives rise to the final version of the iterative version
of the LOOCV algorithm for the iterated AMLS method.

Algorithm 7

Fix ε. Perform an eigen-decomposition
A = X	X−1

Initialize
S(0) = X−1E(0)

D(0) = diag(E(0))

For n = 1, 2, . . .

Update

S(n) = (I − 	) S(n−1) + 	X−1D(n−1)

D(n) = diag
(
XS(n)

)

Set the cost vector
e(n) = D(n)

If
∥
∥e(n)

∥
∥ − ∥

∥e(n−1)
∥
∥ < tol

stop the iteration
end

end



358 Numer Algor (2007) 45:345–368

An optimal ε is given by minimizing ‖e(n)‖. Use this ε and the corresponding
stopping n to construct an iterative AMLS approximant Q(n)

f . We point out
that only matrix scalings are performed for the update step, and in order to
obtain the diagonal matrix D(n) one does not need to perform the full matrix–
matrix product XS(n).

5 Numerical examples I

The iterative AMLS method is particularly well suited for the approximation
of noisy data. In the numerical experiments summarized in Table 1 we sampled
a standard test function (similar to Franke’s function) at different sets of N ran-
domly distributed Halton points in the unit square [0, 1]2. Then we artificially
added 3% (uniformly distributed) random noise to the function values in order
to obtain our simulated noisy data. Gaussian generating functions were used
for all of the computations.

In addition to the two LOOCV algorithms discussed above for iterated
approximate MLS approximation we also include results for analogous algo-
rithms applied to an iterated Shepard approximation scheme. In contrast to the
approximate MLS methods, Shepard’s method is a true MLS approximation
method which preserves constants, i.e., if (non-noisy) data has been sampled
from a constant function, then Shepard’s method will reconstruct that function.
While approximate MLS methods form only an approximate partition of unity,
Shepard’s method is exact.

Table 1 Performance of different LOOCV algorithms for the approximation of noisy data

N 9 25 81 289 1,089

AMLS RMSerr 4.80e-3 1.53e-3 6.42e-4 4.39e-4 2.48e-4
direct ε 1.479865 1.268158 0.911517 0.652600 0.46741
LOOCV No. iter. 7 6 6 4 3

Time 0.2 0.4 1.0 5.7 254
AMLS RMSerr 4.57e-3 1.63e-3 6.77e-4 4.22e-4 2.30e-4
iterative ε 1.482765 1.229673 0.871514 0.593223 0.383817
LOOCV No. iter. 7 3 3 2 2

Time 0.25 0.25 0.84 7.54 238.0
Shepard RMSerr 5.65e-3 1.96e-3 8.21e-4 5.10e-4 2.73e-4
direct ε 2.194212 1.338775 0.895198 0.656266 0.468866
LOOCV No. iter. 7 7 7 5 3

Time 0.2 0.4 2.1 7.0 225
Shepard RMSerr 5.51e-3 2.01e-3 8.15e-4 5.07e-4 2.77e-4
iterative ε 2.077628 1.314021 0.910505 0.634368 0.409473
LOOCV No. iter. 5 4 4 2 2

Time 0.39 0.36 0.86 7.75 332.9
Ridge RMSerr 3.54e-3 1.62e-3 7.20e-4 4.57e-4 2.50e-4

ε 2.083918 0.930143 0.704802 0.382683 0.181895
ω 0.010000 0.010000 0.021131 0.037574 0.033610
Time 0.3 1.2 1.1 21.3 672
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For noisy data it does not make sense to apply standard RBF interpolation
and therefore this method is not used here. Instead we use a ridge regression
(or smoothing spline) approximation. In the ridge regression approach the
coefficients c of the RBF expansion (2) are determined by minimizing the
functional

N∑

j=1

[
Pf (x j) − f j

]2 + ωcTAc.

Here the first term measures the goodness of fit, and the second term is
a smoothness measure (also known as the native space norm of the RBF
interpolant). The smoothing (or regression) parameter ω ≥ 0 balances the
trade-off between these two quantities. A zero value of ω corresponds to
the interpolation setting, while a larger value will allow a smoothing effect.
It is well known that the coefficients can be found by solving a regularized
interpolation system, i.e.,

(A + ωI) c = f.

This method (and optimal choice of its parameters) was discussed in [10]. In
that paper only the direct LOOCV strategy of Algorithm 4 was applied to the
iterated AMLS method. We include those results in Table 1 for comparison
with the iterative LOOCV strategy of Algorithm 7.

We can observe similar approximation errors for all methods. Also, the
two different variants of LOOCV result in similar “optimal” values of the
shape parameter ε and similar execution times for both the iterated AMLS
and iterated Shepard methods. However, use of the iterated LOOCV strategy
seems to lead to fewer (albeit costlier) iterations. Clearly, the ridge regression
approach requires considerably more time than any of the iterative methods.
This is easily explained since the iterative methods do not require solution of
any linear systems.

6 The RBF-PS approach to PDEs

The second situation in which we will determine an optimal value of the RBF
shape parameter ε is within a pseudo-spectral (PS) approach to the solution
of partial differential equations. Before we explain how to adapt the LOOCV
method for this application we first give a brief introduction to the RBF-PS
method.

Polynomial pseudo-spectral methods are well known as highly accurate
solvers for PDEs (see, e.g., [14, 30]). We now describe a generalization that
involves multivariate radial basis functions instead of univariate polynomials.
Our approach does indeed generalize polynomials since a number of authors
have shown recently (see, e.g., [1, 2, 28, 29]) that in the limiting case of
“flat” basis functions, i.e., ε → 0, the one-dimensional RBF interpolant yields
a polynomial interpolant.
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The basic idea behind any pseudo-spectral method is to expand the solution
u of the partial differential equation in terms of smooth global basis func-
tions, i.e.,

u(x) =
N∑

j=1

λjφj(x), x ∈ � ⊂ R
s. (18)

The smoothness and global support of the basis functions φj, j = 1, . . . , N,
are the main properties that ensure the spectral approximation order of the
method. While the basis functions φj could be rather general we will use radial
basis functions, i.e., φj = ϕ(‖ · −x j‖).

In the numerical examples below we will be presenting both elliptic and par-
abolic PDEs, but for the present discussion we can limit ourselves to the spatial
part of the solution. Time dependence will be dealt with in the standard way.

Expansion (18) is exactly the same as that used for the well-known non-
symmetric RBF collocation method or Kansa’s method [20]. However, as
the following discussion shows, Kansa’s method and the RBF-PS approach
are not identical. The difference is that for Kansa’s one explicitly computes
the expansion coefficients λj and then subsequently is able to evaluate the
approximate PDE solution at an arbitrary point x. In the RBF-PS approach
one obtains values of the approximate solution at the collocation points only,
and the coefficients λj are never explicitly computed. Instead one works with a
so-called differentiation matrix. This slightly different view of RBF collocation
has been adopted recently by a number of authors (see, e.g., [6, 7, 25, 27]).
Details of this approach are now presented.

There are many similarities between the RBF-PS method we are about
to describe and the RBF interpolation method reviewed at the beginning of
this article. However, for PDEs we need to be able to represent values of
derivatives of u. Therefore we require not only the expansion (18), but also

Lu(x) =
N∑

j=1

λjLφ j(x), (19)

which follows directly from (18) provided L is assumed to be a linear differen-
tial operator.

An important difference between the RBF-PS method and standard RBF
interpolation is that for the PS approach we limit evaluation to the collocation
points only. Thus, instead of attempting to obtain the function u defined in
(18) for arbitrary x-values we compute only the vector u = [u(x1), . . . , u(xN)]T

of function values at the collocation points x1, . . . , xN .
Now, the key idea is to relate this vector of function values to a vector of

“derivative” values uL using a differentiation matrix D, i.e.,

uL = Du. (20)

In order to derive an expression for the differentiation matrix we first
evaluate (18) at the collocation points. That yields

u = Aλ, (21)
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where the matrix A has entries Aij = φj(xi). This means that A is just an RBF
interpolation matrix as used earlier, and use of the same notation is justified.
Similarly, evaluation of (19) at the collocation points results in

uL = ALλ, (22)

where AL,ij = Lφj(xi). We can solve (21) for λ (since the interpolation matrix
A is known to be invertible) and then insert this into (22) to arrive at

uL = ALA−1u.

Comparison of this expression with (20) yields the differentiation matrix in
the form

D = ALA−1.

Note that up to this point the discussion has been rather generic. No specific
properties of the differential operator were required other than linearity (and
as we will see in the examples in the next section nonlinear PDEs can also be
solved by this approach). More importantly, we have up to now completely
ignored the boundary conditions of the problem. Dirichlet conditions can
be incorporated in a completely trivial manner since such a condition at a
boundary collocation point corresponds to having a row of the identity matrix
in D. If the prescribed function value is even zero, then one can just delete the
appropriate row and column from D (for more details see, e.g., [8] or [30]). The
implementation of other boundary conditions can be accomplished in a similar
manner, but does require a little more care. We denote the differentiation
matrix that incorporates the boundary conditions by D , where  denotes the
boundary of the domain �.

In the literature on RBF collocation methods one frequently encounters
two different approaches: Kansa’s non-symmetric method (see, e.g., [20]),
and a symmetric method based on Hermite interpolation (see, e.g., [3]). As
mentioned above, the present RBF-PS method has many similarities with the
non-symmetric Kansa method. However, here the coefficient vector is never
explicitly determined and one is not interested in the function u representing
the solution of the PDE – only its function values u at the collocation points.
Also, boundary conditions are handled differently in Kansa’s method and in
the RBF-PS approach.

The precise connection between the RBF-PS approach and the standard
RBF collocation methods is discussed in [8]. It is shown there that for the non-
symmetric RBF-PS method with Dirichlet boundary conditions we get

D =
[

ÃL

Ã

]

A−1,

where the block matrix that arises here is exactly the well-known collocation
matrix from Kansa’s method. As a consequence of this we cannot ensure
general invertibility of the differentiation matrix D for the RBF-PS approach
(cf. [19]).
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On the other hand, it is possible to formulate an RBF-PS approach that is
analogous to the symmetric RBF collocation method. In that case, however,
the differentiation matrix (for a Dirichlet problem) would be of the form

D̂ =
[

ÂLL∗ ÂL

ÂL∗ Â

]
[

AL∗ ÃT
]−1

,

where the first block matrix is the collocation matrix that arises in the sym-
metric RBF collocation method, and the second block matrix is the transpose
of the Kansa matrix (see [8] for details). As a consequence of this we know
(from the standard RBF collocation approach) that the elliptic PDE Lu = f
can be solved. However, formulation of the differentiation matrix D̂ cannot
be justified since it contains as one of its factors the inverse of the (transpose
of the) Kansa matrix.

In summary, for elliptic PDEs one should use the symmetric collocation
method, and for parabolic problems the (non-symmetric) RBF-PS approach
outlined at the beginning of this section. However, since configurations of
collocation points that lead to singular matrices are rare (cf. [19]) and since
one can employ QR or SVD techniques to deal even with these situations (see,
e.g., [24]), most people will prefer to use the simpler non-symmetric approach
for both time-dependent and time-independent problems. We will follow this
general trend with our numerical examples below.

7 Selecting a good shape parameter for the RBF-PS method

Due to the similarity of the RBF-PS method with the standard RBF interpo-
lation problem we will be able to adapt Rippa’s LOOCV algorithm [26] for
determining an optimal shape parameter with only some minor modifications.

In the RBF interpolation setting the LOOCV algorithm targets solution of
the underlying linear system Ac = f, where the entries of the matrix A depend
on the RBF shape parameter ε which we seek to optimize. As stated in (5), the
components of the cost vector are given by

ek = ck

A−1
kk

.

According to the previous section the RBF-PS differentiation matrix is
given by

D = ALA−1.

Equivalently, we can write this as

ADT = (AL)T , (23)

where we have taken advantage of the symmetry of the (RBF interpolation)
matrix A. We will use (23) as a basis for our LOOCV algorithm. The structure
of this formula is just as that of the standard RBF interpolation problem
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discussed in [26]. Now, however, we are dealing with multiple systems of the
form Ac = f having a common system matrix A.

Therefore, the components of our cost matrix are given by

Ek� = (DT)k�

A−1
kk

.

In MATLAB this can again be vectorized, so that we end up with a program
very similar to Program 2.

Program 8 CostEpsLRBF.m

1 function ceps = CostEpsLRBF(ep,DM,rbf,Lrbf)
2 n = size(DM,2);
3 A = rbf(ep,DM);
4 rhs = Lrbf(ep,DM)’;
5 invA = pinv(A);
6 errormatrix = (invA*rhs)./repmat(diag(invA),1,n);
7 ceps = norm(errormatrix(:));

The function Lrbf creates the matrix AL. For the Gaussian RBF and the
Laplacian differential operator this could look like

Lrbf = @(ep,r) 4*ep^2*exp(-(ep*r).^2).*((ep*r).^2-1);

Note that for differential operators of odd order one will also have to
provide a matrix of pairwise differences. For example, the partial derivative
with respect to the x-coordinate for the Gaussian would be coded as

Lrbf = @(ep,r,dx) -2*dx*ep^2.*exp(-(ep*r).^2);

Here dx is the matrix containing the pairwise differences in the
x-coordinates of the collocation points.

8 Numerical examples II

Example 9 Our first example deals with the following Laplace equation

uxx + uyy = 0, x, y ∈ (−1, 1)2,

with piecewise defined boundary conditions

u(x, y) =
sin4(πx), y = 1 and −1 < x < 0,
1

5
sin(3πy), x = 1,

0, otherwise.

This is the same problem as used in Program 36 of [30]. In our implemen-
tation we use the MATLAB code of [30] and simply replace the call to the
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Fig. 1 Solution of the Laplace equation using a Chebyshev PS approach (left) and cubic Matérn
RBFs with ε = 0.362752 (right) with 625 collocation points

subroutine cheb in that program with equivalent code that generates the RBF-
PS differentiation matrices D and D2.1 Implementation details are provided
in [8].

We use the “cubic” Matérn RBF ϕ(r) = (15 + 15εr + 6(εr)2 + (εr)3)e−εr

whose optimal shape parameter was determined to be ε = 0.362752 by the
LOOCV algorithm. The spatial discretization consists of a tensor product of
25 × 25 Chebyshev points.

Figure 1 shows the solution obtained via the RBF-PS and Chebyshev
pseudospectral methods, respectively. The qualitative behavior of the two
solutions is very similar.

Note that for this type of elliptic problem we require inversion of the
differentiation matrix. As pointed out at the end of the previous section we use
the non-symmetric RBF-PS method even though this may not be warranted
theoretically.

Example 10 As our second example we consider the 2-D Helmholtz equation
(see Program 17 in [30])

uxx + uyy + k2u = f (x, y), x, y ∈ (−1, 1)2,

with boundary condition u = 0 and

f (x, y) = exp

(

−10

[

(y − 1)2 + (x − 1

2
)2

])

.

The solution of the Helmholtz equation for k = 9 with Gaussians using ε =
2.549243 and 625 collocation points placed on a Chebyshev tensor–product
grid is displayed next to the Chebyshev pseudospectral solution of [30] in Fig. 2.

1For the RBF-PS approach this second derivative matrix has to be generated separately since,
contrary to the polynomial case, we in general do not get the second derivative matrix as the
square of the first derivative matrix (for details see [8]).
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Fig. 2 Solution of 2-D Helmholtz equation with 625 collocation points using the Chebyshev
pseudospectral method (left) and Gaussians with ε = 2.549243 (right)

Example 11 Our final example is the most challenging for the RBF-PS
method. This example is based on Program 35 in [30] which is concerned with
the solution of the nonlinear reaction-diffusion (or Allen–Cahn) equation. As
mentioned earlier, this example shows that the RBF-PS method can be applied
in a straightforward manner also to nonlinear problems by incorporating the
nonlinearity into the time-stepping method (for details see either the original
code in [30] or the RBF-PS modification in [8]). The PDE is of the form

ut = μuxx + u − u3, x ∈ (−1, 1), t ≥ 0,

with parameter μ, initial condition

u(x, 0) = 0.53x + 0.47 sin

(

−3

2
πx

)

, x ∈ [−1, 1],

and non-homogeneous (time-dependent) boundary conditions

u(−1, t) = −1 and u(1, t) = sin2(t/5).

The solution to this equation has three steady states (u = −1, 0, 1) with the two
nonzero solutions being stable. The transition between these states is governed
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Fig. 3 Solution of the Allen–Cahn equation using the Chebyshev pseudospectral method (left)
and a cubic Matérn functions (right) with 21 Chebyshev points
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by the parameter μ. For our example displayed in Fig. 3 we use μ = 0.01, and
the unstable state should vanish around t = 30.

The two plots in Fig. 3 show the solution obtained via the Chebyshev
pseudospectral method and via an RBF-PS approach based on the same
“cubic” Matérn functions used above. The spatial discretization is given by
a (one-dimensional) grid of 21 Chebyshev points. This time the optimal shape
parameter determined by the LOOCV algorithm is ε = 0.350920. We can see
from the figure that the solution based on Chebyshev polynomials appears
to be slightly more accurate since the transition occurs at a slightly later and
correct time (i.e., at t ≈ 30) and is also a little “sharper”.

9 Remarks and conclusions

Two applications of leave-one-out cross validation for the determination of
RBF shape parameters were discussed in this paper: iterated approximate
moving least squares approximation, and an RBF pseudo-spectral method.

For the iterated AMLS method we suggested two different LOOCV al-
gorithms: one based on an explicit formula for the iterated approximant
(Algorithm 4, the other directly based on the iterative formulation of the
approximant (Algorithm 7). We showed that both algorithms yield similar
results in terms of accuracy and efficiency for reconstruction of noisy function
data. Moreover, the execution time of our iterative algorithms performed
favorably when compared to an RBF ridge regression (or smoothing spline)
algorithm. The fundamental difference between our iterative algorithms and
the more traditional smoothing spline approach is that we work with quasi-
interpolants, and thus are able to avoid the solution of dense linear systems.

In the second part of the paper we showed how the RBF-PS method on the
one hand generalizes the traditional polynomial pseudo-spectral approach, and
on the other hand provides a standard framework in which to discuss as well
as implement RBF collocation solutions of PDEs. It was pointed out that the
RBF-PS approach is more efficient than Kansa’s method for time-dependent
PDEs. The shape parameter problem was addressed in this context, also, by
providing an adaption of Rippa’s LOOCV algorithm (see Program 8).

One important point that has not yet been addressed by our work is the
computational cost of the RBF-PS method as compared to implementations of
the traditional polynomial PS method. At this point the RBF-based approach
is clearly more expensive since it requires a matrix inversion to determine
the differentiation matrix, and for polynomial PS methods the entries of the
differentiation matrix are known explicitly (see, e.g., [30]). On the other hand,
differentiation methods do not give rise to the most efficient implementation
of PS methods anyway. Thus, the search for an efficient implementation of
the RBF-PS method in the vain of FFT implementations for polynomial PS
methods is still a wide open research area.

The RBF-PS method has also been applied successfully to a number of engi-
neering problems (see, e.g., [11, 12]). Of course, as mentioned earlier, Kansa’s
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method has been popular since its introduction in [20] and countless papers
exist in the literature dealing with all kinds of applications in science and
engineering. An LOOCV algorithm for finding an “optimal” shape parameter
similar to the one described in this paper was used with Kansa’s method in [13].

Clearly, there is still much to be done regarding the optimal choice of
RBF shape parameters. For example, many researchers have suggested the
use of variable shape parameters (e.g., [21]). On the one hand, following this
suggestion provides a clear potential for improved accuracy and stability of
the RBF method. On the other hand, the use of variable shape parameters
raises some challenging theoretical problems that have up to now remained
unsolved. The choice of optimal RBF shape parameters that vary spatially
with the centers of the basis functions was studied in the recent paper [16].
We are currently also working on this problem in connection with an SVD
stabilization of the RBF interpolant. Another interesting application presently
being investigated by us is the use of the iterated AMLS algorithm as a
preconditioner for the standard RBF interpolant.

References

1. de Boor, C.: On interpolation by radial polynomials. Adv. Comput. Math. 24, 143–153 (2006)
2. Driscoll, T.A., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions.

Comput. Math. Appl. 43, 413–422 (2002)
3. Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis func-

tions. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolu-
tion Methods, pp. 131–138. Vanderbilt University Press, Nashville, TN (1997)

4. Fasshauer, G.E.: Approximate moving least-squares approximation: A fast and accurate mul-
tivariate approximation method In: Cohen, A., Merrien, J.-L., Schumaker, L.L. (eds.) Curve
and Surface Fitting: Saint-Malo 2002, pp. 139–148. Nashboro Press, Nashville, TN (2003)

5. Fasshauer, G.E.: Toward approximate moving least squares approximation with irregularly
spaced centers. Comput. Methods Appl. Mech. Eng. 193, 1231–1243 (2004)

6. Fasshauer, G.E.: RBF collocation methods and pseudospectral methods. Technical report,
Illinois Institute of Technology (2004)

7. Fasshauer, G.E.: RBF collocation methods as pseudospectral methods. In: Kassab, A.,
Brebbia, C.A., Divo, E., Poljak, D. (eds.) Boundary Elements XXVII, pp. 47–56. WIT Press,
Southampton (2005)

8. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific
Publishers, Singapore (2007) (in press)

9. Fasshauer, G.E., Zhang, J.G.: Iterated approximate moving least squares approximation. In:
Leitao, V.M.A., Alves, C., Duarte, C.A. (eds.) Advances in Meshfree Techniques. Springer,
Berlin (2007) (in press)

10. Fasshauer, G.E., Zhang, J.G.: Scattered data approximation of noisy data via iterated mov-
ing least squares. In: Lyche, T., Merrien, J.L., Schumaker, L.L. (eds.) Curves and Surfaces:
Avignon 2006, Nashboro Press, Nashville, TN (2007) (in press)

11. Ferreira, A.J.M., Fasshauer, G.E.: Computation of natural frequencies of shear deformable
beams and plates by an RBF-pseudospectral method. Comput. Methods Appl. Mech. Eng.
196, 134–146 (2006)

12. Ferreira, A.J.M., Fasshauer, G.E.: Analysis of natural frequencies of composite plates by an
RBF-pseudospectral method. Compos. Struct., doi:10.1016/j.compstruct.2005.12.004 (2007)

13. Ferreira, A.J.M., Fasshauer, G.E., Roque, C.M.C., Jorge, R.M.N., Batra, R.C.: Analysis of
functionally graded plates by a robust meshless method. J. Mech. Adv. Mater. Struct. (2007)
(in press)

http://dx.doi.org/10.1016/j.compstruct.2005.12.004


368 Numer Algor (2007) 45:345–368

14. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press,
Cambridge (1998)

15. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the
shape parameter. Comput. Math. Appl. 47, 497–523 (2004)

16. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in
RBF interpolation. Comput. Math. Appl. (2007) (in press)

17. Franke, R.: Scattered data interpolation: tests of some methods. Math. Comput. 48, 181–200
(1982)

18. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys.
Res. 76, 1905–1915 (1971)

19. Hon, Y.C., Schaback, R.: On nonsymmetric collocation by radial basis functions. Appl. Math.
Comput. 119, 177–186 (2001)

20. Kansa, E.J.: Multiquadrics – a scattered data approximation scheme with applications to com-
putational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential
equations. Comput. Math. Appl. 19, 147–161 (1990)

21. Kansa, E.J., Carlson, R.E.: Improved accuracy of multiquadric interpolation using variable
shape parameters. Comput. Math. Appl. 24, 99–120 (1992)

22. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution
methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)

23. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation
with increasingly flat radial basis functions. Comput. Math. Appl. 49, 103–130 (2005)

24. Ling, L., Opfer, R., Schaback, R.: Results on meshless collocation techniques. Eng. Anal.
Bound. Elem. 30, 247–253 (2006)

25. Platte, R.B., Driscoll, T.A.: Eigenvalue stability of radial basis function discretizations for
time-dependent problems. Comput. Math. Appl. 51(8), 1251–1268 (2006)

26. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function
interpolation. Adv. Comput. Math. 11, 193–210 (1999)

27. Sarra, S.A.: Adaptive radial basis function methods for time dependent partial differential
equations. Appl. Numer. Math. 54, 79–94 (2005)

28. Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr.
Approx. 21, 293–317 (2005)

29. Schaback, R.: Limit problems for interpolation by analytic radial basis functions. J. Comput.
Appl. Math. (2007) (in press)

30. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia, PA (2000)
31. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge

(2005)


	On choosing "optimal'' shape parameters for RBF approximation
	Abstract
	Introduction
	Some background information
	Iterated approximate MLS approximation
	LOOCV for the optimization of iterated AMLS
	Direct LOOCV for iterated AMLS approximation
	Iterative LOOCV for iterated AMLS approximation

	Numerical examples I
	The RBF-PS approach to PDEs
	Selecting a good shape parameter for the RBF-PS method
	Numerical examples II
	Remarks and conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


