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WEAKLY NONLINEAR BOUNDARY-VALUE PROBLEMS FOR DIFFERENTIAL
EQUATIONS IN A BANACH SPACE IN THE CRITICAL CASE

O. A. Boichuk1 and E. V. Panasenko2 UDC 517.9

We obtain necessary and sufficient conditions for the existence of solutions of weakly nonlinear boundary-
value problems for differential equations in a Banach space. A convergent iterative procedure is proposed
for the determination of solutions. We also establish a relationship between necessary and sufficient
conditions.

1. Statement of the Problem and Preliminary Results

In a Banach space B1; we consider a boundary-value problem for a nonlinear differential equation with small
nonnegative parameter " of the form

dx.t/

dt
D A.t/x.t/C "Z.x; t; "/C f .t/; (1)

`x.�/ D ˛ C "J.x.�; "/; "/; (2)

where the vector function f .t/ acts from a segment ŒaI b� into the Banach space B1; i.e.,

f .t/ 2 C .ŒaI b�;B1/ WD

¼
f .�/W ŒaI b�! B1; jjjf jjj D sup

t2ŒaIb�

kf .t/k

½
;

C.ŒaI b�;B1/ is the Banach space of vector functions continuous on ŒaI b�; the operator function A.t/ acts from
the Banach space B1 into itself for every t 2 ŒaI b�; is strongly continuous [1, p. 141], and has the norm

jjjAjjj D sup
t2ŒaIb�

kA.t/k <1;

Z.x; t; "/ is a nonlinear vector function continuously differentiable with respect to x in the neighborhood of a
generating solution and continuous in t and "; i.e.,

Z.�; t; "/ 2 C 1Œkx � x0k � q�; Z.x; �; "/ 2 C .ŒaI b�;B1/ ; Z.x; t; �/ 2 C Œ0I "0�;

q and "0 are sufficiently small constants, ˛ is an element of the space B2; i.e., ˛ 2 B2; and J.x.�; "/; "/ is
a nonlinear bounded vector functional continuously differentiable in the sense of Fréchet with respect to x and
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continuous in " in the neighborhood of the solution. The operator ` is a linear vector functional continuous on
ŒaI b� and acting from the space C ŒaI b� into the Banach space B2; i.e.,

`WC 1.ŒaI b�;B1/! B2:

A solution of Eq. (1) is understood as a solution x.t/ D x.t; "/ of the integral equation

x.t; "/ D x0 C

tZ
a

.A.s/x.s/C "Z.x.s; "/; s; "/C f .s//ds

that is continuously differentiable at every point t 2 ŒaI b� and for which Eq. (1) is satisfied everywhere on ŒaI b�:
We consider the critical case where the corresponding inhomogeneous generating boundary-value problem

has a nontrivial solution x0.t; c/ [2]. We seek a condition for the existence and an algorithm for the construction
of a solution x D x.t; "/; x.�; "/ 2 C 1 .ŒaI b�;B1/ ; x.t; �/ 2 C Œ0I "0�; of the boundary-value problem (1), (2)
that turns into one of solutions x0.t; c/ D x.t; 0/ of the following boundary-value problem for " D 0 :

dx.t/

dt
D A.t/x.t/C f .t/; t 2 ŒaI b�; (3)

`x.�/ D ˛ 2 B2: (4)

In what follows, this solution is called a generating solution of the boundary-value problem (1), (2).
According to the theorem in [2], the generating boundary-value problem (3), (4) has a family of linearly

independent solutions

x0.t; c/ D U.t/PN.Q/c C U.t/Q�˛ C .GŒf �/.t/ (5)

if and only if the inhomogeneities f .t/ 2 C .ŒaI b�;B1/ in the differential equation and ˛ 2 B2 in the boundary
condition satisfy the following relation:

PN.Q�/

24˛ � ` bZ
a

K.�; �/f .�/d�

35 D 0; (6)

where U.t/ is the evolution operator of the homogeneous differential equation (3) [1, p. 147], Q D `U.�/ is
the operator obtained by the substitution of the evolution operator into the boundary condition (4), Q� is the
generalized inverse of the operator Q [3], PN.Q/ D I � Q�Q and PN.Q�/ D I � QQ� are the projection
operators that project the Banach space B1 to the kernel N.Q/ and the cokernel N.Q�/ of the operator Q;
respectively, and .GŒf �/.t/ is the generalized Green operator of problem (3), (4) that acts on a vector function
f .t/ 2 C.ŒaI b�;B1/ as follows:

.GŒf �/.t/ WD

bZ
a

K.t; �/f .�/d� � U.t/Q� � `

bZ
a

K.�; �/f .�/d�:
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In the case of the finite-dimensional spaces B1 D Rn and B2 D Rm; this problem was solved in [3, 4]. For
periodic .m D n and `x D x.a/�x.b/ D ˛ D 0/ and two-point .m D n and `x DM1x.a/�M2x.b/; where
Mi are n � n matrices) boundary-value problems, analogous problems were considered in [5–8]. Conditions for
the existence and an algorithm for the construction of solutions bounded on the entire axis R D .�1IC1/ for
weakly nonlinear differential equations in a Banach space were considered in [9].

2. Main Result

Consider the problem of finding necessary conditions for the existence of solutions x.t; "/ of the boundary-
value problem (1), (2) in the critical case .PN.Q�/ ¤ 0/ that, for " D 0; turn into a generating solution x0.t; c/

of the generating boundary-value problem (3), (4) that has the form (5) with constant c D c0:
For this purpose, we impose the following restriction on the operator function Z.x; t; "/ :

Z.�; �; �/ 2 C Œkx � x0k � q� � C.ŒaI b�;B1/ � C Œ0I "0�;

where q and "0 are sufficiently small constants.

Theorem 1 (necessary condition). Suppose that the solvability condition (6) for the generating boundary-
value problem (3), (4) is satisfied and the critical boundary-value problem (1), (2) .PN.Q�/ ¤ 0/ has a solution
x.t; "/; x.�; "/ 2 C 1.ŒaI b�;B1/; x.t; �/ 2 C Œ0I "0�; that turns into a generating solution x0.t; c0/ of the form
(5) with constant c D c0 for " D 0: Then the constant c0 2 B1 satisfies the operator equation

F.c/ D PN.Q�/

24J.x0.�; c/; 0/ � ` bZ
a

K.�; �/Z.x0.�; c/; �; 0/d�

35 D 0; (7)

which is called the equation for generating constants of the boundary-vale problem (1), (2).

Proof. If the boundary-value problem (1), (2) has a solution, then, according to the theorem presented in [2],
the solvability condition

PN.Q�/

24˛ C "J.x.�; "/; "/ � ` bZ
a

K.�; �/ ."Z.x.�; "/; �; "/C f .�// d�

35 D 0
is satisfied.

Using the solvability condition (6), we obtain the following equality for " ¤ 0 :

PN.Q�/"

24J.x.�; "/; "/ � ` bZ
a

K.�; �/Z.x.�; "/; �; "/ d�

35 D 0:
Taking into account that the operator function Z.x; t; "/ is continuous in t and " and passing to the limit as

"! 0 and x.t; "/! x0.t; c0/; we get
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F.c0/ D PN.Q�/

24J.x0.�; c0/; 0/ � ` bZ
a

K.�; �/Z.x0.t; c0/; �; 0/ d�

35 D 0; (8)

which proves the theorem.

If Eq. (8) has a solution, then the element c0 realizes a generating solution x0.t; c0/ to which a solution
x.t; �/ 2 C Œ0I "0�; x.t; 0/ D x0.t; c0/; of the boundary-value problem (1), (2) may correspond. If Eq. (8) does
not have a real solution, then the boundary-value problem (1), (2) does not have the required solution in the space
C 1.Œa; b�;B1/:

In the case of the periodic boundary-value problem (1), (2) .m D n; d D r; `x D x.a/ � x.b/ D ˛ D 0;

B1 D Rn; and B2 D Rn/; the constant c0 has a physical meaning, namely, it is the amplitude of a generating
solution. For this reason, in the classic theory of nonlinear oscillations [7, 8], this equation is called the “equation
for generating amplitudes.”

To obtain a sufficient condition for the existence of a solution we perform the following change of variables in
the boundary-value problem (1), (2):

x.t; "/ D x0.t; c0/C y.t; "/;

where x0.t; c0/ is the generating solution (5) and c0 is an arbitrary element of the Banach space B1 that satisfies
the operator equation for constants (8).

In addition, we assume that the operator function Z.x; t; "/ is Fréchet-differentiable in the neighborhood of a
generating solution .Z.�; t; "/ 2 C 1Œkx � x0k � q�/:

Let us find conditions for the existence of a solution y.t; "/; y.�; "/ 2 C 1.ŒaI b�;B1/; y.t; �/ 2 C Œ0I "0�;
that, for " D 0; turns into the trivial solution of the boundary-value problem

dx0.t; c0/

dt
C
dy.t; "/

dt
D A.t/x0.t; c0/C A.t/y.t; "/C "Z.x0.t; c0/C y.t; "/; t; "/C f .t/; (9)

`x0.�; c0/C `y.�; "/ D ˛ C "J.x0.�; c0/C y.�; "/; "/; (10)

and let us construct this solution.
Taking into account that x0.t; c0/ is a solution of the boundary-value problem (3), (4), we obtain the following

boundary-value problem from (9), (10):

dy.t; "/

dt
D A.t/y.t; "/C "Z.x0.t; c0/C y.t; "/; t; "/; (11)

`y.�; "/ D "J.x0.�; c0/C y.�; "/; "/: (12)

Using the continuous differentiability of the operator function Z.x; t; "/ and vector functional J.x.�; "/; "/
with respect to x in the neighborhood of the point " D 0; we separate the linear part with respect to y

and the zero-order terms with respect to " in the operator function Z.x0.t; c0/ C y.t; "/; t; "/ and vector
functional J.x0.t; c0/C y.t; "/; "/: As a result, we obtain the following decompositions:

Z.x0.t; c0/C y.t; "/; t; "/ D '0.t; c0/C A1.t/y.t; "/CR.y.t; "/; t; "/; (13)
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J.x0.�; c0/C y.�; "/; "/ D J0.x0.�; c0//C `1y.�; "/CR1.y.�; "/; "/; (14)

where

'0.t; c0/ D Z.x0.t; c0/; t; 0/ 2 C.ŒaI b�;B1/;

J0.x0.�; c0// D J.x0.�; c0/; 0/;

A1.t/ D A1.t; c0/ D
@Z.x; t; 0/

@x

ˇ̌̌̌
xDx0.t;c0/

2 C.ŒaI b�;B1/;

the derivative is understood in the Fréchet sense, and `1y.�; "/ is the linear part of the vector functional
J.x0.�; c0/ C y.�; "/; "/: The nonlinear operator function R.y.t; "/; t; "/ belongs to the class C 1Œkyk � q�;

C.ŒaI b�;B1/; C Œ0I "0�: Furthermore,

R.0; t; 0/ D 0;
@R.0; t; 0/

@y
D 0;

R1.0; 0/ D 0;
@R1.0; 0/

@y
D 0:

We apply the theorem presented in [2] to the boundary-value problem (11), (12), formally considering the
nonlinearities Z.x0.t; c0/Cy.t; "/; t; "/ and J.x0.�; c0/Cy.�; "/; "/ as inhomogeneities. Furthermore, a solution
of the boundary-value problem (11), (12) can formally be rewritten in the form y.t; "/ D U.t/PN.Q/cCy.1/.t; "/:
The unknown element c D c."/ 2 B1 and unknown function y.1/.t; "/ are determined, respectively, from the
solvability condition of the boundary-value problem (11), (12) and from the representation y.1/.t; "/ of a particular
solution of the boundary-value problem

PN.Q�/"

"
J0.x0.�; c0//C `1y.�; "/CR1.y.�; "/; "/

� `

bZ
a

K.�; �/ .'0.t; c0/C A1.t/y.t; "/CR.y.t; "/; t; "// d�

#
D 0; " ¤ 0;

or

PN.Q�/

"
J0.x0.�; c0//C `1

�
U.t/PN.Q/c C y.1/.�; "/

�
CR1.y.�; "/; "/

�`

bZ
a

K.�; �/
�
'0.t; c0/C A1.t/

¸
U.t/PN.Q/c C y.1/.�; "/

¹
CR.y.t; "/; t; "/

�
d�

#
D 0;
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and

y.1/.t; "/ D "

�
G
h
'0.�; c0/C A1.�/y.�; "/CR.y.�; "/; �; "/

i�
.t/

C "U.t/Q� fJ0.x0.�; c0//C `1y.�; "/CR1.y.�; "/; "/g :

For the determination of a solution y.t; �/ 2 C Œ0I "0�; y.t; 0/ D 0; of the boundary-value problem (11), (12),
we obtain the equivalent operator system

y.t; "/ D U.t/PN.Q/c C y.1/.t; "/;

B0c D �PN.Q�/

24`1y.1/.�; "/CR1.y.�; "/; "/ � ` bZ
a

K.�; �/
¸
A1.�/y

.1/.�; "/CR.y.�; "/; �; "/
¹
d�

35 ; (15)

and

y.1/.t; "/ D "

�
G
h
'0.�; c0/C A1.�/

�
U.t/PN.Q/c C y.1/.�; "/

�
CR.y.�; "/; �; "/

i�
.t/

C "U.t/Q�
¸
J0.x0.�; c0//C `1

�
U.t/PN.Q/c C y.1/.�; "/

�
CR1.y.�; "/; "/

¹
;

where the operator B0 has the form

B0 D PN.Q�/

24`1U.�/PN.Q/ � ` bZ
a

K.�; �/A1.�/U.�/PN.Q/d�

35 : (16)

Let B0WB1 ! B2 be a generalized inverse operator [4, p. 39]. As shown in [10], it is normally solvable and
there exist bounded projectors PN.B0/WB1 ! N.B0/ and PY WB2 ! Y that induce decompositions of B1 and
B2 into direct topological sums of closed subspaces:

B1 D N.B0/˚X;

B2 D Y ˚R.B0/:

By virtue of the normal solvability of the operator B0; Eq. (15) is solvable [11] if and only if its right-hand
side satisfies the condition

PN.B�
0 /
PN.Q�/

"
`1y

.1/.�; "/CR1.y.�; "/; "/

� `

bZ
a

K.�; �/
¸
A1.�/y

.1/.�; "/CR.y.�; "/; �; "/
¹
d�

#
D 0:
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The last condition is satisfied if

PN.B�
0 /
PN.Q�/ D 0: (17)

The operator equation (15) is solvable under condition (17). As a result, an operator system equivalent to the
boundary-value problem (11), (12) in the space of functions y.�; "/ 2 C 1.ŒaI b�;B1/; y.t; �/ 2 C Œ0I "0�; has the
form

y.t; "/ D U.t/PN.Q/c C y.1/.t; "/;

c D �B�0 PN.Q�/

"
`1y

.1/.�; "/CR1.y.�; "/; "/ � `

bZ
a

K.�; �/
¸
A1.�/y

.1/.�; "/CR.y.�; "/; �; "/
¹
d�

#
; (18)

y.1/.t; "/ D "
�
G
h
'0.�; c0/C A1.�/

�
U.t/PN.Q/c C y.1/.�; "/

�
CR.y.�; "/; �; "/

i�
.t/

C "U.t/Q�
¸
J0.x0.�; c0//C `1

�
U.t/PN.Q/c C y.1/.�; "/

�
CR1.y.�; "/; "/

¹
:

The operator system (18) belong to the class of systems described in [7]. For its solution, we use the method
of simple iterations.

We introduce an auxiliary column vector that belongs to the Cartesian product of three copies of the space B1;
namely

u D

0B@ y

c

y.1/

1CA 2 B1 � B1 � B1;

and the auxiliary operator

L1 .t/ D �B
�
0 PN.Q�/

24`1 .�/ � ` bZ
a

K.�; �/A1.�/ .�/d�

35 : (19)

Then the operator system (18) can be rewritten in the form

u D

2664
0 U.t/PN.Q/ I

0 0 L1

0 0 0

3775uC F.u; t; "/; (20)

where I is the identity operator and
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F.u; t; "/ D col

 
0;�R1.y.�; "/; "/C `

bZ
a

K.�; �/R.y.�; "/; �; "/ d�;

".GŒ'0.�; c0/C A1.�/.U.t/PN.Q/c C y.1/.�; "//CR.y.�; "/; �; "/�/.t/

C "U.t/Q�
¸
J0.x0.�; c0//C `1

�
U.t/PN.Q/c C y.1/.�; "//CR1.y.�; "/; "/

¹!
;

F .0; t; 0/ D 0;
@F.0; t; 0/

@y
D 0:

The operator system (20) is equivalent to the system2664
I �U.t/PN.Q/ �I

0 I �L1

0 0 I

3775u D F.u; t; "/:
Denote

L D

2664
I �U.t/PN.Q/ �I

0 I �L1

0 0 I

3775 ; F D F.u; t; "/:

We prove that the operator L is invertible and its inverse is bounded. To this end, we determine the inverse
L�1 in the explicit form. This operator exists due to the structure of the upper-triangular cell operator L; whose
principal diagonal consists of the identity operators. For this reason, we seek it in the form of an operator matrix,
i.e.,

L�1 D

2664
a11 a12 a13

a21 a22 a23

a31 a32 a33

3775 ;
where each component aij is an operator acting in the Banach space B1 .aij WB1 ! B1/:

One can directly verify that the operator L has a bounded inverse L�1 :

L�1 D

2664
I U.t/PN.Q/ U.t/PN.Q/L1 C I

0 I L1

0 0 I

3775 :
Let us prove that the operator L�1 is bounded. We show that there exists a constant c1 > 0 such that

kL�1ukB3
1
� c1kukB3

1
for all u 2 B31:
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This inequality is equivalent to the following statement: There exists a constant c2 > 0 such that the following
inequality holds for all y; c; y.1/ 2 B31 :

ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌L�1

0B@ y

c

y.1/

1CA
ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌
B3

1

� c2

�
jjjyjjjB1

C jjjcjjjB1
C

ˇ̌̌̌̌̌ ˇ̌̌
y.1/

ˇ̌̌̌̌̌ ˇ̌̌
B1

�
;

L�1

0B@ y

c

y.1/

1CA D
0BBB@
y C U.t/PN.Q/c C U.t/PN.Q/L1y.1/ C Iy.1/

c C L1y
.1/

y.1/

1CCCA :

We prove that the norm of each component of a vector in the Banach space B1 is bounded, i.e.,

jjjU jjjB1
D sup
t2ŒaIb�

kU.t/k <1:

Let

jjjB�0 jjjB1
D b0;

ˇ̌̌̌ ˇ̌
PN.Q/

ˇ̌̌̌ ˇ̌
B1
D Qp;

ˇ̌̌̌ ˇ̌
PN.Q�/

ˇ̌̌̌ ˇ̌
B1
D Qp�;

kL1 .t/k D







�B�0 PN.Q�/

24`1 .�/ � ` bZ
a

K.�; �/A1.�/ .�/d�

35






� b0 Qp

�
jjj`1jjj � jjj jjj C Qa jjj`jjj � jjjA1jjj � jjj jjj D jjjL1jjj :

Therefore,

ˇ̌̌̌̌̌ ˇ̌̌
y C U.�/PN.Q/c C U.�/PN.Q/L1y.1/ C Iy.1/

ˇ̌̌̌̌̌ ˇ̌̌
B1

� jjjyjjjB1
C
ˇ̌̌̌ ˇ̌
U.�/PN.Q/

ˇ̌̌̌ ˇ̌
B1
jjjcjjjB1

C
ˇ̌̌̌ ˇ̌
U.�/PN.Q/L1

ˇ̌̌̌ ˇ̌
B1

ˇ̌̌̌̌̌ ˇ̌̌
y.1/

ˇ̌̌̌̌̌ ˇ̌̌
B1

C

ˇ̌̌̌̌̌ ˇ̌̌
Iy.1/

ˇ̌̌̌̌̌ ˇ̌̌
B1

� jjjyjjjB1
C c3 jjjcjjjB1

C c4

ˇ̌̌̌̌̌ ˇ̌̌
y.1/

ˇ̌̌̌̌̌ ˇ̌̌
B1

:

By analogy, we get

ˇ̌̌̌̌̌ ˇ̌̌
c C L1y

.1/
ˇ̌̌̌̌̌ ˇ̌̌

B1

� jjjcjjjB1
C jjjL1jjjB1

ˇ̌̌̌̌̌ ˇ̌̌
y.1/

ˇ̌̌̌̌̌ ˇ̌̌
B1

� jjjcjjjB1
C c5

ˇ̌̌̌̌̌ ˇ̌̌
y.1/

ˇ̌̌̌̌̌ ˇ̌̌
B1

:
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Thus, ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌L�1

0B@ y

c

y.1/

1CA
ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌
ˇ̌̌̌
ˇ̌̌
B3

1

� jjjyjjjB1
C .c3 C 1/ jjjcjjjB1

C .c4 C c5 C 1/
ˇ̌̌̌̌̌ ˇ̌̌
y.1/

ˇ̌̌̌̌̌ ˇ̌̌
B1

� c2

�
jjjyjjjB1

C jjjcjjjB1
C

ˇ̌̌̌̌̌ ˇ̌̌
y.1/

ˇ̌̌̌̌̌ ˇ̌̌
B1

�
;

where c2 D maxf1; c3 C 1; c4 C c5 C 1g: Thus, the boundedness of the operator L�1 is proved.
In the notation introduced, the operator system (18) takes the form

u D L�1F D L�1S."/u;

where the operator S."/ is nonlinear in the general case. Properly choosing " and using the boundedness of the
operator L�1; we can make the operator L�1S."/ contracting. By virtue of the contracting-mapping principle
[12], the operator system (18) has a unique fixed point, which is a solution of the boundary-value problem (1), (2).

3. Iterative Procedure

On the basis of the operator system (18), we construct an iterative procedure for the construction of a solution
y.t; �/ 2 C Œ0I "0�; y.t; 0/ D 0; of the boundary-value problem (11), (12). We choose the first approximation
y
.1/
1 .t; "/ of y.t; "/ as follows:

y
.1/
1 .t; "/ D " .G Œ'0.�; c0/�/ .t/C "U.t/Q

�J0.x0.�; c0//:

The operator function y.1/1 D y
.1/
1 .t; "/ is a particular solution of the boundary-value problem

Py1 D A.t/y1 C "'0.t; c0/; `y1 D "J0.x0.�; c0//I

it exists by virtue of the choice of c0 2 B1 from the equation for generating constants (8). We assume that the
first approximation y1.t; "/ of the required solution y.t; "/ of the boundary-value problem (11), (12) is equal to
y
.1/
1 .t; "/: The second approximation y.1/2 .t; "/ of y.t; "/ is assumed to be a particular solution of the boundary-

value problem

Py2 D A.t/y2 C "
¸
'0.t; c0/C A1.t/

h
U.t/PN.Q/c1 C y

.1/
1 .t; "/

i
CR.y1.t; "/; t; "/

¹
;

`y2 D "
¸
J0.x0.�; c0//C `1

h
U.�/PN.Q/c1 C y

.1/
1 .�; "/

i
CR1.y1.�; "/; "/

¹
;

which has the form

y
.1/
2 .t; "/ D "

�
G
h
'0.t; c0/C A1.t/

h
U.t/PN.Q/c1 C y

.1/
1 .t; "/

i
CR.y1.t; "/; t; "/

i�
.t/

C "U.t/Q�
¸
J0.x0.�; c0//C `1

h
U.�/PN.Q/c1 C y

.1/
1 .�; "/

i
CR1.y1.�; "/; "/

¹
:
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Using the condition for the solvability of this problem, we get

PN.Q�/"

"
J0.x0.�; c0//C `1

h
U.�/PN.Q/c1 C y

.1/
1 .�; "/

i
CR1.y1.�; "/; "/

� `

bZ
a

K.�; �/
�
'0.�; c0/C A1.�/

h
U.�/PN.Q/c1 C y

.1/
1 .�; "/

i
CR.y1.�; "/; �; "/

�
d�

#
D 0; " ¤ 0:

Taking into account that the element c0 satisfies Eq. (8), we obtain the system

B0c1 D �PN.Q�/

"
`1y

.1/
1 .�; "/CR1.y1.�; "/; "/

� `

bZ
a

K.�; �/
�
A1.�/y

.1/
1 .�; "/CR.y1.�; "/; �; "/

�
d�

#
; (21)

where the operator B0 has the form (16). We determine the first approximation c1 of c."/:
By virtue of the normal solvability of the operator B0; Eq. (21) is solvable [11] if and only if its right-hand

side satisfies the condition

PN.B�
0 /
PN.Q�/

"
`1y

.1/
1 .�; "/CR1.y1.�; "/; "/

� `

bZ
a

K.�; �/
�
A1.�/y

.1/
1 .�; "/CR.y1.�; "/; �; "/

�
d�

#
D 0: (22)

Condition (22) is satisfied if condition (17) is satisfied. Under the same condition, the operator equation (21)
is solvable:

c1 D �B
�
0 PN.Q�/

"
`1y

.1/
1 .�; "/CR1.y1.�; "/; "/

� `

bZ
a

K.�; �/
�
A1.�/y

.1/
1 .�; "/CR.y1.�; "/; �; "/

�
d�

#
: (23)

We represent the second approximation y.1/2 .t; "/ of y.t; "/ in the form

y2.t; "/ D U.t/PN.Q/c1 C y
.1/
2 .t; "/:
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We assume that the third approximation y
.1/
3 .t; "/ of y.t; "/ is a particular solution of the boundary-value

problem

Py3 D A.t/y3 C "
¸
'0.t; c0/C A1.t/

h
U.t/PN.Q/c2 C y

.1/
2 .t; "/

i
CR.y2.t; "/; t; "/

¹
;

`y3 D "
¸
J0.x0.�; c0//C `1

h
U.�/PN.Q/c2 C y

.1/
2 .�; "/

i
CR1.y2.�; "/; "/

¹
;

which has the form

y
.1/
3 .t; "/ D "

�
G
h
'0.t; c0/C A1.t/

h
U.t/PN.Q/c2 C y

.1/
2 .t; "/

i
CR.y2.t; "/; t; "/

i�
.t/

C "U.t/Q�
¸
J0.x0.�; c0//C `1

h
U.�/PN.Q/c2 C y

.1/
2 .�; "/

i
CR1.y2.�; "/; "/

¹
:

Using the condition for the solvability of this problem, we get

PN.Q�/"

"
J0.x0.�; c0//C `1

h
U.�/PN.Q/c2 C y

.1/
2 .�; "/

i
CR1.y2.�; "/; "/

� `

bZ
a

K.�; �/
�
'0.t; c0/C A1.t/

h
U.t/PN.Q/c2 C y

.1/
2 .t; "/

i
CR.y2.�; "/; �; "/

�
d�

#
D 0; " ¤ 0:

Taking into account that the element c0 satisfies Eq. (8), we obtain the system

B0c2 D �PN.Q�/

"
`1y

.1/
2 .�; "/CR1.y2.�; "/; "/

� `

bZ
a

K.�; �/
�
A1.�/y

.1/
2 .�; "/CR.y2.�; "/; �; "/

�
d�

#
; (24)

where the operator B0 has the form (16). We determine the first approximation c2 of c."/:
A criterion for the solvability of the operator system (24) has the form

PN.B�
0 /
PN.Q�/

"
`1y

.2/
1 .�; "/CR1.y2.�; "/; "/

� `

bZ
a

K.�; �/
�
A1.�/y

.1/
2 .�; "/CR.y2.�; "/; �; "/

�
d�

#
D 0: (25)
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Thus, if PN.B�
0 /
PN.Q�/ D 0; then solvability conditions of the type (25) for the corresponding operator

systems are satisfied at each step of the iterative procedure. Continuing this process, we obtain the following
iterative procedure for the determination of a solution y.t; �/ 2 C Œ0I "0�; y.t; 0/ D 0; of the boundary-value
problem (11), (12):

ck D �B
�
0 PN.Q�/

"
`1y

.1/

k
.�; "/CR1.yk.�; "/; "/

� `

bZ
a

K.�; �/
�
A1.�/y

.1/

k
.�; "/CR.yk.�; "/; �; "/

�
d�

#
; (26)

y
.1/

kC1
.t; "/ D "

�
G
h
'0.t; c0/C A1.t/ŒU.t/PN.Q/ck C y

.1/

k
.t; "/�CR.yk.t; "/; t; "/

i�
.t/

C "U.t/Q�
¸
J0.x0.�; c0//C `1

h
U.�/PN.Q/ck C y

.1/

k
.�; "/

i
CR1.yk.�; "/; "/

¹
;

ykC1.t; "/ D U.t/PN.Q/ck C y
.1/

kC1
.t; "/; k D 0; 1; 2; : : : ; (27)

y0.t; "/ D y
.1/
0 .t; "/ D 0:

Thus, we have proved the following theorem:

Theorem 2 (sufficient condition). Suppose that, under condition (6), the boundary-value problem (3), (4)
has a family of solutions of the form (5), and the operator B0 satisfies the following conditions:

(i) B0 is a generalized inverse operator;

(ii) PN.B�
0 /
PN.Q�/ D 0:

Then, for any element c D c0 2 B1 that satisfies the equation for generating constants (7), the boundary-
value problem (11), (12) has at least one solution y.t; �/ 2 C Œ0I "0�; y.t; 0/ D 0: This solution can be determined
by using the iterative procedure (26), (27), which converges on Œ0I "0�: The boundary-value problem (1), (2) has
at least one solution that turns into the generating solution x0.t; c0/ for " D 0: This solution x.t; �/ 2 C Œ0I "��

can be determined by using the convergent iterative procedure (26), (27) and the relation xk.t; "/ D x0.t; c0/C

yk.t; "/; k D 0; 1; 2; : : : :

4. Relationship between Necessary and Sufficient Conditions

A relationship between necessary and sufficient conditions for the existence of solutions of a weakly nonlinear
boundary-value problem in a Banach space in the critical case is established by the following statement:

Corollary 1. Suppose that a functional F.c/ has the Fréchet derivative F .1/.c/ for a certain element c0 of
the Banach space B1 that satisfies the operator equation for generating constants (7). If F .1/.c/ has an inverse,
then the boundary-value problem (1), (2) has a unique solution for every c0:
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Proof. We represent the Fréchet derivative of the functional F.c/ as follows:

F .1/.c/Œh� D PN.Q�/

"
J .1/.v; "/jvDx0.�;c/;"D0Œx

.1/
0 .t; c/Œh��

� `

bZ
a

K.�; �/Z.1/.v; �; "/jvDx0;"D0Œx
.1/
0 .�; c/Œh�� d�

#
:

This representation follows from the theorem on a superposition of differential mappings in a Banach space [13,
p. 131]. Let us determine the Fréchet derivative x.1/0 .t; c/Œh�:

Since x0.t; c/ D U.t/PN.Q/c C U.t/Q�˛ C .Gf /.t/; we have

x
.1/
0 .t; c/Œh� D

@x0.t; c C �h/

@�

ˇ̌̌̌
�D0

D
@

@�

�
U.t/PN.Q/c C �U.t/PN.Q/hC U.t/Q�˛ C .Gf /.t/

�ˇ̌̌̌
�D0

D
@

@�
ŒU.t/PN.Q/c�

ˇ̌̌̌
�D0

C
@

@�
Œ�U.t/PN.Q/h�

ˇ̌
�D0
C

@

@�
ŒU.t/Q�˛�

ˇ̌̌̌
�D0

C
@

@�
Œ.Gf /.t/�

ˇ̌̌̌
�D0

D U.t/PN.Q/h;

Z.1/.v; �; "/
ˇ̌̌
vDx0;"D0

D A1.t/; J .1/.v; "/
ˇ̌̌
vDx0.�;c/

D `1:

Thus,

F .1/.c/Œh� D PN.Q�/

24`1U.�/PN.Q/Œh� � ` bZ
a

K.�; �/A1.�/U.�/PN.Q/d�Œh�

35 D B0Œh�:
The operator B0 is invertible by virtue of the invertibility of the operator F .1/.c/: Consequently, an equation

of the form (15) has a unique solution, and, hence, the boundary-value problem (1), (2) has a unique solution.
Thus, the condition of the invertibility of the operator B0 D F .1/.c0/ interrelates the necessary and sufficient

conditions for the existence of solutions of a weakly nonlinear boundary-value problem in a Banach space in the
critical case.

Remark 1. In the case of finite-dimensional spaces B1 D Rn and B2 D Rm; the condition of the invertibil-
ity of the operator F .1/.c/ is equivalent to the condition that the root c0 of the equation for generating constants
is simple.
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