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OSCILLATION CRITERIA FOR A SECOND-ORDER QUASILINEAR NEUTRAL
FUNCTIONAL DYNAMIC EQUATION ON TIME SCALES

S. H. Saker UDC 517.9

Our aim is to establish some sufficient conditions for the oscillation of the second-order quasilinear neutral
functional dynamic equation

�
p.t/

�
Œy.t/C r.t/y.�.t//��

�
��
C f .t; y.ı.t// D 0; t 2 Œt0;1/T ;

on a time scale T ; where jf .t; u/j � q.t/
ˇ̌
uˇ
ˇ̌
; r; p; and q are real-valued rd -continuous positive

functions defined on T ; and 
 and ˇ > 0 are ratios of odd positive integers. Our results do not require
that 
 D ˇ � 1; p�.t/ � 0;

1Z
t0

�
1

p.t/

� 1



�t D1; and

1Z
t0

ıˇ .s/q.s/Œ1 � r.ı.s//�ˇ�s D1:

Some examples are considered to illustrate the main results.

1. Introduction

In this paper, we consider the quasilinear neutral functional dynamic equation

�
p.t/

�
Œy.t/C r.t/y.�.t//��

�
��
C f .t; y.ı.t// D 0; (1.1)

on a time scale T : Throughout this paper, we assume the following hypotheses:

.h1/ r; p; and q are real-valued rd -continuous positive functions defined on T and 0 � r.t/ < 1I

.h2/ 
 is a ratio of odd positive integers, � WT ! T ; ıWT ! T ; �.t/ � t for all t 2 T ; and

lim
t!1

ı.t/ D lim
t!1

�.t/ D1I

.h3/ f .t; u/WT � R ! R is a continuous function such that uf .t; u/ > 0 for all u ¤ 0; and there exists a
positive rd -continuous function q.t/ defined on T and such that jf .t; u/j � q.t/juˇ j; where ˇ > 0

is a ratio of odd positive integers.
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We also consider the following two cases:

1Z
t0

�
1

p.t/

� 1



�t D1; (1.2)

and
1Z
t0

�
1

p.t/

� 1



�t <1: (1.3)

Since we are interested in the oscillatory and asymptotic behavior of solutions of (1.1) near infinity, we assume
that sup T D 1 and define a time scale interval Œt0;1/T by Œt0;1/T WD Œt0;1/ \ T : Throughout this paper,
these assumptions are supposed to hold. Let ��.t/ D minf�.t/; ı.t/g and let T0 D minf��.t/W t � 0g and
��
�1.t/ D supfs � 0W ��.s/ � tg for t � T0: Clearly, if ��.t/ � t; then ��

�1.t/ � t for t � T0I �
�
�1.t/ is

nondecreasing and coincides with the inverse of ��.t/ when the latter exists. Throughout the paper, we use the
following notation:

x.t/ WD y.t/C r.t/y.�.t//; xŒ1� WD p.x�/
 ; xŒ2� WD .xŒ1�/�: (1.4)

By a solution of (1.1), we mean a nontrivial real-valued function y that has the properties x 2 C 1
rd
Œ��
�1.t0/;1/

and xŒ1� 2 C 1
rd
Œ��
�1.t0/;1/; where Cr is the space of rd -continuous functions. Our attention is restricted to the

solutions of (1.1) that exist on some half line Œty ;1/ and satisfy the condition supfjy.t/jW t > t1g > 0 for any
t1 � ty : A solution y of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative.
Otherwise it is called nonoscillatory. The equation itself is called oscillatory if all its solutions are oscillatory.

Much recent attention has been given to dynamic equations on time scales (or measure chains), and we refer
the reader to the landmark paper of Hilger [6] for a comprehensive treatment of the subject. Since then, several
authors have expounded on various aspects of this new theory [5]. The book [4] by Bohner and Peterson on the
subject of time scales summarizes and organizes much of time-scale calculus.

The three most popular examples of calculus on time scales are differential calculus, difference calculus, and
quantum calculus (see Kac and Cheung [9]), i.e., the cases where T D R; T D N; and T DqN D t W t D qk;

k 2 N; q > 1:
Dynamic equations on a time scale have an enormous potential for applications such as in population dynam-

ics. For example, they can model insect populations that are continuous while in season, die out, say, in winter,
while their eggs are incubating or dormant, and then hatch in a new season, giving rise to a nonoverlapping pop-
ulation (see [4]). There are applications of dynamic equations on time scales to quantum mechanics, electrical
engineering, neural networks, heat transfer, and combinatorics. A recent cover story article in New Scientist [14]
discusses several possible applications. A time scale T is an arbitrary nonempty closed subset of the set of real
numbers R: The set of all such rd -continuous functions is denoted by Crd .T /: The graininess function � for a
time scale T is defined by �.t/ WD �.t/ � t; and f � .t/ denotes f .�.t// for any function f WT ! R:

In recent years, there has been much research activity concerning the oscillation and nonoscillation of solutions
of second-order neutral dynamic equations on time scales; we refer the reader to [1–3, 7, 8, 11–13, 15, 16]. We
note that all the results obtained in these papers are given for neutral delay dynamic equations in the case where
(1.2) holds,


 D ˇ � 1; p�.t/ � 0; and

1Z
t0

ı
 .s/q.s/Œ1 � r.ı.s//�
�s D1: (1.5)
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The question now is as follows: Is it possible to find new oscillation criteria for (1.1) without (1.5)? Our interest is
to give an affirmative answer to this question and to establish some oscillation criteria for (1.1) that do not require
that


 D ˇ � 1; p�.t/ � 0; and

1Z
t0

ıˇ .s/q.s/Œ1 � r.ı.s//�ˇ�s D1: (1.6)

The paper is organized as follows: In Sec. 2, we consider the case where (1.2) holds. In Sec. 3, we consider
the case where (1.3) holds. Our results are essentially new for (1.1) even in the case where 
 D ˇ and can be
applied if 
 < 1 and/or ˇ < 1: Applications to equations to which previously known criteria for oscillation are
not applicable are given.

2. Oscillation Criteria in the Case Where (1.2) Holds

In this section, we establish some sufficient conditions for oscillation of (1.1) in the case where (1.2) holds. In
Sec. 2.1, we consider the case where ı.t/ > t; and the case where ı.t/ � t is considered in Sec. 2.2. To prove
the main results we need the following lemmas, which play important roles in the proofs of the main results even
in the case where (1.3) holds:

Lemma 2.1. Assume that conditions .h1/–.h3/ and (1.2) are satisfied, Eq. (1.1) has a nonoscillatory solu-
tion y on Œt0;1/T ; and x is defined as in (1.4). Then there exists T > t0 such that x.t/xŒ1�.t/ > 0 for
t � T:

Proof. Assume that y.t/ is a positive solution of (1.1) on Œt0;1/T : Pick t1 2 Œt0;1/T so that t1 > t0 and
so that y.t/ > 0; y.�.t// > 0; and y.ı.t// > 0 on Œt1;1/T : (Note that, in the case where y.t/ is negative,
the proof is similar because the transformation y.t/ D �z.t/ transforms (1.1) into the same form.) Since y is a
positive solution of (1.1) and q.t/ > 0; we have [by .h3/�

.xŒ1�.t//� � �q.t/yˇ .ı.t// < 0 for t 2 Œt1;1/T : (2.1)

Then xŒ1�.t/ is strictly decreasing on Œt1;1/T and is of one sign. We claim that xŒ1�.t/ > 0 on Œt1;1/T :

Assume the contrary. Then there is t2 2 Œt1;1/T such that xŒ1�.t2/ D c < 0 (note that xŒ1�.t/ is strictly
decreasing). Then it follows from (2.1) that xŒ1�.t/ � c for t � t2; and, therefore,

x�.t/ �
c
1



p
1

 .t/

for t 2 Œt2;1/T : (2.2)

Integrating the last inequality from t2 to t; we find from (1.2) that

x.t/ D x.t2/C

tZ
t2

x�.s/�s � x.t2/C c
1



tZ
t2

�s

p
1

 .s/

! �1 as t !1; (2.3)

which implies that x is eventually negative. This contradiction completes the proof.
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Lemma 2.2. Assume that conditions .h1/–.h3/ and (1.2) are satisfied, Eq. (1.1) has a nonoscillatory solu-
tion y on Œt0;1/T ; and x is defined as in (1.4). Then there exists T � t0 such that

�
p.t/

�
x�.t/

�
��
C P.t/xˇ .ı.t// � 0 for t � T; (2.4)

where

P.t/ D q.t/.1 � r.ı.t///ˇ : (2.5)

Proof. Assume that y.t/ is a positive solution of (1.1) on Œt0;1/T : Pick t1 2 Œt0;1/T so that t1 > t0 and
so that y.t/ > 0; y.�.t// > 0; y.�.�.t/// > 0; and y.ı.t// > 0 on Œt1;1/T : (Note that, in the case where
y.t/ is negative, the proof is similar because the transformation y.t/ D �z.t/ transforms (1.1) into the same
form.) Since y is a positive solution of (1.1) and q.t/ > 0; it follows from Lemma 2.1 that (note that xŒ1�.t/ > 0
and p.t/ > 0/

x.t/ > 0; x�.t/ > 0; and
�
xŒ1�.t/

��
< 0 for t � t1: (2.6)

Since �.t/ � t and r.t/ � 0; it follows from (1.4) and (2.6) that

x.t/ D y.t/C r.t/y.�.t// � y.t/C r.t/x.�.t// � y.t/C r.t/x.t/ for t � t1:

Thus, y.t/ � .1 � r.t//x.t/ for t � t1: Then, for t � t2; where t2 > t1 is chosen large enough, we have

y.ı.t// � .1 � r.ı.t///x.ı.t//: (2.7)

Relation (2.1) and the last inequality yield inequality (2.4), which completes the proof.

2.1. Oscillation of (1.1) in the Case Where ı.t/ > t: In this subsection, we establish some sufficient
conditions for the oscillation of (1.1) in the case where (1.2) is true and ı.t/ > t: We introduce the following
notation:

Q.t/ WD P.t/

 
p1=
 .t/P.t; T /

p1=
 .t/P.t; T /C �.t/ � t

!ˇ
�� .t/; P.t; T / WD

tZ
T

�
1

p.s/

� 1



�s;

and

�� .t/ WD

8̂̂̂̂
<̂̂
ˆ̂̂̂:
1 if ˇ D 
;

c2

�R �.t/
T

1

p
1

 .s/

�s

�ˇ�

if ˇ < 
;

c1 if ˇ > 
;

(2.8)

where T � t0 is chosen sufficiently large and c1 and c2 are arbitrary positive constants. We begin with the
following theorem:
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Theorem 2.1. Assume that conditions .h1/–.h3/ and (1.2) are satisfied. Let y be a nonoscillatory solution
of (1.1) and make the Riccati substitution

u.t/ WD
xŒ1�.t/

x
 .t/
; (2.9)

where x is defined as in (1.4). Then u.t/ > 0 for t � T (here T is as in Lemma 2.2) and

u�.t/CQ.t/C



p
1

 .t/

�
u� .t/

�1C 1

 � 0 for t 2 ŒT;1/T : (2.10)

Proof. Let y be as above and assume, without loss of generality, that there is t1 > t0 such that y.t/ > 0;

y.�.t// > 0; y.�.�.t/// > 0; and y.ı.t// > 0 for t � t1: Then it follows from Lemma 2.1 and (1.4) that there
exists T > t1 such that

x.t/ > 0; xŒ1�.t/ > 0; and xŒ2�.t/ < 0 for t � T:

By the quotient rule [4] (Theorem 1.20) and the definition of u.t/; we have

u�.t/ D
x
 .t/xŒ2�.t/ � .x
 .t//� xŒ1�.t/

x
 .t/ .x� .t//

D

xŒ2�.t/�
xı.t/

�

�
xı.t/

�ˇ
.x� .t//


�
.x
 .t//� xŒ1�.t/

x
 .t/ .x� .t//

:

It follows from Lemma 2.2 that

u�.t/ � �P.t/

�
xı.t/

�ˇ
.x� .t//


�
.x
 .t//� xŒ1�.t/

x
 .t/ .x� .t//

for t � T: (2.11)

By the Pötzsche chain rule ([4], Theorem 1.90), if f �.t/ > 0 and 
 > 1 (note that f � � f /; then

�
f 
 .t/

��
D 


1Z
0

h
f .t/C �hf �.t/

i
�1
f �.t/dh

� 


1Z
0

.f .t//
�1f �.t/dh D 
.f .t//
�1f �.t/: (2.12)

Also by the Pötzsche chain rule ([4], Theorem 1.90), if f �.t/ > 0 and 0 < 
 � 1; then

�
f 
 .t/

��
D 


1Z
0

h
f .t/C h�.t/f �.t/

i
�1
dh f �.t/

� 


1Z
0

�
f � .t/

�
�1
dhf �.t/ D 
.f � .t//
�1f �.t/: (2.13)
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Using (2.12), (2.13), the relation f .t/ D x.t/; and the fact that x.t/ is increasing and xŒ1�.t/ is decreasing, for

 > 1 we get

�
.x.t//


��
xŒ1�.t/

.x.t//
 .x� .t//

�



�
xŒ1�.t/

��
.
�
xŒ1�.t/

��
/
1



p
1

 x� .t/ .x� .t//


D 

1

p
1

 .t/

�
u� .t/

� 1


C1
:

Also for 0 < 
 � 1; we have

.x
 .t//� xŒ1�.t/

x
 .t/ .x� .t//

�



�
xŒ1�.t/

��
.
�
xŒ1�

��
.t//

1



p
1

 .t/ .x� .t//
 x� .t/

D 

1

p
1

 .t/

�
u� .t/

�1C 1

 :

Thus,

.x
 .t//� xŒ1�.t/

x
 .t/ .x� .t//

� 


1

p
1



�
u� .t/

�1C 1

 for 
 > 0:

Substituting in (2.11), we obtain

u�.t/ � �P.t/

�
xı.t/

�ˇ
.x� .t//


� 

1

p
1

 .t/

�
u�
�1C 1


 for t � T: (2.14)

Next, consider the coefficient of P in (2.14). Since x� D x C �x�; we have

x� .t/

x.t/
D 1C �.t/

x�

x.t/
D 1C

�.t/

p
1

 .t/

�
xŒ1�.t/

� 1



x.t/
: (2.15)

Since xŒ1�.t/ is decreasing, we get

x.t/ D x.T /C

tZ
T

�
xŒ1�.s/

� 1



�
1

p.s/

� 1



�s >
�
xŒ1�.t/

� 1



tZ
T

�
1

p.s/

� 1



�s:

Hence,

x.t/�
xŒ1�.t/

� 1



�

tZ
T

�
1

p.s/

� 1



�s D P.t; T / for t � T: (2.16)

This and (2.15) imply that

x� .t/

x.t/
D 1C �.t/

x�.t/

x.t/
D 1C

�.t/

p
1

 .t/

�
xŒ1�.t/

� 1



x.t/
�
p
1

 .t/P.t; T /C �.t/

p
1

 .t/P.t; T /

for t � T:
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Hence,

x.t/

x� .t/
�

p
1

 .t/P.t; T /

p
1

 .t/P.t; T /C �.t/ � t

for t � T:

Thus, for t � T; we have

xı.t/

x� .t/
D
xı.t/

x.t/

x.t/

x� .t/
�

 
xı.t/

x.t/

!
p
1

 .t/P.t; T /

p
1

 .t/P.t; T /C �.t/ � t

: (2.17)

Since ı.t/ > t and x.t/ is increasing, we have

xı.t/ > x.t/: (2.18)

This and (2.17) guarantee that

�
xı.t/

�ˇ
.x� .t//


�

 
p
1

 .t/P.t; T /

p
1

 .t/P.t; T /C �.t/ � t

!ˇ �
x� .t/

�ˇ�
 for t � T: (2.19)

Consider several cases.

Case 1: ˇ < 
: Since xŒ1�.t/ is positive and decreasing, it follows from Lemma 2.1 that xŒ1�.t/ �
xŒ1�.t2/ D c for t � t2: This implies that

x.�.t// � x.t2/C c
1



0B@ �.t/Z
t2

1

p
1

 .s/

�s

1CA :
Thus,

xˇ�
 .�.t// > .c2/
ˇ

0B@ �.t/Z
t2

1

p
1

 .s/

�s

1CA
ˇ�


; (2.20)

where

c2 D

�
1

c

�ˇ
:

Case 2: ˇ D 
: In this case, we see that .x� .t//ˇ�
 D 1:

Case 3: ˇ > 
: In this case, since x�.t/ > 0; there exists t2 � t1 such that x� .t/ > x.t/ > c > 0: This
implies that .x� .t//ˇ�
 > c1; where c1 D cˇ�
 :

Combining these three cases and using the definition of �� .t/; we conclude that

�
x� .t/

�ˇ�

� �� .t/:
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This and (2.19) yield

�
xı.t/

�ˇ
.x� .t//


�

 
p
1

 .t/P.t; T /

p
1

 .t/P.t; T /C �.t/ � t

!ˇ
�� .t/ for t � T: (2.21)

Substituting (2.21) into (2.14), we obtain inequality (2.10), which completes the proof.

Theorem 2.2 (Leighton–Wintner type). Assume that conditions .h1/–.h3/ and (1.2) are satisfied. Further-
more, assume that

1Z
t0

Q.s/�s D1: (2.22)

Then every solution of (1.1) oscillates.

Proof. Assume the contrary and let y be a nonoscillatory solution of Eq. (1.1). Without loss of generality,
we may assume that y.t/ > 0; y.�.t// > 0; y.�.�.t/// > 0; and y.ı.t// > 0 for t � T (where T is as
in Theorem 2.1). We consider only this case because the proof for y.t/ < 0 is similar. Let u be defined as in
Theorem 2.1. Then it follows from Theorem 2.1 that u.t/ > 0 for t � T and the following inequality is true:

�u�.t/ � Q.t/C



p
1

 .t/

�
u� .t/

�1C 1

 > Q.t/ for t � T: (2.23)

It follows from the definition of xŒ1�.t/ that

x�.t/ D

 
xŒ1�.t/

p.t/

! 1



:

Integrating from T to t; we obtain

x.t/ D x.T /C

tZ
T

�
1

p.s/
xŒ1�.s/

� 1



�s for t � T:

Taking into account that xŒ1�.t/ is positive and decreasing, we get

x.t/ � x.T /C
�
xŒ1�.t/

� 1



tZ
T

�
1

p.s/

� 1



�s for t � T:

Hence,

u.t/ D
xŒ1�.t/

x
 .t/
�

0@ tZ
t0

�
1

p.s/

� 1



�s

1A�
 for t 2 ŒT;1/T ;
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which implies, in view of (1.2), that

lim
t!1

u.t/ D 0:

Integrating (2.23) from T to 1 and using the fact that

lim
t!1

u.t/ D 0;

we obtain

u.T / �

1Z
T

Q.s/�s;

which contradicts (2.22). The proof is complete.

In what follows, we consider the case where

1Z
t0

Q.s/�s <1: (2.24)

Theorem 2.3. Assume that conditions .h1/–.h3/ and (1.2) are satisfied. Furthermore, assume that there
exists a positive rd -continuous �-differentiable function �.t/ such that

lim
t!1

sup

tZ
t0

"
�.s/Q.s/ �

p.s/..��.s//
C1

.
 C 1/
C1�
 .s/

#
�s D1: (2.25)

Then every solution of (1.1) oscillates.

Proof. Assume the contrary and let y be a nonoscillatory solution of Eq. (1.1). Without loss of generality
we may assume that y.t/ > 0; y.�.t// > 0; y.�.�.t/// > 0; and y.ı.t// > 0 for t � T (where T is as
in Theorem 2.1). We consider only this case because the proof for y.t/ < 0 is similar. Let u be defined as in
Theorem 2.1. Then it follows from Theorem 2.1 that u.t/ > 0 for t � T and inequality (2.10) is true. Using
(2.10), we get

u�.t/ � �Q.t/ �



p
1

 .t/

�
u�
�
C1

 for t � T: (2.26)

Multiplying (2.26) by �.s/ and integrating from T to t .t � T /; we obtain

tZ
T

�.s/Q.s/�s � �

tZ
T

�.s/u�.s/�s �

tZ
T


�.s/

p
1

 .s/

�
u�
�
C1

 �s:
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Using integration by parts, we get

tZ
T

�.s/Q.s/�s � u.T /�.T /C

tZ
T

��.s/u� .s/�s �

tZ
t1


�.s/

p
1

 .s/

.u� /

C1

 �s:

Setting B D ��.s/; A D 
�.s/p�1=
 .s/; and u D u� and using the inequality

Bu � Au

C1

 �





.
 C 1/
C1
B
C1

A

;

we get

tZ
T

�.s/Q.s/�s � u.t2/�.T /C

tZ
t1

p.s/.��.s//
C1.s/

.
 C 1/
C1�
 .s/
�s;

i.e.,

tZ
t2

"
�.s/Q.s/ �

p.s/.��.s//
C1.s/

.
 C 1/
C1�
 .s/

#
�s < �.T /u.T /;

which contradicts condition (2.25). Then every solution of (1.1) oscillates. The proof is complete.

From Theorem 2.3, we can obtain different conditions for the oscillation of (1.1) by using different choices of
�.t/: For instance, if �.t/ D t; we have the following result:

Corollary 2.1. Assume that conditions .h1/–.h3/ and (1.2) are satisfied. Furthermore, let

lim
t!1

sup

tZ
t0

�
sQ.s/ �

p.s/

.
 C 1/
C1s


�
�s D1: (2.27)

Then every solution of (1.1) oscillates.

Another method for choosing test functions can be developed by considering the function class < that consists
of kernels of two variables. Following [11], we say that a function H belongs to < if H is defined for t0 � s � t;
t; s 2 Œt0;1/T ; H.t; s/ � 0; H.t; t/ D 0 for t � s � t0; and, for every fixed t; H�i .t; s/ is delta integrable
with respect to the variable i; i D 1; 2: Important examples of H are H.t; s/ D .t � s/m for m � 1 in the case
where T D R and H.t; s/ D .t � s/k; k 2 N; tk D t .t � 1/ : : : .t � k C 1/; in the case where T D Z:

The theorem below gives new oscillation criteria for (1.1), which can be considered as an extension of a
Kamenev-type oscillation criterion. The proof is similar to that in [11] (Theorem 3.3) if one uses inequality (2.10)
and is thus omitted.
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Theorem 2.4. Assume that conditions .h1/–.h3/ and (1.2) are satisfied. Suppose that �.t/ is defined as in
Theorem 2.3, H 2 <; and, for t > s; one has

lim
t!1

sup
1

H.t; t0/

tZ
t0

"
H.t; s/�.s/Q.s/ �

p.s/..��.s//
C1.H�s .t; s//
C1

.
 C 1/
C1�
 .s/H 
 .t; s/

#
�s D1: (2.28)

Then every solution of (1.1) oscillates.

Properly choosing the functions H; one can establish a number of oscillation criteria for (1.1) on different
types of time scales. For instance, if there exists a function h.t; s/ 2 < such that

H�s .t; s/ WD �h.t; s/H


1C
 .t; s/; (2.29)

we deduce the following oscillation result from Theorem 2.4:

Corollary 2.2. Assume that conditions .h1/–.h3/ and (1.2) are satisfied. Suppose that �.t/ is defined as in
Theorem 2.3, H 2 <; and, for t > s; one has

lim
t!1

sup
1

H.t; t0/

tZ
t0

"
H.t; s/�.s/Q.s/ �

p.s/..��.s//
C1.h.t; s//
C1

.
 C 1/
C1�
 .s/

#
�s D1:

Then every solution of Eq. (1.1) is oscillatory.

As a special case, by choosing H.t; s/ D .t � s/m for m � 1; we deduce the following Kamenev-type
oscillation criterion from Corollary 2.2:

Corollary 2.3. Assume that conditions .h1/–.h3/ and (1.2) are satisfied. If, for m > 1;

lim
t!1

sup
1

tm

tZ
t0

�
.t � s/mQ.s/ �

m
C1p.s/..t � s/m�1/
C1

.
 C 1/
C1.t � s/m


�
�s D1;

then every solution of (1.1) oscillates.

In what follows, we give an example to illustrate the results of this subsection. To obtain conditions for
oscillation we use the following facts:

1Z
t0

�s

s�
D1 if 0 � � � 1; and

1Z
t0

�s

s�
<1 if � > 1: (2.30)

For more details, we refer the reader to [4] (Theorem 5.68 and Corollary 5.71).

Example 2.1. Consider the following second-order neutral dynamic equation:

�
y.t/C

1

2
y.�.t//

���
C
� .�.t/ � 1/

t3
y.ı.t// D 0 for t 2 Œ2;1/T ; (2.31)
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where T is a time scale such that

1Z
1

�.s/

s3
�s <1:

Here, 
 D 1; �.t/ < t; ı.t/ > t; �.t/; ı.t/ 2 T ;

lim
t!1

ı.t/ D lim
t!1

�.t/ D1;

r.t/ D 1=2; p.t/ D 1; f .t; u/ D q.t/u;

q.t/ D
� .�.t/ � 1/

t3
;

and � > 0 is a constant. Now take an arbitrary T � 2: Since p.t/ D 1; we have P.t; T / D P.t; T / D t � T:

This gives

Q.t/ WD P.t/
P.t; T /

P.t; T /C �.t/ � t
D
� .�.t/ � 1/

2t3
t � T

t � T C �.t/ � t
D
� .�.t/ � 1/

t3
t � T

�.t/ � T
:

It is easy to see that assumptions .h1/–.h3/ hold and also (2.24) is satisfied because

1Z
t0

Q.s/�s D
�

2

1Z
t0

.�.s/ � 1/

s3
s � T

�.s/ � T
�s �

�

2

1Z
2

�.s/

s3
�
1

s3
�s <1:

To apply Corollary 2.1, it remains to discuss condition (2.27). Note that

lim
t!1

sup

tZ
t0

�
sQ.s/ �

r.s/

.
 C 1/
C1s


�
�s

D lim
t!1

sup

tZ
2

�
�s .�.s/ � 1/

2s3
s � T

�.s/ � T
�
1

4s

�
�s

> lim
t!1

sup

tZ
t

�
�s2

2s3
�

T

2s2 .s � 1/
�
1

4s

�
�s D1;

provided that � > 1=2: Hence, by Corollary 2.1, every solution of (2.31) oscillates if � > 1=2:

2.2. Oscillation Criteria in the Case Where ı.t/ � t: In this subsection, we establish some sufficient
conditions for the oscillation of (1.1) in the case where ı.t/ � t: We use the following notation:

A.t/ WD P.t/˛ˇ .t/�� .t/;
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where �� .t/ is defined as in (2.8),

˛.t/ WD
p
1

 .t/P.ı.t/; T /

p
1

 .t/P.t; T /C �.t/

; and P.u; v/ WD

uZ
v

1

p
1

 .s/

�s:

Theorem 2.5. Assume that conditions .h1/–.h3/ and (1.2) are satisfied. Let y be a nonoscillatory solution
of (1.1) and make the Riccati substitution

w.t/ WD
xŒ1�.t/

x
 .t/
; (2.32)

where x is defined as in (1.4). Then w.t/ > 0 for t � T (here, T is as in Lemma 2.2) and

w�.t/C A.t/C 

1

p
1

 .t/

�
w�
�1C 1


 .t/ � 0 for t 2 ŒT;1/T : (2.33)

Proof. Let y be as above and assume, without loss of generality, that there is t1 > t0 such that y.t/ > 0;

y.�.t// > 0; y.�.�.t/// > 0; and y.ı.t// > 0 for t � t1: From the definition of w; by the quotient rule [4]
(Theorem 1.20) and as in the proof of Theorem 2.1, we get

w�.t/ � �P.t/

�
xı.t/

�ˇ
.x� .t//


� 

1

p
1

 .t/

�
w� .t/

�1C 1

 for t � T: (2.34)

Now consider the coefficient of P.t/ in (2.34). Since xŒ1�.t/ D p
�
x�
�

.t/ is decreasing for t � T; we have

x� .t/ � x.ı.t// D

�.t/Z
ı.t/

xŒ1�.s/

p
1

 .s/

�s � xŒ1�.ı.t//

�.t/Z
ı.t/

1

p
1

 .s/

�s;

and this implies that

x� .t/

x.ı.t//
� 1C

xŒ1�.ı.t//

x.ı.t//

�.t/Z
ı.t/

1

p
1

 .s/

�s: (2.35)

On the other hand, we have

x.ı.t// > x.ı.t// � x.T / D

ı.t/Z
T

xŒ1�.s/

p
1

 .s/

�s � .xŒ1�/.ı.t//

ı.t/Z
T

1

p
1

 .s/

�s;

which leads to

xŒ1�.ı.t//

x.ı.t//
<

0B@ ı.t/Z
T

1

p
1

 .s/

�s

1CA
�1

:
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This and (2.35) imply that

x� .t/

x.ı.t//
< 1C

R �.t/
ı.t/

p�
1

 .s/�sR ı.t/

T p�
1

 .s/�s

D

R �.t/
T p�

1

 .s/�sR ı.t/

T p�
1

 .s/�s

D

R t
T p
� 1

 .s/�s C

R �.t/
t p�

1

 .s/�sR ı.t/

T p�
1

 .s/�s

D

R t
T p
� 1

 .s/�s C �.t/p�

1

 .t/R ı.t/

T p�
1

 .s/�s

D
1

˛.t/
for t � T;

where we have used the fact that

�.t/Z
t

f .s/�s D �.t/f .t/:

Hence,

x.ı.t// � ˛.t/x� .t/ for t � T: (2.36)

This implies that �
xı.t/

�ˇ
.x� .t//


� .˛.t//ˇ
�
x� .t/

�ˇ�
 for t � T:

As in the proof of Theorem 2.1, since .x� .t//ˇ�
 � �� .t/; we have

�
xı.t/

�ˇ
.x� .t//


� .˛.t//ˇ �� .t/ for t � T: (2.37)

Substituting (2.37) into (2.34), we obtain the desired inequality (2.33). This completes the proof.

Theorem 2.6 (Leighton–Wintner type). Assume that conditions .h1/–.h3/ and (1.2) are satisfied. Further-
more, assume that

1Z
t0

A.s/�s D1: (2.38)

Then every solution of (1.1) oscillates.

Proof. Assume the contrary and let y be a nonoscillatory solution of Eq. (1.1). Without loss of generality,
we may assume that y.t/ > 0; y.�.t// > 0; y.�.�.t/// > 0; and y.ı.t// > 0 for t � T (where T is as
in Theorem 2.5). We consider only this case because the proof in the case where y.t/ < 0 is similar. Let w be
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defined as in Theorem 2.2. Then it follows from Theorem 2.5 that w.t/ > 0 for t � T and inequality (2.33) is
true. Using (2.33), we get

�w�.t/ � A.t/C



p
1

 .t/

�
w� .t/

�1C 1

 > Q.t/ for t � T: (2.39)

It follows from the definition of xŒ1�.t/ that

x�.t/ D

 
xŒ1�.t/

p.t/

! 1



:

Integrating from T to t; we obtain

x.t/ D x.T /C

tZ
T

�
1

p.s/
xŒ1�.s/

� 1



�s for t � T:

Taking into account that xŒ1�.t/ is positive and decreasing, we get

x.t/ � x.T /C
�
xŒ1�.t/

� 1



tZ
T

�
1

p.s/

� 1



�s for t � T:

Hence,

w.t/ D
xŒ1�.t/

x
 .t/
�

0@ tZ
t0

�
1

p.s/

� 1



�s

1A�
 for t 2 ŒT;1/T ;

which, in view of (1.2), implies that

lim
t!1

w.t/ D 0:

Integrating (2.39) from T to 1 and using the fact that

lim
t!1

w.t/ D 0;

we obtain

w.T / �

1Z
T

A.s/�s;

which contradicts (2.38). The proof is complete.
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In what follows, we consider the case where

1Z
t0

A.s/�s <1 (2.40)

and proceed as in the proof of Theorem 2.3 [using inequality (2.33)] to get the following results:

Theorem 2.7. Assume that conditions .h1/–.h3/ and (1.2) are satisfied. Furthermore, assume that there
exists a positive rd -continuous �-differentiable function �.t/ such that

lim
t!1

sup

tZ
t0

"
�.s/A.s/ �

p.s/..��.s//
C1

.
 C 1/
C1�
 .s/

#
�s D1: (2.41)

Then every solution of (1.1) oscillates.

Theorem 2.8. Assume that conditions .h1/–.h3/ and (1.2) are satisfied. Suppose that �.t/ is defined as in
Theorem 2.3, H 2 <; and, for t > s; one has

lim
t!1

sup
1

H.t; t0/

tZ
t0

"
H.t; s/�.s/A.s/ �

p.s/..��.s//
C1.H�s .t; s//
C1

.
 C 1/
C1�
 .s/H 
 .t; s/

#
�s D1: (2.42)

Then every solution of (1.1) oscillates.

Properly choosing the functions H; one can establish a number of oscillation criteria for (1.1) on different
types of time scales. For instance, if there exists a function h.t; s/ 2 < such that (2.29) holds, then Theorem 2.8
yields the following oscillation result:

Corollary 2.4. Assume that conditions .h1/–.h3/ and (1.2) are satisfied. Suppose that �.t/ is defined as in
Theorem 2.3, H 2 <; and, for t > s; one has

lim
t!1

sup
1

H.t; t0/

tZ
t0

"
H.t; s/�.s/A.s/ �

p.s/..��.s//
C1.h.t; s//
C1

.
 C 1/
C1�
 .s/

#
�s D1: (2.43)

Then every solution of Eq. (1.1) oscillates.

As a special case, by choosing H.t; s/ D .t � s/m for m � 1; we deduce the following Kamenev-type
oscillation criterion from Corollary 2.2:

Corollary 2.5. Assume that conditions .h1/–.h3/ and (1.2) are satisfied. If, for m > 1; one has

lim
t!1

sup
1

tm

tZ
t0

�
.t � s/mA.s/ �

m
C1p.s/..t � s/m�1/
C1

.
 C 1/
C1.t � s/m


�
�s D1; (2.44)

then every solution of (1.1) oscillates.
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In what follows, we give an example to illustrate the results. To obtain conditions for oscillation we use
relations (2.30).

Example 2.2. Assume that T D R and consider the second-order neutral dynamic equation 
1

t2

 �
y.t/C

ı�1.t/ � 1

ı�1.t/
y.�.t//

�0!
!0
C
�

t
y
 .ı.t// D 0; t 2 Œ1;1/R; (2.45)

where 
 > 0 and is a ratio of odd positive integers, �.t/; ı.t/ 2 T ;

lim
t!1

ı.t/ D lim
t!1

�.t/ D1;

�.t/ � t; ı.t/ � t; and we assume that ı�1.t/ (the inverse of the function ı.t// exists. Here,


 D ˇ > 0; p.t/ D
1

t2
; r.t/ D

ı�1.t/ � 1

ı�1.t/
D 1 �

1

ı�1.t/
; and q.t/ D

�

t
; � > 0:

This implies (in view of the fact that ˛.t/ D 1 and �� .t/ D 1/ that

A.t/ D P.t/ D q.t/.1 � r.ı.t//
 D
�

t
C1
:

We use Theorem 2.7. It is easy to see that conditions .h1/–.h3/ and (1.2) are satisfied because

1Z
t0

�
1

p.t/

� 1



�t D

1Z
t0

t
2

 dt D1:

Relation (2.40) is also satisfied because

1Z
t0

A.s/�s D �

1Z
t0

1

s
C1
ds <1:

Finally, we discuss (2.41). Choosing �.t/ D t
 ; we note that

lim
t!1

sup

tZ
t0

"
�.s/A.s/ �

p.s/..��.s//
C1

.
 C 1/
C1�
 .s/

#
�s

D lim
t!1

sup

tZ
t0

�
s


�

s
C1
�



C1.s
�1/
C1

.
 C 1/
C1 .s
 /
 s2

�
ds

D lim
t!1

sup

tZ
t0

�
�

s
�



C1

.
 C 1/
C1s3

�
ds D1;
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provided that � > 0: Then, by Theorem 2.7, every solution of (2.45) oscillates if � > 0: Note that none of the
results established in [1–3, 7, 8, 11–13, 15, 16] can be applied to (2.45) because

p�.t/ D p0.t/ D �
2

t3
< 0:

3. Oscillation Criteria in the Case Where (1.3) Holds

In this section, we consider the case where ı.t/ � �.t/ � t and relation (1.3) is true and establish some
sufficient conditions for the oscillation of (1.1). We use the following notation:

g.t/ WD q.t/.1 � r.t//ˇ ; �.t/ WD

1Z
t

�
1

p.s/

� 1



�s:

Remark 3.1. It follows from the proof of Lemma 2.1 that if (1.2) holds, then the case x.t/xŒ1�.t/ < 0 is
disregarded and x.t/xŒ1�.t/ > 0 for t � T: Therefore, if (1.2) does not hold, i.e., relation (1.3) holds, we see that
if y is a nonoscillatory solution of (1.1) on Œt0;1/T and x is defined as in (1.4), then xŒ1�.t/ is of one sign and
there exists T > t0 (where T � t0 is chosen sufficiently large) such that

x.t/xŒ1�.t/ > 0 for t � T (3.1)

or

x.t/xŒ1�.t/ < 0 for t � T: (3.2)

To prove the main results of this section in the case where (1.3) holds we need the following lemma:

Lemma 3.1. Assume that conditions .h1/–.h3/ and (1.3) are satisfied, ��.t/ � 0; and r�.t/ � 0: Suppose
that (1.1) has a nonoscillatory solution y on Œt0;1/T and x is defined as in (1.4) so that (3.2) holds. Then there
exists T � t0 such that

.p.t/
�
x�.t/

�

/� C g.t/xˇ .t/ � 0 for t � T: (3.3)

Proof. Assume that y.t/ is a positive solution of (1.1) on Œt0;1/T : Pick t1 2 Œt0;1/T so that t1 > t0 and
so that y.t/ > 0; y.�.t// > 0; y.�.t// > 0; and y.ı.t// > 0 on Œt1;1/T : (Note that, in the case where y.t/
is negative, the proof is similar because the transformation y.t/ D �z.t/ transforms (1.1) into the same form.)
Since y is a positive solution of (1.1) and q.t/ > 0; we have

.xŒ1�.t//� � �q.t/yˇ .ı.t// < 0 for t 2 Œt1;1/T : (3.4)

Then xŒ1�.t/ is strictly decreasing on Œt1;1/T and is of one sign. Since y is a positive solution of (1.1),
q.t/ > 0; and (3.2) holds, we conclude that (note that xŒ1�.t/ < 0 and p.t/ > 0/

x.t/ > 0; x�.t/ < 0; and
�
xŒ1�.t/

��
< 0 for t � t1: (3.5)
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Since x.t/ is decreasing, we may assume, without loss of generality, that y.t/ is also decreasing. If this is not
the case, i.e., y.t/ and y.�/ are increasing for t � t1; then x.t/ is also increasing for t � t1 because

x�.t/ D y�.t/C r�.t/y.�.t//C r� .y.�.t//� > y�.t/ > 0

(note that r.t/ � 0 and r�.t/ � 0/; which contradicts the fact that x�.t/ < 0 for t � t1: This and relations
(1.4) and (2.6) (note that x.t/ > y.t// imply that

x.t/ D y.t/C r.t/y.�.t// � y.�.t//C r.t/x.�.t// � y.�.t//Œ1C r.t/� for t � t1:

Thus,

y.�.t// �
x.t/

1C r.t/
for t � t1:

Since 0 � r.t/ < 1; we have 1 � 1 � r2.t/; which implies that 1=.1C r.t// � .1 � r.t// : Therefore,

y.�.t// � x.t/.1 � r.t// for t � t1:

Since ı.t/ � �.t/ for t � t2; where t2 > t1 is chosen large enough (note that y.t/ is decreasing), we have

y.ı.t// � .1 � r.t//x.t/ for t � t2: (3.6)

Relation (3.4) and the last inequality yield inequality (3.3), which completes the proof.

Theorem 3.1. Assume that conditions .h1/–.h3/ and (1.3) are satisfied, ��.t/ � 0; and r�.t/ � 0:

Furthermore, assume that (2.38) holds and there exists T 2 Œt0;1/T such that

1Z
T

0@ 1

p.s/

sZ
T

g.u/�ˇ .u/�u

1A 1



�s D1: (3.7)

Then every solution of (1.1) oscillates.

Proof. Assume the contrary and let y be a nonoscillatory solution of Eq. (1.1). Without loss of generality,
we may assume that y.t/ > 0; y.�.t// > 0; and y.ı.t// > 0 for t � T (where T is chosen large enough so
that the conclusions of Lemmas 2.2 and 3.1 hold). We consider only this case because the proof in the case where
y.t/ < 0 is similar. According to Remark 3.1, there are two possible cases: (3.1) and (3.2). First, we consider
(3.1). In this case, we proceed as in the proof of Theorem 2.6 and define u.t/ as in (2.9) to get a contradiction with
(2.38). Now consider (3.2). We proceed as in the proof of Lemma 3.1 to get inequality (3.3), where x.t/ satisfies
(3.5) for t � T: Since xŒ1�.t/ < 0; it follows from (3.5) for s � t � T that �xŒ1�.s/ � �xŒ1�.t/; or

p.s/.�x�.s//
 � p.t/.�x�.t//
 ;

and, hence,

�x�.s/ �

�
1

p.s/

� 1

 �
p.t/.�x�.t//


� 1


:
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Integrating from t .� T / to u .� t / and letting u!1; we get

x.t/ > �x.1/C x.t/ �
�
p.t/.�x�.t//


� 1



1Z
t

�
1

p.s/

� 1



�s D p
1

 .t/.�x�.t/�.t/ for t � T:

Since p
1

 .t/.�x�.t/ is decreasing, this yields

x.t/ � p
1

 .T /.�x�.T /�.t/ D c�.t/ for t � T; (3.8)

where c D p
1

 .T /.�x�.T / > 0: Using (3.8) in (3.3), we get

.p.t/
�
x�.t/

�

/� C g.t/cˇ�ˇ .t/ � 0 for t � T:

Integrating the last inequality from T to t; we obtain

�p.t/
�
x�.t/

�

� �p.T /

�
x�.T /

�

C cˇ

tZ
T

g.s/�ˇ .s/�s � cˇ
tZ

T

g.s/�ˇ .s/�s;

or

�x�.t/ � c
ˇ



0@ 1

p.t/

tZ
T

g.s/�ˇ .s/�s

1A
1



:

Integrating from T to t; we get

1 > x.t1/ > x.t1/ � x.t/ � c
ˇ



tZ
T

0@ 1

p.s/

sZ
T

g.u/�ˇ .u/�u

1A 1



�s;

which contradicts (3.7). This completes the proof.

Remark 3.2. Note the difference between inequality (2.4) in the case where (1.2) holds and inequality (3.3)
in the case where (1.3) holds.

Example 3.1. Assume that T D R and consider the neutral equation

�
t2
�
y.t/C .1 �

1

t
/y.�t/

�0�0
C
�t2

˛.t/
y.
�

2
t/ D 0; t 2 Œ1;1/R; (3.9)

where

�.t/ D �t > ı.t/ D
�

2
t and ˛.t/ D

P.ı.t/; T /

P.t; T /
> 0 for any T � 1:
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Here, 
 D ˇ D 1; 0 < � < 1;

p.t/ D t2; r.t/ D

�
1 �

1

t

�
; and q.t/ D �t2; � > 0:

This yields (in view of the fact that �� .t/ D 1/

A.t/ D P.t/˛.t/ D ˛.t/q.t/.1 � r.ı.t// D
2�t

�
; g.t/ D 2�t;

and

�.t/ WD

1Z
t

�
1

p.s/

� 1



�s D

1Z
t

1

s2
ds D

1

t
:

It is easy to see that assumptions .h1/–.h3/ and (1.3) hold because

1Z
1

�
1

p.s/

� 1



�s D

1Z
1

1

s2
ds � 1: (3.10)

To apply Theorem 3.1, it remains to discuss (2.38) and (3.7). First, we discuss (2.38). It is clear that (2.38) is
satisfied because

1Z
t0

A.s/�s D

1Z
t0

A.s/ds D

1Z
1

2�s

�
ds D1:

It remains to discuss condition (3.7). Note that

1Z
T

0@ 1

p.s/

sZ
T

g.u/�ˇ .u/�u

1A 1



�s D 2�

1Z
1

0@ 1

s2

sZ
1

s
1

s
�u

1A ds D �

1Z
1

�
1

s2
.s � 1/

�
ds D1:

Then, by Theorem 3.1, every solution of (3.9) oscillates. Note that none of the results established in [1, 2, 3, 7, 8,
11–13, 15, 16] can be applied to (3.9) because (1.2) does not hold [see (3.10)].

Remark 3.3. In Theorem 3.1, we have used condition (2.38) to get a contradiction if (3.1) holds. We can
also use conditions (2.41)–(2.44) to get a contradiction. In the case where (3.2) holds, we proceed as in the proof
of Theorem 3.1 to get a contradiction with (3.7). Thus, the following results can similarly be stated (there are,
however, no new principles involved):

Theorem 3.2. Assume that conditions .h1/–.h3/ and (1.3) are satisfied, ��.t/ � 0; and r�.t/ � 0:

Furthermore, assume that (2.41) holds and there exists T 2 Œt0;1/T such that (3.7) holds. Then every solution
of (1.1) oscillates.

Theorem 3.3. Assume that conditions .h1/–.h3/ and (1.3) are satisfied, ��.t/ � 0; and r�.t/ � 0:

Furthermore, assume that (2.42) holds and there exists T 2 Œt0;1/T such that (3.7) holds. Then every solution
of (1.1) oscillates.
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Theorem 3.4. Assume that conditions .h1/–.h3/ and (1.3) are satisfied, ��.t/ � 0; and r�.t/ � 0:

Furthermore, assume that (2.43) holds and there exists T 2 Œt0;1/T such that (3.7) holds. Then every solution
of (1.1) oscillates.

Theorem 3.5. Assume that conditions .h1/–.h3/ and (1.3) are satisfied, ��.t/ � 0; and r�.t/ � 0:

Furthermore, assume that (2.44) holds and there exists T 2 Œt0;1/T such that (3.7) holds. Then every solution
of (1.1) oscillates.

Remark 3.4. Note that the results in Theorems 3.1–3.5 are valid only if ı.t/ � �.t/ � t: Hence, it would
be interesting to consider the case where this condition is not satisfied and find new oscillation criteria in the case
where (1.3) holds. It would also be interesting to find new conditions different from condition (3.7).
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6. S. Hilger, “Analysis on measure chains—a unified approach to continuous and discrete calculus,” Results Math., 18, 18–56 (1990).
7. R. M. Mathsen, Q. Wang, and H. Wu, “Oscillation for neutral dynamic functional equations on time scales,” J. Different. Equat. Appl.,

10, 651–659 (2004).
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