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SOLUTION OF ONE HEAT EQUATION WITH DELAY

D. Ya. Khusainov, A.F. Ivanov, and I.V. Kovarzh UDC 517.929

We prove the existence and uniqueness of a solution of a boundary-value problem for a heat equation with
delay. For the construction of a solution, we use a special “delayed exponential function.”

Introduction

In recent years, there has been increasing interest in the investigation of differential equations containing
distributed parameters with delay. Equations of parabolic type with delayed argument are considered in the course
of investigation of population dynamics in ecological systems with inhomogeneous external medium, manpower
dynamics with regard for migration, the dynamics of generators with delayed feedback, etc. [1, 2]. It should be
noted that differential equations with concentrated parameters of different types with aftereffect are fairly well
studied [3-6], whereas there are not as many works devoted to studying partial differential equations with delay
(see [7]).

1. Solution of a One-Dimensional Heat Equation by the Fourier Method

Consider the first boundary-value problem for the heat equation
ug(z,t) = a®ugy(z,t) + f(z,1).

We seek a classical solution of the first boundary-value problem, i.e., a function wu(x,t) defined for 0 < x < [,
t > 0, twice continuously differentiable with respect to x, continuously differentiable with respect to ¢, and
satisfying the initial condition u(x,0) = ¢(z), 0 < x < [, and the boundary conditions u(0,¢) = p1(¢t) and
u(l,t) = pa(t), t > 0. For the construction of a solution, one often uses the method of separation of variables
(Fourier method). A solution is sought in the form of a sum, namely,

u(x,t) = uy(x,t) + ug(z, t) + us(z,t),

where w1 (z,t) is a solution of the homogeneous equation with the zero boundary conditions w;(0,¢) = 0 and
ui(l,t) =0, t > 0, and the nonzero initial condition

X

ui(z,0) = ®(z),  ®(z) = p(2) = w1 (0) = 7[p2(0) = (0)], O<az<i,
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ug(z,t) is a solution of the inhomogeneous equation with the right-hand side F(z,t) = f(z,t) — fu1(t) —
7 [f12(t) — f11(t)], zero boundary conditions ug(0,¢) = 0 and wg(l,t) = 0, ¢ > 0, and nonzero initial con-
dition ug(z,0) =0, 0 <z <, and ug(x,t) has the form

us(a,t) = (t) + Jlua(®) = (®)], 0<a <l t>o0.

A solution ug(z,t) of the homogeneous equation is sought in the form of a product of two functions:
ui(z,t) = X(z)T(t).

As a result of the separation of variables, the problem is reduced to the eigenvalue problem, and a solution of the
homogeneous equation is represented in the form of a series in eigenfunctions of the Sturm-Liouville problem.
The same eigenfunctions are used for the construction of a solution of the second boundary-value problem.

2. Solution of a One-Dimensional Heat Equation with Delay

Consider the first boundary-value problem for the one-dimensional heat equation with delay
ug(2,t) = a3 (T, 1) + a2uge (z,t — 7) + cru(z, t) + cou(z, t — 1) + f(z, 1) (1
defined for 0 < x <[ and ¢ > 0. The initial condition has the form
u(x,t) = p(x,t), 0<z<l, —-17<t<0, 2)
and the boundary conditions are as follows:
w(0,t) = ur(t), wu(l,t) = po(t), t>-—. 3)

Furthermore, we assume that the following condition of “consistency of boundary and initial conditions” is satis-
fied:

We seek a solution in the form of a sum:
u(z, t) = Ul(l', t) + UQ(SC, t) + U3({L‘, t)a
where the functions wuj(x,t), ua(x,t), and us(x,t) are defined as follows:

uy(x,t) is a solution of the homogeneous equation

Ouy(x,t) o 0%uy (1) n 0 0%uy (w,t —7)

5 — U g T 922 + crur(z,t) + couq (z,t — 7)
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with the zero boundary conditions u;(0,¢) = 0 and w;(l,t) = 0, ¢ > —7, and the nonzero initial
condition

ui(z,t) = ®(z,1),

T

CI)(l',t) - Sp(xvt) - ,U/l(t) l

[ua(t) = (t)], 0<a<l, —7<t<0;

ug(z,t) is a solution of the inhomogeneous equation

Qug(x,t)  50%us(w,t) 4 0%us(w,t — 1)
ot T T a2

+ crug(x, t) + coug(x,t — 7) + F(x,t),

T X

F(z,t) = f(z,t) — % {Nl(t) 3 [12(t) — m(t)]} +a {Nl(t) 3 [12(t) — M1(t)]}

X

+C2{N1(75—7')+l

ot =7) —mlt =7}, 0<a<l,

with the zero boundary conditions u2(0,¢) = 0 and wus(l,t) =0, ¢t > —7, and the zero initial condition
ug(x,t) =0, 0<zx<Il, —71<t<0;

T

u3(2,t) = pur (t) + 7 lpa(t) — pa (0]
2.1. Consider the homogeneous equation with delayed argument

oui(z,t)  40*ui(z,t) 4 0%*ui(w,t—T)
ot T ar T g2

+ crur(x, t) + couy (2, t — 7) )

with the zero boundary conditions u;(0,¢) = 0 and w;(l,t) = 0, ¢ > —7, and the nonzero initial condition
ui(z,t) = ®(x,t), 0 <z <Il, —7 <t <0. We seek its solution by using the Fourier method, i.e., the function
ui(z,t) is sought in the form of a product:

ui(z,t) = X (z) T(t).
Substituting this product into the homogeneous equation, we get
X(@)T'(t) = a2 X"(x)T(t) + a3 X"(2)T(t — 7) + 1 X (2) T(t) + 2 X (z) T(t — 7).
Separating the variables, we obtain

X)) _ T#) - eaT#) — esT(t — 7)
X(x) a3T(t) +a3(t —7)

=-)2.

Then the equation splits into the following two equations:

X"(2)+NX(z) =0, T'®t)+ (Nai—c) T(t)+ (Na3 —c2) T(t—7)=0. 6))
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Since the boundary conditions are zero, for the first equation we obtain the zero boundary conditions

A solution is nonzero only if

. nm . . .
and each eigenvalue A\, = e is associated with

Xn(x) :Ansinﬂ'l—nzv, n=1,23,...,
where A,, is an arbitrary constant. Substituting the obtained values A,, = ? into the second equation in (5), we
obtain the following differential equations with delayed argument:
. ™ 2 ™ 2
To(t) = [cl - (T a1> ] T,(t) + [@ - (T a2> } To(t—7), n=1,2.3,.... ©)

We introduce initial conditions for each equation in (6) as follows: We expand the function ®(x,t), 0 < x <
I, —r <t <0, in a series in the eigenfunctions of the first equation, i.e., we represent it in the form

1
> 2
Z(I)” sin 22 T, /<I>£t sm—fd&
0

1
k=1

Substituting the value of ®(x,t) and taking the integral, we obtain the following initial conditions for each equation
in (6):

T.(t) =®,(t), n=1,23,..., —717<t<0,

!
?/ (&,1) sm—fdﬁ%—f[(—l)nﬁ@(t)_Hl(t)]-
0

Let us find a solution of the Cauchy problem for each equation in (6) in analytic form. First, we give several
auxiliary statements. As shown in [8], a solution of the system of linear homogeneous differential equations with
pure delay

z(t) =bx(t—7), t>0, z(t)=¢(), —1<t<0,

has the form
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where the function e on the segment (k — 1)7 < t < k7 is a matrix polynomial of degree k “glued” at the

nodes ¢ = k7. This polynomial is called a “delayed” exponential function.
Consider the scalar differential equation with delay

#(t) =ax(t) +bx(t—7), t>0, 7>0, z(t)=ept), —-T7<t<0, 7

where (t) is an arbitrary continuously differentiable function that determines the initial condition.

Definition 1. The function

, —oo<t< —T,
1, —7<t<0,
t
1+bi, 0<t<7’,
t t—71)2
bt = A r<t<or ®)
t t—(k—1)7]*
1+bv+..+w[ (k')ﬂ, (k—1)r <t < kr,

is called the delayed exponential function.

bt

7 is a solution of the linear homogeneous equation with pure delay

It was proved in [8] that the function e
z(t)=bx(t—7), t>0,

that satisfies the unit initial condition z(t) =1, —7 <t <0.
Let us show that a solution of the Cauchy problem for the equation with delay (7) can also be represented in
the integral form with analogous function.

Lemma 1. The function

zo(t) = ¥l by =e b, t>0, )

bit
T

condition

where el'' is the delayed exponential function defined by (8), is a solution of Eq.(7) that satisfies the initial

zo(t) = e, —7<t<0. (10)

Proof. The fact that the function z(t) satisfies condition (10) follows from the definition of e and e'?.
Let us show that, for ¢ > 0, the function x((t) is a solution of Eq. (7). Differentiating (9), we obtain

% (eat e?_lt> —u <€at 6(;@) + e h, el;l(tw) —u <6at €3lt) 1 gt gmar be?rl(th)

=a (e“t eﬁlt> +b (e“(t_T) e(Tt_T)) .
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Taking (9) into account, we get

%xo(t) = axo(t) + bxo(t — 7),

i.e., Lemma 1 is proved.
Theorem 1. A solution x(t) of Eq.(7) that satisfies the initial condition x(t) = p(t), —7 <t <0, has the
form

0
w(t) = e hitp(—7) 4+ / =9 M) [0/ (5) — ap(s)] ds. (11)

-7

Proof. We seek a solution of Eq. (7) that satisfies the initial condition z(t) = ¢(t), —7 <t < 0, in the form
x(t) = zo(t)c + /xg(t —7—35)y(s)ds, (12)

where ¢ is an unknown constant, y(¢) is an unknown continuously differentiable function, and zo(t) is defined
by (9). According to Lemma 1, the function z((¢) is a solution of Eq.(7). Therefore, for any ¢ and y(t),
expression (12) is also a solution of Eq. (7). We choose ¢ and y(t) so that the initial conditions are satisfied, i.e.,
z(t) = ¢(t), —1 <t <0, or, with regard for (12),

0
a:o(t)c+/mo(t—7'—s)y(s)dszgp(t) for —7<t<0.

—T

We set ¢ = —7. It follows from the definition of delayed exponential function that xo(—7) = e 7,
xo(—27 —s) = 0 if —7 < s < 0, and xo(—27 —s) = e % if s = —71. Therefore, p(—7) = e ¢,
whence ¢ = e*"p(—7), and relation (12) takes the form

0
z(t) = e bt (—7) + /ea(t_T_s) 1 E=T=5)y () ds.

—T
On the segment —7 < ¢ < 0, we divide the integral into two integrals. As a result, we obtain

t 0
go(t) _ ea(H—T)(p(—T) + /ea(t—T—s) e,?.l(t_T_S) y(s) ds + /ea(t—r—s) e?_l(t—r—s) y(s) ds.
t

-7

In the first integral, we have —7 < s < t. Therefore, —7 < ¢t — 7 — s < ¢, and the delayed exponential
function is equal to
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In the second integral, we have ¢ < s < 0. Therefore, t — 7 <t — 7 — s < —7, and the delayed exponential
function is equal to

=79 = if t<s<0, and 2T =1 if s=¢.

T T

Thus, on the segment —7 < ¢t < 0, we get

t
ea(tJr‘r)(p(_T) + /ea(tTS) y(S) ds = Sp(t) (13)

Differentiating relation (13), we obtain
ae ) p(—1) +a / eUTT=8) y(s) ds + e y(t) = ' (t). (14)

Solving the system of equations (13), (14), we get

y(t) = e [¢'(t) — ap(t)] -
Substituting this expression into (12), we obtain the statement of Theorem 1.

Remark 1. Relation (11) can be rewritten in the form

0
x(t) = e < xo(t)p(—7) + /mo(t —T—23) [go/(s) — ago(s)] ds

—T
Remark 2. If a =0, i.e., Eq.(7) is an equation with pure delay, then we obtain the results presented in [7]:

0
o(t) = p(-r) + [ AT s) ds.

—T

We now return to the differential equations (6) with corresponding initial conditions

Too(t) = [01 - (”T” a1)2] T (t) + [CQ - (? a2>2] To(t — 1),

Denote
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It follows from (11) that solutions of the Cauchy problem for each equation in (6) have the form
To(t) = ela=( )] (7 Dut g, (—7)

0

+ /e[“‘(”l"“1)2](t‘5)e£n<t—7—8> [%(s) - [01 - (”7” al)T @n(s)] ds. (15)

-7

This yields the following solution of the first boundary-value problem for Eq. (4):

© n 2
up(w,t) = Zsinﬂlnm{e{cl_(l‘“) ](HT)e?"t@n(—T)

n=1

(16)
2 / 2
.
®u(t) = 3 [ ple.t)sin T €d + (1) a0) — a0
0
2.2. Consider the inhomogeneous equation

9] ¢ 9? t 9? t—
Wé()?) =a? ugif’ ) + a2 UQ(g 5 7) + crug(x, t) + coug(x,t — 7) + F(x,t) a7
with the zero boundary conditions u2(0,t) = 0 and wus(l,t) = 0, ¢ > —7, and the zero initial condition

ug(z,t) =0, 0 <z <, —7 <t < 0. We seek a solution in the form of a Fourier series in the eigenfunctions
T

sinTx, n=12...:

where ¢ is regarded as a parameter. We also represent the function F'(z,t) in the form of a series:

l
ZF sm ?/Fstsmfdf
0
Since
Fia,t) = fo1) = 5 L) + S hoa(e) = m (@]} + e {m @) + Slalt) — (9]}

+ e {m(t—T) +%[M2(t—7) —Ml(t—T)]}a
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taking the integrals we obtain

!
2 2 d
=7 [ e s T ede+ = L1 al®) - ()
0
2 n 2 n
——a[(=1)"pe(t) = ()] — — 2 [(=1)"p2(t = 7) —pa(t = 7)], £ =0.
™ ™
Then each function wus,(t), n=1,2,..., is a solution of the corresponding equation
. ™ 2 ™ 2
tign (1) = [cl - (T a) ] uan (1) + [CQ ~ () } Ugn(t = 7) + Fu(t) (18)

with zero initial condition ug,(t) =0, —7 <t < 0.
We again present several auxiliary results. Consider the Cauchy problem for the inhomogeneous equation with
delay
(t) = ax(t) + bx(t — 1)+ f(t), t>0, 7>0, (19)

with zero initial condition.

Theorem 2. A solution Z(t) of the inhomogeneous equation (19) that satisfies the zero initial conditions has
the form

t
/e =) et f(s)ds, t20, by=e"h. (20)
0

Proof. Since z((t) is a solution of the homogeneous equation (7), using the method of variation of constants
and taking into account the form of the function xy(¢) we seek a solution Z(t) of the inhomogeneous equation
(19) in the form

¢
T(t) = /ea(t_T_S) =775 ¢(s) ds, (21)
0

where ¢(s), 0 < s <t, is an unknown function.
Differentiating (21), we get

t
)+ [ [t et enlr0 209 sy,
0

Substituting (21) and the expression obtained for the derivative into Eq. (19), we write
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e 0T + a(t—7—s) b1(t—T—s)+b€a(t—27—s) e?_l(t—QT—S)] C(S) ds

o\“

t t—1
—a /ea(t—T—s) ef_l(t—r—s) C(S) ds| +b / 6a(i&—27—s) 657_1(15—27-—5) C(S) ds| + f(t),
0 0
whence
t
e Te(t) + / bet(t=27=5) h1(t=27=5) () ds = f(1).
t—T1
Since 2" — 0 for t —7 < s <t and 277 =1 for s = ¢t — 7, we have e~%¢(t) = f(t) and

c(t) = e f(t). This yields relation (20).

Using the result obtained, we write the solution of the Cauchy problem for Egs. (18) with zero initial condition
in the form

t
U2n / (t s) Dn(t T—5) Fn(s) ds, D, —= {02 _ (@ a2)2] e_[ﬂ_(%al)Q]T'
0

A solution of the inhomogeneous heat equation with delayed argument (17) with zero boundary and initial condi-
tions has the form

t

:Z /e ,Mm ts) Dn(tTS)F()d sin%nx,
0

n=1

I
?/f £,1) sm—gdg dt[(_l)n,UQ(t) ()]
0
2 2
T4 [(=1)"p2(t) = (8)] — o [(=1)"p2(t = 7) —pa(t —7)], t=>0.

Combining all relations obtained, we write a solution of the boundary-value problem for the heat equation with
delay in the form
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0
7rln {e[cl(’fl" a1)2] (t+71) eD"tq)n(—T) 1 /e[cl(ﬂln a1)2] (t—s) ef”(t_T_S)

t
i mn 2
+3 / elr=(F )]0 Dut-r-9) ()45 sin Ta () + T lualt) = (0], 22)
0

where

(23)

D, = { _ (jnalﬂ o le-Gra)

A solution of the differential equation with delay (17) is represented in the form of a formal Fourier series.
We now formulate the following theorem on the convergence of solutions of the boundary-value problem

(DH-3):

Theorem 3. Let the functions F(x,t) and ®(x,t) be such that the Fourier coefficients F,(t), ®,(t), and
! (t) satisfy the relations

2 ™ *
lim n2k=2) [@;(3) + [cl - (T al) } @n(s)] e~ () (=) _ g

n—oo

mn 2 *
lim 2=V |E,(s)] e~ (7t an) (1" 4m) 0, —7<s<0, (k—1)71<t"<kr

n—oo

Then the function u(z,t), represented in the form of series (22), has the continuous derivative with respect to t
and the continuous second derivative with respect to x and is a solution of Eq. (1) that satisfies the initial condition
(2) and boundary condition (3). Furthermore, the series can be differentiated term by term twice with respect to x
and once with respect to t, and the series obtained converge absolutely and uniformly for 0 <z <[, —71 <'t.
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Proof. We rewrite series (22) as a sum of three series, namely,
T
ul@ ) = 51(2,1) + S2(w,1) + Sy(w, 1) + pa(6) + T ua(t) — g (1),

where

ZA sm a:, Sa(z,t) ZB sm a:, S3(x,t) = ZCn(t) sinwl—nx,

mn

t
2 2
An(t) = el CEa) | Dueg oy oy = / el (o) =9 pue—r—a g (5 s
0

T

B(t) = / el a)]e=s) pu—r-s) [@%(s) _ [cl _ (? al)T @n(s)} ds.

—T

1. Consider the coefficients A, (t), n =1,2,..., of the first series S;(x,t). For an arbitrary fixed time ¢*:
(k— 1) < t* < kT, we obtain

™

An(tt) = elr=CRa)]een) D g (o

2 * * 2
— (% ar)?] (¢ +7) t (t*—7)
:e[cl (4 al)] T {1+Dn1!+D727,2!+...+Dn 7l Py (—7).
Substituting the value of D,,, we get

A (1) = e[cl—(% 01)2](75*"1‘7'){1 n [02 B (Ln @)1 e_[cl—(% a1)?]r t*

or
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N [cg - (”l”agfr R U w} By (7).

By assumption, we have (k — 1)7 < t* < k1. Therefore, if

2 2
Cl—(?(h) <0 and C2—<?> < -1

or if the “stronger” inequality

Vil \/\1+czr}

l
n > — max ,
T { |ai |as|

is satisfied, then

Tn 2 E3
An(t%)] < [@ (7 el (P en) i

ot —1)? [t — (k —1)7)"
1+ﬁ+72! +...+ il

X

and there exists a continuous function Np(t*) for which
* xy (TN 2k [le(ﬂalf] [t*—(k—1)7]
[An(t)] < N () (T a2) e (7))
Thus, if, at time ¢*, (k —1)7 < t* < k7, one has

lim n2e=(Fa) =D g (_7) =0,

n—oo

then the series
> ™
Sl(ﬂf, t*) = ; An(t*) sin T €T

converges uniformly and absolutely.

2. Consider the coefficients B,(t), n = 1,2,..., of the second series S2(x,t). For a fixed time t*,
(k—1)7 < t* < k7, we perform the change of variables t* — 7 — s = £ and divide the integral into a sum of two
integrals:
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(k=1)7
By(t") = / ol (e pue {%(t —r—¢) - [cl - (% al)z] Bt —7 — 5)] dg
t*—1
b 2 2
- / e[clf(%al) Je+n ePné [(Iﬁl(t —T7—£) — [61 - (WTn a1) } O, (t —7— f)] dg.
(k—1)7

Using the representation of the delayed exponential function eP% on each segment, we obtain

Bo(t") = <i71>re[cl_(qnal)2] (e+7) {%(t* g [cl B <? alﬂ Bt — 7 — é)}

t*—T

X {1+Dn€ A S~k +...+D’;—1[§—Ek:2)71k‘1} ”

1! 2! k—1)!
t* , ,
+ / 6[017(Ta1) }(&T) Lt —T—&) - [01 - (? a1) } O, (t"—7— f)}
(k—1)7
— )2 —(F— k
x {1 +Dn% L p2l8 2!7) +...+D£§W} de.
Substituting the value of D,,, we get
(k—1)7
mn 2 2
Bue) = [ T F I o r o= - (T wue - -9)
t*—1
X {l + [02 - (? a2>1 e_[cl_(ﬁlnal)ﬂTf‘

2 2 ) -7
+ {62 — (TFTn a2)2] 672[017(7%) ]T (€ o )’

ot {cz - (””agﬂ T [z [ (e 2).7]“} B

(k—1)7
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l
e , ™ 2 «
B, (t") = t*ZT [@n(t* —T=¢) - [01 - <T a1) ] P (t" —7 — 5)]

l (k—1)
+(k/:T [(I)ﬁl(t* ) [01 - (”7” a1>2] Ot — 7 — g)]

X {e[cl("{’alfkaﬂ n [62 _ <? a2>2] o= a)?e €

™ 2 e ™ q,)%] (e—7 —7)?
+[cg_<la2>2} =z @) (€ 2!)

+... 4+ |:CQ - (Wl—n a2)2] ' 6[01_(7“1)2][5_%_1)71[5_(]{;{!_1)7]]6} de.

As in the previous case, since t* > (k — 1)7, the following inequality holds for sufficiently large n:

la1] 7 agl

l
n > — max
m
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It follows from properties of definite integrals and the second mean-value theorem that there exist s; and so,
t'—17<s1<(k—17, (k—1)1 <s9 <t* suchthat

| Bn(t%)]

™

(lr — %) [@;(t* s — [Cl - (= alﬂ Bt — 7 — 51)]

[ @)’ e (31~ (k2] 51, (s1—7)° [s1 — (k — 2)r]"1
X € T R (T

—[(22 a1)?—e1 ] [s2—(k—1)7] s2 | (s2-7)° [s2 — (k —1)7]*

and one can find continuous functions Nj (t*,s) and N2(t*,s) bounded for (k — 1)7 < t* < kr, —7 <t <0,
and such that

st === [ (F ) ot )

x o[ @) =ar]lsi=(e-2)7) [Ny (t*, 51)]

e = e (Fw) e -7

y e_ [(% a1)2—01] [52_(]{:_1)7-] ‘Ng(t*a 82)‘ :

Assume that the functions @/ (s) and ®,(s) increase “not too rapidly” on the segment —7 < s < 0, i.e., for
the time t*, (k —1)7 < t* < k7, and an arbitrary s, —7 < s < 0, the following relation is true:

2 mn *
lim n2(—2) [@%(s) + [cl - (? a1> } @n(s)] e*(Tal)Q(t =) — .

Then

lim B,(t*) =0,

n—oo

and the series Sa(x,t) also converges uniformly and absolutely.
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3. Consider the coefficients C,,(t*), n =1,2,..., of the third series S3(z,1).

For an arbitrary fixed time t*, (k — 1)7 < t* < k7, we perform the change of variables t — 7 — & = s
and represent the integral in the form of a sum of integrals in which the delayed exponential function has the same
structure:

™

Cn(t) = / elo=Cta)lemn e, ¢ - — ¢ ae
0 2
_ /e[cl—m"m) [, 4 — - — ) e

b el e [1 D, 5] Fult — 7~ €)dg

1!
0
t*—1
er—(= a1)”|(e47) 3 (&-1)
o+ / elo= (P a)] e {1+Dn1!+D32!
(k—2)7
T k—1
b pir 8 E:_i;'ﬂ }Fn(t*—T—f)df.

Substituting the value of D,, and using the mean-value theorem, we show that there exist times —7 < s7 < 0,
0<s9<7,...,(k—2)7 < s <t"—7 such that

™

2
Cn(t") < Te[cr(Tal) ](T+81)Fn(t* -7 —51)

+ Te[cl_(%nalf](%ksl) [1 + -02 — (? a2>1 e [Cl_(ﬁnal)Q]Tiﬂ E,(t" — 7 — s9)

+...+ Te[cr(%alﬂ SR P [02 - <$ a2>2] 67[017(%%@)2]737,6

to. T [02 - (? a2>2} . ef(kfl)T[clf(%al)Q] [sp — (k —2)7]F1

and the following inequality hold for sufficiently large n:

n>lmax{ ‘Cl‘ |1+C2’}

)
m |ai| [
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Therefore, one can find a function N3(t*,s) continuous and bounded for —7 < s < ¢* and such that

2(k—1)
Calt) < 7 _max |Fu(s)| Na(t*,5) (- az)

—r<s<t* l

~[(mr @)’ —ei] 4y

e

Assume that the functions F),(s) increase “not too rapidly” on the segment —7 < s < t*, i.e., the following
condition is satisfied:

lim n2(k:—1) |Fn(5)| 6—(7%a1)2(t*+‘r) —0.

n—oo

Then
lim C,(t*) =0,

and the series also converges absolutely and uniformly.

Thus, we have shown that, for the series S1(z,t), S2(x,t), and S3(x,t) to converge absolutely and uni-
formly, it is only necessary that the Fourier coefficients F,(t), —7 < s < t*, ®,(t), and ®/,(t), —7 <t <0,
increase “not too rapidly” with respect to the index n. The convergence of the derivatives of the function u(x,t)
follows from the properties of differentiability of the delayed exponential function.

The representation of a solution of the boundary-value problem (1)—(3) in the form (22), (23) is not always
convenient, e.g., for the estimation of the influence of initial, boundary, and external actions. It is necessary to
separate these factors into different terms.

We rewrite (22) as follows:

l
< |7 [ o6 —mysin T ede + (1) ma(=r) — (=)
0

™

+isin7rlnx /e[cl([Lal)z](ts)e?n(t_T_s)

_n1sm7rlnx/ [617(%01)2]@*8) i) [c - (WTn al)Q]
2 / 2
< |7 [otessin T ede -1 as) - ()] ds
0
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N‘[Q

- ¢ I
+Zsin7rlnx/e[cl_(ﬂln )](t ) gDn(t=7=5) /f smfﬁdfds
0 0

X Zen [(=1)"ials =) — a5 = )] ds + g (0) + ) = pa (1) (4

We separate the initial and boundary actions as follows:

n=1

l
i m™n 2
u(z,t) = sm”;’m[q(zm) J#+7) oDt {? / P(§,—7) sin 70 §d§]
0

_|_
0
e
5
&
/—/H
\o
®
.9
@
=
—
H~
L”/
RS
~
Bl
N
—
~| N

/so;@,s)sinTsdg] ds}

[e=]

X
—

)

[l

|
/N
~|3

S

—
N—
[N}
| S

1

N‘[\D
O\

P(&,5) sin 0 w&] ds

:\.‘[\3

- t I
—i—ZsinTx/e[cl(ﬁﬁal) ]( D"(t 7=9) /f smfﬁdﬁds
0 0

£ s T geler (F o) 640 ot [2 (1) aa(—7) — pua ()
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t

+ oosin@:n e[clf(%alﬂ(tfs)ef"(t_“‘s) 2 —1)"a(s) — 11(s)]| ds
> sin {/ 1) - )]

—T

279
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Substitution the obtained expressions, we get

~| DN

l
e mn 2
n=1 0

\o

i
I

a1)*](t=s) ¢Dn(t=7-3) _Cl _ (@ a1>2}

Mg

00 l
N Z { e (22 ](th)e?n(tﬂ-—S) % /(pls(g’ s) sin ? §d§] ds} sin ? -
L O

3
Il
—

l
X |:?/g0(§,s)sin7rln§d§] ds}sinwlnx
o (¢ . !
+Z {/e[c1(7rzna1) ](t*S)egn(tﬂ-fS) !?/f Slnfdfl ds} SiH?&C
0 0

{/6[61("1" QI)Q](t—S)egn(t*Tfs) [2;;” [(=1)"pa(s) — ,ul(s)]] ds} sin 77771 x
0

o

s { / e[q—(%al)z](t—7_3>egn<t7277s> [:n (=1)" ua(s) — Ml(s)]:| ds} sinﬂl—nx

Let
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l

]
2 27 2
X l/sag(f,s)smﬂlnfdf— [01— (?m) } l/so(f,s)sinwlnfdf ds (25)
0

be the sum that depends on the initial conditions, let

gz[f] :Z /e[a(ﬁznal) ](t 8) n(t—T—5 [?/f 31n§df] SinﬂTnx (26)
0

e 27m ¢ s s n
Salpn, ) = Z{ ) 2 [ el (PO Dt fa)as) — s s
=1 0
2co / [C ~(2a )2] (t—r—s) ™
_2e [ elam (P D (=25) (1) 1y (s) — pua(s)] ds bsin T
™ {
t—1

+2{ () + T lua(t) = m (1)} 27)

be the sum that depends on the boundary conditions.
Then a solution of the boundary-value problem can be represented in the form

u(z,t) = Sile] + Salf] + Sslpa, po].

The following theorem is true:

Theorem 4. Let the functions p(x,t), f(x,t), pi(t), and ps(t) be such that, on the segment —1 < t < t*,

(k — 1)7 < t* < kr, their Fourier coefficients

l

/gpst sin 12 sds,

0

N\w
N‘[\D

l
/(ptstsm sds, —1<t<0,
0

f(s,t)sin ? sds

?s
—~
~
N—
I
~| N
o\

and
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t
pnlt) = 2 =) [ el PO Dt ) s) = o) s
0

mn

2
20 e[cl_(Tal) }(t_T_S)eD"(FZT*s) —1)"ua(s) — ui(s) ds, n=1,23,...
- [(=1)"ua(s) — pa(s)] ds, 02,3,...,

satisfy the conditions

m™n 2 *
lim n2(k_1)\g0n(s)|e_(Ta1) @+ =0, —71<s<0, (k—17<t"<kr

n—oo

lim n2(k—1)’fn(t*)’e—("lial)Q(t*+7) -0, lim nz(k_l)\,un(t*)\e—(?al)z(t*”) -0,

n—oo

(k=171 <t" <kr.
Then, for 0 <t < t*, a solution of the first boundary-value problem (1)—(3) has the form

u(x,t) = Sile] + Sa[f] + Sslua, s,

where gl[w], gz[f], and §3[u1,yg] are defined by (25)—(27).

Proof. The proof is analogous to the proof of Theorem 3.
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