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Abstract Due to the unique nonlinearity with inner

states, coupling memristors can make the subsystems

to generate initials-dependent dynamical evolutions

and synchronization behaviors in memristive net-

works, thus providing guidance for engineering

applications. To this end, this paper designs a discrete

model of the memristor-coupled memristive map

composed of two identical memristive maps and a

memristor coupler, and focuses on the initials-depen-

dent dynamics and synchronizations. The coupling

model exhibits a collection of spatial fixed points,

whose stability depends on the initial states of the two

subsystem memristors and the coupled memristor. On

this basis, extrememultistability appears as symmetric

coexisting attractors and dynamical distributions. The

synchronization transitions and the phase synchro-

nization with different kinds of phase errors are

elaborated, which shows the synchronization effect of

the coupling intensity and initial states. The results

clarify that this coupling model can exhibit initials-

dependent dynamics and synchronicity behaviors

under the influence of three memristors. Afterwards,

an FPGA-based hardware platform is used to verify

the correctness of numerical simulations.

Keywords Memristive map � Spatial fixed point �
Extreme multistability � Synchronization � FPGA
platform

1 Introduction

Chaos theory, as a relatively nascent research field, is

an in-depth study of a class of systems characterized by

highly intricate and unpredictable properties [1, 2].

Chaotic systems exhibit a range of distinctive charac-

teristics, including sensitivity to initial conditions,

aperiodicity, and statistical regularities [3, 4], which

makes them valuable in different practical applications

such as time series forecasting [5], video encryption

[6], secure communication [7], geolocation-based

hardware encryptor [8], compressive ghost imaging

[9]. Within chaotic systems, nonlinearity plays a

crucial role in generating complex orbital structures

and chaotic behaviors, such as scroll attractors [10],

extreme multistability [11], and various patterns of

coexisting attractors [12]. Among them, thememristor,

as a special nonlinear element with internal states, has

the ability to boost system memory and impact past

states, making the evolution process more historically

dependent and nonlinear [13]. These characteristics are

crucial for enhancing the complexity and unpre-

dictability, hence the recent progress of memristors

in applications such as secure communication [14],

deep learning [15], and edge computing [16].
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Compared with traditional linear damping and

inertial elements, memristors can bring new coupling

effects and functional expansions in chaotic systems,

nonlinear circuits, and neural network systems [17–19].

Since these formed memristive maps exhibit different

physical expressions, they can be effectively applied to

the energy calculation and the design of equivalent

oscillators [20]. Memristive maps generate chaos and

maintain low average energy in discrete systems, which

can provide guidance for energy definition and reliabil-

ity verification [21]. In chaotic systems, memristors can

effectively replicate the nonlinear behaviors and enables

the control of chaos complexity [22, 23]; in nonlinear

circuits, memristors can be utilized to achieve complex

dynamics and memory functions, thereby offering new

avenues for circuit design and optimization [24, 25];

within neural networks, memristors can emulate the

changes in membrane potential and synaptic transmis-

sion processes of neurons, and facilitate the learning of

neural networks [26, 27]. Furthermore, memristors are

versatile components that can be integrated into both

continuous and discrete systems, which can enhance the

adaptability for system modeling and control [28–30].

Recently, Xu et al. [31] designed an imple-

mentable Hodgkin-Huxley circuit with two N-type

locally activememristors that can generate periodic and

chaotic firing activities. Wang et al. [32] presented a

heterogeneous memristive Hopfield neural network

using different activation functions that show multi-

scroll chaos, state jumps and multi-type coexisting

attractors. Tamba et al. [33] investigated the dynamical

analysis of a four-dimensional chaotic system with

hidden extrememultistability based on a flux-controlled

memristor and its application in image encryption.

Therefore, memristor couplers have the potential to

amplify the nonlinearity, which can result in increased

complexity, so as to expand the application fields.

The above memristive coupling effects provide the

basis for the occurrence of synchronization, which

enables subsystems to work cooperatively in the

coupled network. Synchronization refers to the main-

tenance of a specific phase relationship or state

consistency over time between two or more systems

[34], and holds considerable potential for practical

applications across malicious attacks defense [35],

color image restoration [36], and energy diversity [37].

Scholars explore how synchronization can be achieved

in chaotic systems, with the goal of uncovering the

mechanism and multimodal transition of

synchronization [38]. Significant advancements have

been achieved in investigating the dynamical behav-

iors of complex systems by memristor coupling

[39, 40]. Meanwhile, the utilization of bidirectional

coupling in constructing memristive coupled networks

enables the realization of different collective dynamics

and chaotic synchronization by manipulating network

parameters and connection modes [41–43]. Taking

FitzHugh-Nagumo and Rössler oscillators as exam-

ples, Namura et al. [44] presented a method for

optimizing mutual coupling functions to achieve fast

and global synchronization. Using Hamilton energy

and synchronization factor, Zhang et al. [45] con-

structed a bionic memristor synapse-coupled bi-

mRulkov neuron network and analyzed the line-

boosted complete synchronization and plane-boosted

parallel offset synchronization firings. Based on the

extensible locally activememristor and twomap-based

neurons, Hu et al. [46] designed a memristor synapse-

coupled neuron model and explored the initial-con-

trolled generation and transition of synchronization

with spiking/bursting firing behaviors. Evidently,

memristor couplers can induce diverse dynamical

behaviors and synchronizations in coupling networks.

However, there is limited exploration of memristor

bidirectional coupling through discrete memristive

maps, with existing studies focusing on bidirectional

coupling neurons [47] and bidirectional coupling

discrete maps [48]. This coupling mechanism offers

a precise expression of the interactions within com-

plex systems. Previous studies have shown that

extreme multistability and rich synchronization

behaviors are uncommon in bidirectionally coupled

discrete maps. Thus, this study introduces a novel

approach coupling two discrete memristive maps with

a memristor coupler. Two sine-bounded memristive

maps are considered the subsystems and a hyperbolic

tangent memristor serves as the coupler. On one side,

the coexisting attractors resulting from the interactions

of the coupling and subsystem memristors exhibit

symmetry in the memristive network with the appear-

ance of extreme multistability. While the concept of

extreme multistability has been extensively studied

[49], the influence of the subsystems initial states on

symmetry, has been relatively overlooked. On the

other side, the adopted coupling form significantly

reduces the dimensions required to achieve synchro-

nization in the discrete domain, while the diversity of

phase synchronization associated with the initial states
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is analyzed in depth. Furthermore, the nonlinearity of

the internal state leads to discrepancies between

subsystems, which induce synchronization patterns

transitions between complete, reverse, and phase

synchronous behaviors that strongly depend on the

initial states.

The rest of this article is arranged as follows. In

Sect. 2, the mathematical model of a memristor-

coupled memristive map is presented and its stability

distribution of spatial fixed points is developed. In

Sect. 3, the symmetric coexistence of attractors and

dynamical distributions induced by the initial states of

the coupled memristor and subsystem memristors are

numerically simulated. In Sect. 4, the initials-depen-

dent synchronization transitions and different kinds of

phase synchronization are revealed. In Sect. 5, an

FPGA hardware platform is created to experimentally

validate the numerical results.

2 Memristor-coupled memristive map

This section presents the mathematical model of a

memristor-coupled memristive map (MCMM),

achieved by linking two identical sine-bounded

memristive maps bidirectionally via a discrete mem-

ristor. Then, with the fixed point theory, the stability of

MCMM is determined.

2.1 Model formulation

An effective way to comprehensively analyze dynam-

ical evolutions and synchronization behaviors is to

take the memristor as a coupler to synchronize two

identical memristive systems [50]. Motivated by this

scheme, this section presents a novel discrete model of

the memristor coupled memristive map.

The two-dimensional (2-D) sine-bounded memris-

tive map proposed in [51] owns a simple and effective

implementation scheme and can generate complex

dynamics, coexisting attractors with riddled attraction

basins, and initial state-induced effects. This map is

defined by the equation as

xnþ1 ¼ sin½axn
�
ðq2n � bÞ�;

qnþ1 ¼ qn þ xn:

(

ð1Þ

where xn and qn are the input and the state variable of

the memristor with reciprocal quadratic memristance,

respectively, and a and b are two control parameters.

Discrete chaotic systems typically exhibit nonlin-

earity, complexity, and randomness. The incorporation

of memristors with activation functions has the poten-

tial to amplify the system’s nonlinearity, memory

capability, and chaotic characteristics. Such memris-

torswith activation functions can describe the coupling

effects and promote the generation of synchronization

phenomena. Recently, a discrete model of the mem-

ristor with hyperbolic tangent function memristance

was designed in [52], which is described as

in ¼ MðunÞvn ¼ tanhðunÞvn;
unþ1 ¼ un þ vn;

(

ð2Þ

where vn, in, and un denote the sampled values of

voltage v, current i, and state variable u at the n-th

iteration, respectively, and un?1 is the sampled value

of state variable u at the (n ? 1)-th iteration. Note that

M(un) signifies the memristance based on the hyper-

bolic tangent function at the n-th iteration. Since the

range of the hyperbolic tangent function is within

[- 1, 1], it has boundedness above and below and can

effectively simulate the physical boundary effect of

the memristor. This makes it possible to control the

range of the output, which is beneficial for the stability

and robustness of the discrete memristive system.

Taking two 2-D sine-bounded memristive maps as

subsystems, then a five-dimensional (5-D) memristor

coupled memristive map is obtained by bidirectional

coupling of the two subsystems through the memristor

in (2). MCMM contains two memristive chaotic

systems described by the state variables x1(n) and

x2(n), respectively. The two subsystems influence each

other through the difference x1(n) - x2(n) which

serves as the input of the memristor, while the output

of the memristor feeds back into the subsystems. Thus,

MCMM can be expressed as

x1ðnþ 1Þ ¼ sinð ax1ðnÞ
u1ðnÞ2 � b

Þ þ kðx1ðnÞ � x2ðnÞÞ tanhðu3ðnÞÞ;

u1ðnþ 1Þ ¼ x1ðnÞ þ u1ðnÞ;
x2ðnþ 1Þ ¼ sinð ax2ðnÞ

u2ðnÞ2 � b
Þ � kðx1ðnÞ � x2ðnÞÞ tanhðu3ðnÞÞ;

u2ðnþ 1Þ ¼ x2ðnÞ þ u2ðnÞ;
u3ðnþ 1Þ ¼ u3ðnÞ þ ðx1ðnÞ � x2ðnÞÞ;

8
>>>>>>>><

>>>>>>>>:

ð3Þ
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where (x1(n), u1(n), x2(n), u2(n), u3(n)) are the five

state variables, and the parameter k represents the

coupling intensity between the two subsystems. In (3),

there are three memristors, two of which are the

inherent memristors in subsystems with reciprocal

quadratic memristance, and one is the coupled mem-

ristor, with their internal states designated as u1(n),

u2(n) and u3(n), respectively.

The coupled memristive connection is established

between the state variables x1(n) and x2(n), which in

turn generates a coupled signal ktanh(u3(n))(x1(-

n) - x2(n)) under the influence of the error signal

x1(n) - x2(n). This signal plays a crucial role in

regulating the synchronization behaviors of the cou-

pled system. The coupled signal is primarily affected

by the coupling intensity and the initial states, which

makes MCMM prone to numerous initial-state-sensi-

tive dynamics and synchronous behaviors.

2.2 Spatial fixed point set and stability

In the analysis of discrete maps, stability features are

commonly assessed through fixed point theory which

can help predict the chaotic properties and complex

dynamics [53]. Assume that the fixed point of MCMM

is S = (X1,W1, X2,W2,W3), which can be solved by the

following equations

X1 ¼ sin
aX1

W2
1 � b

 !

þ kðX1 � X2Þ tanhðW3Þ;

W1 ¼ X1 þ U1;

X2 ¼ sin
aX2

W2
2 � b

 !

� kðX1 � X2Þ tanhðW3Þ;

W2 ¼ X2 þW2;
W3 ¼ W3 þ ðX1 � X2Þ:

8
>>>>>>>>>><

>>>>>>>>>>:

ð4Þ

According to the third formula of (4), it can be

deduced that X1 = X2. By substituting the known

condition into the previous formula, the fixed point is

calculated as S = (0, d1, 0, d2, d3), where d1, d2, d3 are
three arbitrary constants representing the initial states

of three memristors, namely u1(n), u2(n), and u3(n).

Obviously, MCMM has a set of spatial fixed points,

which indicates that the resulting dynamics are tightly

dependent on the memristor initial states, and may

result in the appearance of extreme multistability.

The stability of a fixed point is determined by the

eigenvalues of the Jacobian matrix at that point. The

Jacobian matrix for the spatial fixed points is defined

as

JS ¼

a

d21 � b
þ k tanhðd3Þ 0 �k tanhðd3Þ 0 0

1 1 0 0 0

�k tanhðd3Þ 0
a

d22 � b
þ k tanhðd3Þ 0 0

0 0 1 1 0

1 0 �1 0 1

2

66666
64

3

77777
75

:

ð5Þ

Let e = ktanh(d3), l = a/d1
2 - b, g = a/d2

2 - b,

where e, l, and g are three variables. Therefore, the

eigenvalues of the spatial fixed points can be obtained

through the eig function in MATLAB, which is

expressed as

k1 ¼ 1; k2 ¼ 1; k3 ¼ 1;

k4 ¼ eþ lþ g
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� gÞ2 þ 4e2

q

2
;

k5 ¼ eþ lþ g
2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� gÞ2 þ 4e2

q

2
:

ð6Þ

Clearly, k1, k2 and k3 in (6) are all critically

stable because their values are equal to 1. Therefore,

the stability of the spatial fixed points can be

determined by examining the eigenvalues k4 and k5.
The fixed point S is considered unstable if either |k4| or
|k5| exceeds 1, whereas it is critically stable when both
eigenvalues are within the range of - 1 to 1.

The values of k4 and k5 are contingent upon the

control parameters and the memristor initial states,

thus the stability of MCMM is intricately linked to the

control parameters (a, b, k) and initial states (d1, d2,
d3). In short, the spatial fixed points can be stable or

unstable, which may generate infinitely coexisting

attractors with the effects of the initial states. To

visually demonstrate the stability distribution of k4
and k5, the stability distribution on the initial state

planes is drawn in Fig. 1. The red region signifies the

unstable region, where any feature root exceeds 1;

conversely, the black region signifies the stable region,

where both feature roots are below 1.

When the two subsystems are inversely coupled,

with a coupling coefficient of k = - 0.3, and the

model parameters a = b = 2 are consistent with those

set in [51], the stability distribution in the d1-d2 and d1-
d3 planes is depicted in Fig. 1a1, a2. Obviously, after

bidirectional coupling of the memristor, the stability

distribution of MCMM exhibits a distinct difference
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from that of the original system, while still maintain-

ing symmetry around the initial states. When k is

assigned a positive value, the model parameter is set to

a = b = 8, and the stability distribution in the initial

state planes is illustrated in Fig. 1b1, b2. It can be seen

that the stability distribution in the d1-d2 plane exhibits
symmetry about the diagonal, while in the d1–d3 plane,
it is symmetric solely about d1.

The results show that the memristive network

possesses a set of spatial fixed points, which increases

the degrees of freedom for the discrete map to capture

the dynamic properties flexibly. Importantly, the stabil-

ity is closely associatedwith both the control parameters

and the initial states of three memristors, which may

impact the dynamical evolutions of MCMM.

3 Initials-dependent complex dynamics

This section employs numerical methods to study

extreme multistability, which are manifested as

symmetric coexisting attractors induced by the initial

states of three memristors and different dynamical

distributions.

3.1 Bifurcation behaviors

It can be seen from the analysis in Sect. 2.2 that the

fixed points and their stability are closely related to the

initial states of three memristors. Therefore, the

dynamical distributions in the initial state planes

under the same parameter settings in Fig. 1 is plotted

to further explore the effects of the initial states. The

memristor initial states (u1(0), u2(0), u3(0)) = (d1, d2,
d3) are taken as the variables, and the non-memristor

initial states are fixed as x1(0) = 0.1, x2(0) = 0. Wolf’s

Jacobian algorithm is utilized to determine the Lya-

punov exponent (LEs) of MCMM by tracking its

evolution over an iteration length of 2 9 104. Com-

bined with the calculation of the periodicities of the

iterative sequences, the dynamical distribution in

initial state planes can be obtained, as shown in Fig. 2.

Fig. 1 Stability distributions of the spatial fixed point set in

different initial state planes. a Fixing k = - 0.3, a = b = 2,

stability distribution plot in the d1–d2 plane and b the d1–d3

plane. c Fixing k = 0.3, a = b = 8, stability distribution plot in

the d1–d2 plane and d the d1–d3 plane
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Regions with different dynamical behaviors are

classified by different color blocks. The brown, red,

and orange blocks denote hyperchaos with two

positive LEs (labeled HC), chaos with one positive

LE (labeled CH), and quasi-period with one zero

largest LE (labeled QP), respectively. The black and

khaki blocks represent stable point with two negative

LEs (labeled SP) and multi-period with two negative

LEs (labeled MP with a cycle number of more than 8),

respectively. The remaining color blocks range from

period 2 to period 8 (labeled P2 to P8). Note that both

period-doubling bifurcation paths and quasi-periodic

bifurcation paths are present in Fig. 2, which represent

the dynamical evolution from period 2 to period 4 to

period 8 entries into chaos and quasi-period entry into

chaos, respectively. Besides, chaotic crisis scenarios,

which imply a direct transition of the dynamical region

from hyperchaos to stable point behavior, are also

observed.

In particular, when comparing the dynamical

distributions in Fig. 2 with the stability distributions

in Fig. 1, it is evident that they exhibit similar

distributions. Specifically, the stable region corre-

sponds to stable point behavior, while the unstable re-

gion corresponds to chaos/hyperchaos and other

period behaviors except for stable point. This indicates

that the stability of the coupled system at a given initial

state may have a direct impact on its subsequent

dynamics. In other words, the initial state effects will

be reflected in the topological structures of the phase

space. However, there are some slight inconsistencies

between the two, which may be caused by the

nonlinear effect of the eigenvalues and parameter

disturbance.

Take the memristor initial state d3 as the bifurcation
variable, and choose two sets of control parameters

from Fig. 2. The dynamical evolution of [- 10,10] is

depicted in Fig. 3 through the one-dimensional (1-D)

hybrid bifurcation diagrams. In Fig. 3a, as d3 goes

from negative to positive, MCMM undergoes a

tangential bifurcation path at d3 = - 0.2. This is

succeeded by a brief phase of periodic behaviors

Fig. 2 Dynamical distributions in different initial state planes. a Fixing k = - 0.3, a = b = 2, dynamical distribution plot in the d1–d2
plane and b the d1-d3 plane. c Fixing k = 0.3, a = b = 8, dynamical distribution plot in the d1–d2 plane and d the d1–d3 plane
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before entering a broad range of chaos. As revealed in

Fig. 3b, MCMM encounters a reverse quasi-periodic

bifurcation path leading to hyperchaos at d3 = - 5.3

and a reverse period-doubling bifurcation path leading

to robust chaos at d3 = 1.5, along with some periodic

windows. Consequently, the dynamical evolution of

the memristor coupled system exhibits diverse behav-

iors under the control of the memristor initial states.

3.2 Symmetric coexisting attractors induced

by three memristors

In a bidirectional coupled system, the coupling mode

dictates the interaction between subsystems. If the

coupling mode exhibits certain symmetry, the system

may exhibit symmetric attractors under the control of

different initial states [54]. For MCMM in (3), the

control parameters are fixed as (a, b) = (- 8, 1.3), and

the initial states are set to IS = (x1(0), u1(0), x2(0),

u2(0), u3(0)) = (0.1, 0, 0, 0, 3), with any initial state

being a variable. For different values of the coupling

intensity k, the symmetric coexisting attractors con-

trolled by the initial state x1(0) are depicted in Fig. 4.

The phase trajectories are plotted for iterations ranging

from 1000 to 7000, excluding the transient states of the

initial 1000 iterations.

It can be readily found from Fig. 4 that the

symmetric coexisting attractors are diagonally dis-

tributed with different non-memristor initial states.

These attractors are individually controlled by x1(0)

and can undergo operations such as folding and

rotation. This implies that the regulation of non-

memristor initial states can exhibit symmetry and have

effects on the topology of attractors.

If the control parameters are adjusted to (a,

b) = (- 5.7, 0.6), the hyperchaotic attractors regu-

lated by the initial states d1 and x1(0) at different

values of the coupling intensity can be depicted in

Fig. 5. The attractors in Fig. 5a, b can undergo

symmetrical changes under the joint control of both

memristor and non-memristor initial states, whereas

the symmetric coexisting attractors in Fig. 5c, d are

Fig. 3 Memristor initial state-relied hybrid bifurcation diagrams. a Fixing k = - 0.3, a = b = 2, hybrid bifurcation diagrams with

respect to d3. b Fixing k = 0.3, a = b = 8, hybrid bifurcation diagrams with respect to d3

Fig. 4 Non-memristor initial state-relied attractors for different

values of the coupling intensity k with (a, b) = (- 8, 1.3).

a Symmetric attractors for varied x1(0) with k = 0.2.

b Symmetric attractors for varied x1 with k = - 0.1. c Sym-

metric attractors for varied x1(0) with k = - 0.3
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solely regulated by d1. This indicates that the coupled
system can converge to a similar trajectory regardless

of variations in initial states.

Similarly, when (a, b) = (- 3, - 1), Fig. 6 shows

the symmetric coexisting attractors independently

controlled by the subsystem’s memristor initial state

d1, with other initial states fixed as (x1(0), x2(0), u2(0),

u3(0)) = (0.1, 0, 0, 3). The two-piece hyperchaotic

attractors can be interchanged and folded indepen-

dently along the diagonals. Particularly, the complete

synchronization under the behavior of period 4 is

illustrated in Fig. 6d, which indicates that the syn-

chronization behavior can also show symmetry under

the control of the initial states.

At the same time, we choose d3 as the varying

parameter and further illustrate the impact of the

coupled memristor initial state on the evolutions of

dynamics. For fixed (x1(0), u1(0), x2(0), u2(0)) = (0.1,

0, 0, 0), the symmetric coexisting attractors regulated

by d3 under different control parameters are depicted

in Fig. 7. As can be viewed, the attractors in Fig. 7a

switches positions within the interior at d3 = 3 and

d3 = 8, while the attractors in Fig. 7b are folded along

negative diagonals at d3 = 0 and 3, as well as at d3 = 7

and 8, respectively. It demonstrates the coexistence of

multi-symmetries in the phase plane.

These results indicate that the complex nonlinear

behaviors of MCMM are tightly dependent on the

initial states, which verify the effects of the initial

states of three memristors. Through operations such as

folding and rotating of the attractors, the system’s

diversified dynamical evolution path can be realized.

3.3 Extreme multistability

Based on the fixed point and stability analysis of

MCMM in Sect. 2.2, it is evident that the initial states

of the three memristors significantly impact the

stability distribution. Thus, we utilize the local basins

of attraction to further illustrate such effect of the

Fig. 5 Subsystem’s memristor/non-memristor initial state-re-

lied attractors for different values of the coupling intensity

k with (a, b) = (- 5.7, 0.6). a Symmetric attractors for varied

x1(0)/d1 with k = 0.2. b Symmetric attractors for varied x1(0)/d1

with k = - 0.1. c Symmetric attractors for varied d1 with

k = - 0.2. d Symmetric attractors for varied d1 with

k = - 0.4
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initial states on dynamical distributions. Depending on

the number of cycles of the iterative sequence and the

calculation of the first two LEs with an iteration length

of 2 9 104, different dynamical behaviors in the initial

state planes are conveyed through different color

blocks as in the arrangement of Fig. 2.

Following the symmetric coexisting attractors

dependent on the initial states in Sect. 3.2, a specific

set of control parameters in Fig. 6 is presented for

plotting the basins of attraction in the x1(0)–x2(0)

plane, as depicted in Fig. 8. If k = 0.2 and 0.4 are

chosen, it is evident that the initial state plane exhibits

Fig. 6 Subsystem’s memristor initial state-relied attractors for

different values of coupling intensity with (a, b) = (- 3, - 1).

a Symmetric attractors for varied d1 with k = - 0.2.

b Symmetric attractors for varied d1 with k = - 0.3. c Sym-

metric attractors for varied d1 with k = 0.4. d Symmetric

attractors for varied d1 with k = 0.2

Fig. 7 Coupled memristor initial state-relied symmetric coexisting attractors for different values of the control parameters.

a Symmetric attractors for varied d3 with (a, b, k) = (6, 5, 0.6). b Symmetric attractors for varied d3 with (a, b, k) = (4.5, 4.5, - 0.5)
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diverse states such as period and chaos, with different

dynamical behaviors in the same region, which

indicates the presence of extreme multistability in

MCMM. In addition, affected by d1, the symmetry of

the basins of attraction is shifted. When the distur-

bance is minimal like d1 = 0 or - 1, the basins of

attraction are symmetric about the negative diagonal.

As the disturbance increases gradually (e.g., with

d1 = - 2 or - 7), the basins of attraction shift

towards the upper right corner, which leads to an

asymmetrical distribution. Therefore, the distribution

in the x1(0)–x2(0) plane can exhibit complex symmet-

ric dynamics that are extremely related to the coupling

intensity and the initial states of the subsystem

memristors.

Let the non-memristor initial state be assumed as

x2(0) = 0, while the control parameters are selected as

those in Fig. 4, then the dynamical distributions in the

d1–d2 initial state plane is illustrated in Fig. 9. It can be
observed from Fig. 9a, c that the general shape is

symmetrically distributed along the negative diagonal

when the initial state disturbance is small, with only

some asymmetry in different dynamical behaviors,

which is caused by the changes of eigenvalues.

Compared with Fig. 9a, the dynamical distribution in

Fig. 9b shifts to the left with the increase of x1(0).

Similarly, the dynamical distribution in Fig. 9d shifts

towards the upper right corner as |x1(0)| increases. The

results demonstrate that the variations in the coupling

intensity and the non-memristor initial states signifi-

cantly impact the dynamical distributions. In other

words, MCMM is highly sensitive to the initial states

which can result in extreme multistability and an

infinite number of coexisting attractors in hyper-

chaotic regions.

4 Initials-dependent synchronization

In this section, we discuss the transitions of syn-

chronous behaviors adjusted by the coupling intensity

and the initial states, as well as analyze different kinds

of phase synchronization generated by MCMM using

phase difference plots.

Fig. 8 When (a, b) = (- 3, - 1), the 2D dynamical distributions in the x1(0)-x2(0) plane with different values of d1. a Fixed k = 0.4,

the dynamical distribution with d1 = - 1 and b d1 = - 7. c Fixed k = 0.2, the dynamical distribution with d1 = 0 and d d1 = - 2
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4.1 Synchronization transitions

Synchronization refers to the dynamical consistency or

interrelation between two ormore subsystems. Through

the investigation of synchronization,we can uncover the

interaction and regulatory mechanisms between sub-

systems, thereby affecting the behaviors of the coupled

system [55]. Here, the normalized mean synchroniza-

tion error (NMSE) is used to measure the synchroniza-

tion characteristics between two subsystems. The

approach involves normalizing the synchronization

error for each iteration by dividing it with the overall

average synchronization error and subsequently com-

puting the mean of these standardized errors [56].

Therefore, the calculation formula for NMSE after the

n-th iteration can be expressed as follows

NMSE ¼ 1

N

XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1ðnÞ � X2ðnÞÞ2 þ ðY1ðnÞ � Y2ðnÞÞ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
1ðnÞ þ Y2

1 ðnÞ þ X2
2ðnÞ þ Y2

2 ðnÞ
p : ð7Þ

where N is the iteration sequence length which is set to

105 for accuracy and stability of calculation. As the

NMSE tends towards zero, the two subsystems

gradually approach the state of synchronization.

To explore the synchronization transitions between

the two subsystems, the control parameters are defined

as (a, b) = (8, 3.6), with IS = (x1(0), u1(0), x2(0),

u2(0), u3(0)) = (0.1, 0, 0, 0, 3). Then the curve of

NMSE between subsystems is depicted in Fig. 10a as

a function of the variable k within the range of [- 0.5,

0.5]. Three typical values are selected to draw the time

sequences and phase diagrams in the x1-x2 plane, as

shown in Fig. 10, with the red trajectory representing

Subsystem 1 and the blue trajectory representing

Subsystem 2. When k = - 0.4, Fig. 10b shows

complete synchronization of the chaotic state between

the two subsystems, wherein the signals in dimensions

x1 and x2 exhibit identical waveforms and phases, and

are perfectly aligned in time. When k = - 0.02,

Fig. 9 When (a, b) = (- 8, 1.3), the 2D dynamical distributions in the d1–d2 plane with different values of x1(0). a Fixed k = 0.2, the

dynamical distribution with d1 = - 1 and b d1 = - 7. c Fixed k = - 0.3, the dynamical distribution with d1 = 0 and d d1 = - 2
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Fig. 10c displays the phase synchronization, which

indicates a constant phase difference between the

signals x1 and x2 in the two subsystems. When

k = 0.09, a chaotic state of inverse synchronization

is presented in Fig. 10d. The crest of the signal x1

corresponds to the trough of the signal x2, that is, they

are opposite in time, which describes the symmetric

relationship between the two subsystems.

The synchronization properties of MCMM are also

influenced by the control parameters and memristor

Fig. 10 When (a, b) = (8,

3.6), NMSE curve respect to

k and different synchronous

behaviors. a NMSE curves

respect to k. b Complete

synchronization with

k = - 0.4. c Phase
synchronization with

k = - 0.02. d Inverse

synchronization with

k = 0.09
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initial states. Thus, to investigate the memristor initial-

state-adjusted synchronous behaviors, the parameters

are set as (a, b, k) = (8, 7, 0.26), and initial sates are

IS = (x1(0), u1(0), x2(0), u2(0) = (0.1, 0, 0, 0). Sim-

ilarly, the curve of NMSE between subsystems is

depicted in Fig. 11a as a function of the variable d3
within the range of [- 4, 4]. As d3 = 0, the inverse

complete chaotic synchronization between subsystems

is illustrated in Fig. 11b, where the iterations exhibit an

inverse evolution and the phase projections in the x1-u1

and x2-u2 planes manifest as clear straight lines along

the negative diagonal. For d3 = - 2, the coupled

system shows the typical example of the inversely

synchronized periodic behavior, as shown in Fig. 11c.

The findings indicate that the adjustment in the

coupling intensity and the initial states can not only

induce the transitions in synchronization behaviors,

but also show the different dynamics within the same

synchronization pattern.

4.2 Phase synchronization

Phase synchronization reflects the collective behavior

within a chaotic system and refers to the synchroniza-

tion mode in which two signals have the same or

specific phase relationship [41]. The role of the

coupled memristor instead of the external excitation

allows the two subsystems to easily achieve phase

Fig. 11 When (a, b,
k) = (8, 7, 0.26), NMSE

curve respect to d3 and
different synchronous

behaviors. a NMSE curves

respect to d3. b Inverse

chaos synchronization with

d3 = 0. c Inverse period
synchronization with

d3 = - 2
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synchronization by positive coupling and negative

coupling. Here, according to the definition in the

literature [46], the formula for phase solution is

hðnÞ ¼ 2pmþ 2p
n� nm

nmþ1 � nm
; ðnm\n\nmþ1Þ; ð8Þ

where 2pm represents the basic phase value at the

initial state, nm represents the state of MCMM after the

m-th iteration, while nm?1 - nm represents the delta or

variation in the state between the (m ? 1)-th and m-th

iterations. Therefore, (8) implies that the phase value

at n-th iteration is obtained by adding the initial phase

2pm to the newly corrected and adjusted phase value.

This representation illustrates the phase transition and

evolution in discrete maps.

The phase synchronization is identified by calcu-

lating the phase difference between the two subsys-

tems, which is denoted as

DhðnÞj j ¼ h1ðnÞ � h2ðnÞj j; ð9Þ

here h1(n) and h2(n) are the phase values of the state

variables x1(n) and x2(n), respectively. As the absolute

value of the phase difference approaches a constant, it

means that the two subsystems are synchronized in

phase.

To demonstrate the coexistence of different kinds

of phase synchronizations that depend on the coupling

intensity and initial states, we present the time

sequences and phase difference curves. The length

of the time sequence is set within the range of [1200,

1300] to observe the relationship between the two

sequences. However, a longer interval of [1000, 2000]

is used to draw the phase difference curves for better

visualization of the changes.

Followed by Fig. 10, the control parameters and

initial states are set to (a, b) = (8, 3.6) and (x1(0),

u1(0), x2(0), u2(0)) = (0.1, 0, 0, 0), then the phase

synchronization associated with the coupling intensity

k are plotted in Fig. 12. When k = - 0.4, MCMM

achieves complete synchronization in a chaotic state

with |Dh(n)|= 0, thus realizing simultaneous phase

synchronization. Similarly, when k = 0.25 and 0.33,

the phase difference in Fig. 12b, c remains unchanged

at 0, but the amplitude changes of sequences x1 and x2
are interchanged, which shows the diversity of phase

synchronization dependent on coupling intensity.

By setting k to a fixed value of k = - 0.22 and

treating d3 as a variable, Fig. 13 illustrates the iterative
sequences x1, x2 and the corresponding phase

difference curves. For d3 = 1, it is evident that the

iteration sequences of the two subsystems do not

exhibit complete coincidence, yet a negative phase

difference |Dh(n)|= - 12.5 is maintained, which indi-

cates a lag relationship between subsystems. For

d3 = 5, the phase difference between the two subsys-

tems is zero, and MCMM is in the state of complete

chaotic synchronization. For d3 = 3, Fig. 13c shows

that at n = 1260 iterations, the phase difference

undergoes a sudden change and stabilizes at a

consistent value, which suggests the partial finite-time

phase synchronization. The findings indicate that by

controlling the initial state of the coupled memristor,

the phase difference between subsystems can be

limited to a certain constant range, while simultane-

ously inducing diverse phase synchronization

behaviors.

To further demonstrate different phase synchro-

nization behaviors adjusted by subsystems, Fig. 14

depicts the phase difference curves over iterations,

with parameters and initial set as (a, b, k) = (- 6, 0.6,

0.2) and d3 = 0. For d1 = - 5, the phase difference

between subsystems presents incomplete phase syn-

chronization under stepwise increase. In contrast, for

d1 = 0, the phase difference presents incomplete phase

synchronization under stepwise decrease, with several

phase difference pulses. The generation of this kind of

phase synchronization may be related to the nonlinear

effect and the fast-slow effect of the dynamical

system. It is revealed that the phase difference

fluctuation is highly sensitive to the initial states and

coupling intensity, which leads to the diversity of

phase synchronization behaviors.

To further emphasize the complexity of the con-

structed memristive network, we select a set of model

parameters (a, b, k) = (2, 1, - 0.1) and evaluate the

performance by some typical indicators for different

initial states. These indicators include the first two LEs

(LE1, LE2), spectral entropy (SE), permutation

entropy (PE), and correlation dimension (CD). The

evaluation results are enumerated in Table 1. As can

be seen, MCMM exhibits hyperchaotic dynamics with

the first two positive LEs, and have high performance

indicators with SE up to 0.95, PE reaching 5.42, and

CD exceeding 1.98. Obviously, modifying the mem-

ristor and non-memristor initial states will have an

impact on the predictive ability and chaotic properties

of the map, thereby affecting sensitivity to dynamics.

123

Q. Zhao et al.



The excellent performance under suitable parameters

can ensure the reliability in practical applications.

5 FPGA hardware implementation

This section introduces an FPGA digital circuit

implementation of MCMM, where symmetric coex-

isting attractors and synchronization transitions,

dependent on the initial states and coupling intensity,

are captured on the hardware platform. The pro-

grammable and parallel processing capability of the

hardware platform provides an ideal solution for the

digital implementation of discrete memristive maps.

To implement MCMM in (3) and validate its

accuracy on FPGA, VHDL is employed for modeling

and simulation based on the Vivado 2018.3 platform,

followed by integrating onto Xilinx XC7Z100FFG900

development board. This process is mainly composed

of designing modules, comprehensive realization,

configuring the development board, as well as verifi-

cation and debugging. In the module design section,

64-bit float-point number format is utilized to enable

high-precision calculations. The floating-point IP

cores such as addition, subtraction, multiplication,

division, and sine support different floating-point

number formats and operation modes, thereby accel-

erating complex mathematical operations and

Fig. 12 When (a, b) = (8,

3.6), times sequences and

phase difference curves.

a For k = - 0.4, chaotic

state in complete

synchronization with

|Dh(n)|= 0. b For k = 0.25,

phase synchronization with

|Dh(n)|= 0. c For k = 0.33,

phase synchronization with

|Dh(n)|= 0
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enhancing calculation speed and accuracy. In addition,

the 14-bit AD9767 D/A module is utilized to facilitate

the conversion of digital signals to analog signals for

interfacing with external analog devices like the

oscilloscope, which enables real-time signal monitor-

ing. Then, a snapshot of the experimental environment

and the captured attractor is shown in Fig. 15.

Particularly, the input range of the trigonometric IP

core of the hardware platform is limited to (0, p).
Hence, before the initial states enter the IP core, logic

circuits are added for pre-processing. We process the

input through the absolute value IP core to ensure it is

non-negative and then normalize it. The comparator is

used to perform cyclic subtraction to adjust the input

and then calculate the cosine value, and the sine value

is obtained through the trigonometric identity, which

realizes the effective control of the input range.

The model parameters and initial states correspond-

ing to the numerical simulations in Fig. 7 are

preloaded into the platform, with (a, b, k) = (6, 5,

0.6) and (a, b, k) = (4.5, 4.5, - 0.5), respectively. For

two different sets of d3, the attractors captured by the

experimental time mode are shown in Fig. 16, which

demonstrates the symmetric coexisting attractors

controlled by the initial states consistent with the

simulations. Similarly, the relevant parameters and

initial state settings in Fig. 10 are selected as (a,

b) = (8, 3.6) and IS = (x1(0), u1(0), x2(0),

Fig. 13 When (a, b,
k) = (8, 3.6, - 0.22), times

sequences and phase

difference curves respect to

d3. a For d3 = 1, chaotic

state in phase

synchronization with

|Dh(n)|= - 12.5. b For

d3 = 5, chaotic state in

complete and phase

synchronization with

|Dh(n)|= 0. c For d3 = 3,

partial finite-time phase

synchronization with

|Dh(n)|= 6.2 when n\ 1260

and |h(n)|= 18.8 when

n[ 1260
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u2(0)) = (0.1, 0, 0, 0), and the random hyperchaotic/

chaotic sequences and attractors are captured exper-

imentally in Fig. 17 under different values of the

coupling intensity. It can be seen that the hardware

experiment results of synchronization are in good

agreement with the simulation contents, which verifies

that the FPGA digital circuit can realize the initials-

dependent dynamics and synchronization generated

by MCMM.

6 Conclusion

In this paper, the initials-dependent symmetric coex-

isting attractors with extreme multistability were

investigated and the synchronization transitions were

realized in lower dimensions in comparison with

continuous systems [56]. The memristor-coupled

memristive map combined two sine-bounded mem-

ristive maps with the hyperbolic tangent memristor

Fig. 14 When (a, b,
k) = (- 6, 0.6, 0.2) and

d3 = 0, times sequences and

phase difference curves

respect to d1. a For

d1 = - 5, incomplete

phase synchronization in

stepwise increments. b For

d1 = 0, incomplete phase

synchronization in stepwise

decrements

Table 1 Performance test results with (a, b, k) = (2, 1, - 0.1)

for different initial states

d1, d3 LE1, LE2 SE PE CD

0, 3 1.2076, 0.5099 0.9552 5.1596 1.9819

- 2, 3 1.3332, 0.9980 0.8860 5.4205 2.0085

0, 0 1.2076, 0.5099 0.9559 5.0931 1.9853

Fig. 15 A snapshot of the experimental environment and the

captured symmetric attractor
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coupler. Since the stability of the spatial fixed points is

highly associated with the initial states of the two

memristors in subsystems and the coupled memristor,

it implies that extreme multistability emerges in

MCMM, which is specifically expressed as the

symmetric coexisting attractors and dynamical distri-

butions. When suitable coupling intensity and initial

states are selected, it is proved that MCMM realized

the state transitions between complete, reverse and

phase synchronizations through NMSE curves, time

Fig. 16 The experimental memristor initial state-relied attractors for different values of control parameters. a Symmetric coexisting

attractors for varied d3 with (a, b, k) = (6, 5, 0.6). b Symmetric coexisting attractors for varied d3 with (a, b, k) = (4.5, 4.5, - 0.5)

Fig. 17 The experimental

synchronous behaviors for

different values of coupling

intensity. a Complete

synchronization with

k = - 0.4. b Phase

synchronization with

k = - 0.02. c Inverse
synchronization with

k = 0.09
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sequence diagrams, and phase diagrams. In addition,

different types of phase synchronization such as

partial finite-time and incomplete phase synchroniza-

tion were discussed by phase difference errors. It

demonstrated that MCMM can regulate the initials-

dependent dynamical and synchronous behaviors.

What’s more, the FPGA hardware platform was built

to implement MCMM. Certainly, alternative discrete

memristive maps and couplers can be employed to

establish bidirectional coupling networks for investi-

gating nonlinear phenomena and mechanisms of

information exchange.
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