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Abstract Dielectric elastomers (DEs) have attracted

significant attention in many engineering fields due to

their excellent deformation capabilities and mechan-

ical properties. In this work, the nonlinear vibrations

of the DE spherical shell characterized by the third-

order Ogden model are investigated. The governing

equation describing the radially symmetric motions of

the shell is derived by the incompressibility constraint

and the variational method. Through the qualitative

and quantitative analyses, the nonlinear dynamical

behaviors are discussed, along with the parameter

analyses of the structural damping, pressure, direct

current (DC) voltage and alternating current (AC)

voltage. It is shown that with the increasing pressure

and voltage, the vibrations transition from periodic

vibrations to chaotic vibrations via the period-

doubling bifurcation. Particularly, the self-similar

structure of the system is found.

Keywords Dielectric elastomer � Spherical shell �
Electromechanical coupling � Chaotic vibration

1 Introduction

Dielectric elastomers (DEs) are a type of soft polymer

materials, which exhibit significant deformation

behaviors under the electric fields, and thus the DE

structures are widely used in mechanical engineering

and biomedical fields [1–4], such as transducer

structures and biomimetic actuators. For the aspect

of motion forms, the flexible tidal power generation
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devices, the flexible electric pumps and the bionic

jellyfish robots can often be described by the spherical

shells geometrically. The shells frequently undergo

complex deformations influenced by various external

factors, which may result in structural instability and

failure. Therefore, it is essential to investigate the

nonlinear dynamical responses of the DE spherical

shells.

In early researches of the DE materials, Pelrine

et al. [5–7] discussed dynamical properties of the

electroconstriction of electroactive polymers and

potential applications in the micro robots, acoustic

devices and displays. Zhao and Suo [8–11] proposed

the electromechanical stability analysis theory and

method, which serve as the foundational theoretical

work for DEs. Based on these theories, subsequent

researchers adopted various approximate analytical

methods, such as the Newton-harmonic balance

method [12], incremental harmonic balance method

[13] and multiple scales method [14], to investigate

the vibrations of the DE balloon. By the coupled

dielectric theory, Ni et al. [15] investigated the

nonlinear dynamics of functionally graded graphene

nanoplatelet reinforced composite dielectric and

porous membrane. These efforts have not only

advanced the application and theoretical exploration

of the DE materials, but also offered the crucial

guidance for technological advancements and inno-

vations in related fields.

The DEmaterials possess many advantages, such as

fast response, light weight, large deformation and high

energy density. Thus, the vibration responses of the

DE structures have attracted considerable attention.

Under the combined pressure and voltage, Zhu et al.

[16] and Chen et al. [17] investigated the dynamical

behaviors of the DE spherical membrane, respec-

tively. Additionally, Chen and Wang [18] found that

when the DC and AC voltages reach a certain critical

value, the dynamic electromechanical instability

occurs. Kumar and Sarangi [19] proposed a new

energy density function to describe the electrostriction

phenomenon for a class of incompressible isotropic

DE materials. These researches are significant for

comprehending and exploring the dynamical behav-

iors of the DE structures without the damping,

contributing to the advancement of their applications

in fields of mechanics, electronics and medicine. In

these works, the influence of structural damping on

nonlinear dynamical behaviors is ignored. However,

considering the structural damping provides a more

accurate prediction of the dynamical response under

the external excitation.

Taking the damping effect into account, Jin et al.

[20] presented the random response of the DE

spherical membranes subjected to combined excita-

tions of the random pressure and harmonic voltage.

The results indicated that the intensity of the random

pressure, as well as the frequency and amplitude of the

harmonic voltage, are important for the stochastic

jump bifurcation. Lv et al. [21] analyzed the dynam-

ical behaviors of the DE balloon incorporating stiff-

ening and damping effects. Tian et al. [22]

investigated the reliability evaluation of the ideal DE

balloon subjected to the harmonic voltage and random

pressure simultaneously. Yong et al. [23] presented the

nonlinear vibrations of a thick-walled spherical shell,

moreover, the authors gave the critical voltage under

various loading conditions. He et al. [24] employed

both the neo-Hookean model and the Arruda-Boyce

model to analyze the electromechanical instability of

the thick-walled DE shell, and discussed the instability

of the spherical shell under different thicknesses and

boundary conditions. Zhao et al. [25, 26] investigated

the dynamical behavior of the hyperelastic spherical

shell. In summary, these studies provided a significant

theoretical guidance for the DE structures in investi-

gating the influence of material parameters, under-

standing their nonlinear dynamical response

characteristics and analyzing the stability and

reliability.

The chaotic motion has consistently been a promi-

nent topic in the field of nonlinear dynamics, partic-

ularly in the theoretical investigation of cylindrical

and spherical structures [27]. Regarding the DE

structures, Alibakhshi and Heidari [28, 29] investi-

gated the nonlinear vibrations of the DE balloon

composed of the Gent-Gent material, and showed that

the second invariant of the material model suppresses

the chaotic motion of the system. Zou et al. [30] found

that the damping can suppress the chaotic vibrations of

the circular DE membrane. Xie et al. [31] examined

the evolution of bifurcation in the pressurized DE

balloon subjected to an additional electric actuation.

Silva et al. [32, 33] examined the complex nonlinear

dynamical behaviors of the membrane and shell. Gu

et al. [34] summarized the challenges and opportuni-

ties for the further studies in terms of mechanism

design, dynamics modeling and autonomous control.
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Interestingly, a comprehensive understanding of

chaotic vibrations is likely to contribute significantly

to enhancing the stability and reliability of electroac-

tive structures. Additionally, it can play a crucial role

in promoting the development and application of

related technologies.

In the present studies, the strain energy density

functions of the DEmaterials are mainly characterized

by the neo-Hookean model and the Gent model

[35–37]. However, the neo-Hookean model fails to

accurately describe the stress–strain behavior of the

DE materials under large strains, whereas the Gent

model is inadequate for small and moderate deforma-

tions. In comparison to these two models, the Ogden

model demonstrates superior applicability in charac-

terizing material properties and mechanical behaviors

[38]. In engineering applications, the dielectric elas-

tomer, as an electromechanical transducer, can con-

vert mechanical energy and electrical energy into each

other. Chaotic phenomena can enhance the perfor-

mance of the energy harvester by the nonlinear

resonance effects. Meanwhile, through studying the

non-chaotic regions, the design parameters can be

provided to make the structure produce stable periodic

response, which can ensure the service performance of

the equipment.

In this work, the chaotic vibrations of the DE

spherical shell characterized by the third-order Ogden

model are investigated. The effects of various param-

eters on the chaotic responses of the shell are studied.

In Sect. 2, the mathematical model of the shell is

established, and the governing equation is derived by

the Euler–Lagrange equation. In Sect. 3, the effects of

the pressure and voltage on the potential wells, as well

as the natural frequencies, are analyzed. In Sect. 4, the

effects of the structural damping, pressure, DC voltage

and AC voltage on the chaotic vibrations are dis-

cussed. In Sect. 5, the conclusions are presented.

2 Mathematical model

This work considers an incompressible DE spherical

shell subjected to the voltage, where the inner and

outer surfaces are coated with the positive and

negative electrodes, respectively. In the initial state,

the radius and thickness of the shell are denoted by R0

and H, respectively. In the current state, due to the

electromechanical coupling effects, the radius and

thickness are presented by r and h, respectively.

Additionally, the pressure on the inner surface is

denoted by P, as shown in Fig. 1.

The initial and current configurations of the shell

are denoted as ðR;H;WÞ and ðr; h;wÞ, respectively.
Under the assumption of the radially symmetric

motion, the relation between the initial and current

configurations in the spherical coordinate system is

represented as follows

D0¼ ðr;h;wÞjr¼ rðR;tÞ;h¼H;w¼Wf g; rðR;tÞ[0

ð1Þ

where r ¼ rðR; tÞ is the radial deformation function

related to the time t.

The deformation gradient tensor is used to charac-

terize the relations between the two configurations,

with the following form

F ¼ diag
or

oR
;
r

R
;
r

R

� �
¼ diag k1; k2; k3ð Þ ð2Þ

where k1 ¼ or
oR and k2 ¼ k3 ¼ r

R are the radial and

circumferential stretches, respectively.

Due to the incompressibility constraint k1k2k3 ¼ 1,

it yields that

or

oR
¼ R2

r2
ð3Þ

Let

k2 ¼ k3 ¼ k; k1 ¼ k�2 ð4Þ

where k ¼ kðtÞ is used to describe the stretch ratio

related to the time t.

Based on the thermodynamic theory [39], the

Helmholtz free energy function is composed of the

elastic strain energy and the electrostatic energy [11],

that is,

Fig. 1 Configurations of DE spherical shell
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~Wðk;DÞ ¼ WðkÞ þ D2

2e
ð5Þ

where e is the dielectric constant of elastomer, andD is

the electric displacement associated with the electric

field E. The corresponding relation is presented as

follows

D ¼ eE ð6Þ

E ¼ k2V=H ð7Þ

where V is the voltage applied at the shell.

For the incompressible third-order Ogden model,

the corresponding strain energy function is given by

Wðk1; k2Þ ¼
X3
i¼1

li
ai

ðk�1
1 k�1

2 Þai þ kai1 þ kai2 � 3
� �

ð8Þ

where liði ¼ 1; 2; 3Þ and aiði ¼ 1; 2; 3Þ are the mate-

rial constants satisfying liai [ 0 ði ¼ 1; 2; 3Þ. The

corresponding parameters are taken as l1 ¼ 0:5,

l2 ¼ 9, l3 ¼ �0:00425, a1 ¼ 0:05004, a2 ¼
0:0872858 and a3 ¼ �3 [40].

In terms of Eqs. (5), (7) and (8), the Helmholtz free

energy function is denoted as follows

~Wðk;DÞ ¼
X3
i¼1

li
ai

k�2ai þ 2kai � 3
� �

þ e
2

V

H

� �2

k4

ð9Þ

For the thin-walled shell, the volume X0 is

expressed as follows

X0 ¼ 4pR2H ð10Þ

The potential energy and the kinetic energy of the

shell are respectively given by

Us ¼
Z
X

~Wðk;DÞdX

¼ 4pR2H
e
2

V

H

� �2

k4 þ
X3
i¼1

li
ai

k�2ai þ 2kai � 3
� �" #

ð11Þ

and

Uk ¼
1

2

Z
X

qv2dX ¼ 2pqHR4 dk
dt

� �2

ð12Þ

where q is the density,X represents the initial volume.

The works done by the static pressure P and the

voltage V are denoted by

Wp ¼ 4pP
Z r

R

r2dr ¼ 4pP
3

ðr3 � R3Þ

¼ 4pPR3

3
ðk3 � 1Þ ð13Þ

and

WV ¼ 4pR2He
V

H

� �2

k4 ð14Þ

Rayleigh’s dissipation function is introduced to

describe the damping force, as follows,

WR ¼ 1

2
c1 _r

2 þ c2 _h
2 þ c3 _/

2
� 	

ð15Þ

where c1 is the damping ratio in the radial direction, c2
and c3 are the damping ratios in the longitude and

latitude direction, respectively. Since the motion of the

shell is radially symmetric, it leads to c2 ¼ c3 ¼ 0.

Substituting Eqs. (2) and (4) into Eq. (15) yields

WR ¼ 1

2
c1R

2 _k2 ð16Þ

The generalized force is

Q ¼ � dWR

d _k
þ dWP

dk
þ dWV

dk
ð17Þ

In order to obtain the governing equation of the

shell, the Euler–Lagrange equation is introduced as

follows

d

dt

oðUk � UsÞ
o _k

� �
� oðUk � UsÞ

ok
¼ Q ð18Þ

Further, substituting Eqs. (11)–(17) into Eq. (18)

yields

qR2€kþ c1
4pH

_kþ
X3
i¼1

li 2k
ai�1 � 2k�2ai�1

� �
� PR

H
k2

� 2e
V

H

� �2

k3

¼ 0

ð19Þ

In this work, the shell is subjected to the combined

voltages, the action form is taken as

V ¼ udc þ uac sinðxtÞ ð20Þ
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where udc is the DC voltage, uac denotes the

amplitude of the AC voltage, and x is the correspond-

ing frequency of the AC voltage.

To obtain qualitative and quantitative properties of

the governing equation, it is necessary to introduce the

following dimensionless notations

l2 ¼ k2l1; l3 ¼ k3l1; s ¼ t= R
ffiffiffiffiffiffiffiffiffiffi
q=l1

p� 	
;

Pe ¼
PR

l1H
; x ¼ xR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq=l1Þ

p
;

u ¼ eu2
dc

l1H2
; A ¼ uac

udc

; c ¼ c1

4pHR
ffiffiffiffiffiffiffiffiffiffiffi
ðql1Þ

p
ð21Þ

With the help of Eq. (21), the governing Eq. (19)

can be transformed into the following form

€kþ c _kþ gðk;Pe;uÞ ¼ 0 ð22Þ

where

gðk;Pe;uÞ ¼
X3
i¼1

ki 2k
ai�1 � 2k�2ai�1

� �
� Pek

2

� 2u 1þ A sinðxsÞð Þ2k3

ð23Þ

Omitting the nonlinear terms of Eq. (22), the

natural frequency x0 of the shell is given by

x2
0 ¼ ogðkeq;Pe;uÞ=ok ð24Þ

where keq is the stretch ratio of the shell under the

equilibrium state.

When the shell is subjected to the constant load,

integrating Eq. (22) with respect to k gives the first

integral, as follows,

H0 ¼ _k2=2þ EðkÞ ð25Þ

where

EðkÞ ¼ � Pek
3=3þ uk4=2� 2ka1 þ k�2a1

� �
=a1 �

X3
i¼2

ki 2k
ai þ k�2ai

� �
=ai

" #

ð26Þ

is the potential energy function and H0 is the energy

constant determined by the initial conditions.

3 Numerical analyses

In order to investigate the response of the system, it is

essential to analyze the type of equilibrium points and

the frequency components of the periodic vibrations.

In this section, equilibrium point curves, dual potential

well curves and the natural frequency characteristics

are discussed.

In terms of Eq. (23), the equilibrium point curves

for different DC voltages are shown in Fig. 2. It can be

seen that the equilibrium point curves have two

monotonically increasing intervals and one monoton-

ically decreasing interval, which correspond to the two

stable states and to the unstable state, respectively. It

can be shown that the two stable equilibrium points

corresponds to the center points, while the unsta-

ble equilibrium point corresponds to the saddle point.

As mentioned in Ref. [39], if the voltage increases

from zero to the peak point uM , the stretch caused by

the voltage gradually increases. Under the action of

voltage, the thickness of the system decreases, result-

ing in higher electric field and electrostatic force. The

increased force further squeezes the system, creating a

positive feedback effect. When the system is

squeezed, the elastic resistance also increases. The

peak point is the critical condition where the positive

feedback competes with the increase in the elastic

resistance. After the peak, positive feedback is dom-

inant and the electromechanical instability occurs.

When the system is only subjected to voltage, there is a

maximum critical voltage (uM ¼ 0:4489).

When kmin ¼ 1:4489\k\2:6834 ¼ kmax, the

deformation curve is monotonically decreasing for

u ¼ 0.With the increasing DC voltage, kmin reaches to

1, and kmax gradually increases, as shown in Fig. 2.

Since this work mainly discusses the motion near the

saddle point, the initial condition of the system is taken

as kð0Þ ¼ 1:8. In terms of the above analyses, k ¼ 1:8

must lie within the decreasing interval, which indi-

cates that it is near the saddle point. When the system

is subjected to the AC voltage, it may result in a

transverse intersection of stable and unstable mani-

folds, consequently leading to chaotic phenomena.

To further interpret the reasons behind the dynam-

ical behaviors with different pressures and DC volt-

ages, the potential energy curves of the system are

presented in Figs. 3 and 4. In Eq. (26), when u\0:13,

it has only one extreme value, which indicates that the

system has only one potential well. However, the

increases of the pressure and DC voltage enhance the

depth of the second potential well.

As the depth of the second potential well increases,

the system is more prone to perform a periodic
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vibration in the well. Generally, electroactive poly-

mers require a high voltage to be excited, and the

results in this work show that the high voltage can

deepen the second well. Therefore, the above results

can offer guidance on the parameter design for a

stabler response, thus ensuring that the equipment can

operate in a safer environment.

The variation of the natural frequency of the system

with the pre-stretch is shown in Fig. 5, noting that the

points of intersection with the x-axis at x2
0 ¼ 0 are kl

and krðkl\krÞ, respectively. The natural frequency

decreases with the increasing structural deformation

when k\kl. On contrary, the natural frequency

increases with the increasing structural deformation

when k[ kr. Furthermore, the voltage also exerts a

Fig. 2 Equilibrium point

curves for different DC

voltages u

Fig. 3 Dual parameter

potential energy curves for

different DC voltages
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significant effect on the natural frequency, however,

distinct behaviors are observed in the two intervals. As

the voltage increases, the natural frequency decreases

at a slower rate for k\kl.
Using the fourth-order Runge–Kutta method, the

phase portraits and time histories of Eq. (22) can be

obtained. The Poincaré map of the system is obtained

via the stroboscopic method [41]. To further investi-

gate the chaotic motion of the system, the bifurcation

diagrams and the maximum Lyapunov exponents

(MLEs) are plotted based on the Poincaré map and the

wolf algorithm [42–44], respectively.

4 Influences of pressure and voltage

In general, the nonlinear system exhibits a complex

dynamical competition between periodic and chaotic

solutions. This section employs the bifurcation dia-

gram, maximum Lyapunov exponent [45], time his-

tory curve, phase portrait and Poincaré map to analyze

the effects of different parameters (including the

pressure, DC voltage and amplitude) on the periodic

and chaotic vibrations of the system.

For the governing parameters, i.e., damping, fre-

quency and pressure, the maximum Lyapunov expo-

nents with dual parameters are shown in Figs. 6, 7 and

8, where the negative exponents correspond to peri-

odic behaviors (black), the null exponents correspond

to quasi-periodic behaviors (red), and the positives are

chaotic behaviors (blue).

Figure 6 shows the maximum Lyapunov exponents

versus the damping c and the frequency x. Particu-
larly, for the given parameters, Pe ¼ 0:5, u ¼ 0:25

and A ¼ 0:5, the natural frequency obtained by

Eq. (24) is 2.7166, which is far away from x ¼ 1.

That is to say, the primary resonant responses are not

excited in this situation, which indicates that the

system presents the periodic vibrations when x\1

and c ¼ 0. For x[ 1, the system requires suitable pa-

rameters to avoid chaotic motions. For 2\x\4, the

maximum Lyapunov exponents alternate between

positive and negative values, which means the motion

becomes more complex.

Fig. 4 Dual parameter

potential energy curves for

different pressures Pe

Fig. 5 Relations of natural

frequency x0 versus pre-

stretch k for different

voltages u
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Figure 7 gives the maximum Lyapunov exponents

versus the pressure Pe and the frequency x. For the
given parameters, c ¼ 1:5, u ¼ 0:25 and A ¼ 0:5, it

can be seen that with the increase of the amplitude, the

chaotic region in the frequency domain direction

becomes smaller. Meanwhile, under the high-fre-

quency AC voltage, the chaotic response region of the

system becomes larger, which indicates that the

system response is more sensitive to the frequency

parameters of the pressure.

Figure 8 gives the maximum Lyapunov exponents

versus the pressure Pe and DC voltageu. For the given
parameters, c ¼ 1:5, x ¼ 2 and A ¼ 0:5, there is a

decreasing trend in the chaotic region of the system as

the pressure and DC voltage increase. Remarkably,

when the pressure exceeds 1, the positive maximum

Lyapunov exponents are seldom observed. This sug-

gests that the pressure mitigates the emergence of

chaotic response to a certain extent. For specific

details, please refer to Figs. 9, 10 and 11.

Figure 9 shows the bifurcation diagrams and the

maximum Lyapunov exponents for different DC

voltages. For the given parameters, c ¼ 1:5, x ¼ 2

and A ¼ 0:5, the system appears periodic and quasi-

periodic vibrations with the increase of the pressure.

Particularly, the curve in the periodic vibration

windows is connected to the dark line in the chaotic

vibration windows. Under a certain DC voltage, the

increasing pressure may maintain the stability of the

system when the larger deformation occurs.

For u ¼ 0:3 and u ¼ 0:4, Figs. 9b and c present the

corresponding bifurcation diagrams and maximum

Lyapunov exponents. With the increase of the DC

voltages, the chaotic vibration regions increase grad-

ually. Meanwhile, the period-1, period-2, period-4 and

quasi-period vibrations appear. For Pe [ 0:7, the

system shows the periodic vibration, which corre-

sponds to the negative maximum Lyapunov

exponents.

Figure 10 gives the time history curves of the

system for Pe ¼ 0:12, 0:2, 0:4 and 0:65, respectively.

For the given parameters, c ¼ 1:5, A ¼ 0:5 and

u ¼ 0:3, the increasing pressure makes the vibration

of the system evolve from the small deformation to the

large deformation. Moreover, if the system overcomes

the energy barrier, its vibration may be more compli-

cated and move between the two potential wells.

Figure 11 presents the phase portraits and Poincaré

maps of the system for different pressures. For the

Fig. 6 Maximum Lyapunov exponents versus damping c and

frequency x for Pe ¼ 0:5, u ¼ 0:25 and A ¼ 0:5

Fig. 7 Maximum Lyapunov exponents versus pressure Pe and

frequency x for c ¼ 1:5, u ¼ 0:25 and A ¼ 0:5

Fig. 8 Maximum Lyapunov exponents versus pressure Pe and

DC voltage u for c ¼ 1:5, x ¼ 2 and A ¼ 0:5
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given parameters, c ¼ 1:5, A ¼ 0:5, u ¼ 0:3 and

Pe ¼ 0:12, the system performs the quasi-period

vibrations, as shown in Figs. 11a and e. For Pe ¼ 0:2

and 0:65, the period-2 vibrations occur, as shown in

Figs. 11b and c. The strange attractors appear in

Figs. 11d and f, which further demonstrate the

existence of the chaotic vibrations.

Figure 12 gives the maximum Lyapunov exponents

versus the damping c and the DC voltage u. For the
given parameters, Pe ¼ 0:5,x ¼ 2 and A ¼ 0:5, it can

be seen that with the increase of the damping, the

region of the positive maximum Lyapunov exponents

gradually decreases, which emphasizes the impor-

tance of considering damping when designing the DE

shell. If the damping is appropriate, the system can

maintain the stable periodic motion under a high DC

voltage. For specific details, please refer to Figs. 13, 14

and 15.

Figure 13 gives the bifurcation and the maximum

Lyapunov exponents of the system for c ¼ 1:5,x ¼ 2,

A ¼ 0:5 and Pe ¼ 0:5. It indicates that the orbit of the

period-doubling bifurcation can enter chaos, and the

Fig. 9 Bifurcation and

maximum Lyapunov

exponent diagrams under

different DC voltages u for

c ¼ 1:5, x ¼ 2 and A ¼ 0:5

(a) (b) 

Fig. 10 Time history

curves for different

pressures Pe with c ¼ 1:5,
A ¼ 0:5 and u ¼ 0:3
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periodic and chaotic vibrations alternate with the

increasing DC voltages. Moreover, the bifurcation

diagram of the DC voltage has self-similarity, as

shown in Fig. 13b.

Figure 16 presents the maximum Lyapunov expo-

nents versus the damping c and amplitude of the AC

voltage A. For the given parameters, Pe ¼ 0:5, x ¼ 2

and u ¼ 0:25, it can be seen that with the increase of

the damping, the positive maximum Lyapunov expo-

nents do not decrease significantly. However, in the

region of large AC voltage amplitudes, a distinct

region of the periodic motion emerges. While the

damping changes, the region remains essentially

unchanged. Moreover, the periodic vibration regions

increase gradually with the increasing damping, which

further enhances the robustness of the system.

Figure 17 presents the maximum Lyapunov expo-

nents versus the pressure Pe and amplitude of AC

voltage A. For the given parameters, c ¼ 1:5, x ¼ 2

and A ¼ 0:5, it is not difficult to find that the influence

of the AC voltage amplitude is more complex

compared to the other parameters. As the amplitude

increases, the chaotic region exhibits a trend of

initially increasing and subsequently decreasing.

Fig. 11 Phase portraits and

Poincaré maps for different

pressures Pe with c ¼ 1:5,
A ¼ 0:5 and u ¼ 0:3
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Additionally, within the chaotic region, there exist

some regions of periodic response parameters. The

parameter combinations in these stable regions can

provide a reference for maintaining the periodic

response behavior of practical structures under a high

voltage. For specific details, please refer to Figs. 18, 19

and 20.

For the given parameters, c ¼ 1:5, Pe ¼ 0:5 and

c ¼ 1, Pe ¼ 0:7, Figs. 18a and b present the bifurca-

tion diagrams and the maximum Lyapunov exponents,

respectively. For A\0:4, the system performs period-

1 motion. With the increase of the amplitude, the

periodic and chaotic vibrations alternate. Moreover, it

shows a pronounced period-doubling and inverse

period-doubling bifurcation in the second periodic

window in Fig. 18b.

For the given parameters, c ¼ 1, x ¼ 2, u ¼ 0:25

and Pe ¼ 0:7, Figs. 19 and 20 present the time history

curves, phase portraits and Poincaré maps of the

system under different amplitudes of AC voltage A.

With the increase of the amplitude, the vibration

behaviors of the system become more complicated, as

shown in Fig. 19. Moreover, it shows that there exist

the period-1, period-2, period-4, quasi-period and

chaotic vibrations in the system, as shown in Fig. 20.

Particularly, the typical strange attractors further

indicate the chaotic vibrations of the system, as shown

in Figs. 20e and f.

Fig. 12 Maximum Lyapunov exponents versus damping c and
DC voltage u for Pe ¼ 0:5, x ¼ 2 and A ¼ 0:5

(a) (b)

Fig. 13 Bifurcation and

maximum Lyapunov

exponent diagrams for

c ¼ 1:5,x ¼ 2, A ¼ 0:5 and
Pe ¼ 0:5

Fig. 14 Time history

curves for different DC

voltages u with c ¼ 1:5,
x ¼ 2, A ¼ 0:5 and

Pe ¼ 0:5
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In this section, the structural response characteris-

tics under various combinations of parameters are

analyzed in detail. The parameter domain range of the

chaotic response is identified. With the changes of the

pressure and voltage, the system may undergo a series

of bifurcations and chaotic transitions. Under the

influences of the pressure and voltage, the system may

re-enter a stable and predictable state. This phe-

nomenon often occurs within specific parameter

regions, which may be associated with the nonlinear

characteristics. According to these analysis results, the

motion behaviors of the DE shells can be designed. For

the energy harvesting system, the parameters can be

set in the chaotic region to improve the energy

harvesting efficiency of the equipment.

Fig. 15 Phase portraits and

Poincaré maps for different

DC voltages u with c ¼ 1:5,
x ¼ 2, A ¼ 0:5 and

Pe ¼ 0:5

Fig. 16 Maximum Lyapunov exponents versus the damping c
and amplitude of AC voltage A for Pe ¼ 0:5, x ¼ 2 and

u ¼ 0:25

Fig. 17 Maximum Lyapunov exponents versus pressure Pe and

AC voltage amplitude A for c ¼ 1:5, x ¼ 2 and A ¼ 0:5
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5 Conclusions

Under the combined actions of the pressure and

voltage, the periodic and chaotic vibrations of the DE

spherical shell described by the third-order incom-

pressible Ogden model are investigated. The govern-

ing equation of the shell is obtained by the Euler–

Lagrange equation. The effects of different parameters

on the dynamical behaviors are analyzed, including

the structural damping, voltage and pressure. The

main conclusions are given as follows.

1. In terms of the influences of the pressure and DC

voltage on the depth of the potential energy well, it

is observed that the increasing parameters may

have significant influence on the second potential

well, namely, deepen its depth, while have little

influence on the first potential well. In other

words, the increasing depth of the second potential

well can make the periodic response of the system

stabler, which may provide a theoretical reference

for the design of the DE structures requiring

stable periodic responses.

2. Based on the qualitative and quantitative analyses,

it is observed that (i) for the given damping and

AC voltage parameters, the critical value of the

system holding periodic vibration is found by the

dual-parameter Lyapunov exponents of the pres-

sure and DC voltage. (ii) Some interesting

phenomena, such as the period-doubling bifurca-

tion, inverse period-doubling bifurcation, alterna-

tion of period-chaos-period, abundant variation of

chaotic interval, line-type attractor with a slender

local structure, etc., are found.

Fig. 18 Bifurcation and maximum Lyapunov exponent diagrams for x ¼ 2 and u ¼ 0:25

Fig. 19 Time history

curves for different

amplitudes of AC voltage A
with c ¼ 1, x ¼ 2, u ¼
0:25 and Pe ¼ 0:7
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