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Abstract The Lumped Mass method is widely

utilized for the dynamic modeling of underwater

cables. Various element frames, such as the Euler

frame, Frenet frame, and Relative Velocity Element

Frame (RVEF), have been proposed to express

element loads due to their convenience. However,

most of these element frames encounter singularity

issues when expressing the transformation matrices

needed to transfer values between the element frame

and the global frame. A Global Lumped Mass

Formulation (GLMF) derived from the RVEF is

proposed in this paper. The tangential vector and

normal plane projection matrix of the element are

expressed using global node coordinates. Conse-

quently, the element tension, damping forces, and

hydrodynamic forces are also represented in the global

frame, effectively eliminating the singularities present

in traditional element frames. Moreover, the integra-

tion of the Arbitrary Lagrangian–Eulerian (ALE)

method with the GLMF is proposed to model cable

deployment and retrieval motions. The accuracy of the

ALE-GLMF approach is validated against the Arbi-

trary Lagrangian–Eulerian-Absolute Nodal

Coordinate Formulation. Given that the dynamic

response of cables with minimal bending can be

calculated efficiently, the GLMF is suitable for mod-

eling towing cables, mooring lines, and ropes with low

bending effects.

Keywords Underwater cable dynamics � Global

lumped mass formulation � Singularity � Variable

length � ALE-GLMF

1 Introduction

Underwater cables play a crucial role in various

marine applications, including marine towing systems,

floating platforms, and gravity net cage systems [1–5].

Understanding cable dynamics is essential for accu-

rately predicting the responses of marine equipment.

The Lumped Mass (LM) method is commonly

employed for modeling marine cables [6–10]. Forces

acting on the LM element encompass the tension

force, damping force, gravity, buoyancy, and hydro-

dynamic loads. Since tension and damping forces

align with the element orientation defined using global

node positions, they are easily expressed in the global

frame. Similarly, buoyancy and weight act vertically,

simplifying their expression in the global frame.

However, hydrodynamic loads, which are influenced

by relative velocity and acceleration, pose a challenge.

Various element frames such as Euler frame, Frenet
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frame and RVEF, have been proposed to express

hydrodynamic loads decomposed into the tangential

and normal directions of the cable. The Euler frame

describes element postures using two Euler angles

formed by the coordinates of the cable nodes [11–13].

Although the Euler frame is conceptually straightfor-

ward, it encounters singularity issues in certain

postures due to inverse trigonometric functions. On

the other hand, the Frenet frame employs orthogonal

basis vectors—tangential, normal, and binormal vec-

tors—generated based on the shape function of the

entire cable [14, 15]. The normal vector is derived

from the tangential vector, while the binormal vector

is determined by the cross product of the tangential

and normal vectors. However, the Frenet frame

encounters singularity when adjacent cable elements

align to form a straight line. In contrast, the RVEF

addresses this limitation by establishing a plane using

the tangential vector and the relative velocity of the

element. Subsequently, the RVEF is generated based

on the tangential vector and normal vector of the

plane. The RVEF employs the global relative velocity

to express hydrodynamic loads, dividing them into

tangential and non-tangential components. Despite

this advancement, the element frame remains neces-

sary to define the direction of hydrodynamic loads,

leading to mathematical singularities when the tan-

gential vector aligns with the relative velocity [1, 16].

Consequently, these frames exhibit singularities in

specific configurations, complicating the resolution of

dynamic equations.

In this study, a Global Lumped Mass Formulation

(GLMF) is proposed to directly express hydrodynamic

loads with respect to the tangential vector and normal

plane, generated using global node coordinates. The

global relative velocity is projected into tangential and

non-tangential components for the calculation of

hydrodynamic loads. By expressing all loads directly

in the global frame, the GLMF eliminates the need for

the coordinate transformation operations, resulting in

two key advantages: increased efficiency and the

absence of singularities. The hydrodynamic loads in

the RVEF are closely related to those in the GLMF,

and the derivation from the RVEF to the GLMF is

detailed in Sect. 2. Additionally, a case study involv-

ing a constant-length cable driven by a screw route is

simulated, demonstrating that the GLMF is more

efficient than the RVEF while maintaining nearly the

same level of accuracy.

In some marine equipment, the cable length

changes via winches, as seen in deep-sea towing

systems [3], deep-sea pipeline installations [17]. To

precisely analyze the dynamic response of these

systems, the deployment and retrieval motions must

be considered in the cable model. Some studies use a

combination of Lagrangian–Eulerian description and

Absolute Nodal Coordinate Formulation (ALE-

ANCF) to model flexible cables with variable length

[17, 18]. While ALE-ANCF performs well in model-

ing flexible cables with large bending deformations, its

drawback lies in the introduction of spatial gradients

by ANCF. Consequently, the number of coordinates in

ALE-ANCF is at least seven times the number of

nodes (three position coordinates, three spatial gradi-

ents, one physical coordinate). In this study, the

Lagrangian–Eulerian description is incorporated into

the GLMF to model cables with variable length. Each

node in ALE-GLMF has only four coordinates (three

position coordinates, one physical coordinate). To

verify the performance of ALE-GLMF, cables driven

by circular, straight-line, and screw routes with

increasing length are modeled using both ALE-GLMF

and ALE-ANCF. Additionally, a contact model

between the cable nodes and the seabed is incorpo-

rated into both ALE-GLMF and ALE-ANCF to

simulate the cable laying process with identical cable

nodes. Although unsmooth broken lines are generated

in ALE-GLMF when the cable elements encounter the

seabed, the positions of the cable sections laying on

the seabed are nearly identical in both ALE-GLMF

and ALE-ANCF. Given that the element lengths in

both methods are identical in this case, ALE-GLMF

proves to be more efficient than ALE-ANCF. There-

fore, compared to ANCF or ALE-ANCF, GLMF and

ALE-GLMF offer a better choice for modeling cables

with low bending deformation, especially in situations

where a higher number of cable nodes is required to

represent concentrated loads or mass points.

This paper is organized as follows: Sect. 2 intro-

duces the numerical models and singularities of the

Lumped Mass (LM) method with Euler frame, Frenet

frame, RVEF, and GLMF. Section 3 presents the

numerical model of ALE-GLMF for cables with

variable length, including comparisons between the

ALE-GLMF and ALE-ANCF in various scenarios.

Finally, the conclusions are provided in Sect. 4.
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2 LM method

The LM method divides the flexible cable into many

elements, as shown in Fig. 1. The element forces,

including hydrodynamic loads, tension, damping

force, gravity and buoyancy are distributed into the

element terminal nodes [19–21]. The element forces

are divided into external and internal forces as shown

in Eqs. (1) and (2). The mass matrix, gravity in water,

drag resistance force, and added mass effect acting on

the node i are represented using Mg
node i, G

g
node i, F

dg
node i,

and Fag
node i, respectively. Mg

ele j, G
g
ele j, F

dg
ele j, and Fag

ele j

are the mass matrix, gravity in water, drag resistance

force, and added mass effect acting on the element i,

respectively.Tg
node i and Dg

node i of Eq. (2) indicate the

stiffness and damping forces acting on the node i,

respectively. While, Tg
ele i and Dg

ele i are the stiffness

and damping forces acting on the element i,

respectively.

Mg
node i ¼

1

2
Mg

ele i�1 þMg
ele i

� �

Gg
node i ¼

1

2
Gg

ele i�1 þGg
ele i

� �

Fdg
node i ¼

1

2
Fdg
ele i�1 þ Fdg

ele i

� �

Fag
node i ¼

1

2
Fag
ele i�1 þ Fag

ele i

� �

8
>>>>>>>><

>>>>>>>>:

i ¼ 2; 3; ::; n� 1ð Þ

ð1Þ

Tg
node i ¼ �Tg

ele i�1 þ Tg
ele i

Dg
node i ¼ �Dg

ele i�1 þ Dg
ele i

�
i ¼ 2; 3; ::; n� 1ð Þ ð2Þ

The mass matrix M, force sum F and the acceler-

ation vectors €q of cable are shown in Eqs. (3–5).

M ¼

Mg
node1 0 ::: 0

0 Mg
node2 ::: 0

::: ::: ::: :::
0 0 ::: Mg

node n

2

664

3

775 ð3Þ

F ¼

Gg
node1 þ Tg

node1 þ Dg
node1 þ Fdg

node1 þ Fag
node1

Gg
node2 þ Tg

node2 þ Dg
node2 þ Fdg

node2 þ Fag
node2

:::
Gg

node n þ Tg
node n þ Dg

node n þ Fdg
node n þ Fag

node n

2

664

3

775

ð4Þ

€q ¼ €qTnode 1 €qTnode2 ::: €qTnode n
� �T ð5Þ

where €qnode i is the acceleration vector of node i.
The equation of motion of the cable is established

using Baumgarten’s stabilization method [22] as

Eq. (6).

c¼� Uq _q
� �

q
_q� 2Uqt _q�Utt

M UT
q

Uq 0

	 

€q
k

	 

¼

F

c� aU� b
dU
dt

" #
8
><

>:
ð6Þ

where U is constraint vector. Uq is Jacobian matrix of

U with respect to q. k is the Lagrangian multiplier.

The differences among the Euler frame, Frenet

frame, RVEF, and GLMF lie in how they express the

element mass and forces. The Euler frame uses Euler

angles to define the element frame, while the Frenet

frame defines the element frame based on the cable

shape function. The RVEF defines the element frame

by the relative velocity of the cable element compared

to the seawater. In contrast, the GLMF does not use

any element frame, its mass matrices and forces are all

expressed directly in the global frame. After mathe-

matical derivation, it is shown that the RVEF and

GLMF are essentially equivalent, resulting in almost

the same accuracy for both methods. However, the

GLMF offers greater computational robustness com-

pared to the RVEF. This section introduces the details

of the Euler frame, Frenet frame, RVEF, and GLMF,

as well as the derivation from the RVEF to the GLMF.

2.1 Euler frame

The rotation angles of the Z-Y-X sequence are 0, hele i
and uele i as shown in Fig. 2, respectively.

The transformation matrix from the element frame

to the global frame is written as Eq. (7) [23, 24].

Atrans
ele i ¼

cos hele i sin hele i sinuele i sin hele i cosuele i

0 cosuele i � sinuele i

� sin hele i cos hele i sinuele i cos hele i cosuele i

2

4

3

5

ð7Þ

Fig. 1 Spatial discretization of LM
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The hele i and uele i can be expressed by the position

vectors of node i and node i ? 1 in global frame, as

shown in Eqs. (8–9) [25].

hele i ¼ tan�1 rxnode iþ1 � rxnode i
rznode iþ1 � rznode i

� �
ð8Þ

/ele i ¼
tan�1 rynode i � rynode iþ1

� �
cos hele i

rznode iþ1 � rznode i
cos hele i [ sin hele ið Þ

tan�1 rynode i � rynode iþ1

� �
sin hele i

rxnode iþ1 � rxnode i
cos hele i � sin hele ið Þ

8
>>><

>>>:

ð9Þ

where rxnode i, rynode i and rznode i are the x-, y- and

z-coordinate of the node i in global frame,

respectively.

The mass matrix and forces acting on the element i

are sorted as external forces and internal forces. The

internal forces are composed of the tension and

damping force. The tension is related to the axial

strain, and the damping force is related to the change

ratio of the axial strain as Eq. (10).

Eg
ele i ¼ rnode iþ1 � rnode i

lele i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg
ele i

� �T
Eg
ele i

q

zgele i ¼ Atrans
ele i 3; 1ð Þ Atrans

ele i 3; 2ð Þ Atrans
ele i 3; 3ð Þ

� �T

eele i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eg
ele i

� �T
Eg
ele i

q �
l0ele i

	 

� 1

Tg
ele i ¼

pd2
c

4
Eeele iz

g
ele i

Dg
ele i ¼

cEpd2
c

4
zgele i
� �T

_rnode iþ1 � _rnode ið Þzgele i

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð10Þ

The element external forces expressed in global

frame are composed of the gravity, drag resistance

force and added mass effect as shown in Eq. (11)

[26–28].

vlele i ¼ Atrans
ele i

� �T
vw � 1

2
_rnode iþ1 þ _rnode ið Þ

	 


Fdg
ele i ¼ Atrans

ele i

1

2
Cnqf dclele i v

lx
ele i

�� ��vlxele i
1

2
Cnqf dclele i v

ly
ele i

���
���vlyele i

p
2
Cfqf dclele i v

lz
ele i

�� ��vlzele i

2

66664

3

77775

Fag
ele i ¼

p
4

1 þ Cmð Þl0ele id2qfA
trans
ele i

1 0 0

0 1 0

0 0 0

2

4

3

5AT
transaw

Gg
ele i ¼ 0 0 � pd2

c

4
l0ele iqcg

	 
T

Bg
ele i ¼ 0 0

pd2
c

4
l0ele iqf g

	 
T

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

ð11Þ

Mg
ele i ¼ Atrans

ele i

� �T

pd2
c

4
l0ele i qc þ Cmqf

� �
0 0

0
pd2

c

4
l0ele i qc þ Cmqf

� �
0

0 0
pd2

c

4
l0ele iqc

2

6666664

3

7777775

Atrans
ele i

ð12Þ

where vlele i is the relative velocity between the

seawater and element i in element frame, and vlxele i,

vlyele i and vlzele i are the x-, y- and z-component of vlele i,

respectively. vw is the seawater velocity in global

frame. Fdg
ele i, Fag

ele i, Gg
ele i and Bg

ele i are the drag

resistance force, added mass effects, gravity and

buoyancy acting on the element i in global frame,

respectively. �j j denotes the absolute value of �.Cf and

Cn are the tangential and normal drag resistance

coefficients, respectively. Cm is the added mass

coefficient. qc and qf are the densities of cable and

seawater, respectively. aw is the acceleration of

seawater, and g is the gravity acceleration.

The mass matrix of element i with respect to the

global frame is written as Eq. (12) [29].

Fig. 2 Euler angles in element frame
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2.2 Frenet frame

The shape function of the cable is used to define the

element frame in the Frenet frame, as shown in Fig. 3.

Further details can be found in references [30, 31].

All the node positions are used to form three spline

functions from the top node to the last node in the

global frame. Three functions are named as fX , fY and

fZ , and the global coordinates of the P point can be

calculated by Eq. (13).

Xp ¼ fX l0p

� �

Yp ¼ fY l0p

� �

Zp ¼ fZ l0p

� �

8
>>><

>>>:

ð13Þ

where Xp, Yp and Zp are the global coordinates of the P

point. l0p is the span length of the P point.

A virtual node positioned in the middle of each

element can be obtained by using Eq. (13), and vectors

aele i and bele i defined by the element terminal nodes

and the virtual node are defined in Eq. (14).

aele i ¼ rvirtualele i � rnode i
bele i ¼ rnode iþ1 � rvirtualele i

�
ð14Þ

Finally, the tangential, normal and binormal unit

vectors tele i, nele i and bele i are defined in Eq. (15),

respectively.

tele i ¼
aele iþbele i
aele iþbele ik k

n0ele i ¼ aele i � bele ið Þ I3�3 � tele it
T
ele i

� �

nele i ¼
n0ele i
n0ele i

�� ��
bele i ¼ tele i � nele i

8
>>>>>><

>>>>>>:

ð15Þ

where n0ele i is projection of the aele i � bele ið Þ in the

normal plane. I3�3 is a three-order unit matrix.

The transformation matrix Atrans
ele i is written as,

Atrans
ele i ¼ tele i nele i bele i½ � ð16Þ

2.3 RVEF

The element frame is defined by using the tangential

vector and relative velocity in the RVEF, and three

unit vectors are shown in Eq. (17) and Fig. 4.

vgele i ¼ vw � 1

2
_rnode iþ1 þ _rnode ið Þ

zgele i ¼
Eg
ele i

Eg
ele i

�� ��

xgele i ¼
zgele i � vgele i
zgele i � vgele i

�� ��

ygele i ¼ zgele i � xgele i

8
>>>>>>>><

>>>>>>>>:

ð17Þ

The transformation matrix Atrans
ele i is defined as,

Atrans
ele i ¼ xgele i ygele i zgele i

� �
ð18Þ

Because the relative velocity is merely decomposed

in two directions, the drag resistance force of element i

with respect to the global frame is written as,

Fdg
ele i ¼ Atrans

ele i

0

� 1

2
Cnqf dclele i zgele i � vgele i

�� ��2

p
2
Cfqf dclele i z

g
ele i

� �T
vgele i zgele i

� �T
vgele i

���
���

2

664

3

775

ð19Þ

Fig. 3 Frenet frame generated using virtual node
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The mass matrix and the other forces including

Mg
ele i, F

ag
ele i, G

g
ele i and Bg

ele i are same as Eq. (1) and

Eq. (11).

2.4 GLMF

The element forces and mass matrices in GLMF are all

expressed using node positions in global frame. The

relative velocity vgele i is decomposed into tangential

and normal velocity, and the normal velocity is

obtained by a projection matrix Pele i, as shown in

Fig. 5. The drag resistance force and added mass

matrices are expressed as Eq. (20).

2.5 Derivation GLMF from RVEF

The global relative velocity is decomposed into

tangential and non-tangential two components in the

RVEF, and the global relative velocity is directly used

to express the hydrodynamic loads, as shown in

Eq. (19), but the element frame is still needed to direct

the load directions.

Because the tangential component of the global

relative velocity is easy to define using the global node

coordinates, the hydrodynamic loads can be expressed

in global frame if the normal component can be

defined using the global node coordinates together

with the global velocity vectors. The Eq. (21) is

proved here.

Pele iv
g
ele i ¼ � zgele i � vgele i

�� ��yele i ð21Þ

Firstly, the Pele iv
g
ele i is proved to be parallel with the

� zgele i � vgele i
�� ��yele i. � zgele i � vgele i

�� ��yele i is in the

direction of yele i which is orthogonal with the xele i
and zele i. Therefore, Pele iv

g
ele i and � zgele i � vgele i

�� ��yele i
are parallel if Pele iv

g
ele i is vertical to both the xele i and

zele i [32, 33]. The Pele iv
g
ele i is proved to be vertical to

both the xele i and zele i in Eqs. (22–23).

xgele i
� �T

Pele iv
g
ele i ¼ xgele i

� �T
I3�3 � zgele i z

g
ele i

� �Th i
vgele i

¼ xgele i
� �T

vgele i � zgele i z
g
ele i

� �T
vgele i

h i

¼ xgele i
� �T

vgele i � xgele i
� �T

zgele i z
g
ele i

� �T
vgele i ¼ 0

ð22Þ

zgele i
� �T

Pele iv
g
ele i ¼ zgele i

� �T
I3�3 � zgele i z

g
ele i

� �Th i
vgele i

¼ zgele i
� �T

vgele i � zgele i z
g
ele i

� �T
vgele i

h i

¼ zgele i
� �T

vgele i � zgele i
� �T

zgele i z
g
ele i

� �T
vgele i ¼ 0

ð23Þ

Therefore, Pele iv
g
ele i can be expressed by using

� zele i � vgele i
�� ��yele i, as shown in Eq. (24).

Pele iv
g
ele i ¼ �k zele i � vgele i

�� ��yele i ð24Þ

Fig. 4 RVEF generated using relative velocity

zgele i ¼
Eg
ele i

Eg
ele i

�� ��

Pele i¼I3�3 � zgele i z
g
ele i

� �T

Fdg
ele i¼

1

2
Cnqf dclele i Pele iv

g
ele i

�� ��Pele iv
g
ele i þ

p
2
Cfqf dclele i zgele i

� �T
vgele i

���
���zgele i z

g
ele i

� �T
vgele i

Fag
ele i ¼

p
4

1 þ Cmð Þd2qf l
0
ele iPele iaw

Mg
ele i ¼

pd2
c

4
l0ele iqcI3�3 þ CA

pd2
c

4
l0ele iqfPele i

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð20Þ
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A proposition that k ¼ 1 is proved here. Left

multiply � zgele i � vgele i
�� ��ygele i

� �T
on both sides of

Eq. (24).

� zgele i � vgele i
�� ��ygele i

� �T
Pele iv

g
ele i ¼

k zgele i � vgele i
�� ��ygele i
� �T

zele i � vgele i
�� ��yele i

ð25Þ

Combing Eqs. (20) and (25), the result can be

written as,

� zele i � vgele i
�� �� vgele i

� �T
ygele i ¼ k zgele i � vgele i

�� ��2

ð26Þ

Combining Eqs. (17) and (26), the result can be

written as,

� vgele i
� �T

~zgele i~z
g
ele iv

g
ele i ¼ k zgele i � vgele i

�� ��2 ð27Þ

The skew symmetric matrices can be written as

Eq. (28).

zgele i � vgele i
� �T

zgele i � vgele i
� �

¼ k zgele i � vgele i
�� ��2

ð28Þ

Finally, k ¼ 1 is derived from Eq. (28), and the

Eq. (21) has been proved.

Combining Eqs. (19) and (21), the drag force

derivation from the RVEF to the GLMF can be written

as Eq. (29).

Fdg
ele i ¼ Atrans

ele i

0

� 1

2
Cnqf dclele i zgele i � vgele i

�� ��2

p
2
Cfqf dclele i z

g
ele i

� �T
vgele i zgele i

� �T
vgele i

���
���

2

6664

3

7775

¼ 1

2
Cnqf dclele i Pele iv

g
ele i

�� ��Pele iv
g
ele i

þ p
2
Cfqf dclele i zgele i

� �T
vgele i

���
���zgele i z

g
ele i

� �T
vgele i

ð29Þ

Combining with Eqs. (21) and (11), the added mass

effect derivation from the RVEF to the GLMF can also

be written as Eq. (30).

Fag
ele i ¼

p
4

1 þ Cmð Þd2qf l
0
ele iPele iaw ð30Þ

The derivation of Mg
ele i from the RVEF to the

GLMF is written as Eq. (31). Finally, the derivation

process from the RVEF to the GLMF is completed.

Fig. 5 Decomposing relative velocity in GLMF

Mg
ele i ¼ Atrans

ele i

� �T

pd2
c

4
l0ele i qc þ Cmqf

� �
0 0

0
pd2

c

4
l0ele i qc þ Cmqf

� �
0

0 0
pd2

c

4
l0ele iqc

2

6666664

3

7777775

Atrans
ele i

¼ Atrans
ele i

� �T pd2
c

4
l0ele iqcI3�3 þ Cm

pd2
c

4
l0ele iqf

1 0 0

0 1 0

0 0 0

2

64

3

75

0

B@

1

CAAtrans
ele i

¼ pd2
c

4
l0ele iqcI3�3 þ Cm

pd2
c

4
l0ele iqfPele i

ð31Þ
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To verify the accuracy of the GLMF, a constant-

length cable driven along a screw route is simulated by

using the GLMF, RVEF and Euler Frame, respec-

tively. This scenario is referred to as Case 1. As shown

in Fig. 6, the initial position of the cable is a straight

line, which is a singularity case for the Frenet frame.

The trace of the top node is illustrated in Fig. 7. The

diameter of the screw route is 40 m, with the top node

traveling 62.8 m along the Z-axis for every circular

motion completed in 62.8 s. The screw route is

depicted for the first 100 s but continues for 2000s in

total. The X-, Y- and Z-coordinate of the last node over

time are shown in Figs. 8, 9, 10, respectively. The

errors between the GLMF and RVEF are presented in

Fig. 11, and the errors is caused by round-off error.

Simulation results indicate that the GLMF achieves

the same accuracy as the RVEF and Euler frames.

The parameters of Case 1 are presented in Table 1,

demonstrating that the GLMF is more efficient than

the RVEF and Euler frames. Since the dynamic

equations in the GLMF are all established in global

frame, there is no need for transformations between

the global frame and the element frame. Consequently,

the calculations of the mass matrix and force vectors

require less time compared to the Euler and RVEF

frames.

2.6 Singularity of element frames

The singularities of the Euler, Frenet, RVEF and

GLMF frames are introduced in this section. Due to

the characteristic of arctangent function, the Euler

frame is singular when the value of hele i and uele i are

within special ranges. These singular ranges are shown

in Fig. 12. The transformation matrix Atrans
ele i is invalid

within these ranges.

The Frenet frame is singular when some cable

nodes form a straight line, making it impossible to

determine the normal vector. The two terminal nodes

and the virtual node are collinear in these situations.

According to Eq. (14), the normal vector n0ele i
becomes a zero vector, rendering the normal vector

meaningless. The Atrans
ele i is also invalid.

For the RVEF, singularities occur when the relative

velocity vgele i is parallel with the tangential vector zgele i.

In such case, both the normal and binormal vectors

become meaningless, rendering the transformation

matrix invalid.

Fig. 7 Trace of the top node
Fig. 8 X-position of last node

Fig. 6 Initial positions of cable
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The GLMF may be singular when the element

length is zero. However, this situation is impossible in

cable dynamics, ensuring that the GLMF has no

singularities. The singularities of the four frames

mentioned above are summarized in Table 2.

3 Cable model by ALE-GLMF

3.1 ALE-GLMF

The ALE-GLMF, combining the ALE and GLMF, is

proposed to model underwater cables with variable

lengths. To account for the changing length of the

cable, a physical coordinate p is added to each cable

element, as shown in Fig. 13.

The coordinates of element i qele i are written as,

qele i ¼ rTnode i rTnode iþ1 pnode i pnode iþ1

� �T ð32Þ

A variable s is needed to express the node position

in element i.

s ¼ 2p� pnode i � pnode iþ1

pnode i � pnode iþ1

ð33Þ

The position vector of the arbitrary node in element

i is written as,

qeele i ¼ rTnode i rTnode iþ1

� �T

Ne ¼
1 � s

2
I3�3

1 þ s

2
I3�3

	 


r ¼ Neq
e
ele i

8
>><

>>:
ð34Þ

where r is the node position vector with respect to the

global frame.

The velocity vector of the arbitrary node in element

i is written as,

N ¼ Ne
oNe

opnode i
qeele i

oNe

opnode iþ1

qeele i

	 


_r ¼ N_qele i

8
<

:
ð35Þ

where _r is the node velocity with respect to the global

frame.

The acceleration vector of the arbitrary node in

element i is written as Eq. (36),

Fig. 9 Y-position of last node

Fig. 10 Z-position of last node

Fig. 11 Position errors between GLMF and RVEF
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€rp ¼ 2
oNe

opnode i
_pnode i þ

oNe

opnode iþ1

_pnode iþ1

� �
_qeþ

o2Ne

op2
node i

_p2
node i þ 2

o2Ne

opnode iopnode iþ1

_pnode i _pnode iþ1

þ o2Ne

op2
node iþ1

_p2
node iþ1

0

BBBB@

1

CCCCA
qe

€r ¼ N€qele i þ €rp

8
>>>>>>>>>><

>>>>>>>>>>:

ð36Þ

where €r is the node acceleration with respect to the

global frame.

The axial strain of an arbitrary node in element i is

written as Eq. (37) [34–36],

dr

dp
¼ oNe

op
qeele i

e0 ¼ 1

2

dr

dp

� �T
dr

dp
� 1

" #

8
>>><

>>>:

ð37Þ

where e0 is the axial strain.

According to the element forces, the forces acting

on the nodes i and i ? 1 can be divided into three

parts, as shown in Eq. (38).

Fnode i

Fnode iþ1

	 

¼ Fp

node i

Fp
node iþ1

	 

þ Fe

node i

Fe
node iþ1

	 


þ Fex
node i

Fex
node iþ1

	 

ð38Þ

where Fin
node i and Fex

node i are the internal force and

external forces of the node i, respectively. Fp
node i is the

force induced by the physical velocity of the nodes i

and i ? 1. Fp
node i is zero and the ALE-GLMF simpli-

fies to the GLMF when the cable length is constant. In

other words, ALE-ANCF can model the variable-

length cable due to the inclusion of Fp
node i.

The mass flow forces Fp
node i and Fp

node iþ1 are

expressed as,

Fp
node i

Fp
node iþ1

	 

¼ � pnode iþ1 � pnode i

2

Z 1

�1

qf AN
T €rpds

ð39Þ

The internal forces Fin
node i and Fin

node iþ1 acting on the

element i are shown in Eq. (40), which can be found in

references [37, 38],

Table 1 Parameters of

case 1
Parameters value dc (m) Cdt Cdn Cm E (N/m2) qc (kg/m3)

0.04 0.01 1.15 0.2 5 9 1010 4000

Parameters value qf (kg/m3) c nnode vw (m/s) aw (m/s2) Simulation time (s)

1025 10–5 11 [- 1 0 0]T [0 0 0]T 1000

Parameters value Computation time of RVEF (s) Computation time of GLMF (s)

179.87 156.82

Parameters value Computation time of Euler (s)

182.81

Fig. 12 Singularity ranges of Euler frame

Table 2 Singularity range

of four frames
Frame Singularity case

Euler frame Figure 12

Frenet frame Cable shape function is a straight line

RVEF Relative velocity and tangential direction are parallel

GLMF No singularity
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Fin
node i

Fin
node iþ1

" #

¼� pnode iþ1 � pnode i
2

�
Z 1

�1

oe0

oqele i

� �T

EA e0 þ c _e0ð Þ
" #

ds

ð40Þ

The external forces Fex
node i and Fex

node iþ1 are shown in

Eq. (41),

Fex
node i

Fex
node iþ1

	 

¼ pnode iþ1 � pnode i

2

Z 1

�1

NT fds ð41Þ

where f is the external force acting on the infinitesimal

body as shown in Eq. (42) [39, 40].

t ¼ dr=dp

dr=dpk k
P ¼ I3�3 � ttT

f¼ 1

2
Cnqf dc Pvk kPvþ

p
2
Cfqf dc t

Tv
�� ��ttTvþ 1þCmð ÞAqfPaw

8
>>>>>><

>>>>>>:

ð42Þ

The mass matrices of nodes i and i ? 1 are written

as,

Mnode i 0

0 Mnode iþ1

	 

¼ pnode iþ1 � pnode i

2

�
Z 1

�1

NT qcAI3�3 þMaddð ÞNds
ð43Þ

The additional mass matrix of element i is written

as,

Madd ¼ Cmqf AP ð44Þ

The ALE-GLMF introduces additional constraint

equations derived from ALE. These constraint equa-

tions are related to the physical coordinates of all

nodes and are expressed as,

pnode i � f t; q; _qð Þ ¼ 0 ð45Þ

where f is a function used to calculate these

constraints.

3.2 Simulation results

The ALE-ANCF is a finite method to establish the

dynamic model of a beam with a variable length. It

expresses the dynamic equations using the position,

gradient and physical coordinates of the element

terminal nodes, as shown in Eq. (46) [17].

qele i ¼ ½ rTnode i r0Tnode i pnode i

rTnode iþ1 r0Tnode iþ1 pnode iþ1�T
ð46Þ

where r0Tnode i and r0Tnode iþ1 are gradient coordinates of

nodes i and i ? 1, respectively.

The gradient coordinates are included in ALE-

ANCF, allowing for a more precise expression of

bending effects compared to ALE-GLMF. The inter-

nal forces, including the bending force, are shown in

Eq. (47).

Fig. 13 Position vector of arbitrary node within element

j ¼
d2r

�
dp2 � dr=dp

�� ��

dr=dpk k3

Fin
node i

Fin
node iþ1

	 

¼ � pnode iþ1 � pnode i

2

Z 1

�1

oe0

oqele i

� �T

EA e0 þ c _e0ð Þ þ oj
oqele i

� �T

EJ jþ c _jð Þ
" #

ds

8
>>>><

>>>>:

ð47Þ
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where j is the curvature of the node corresponding to

the physical coordinate p. J represents the cross-

sectional moment of inertia.

To compare the accuracy of ALE-GLMF with that

of ALE-ANCF in modeling cable deployments, circle,

straight-line, and screw routes are simulated in Case 2.

To enhance the accuracy of ALE-GLMF, the element

length is set to 5 m, compared to 50 m for ALE-

ANCF. The number of elements varies with the cable

length. According to the previous work by Hong [18],

the generation and elimination of nodes follow

specific rules (Fig. 14):

(1) A new node is inserted when the length-variable

element becomes 1.5 times longer than the

standard length.

(2) An old node is deleted when the length-variable

element becomes 0.5 times shorter than the

standard length.

The initial positions of Case 2 are depicted in

Fig. 15, with a 1000 kg mass point placed at the end of

the cable. The modeling parameters are summarized in

Table 3. The variation in cable length over time is

illustrated in Fig. 16.

The traces of the top node in the circle, straight-line,

and screw routes are shown in Fig. 17, respectively.

The diameter of the screw route is 40 m, with the top

node traveling 62.8 m along the Z-axis for every

circular motion completed in 62.8 s. Only the first

100 s of the screw route is depicted here. The X-, Y-,

and Z-coordinates of the last node over time for these

routes are shown in Figs. 18, 19, 20. Since the cable

motion in the straight-line route exists only in the XZ

plane, the Y-position is omitted herein. The three-

dimensional cable shapes using ALE-GLMF and

ALE-ANCF at the 2000th second are presented in

Fig. 21. The cable positions calculated using ALE-

GLMF are so close to those using ALE-ANCF that it is

difficult to distinguish the position differences in

Figs. 18, 19, 20, 21.

Therefore, the position differences for Case 2 are

illustrated in Fig. 22. The relative errors represent the

absolute position differences divided by the

unstretched cable length over time. The maximum

relative position error is around the 10-4 level,

indicating that the ALE-GLMF achieves nearly the

same accuracy as ALE-ANCF in these scenarios.

These scenarios demonstrate that the ALE-GLMF

performs well in modeling marine towing systems

under both straight towing and circular turning

conditions. Due to the minimal bending flexural

modulus in ropes or cables, the ALE-GLMF with a

shorter element length can achieve nearly identical

accuracy to ALE-ANCF with a longer element length.

Moreover, the ALE-GLMF formula is much easier to

understand and code compared to the ALE-ANCF

formula.

The computational time for Case 2 is shown in

Table 4. Since bending deformation can be accurately

expressed by ANCF with a larger element length

compared to GLMF, the number of nodes in the cable

modeled by ALE-ANCF is 1/10 of that in the ALE-

GLMF model. Consequently, the computational time

for ALE-ANCF is about 1/3 of that for ALE-GLMF in

circular and screw routes. However, the advantage of

ALE-ANCF is reduced in the straight route. Therefore,

ALE-GLMF is suitable for situations where the

bending deformation is negligible.

Fig. 14 Illustration of node insertion and delettion Fig. 15 Initial positions of cable
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Case 3 demonstrates the performance of ALE-

GLMF when the cable comes into contact with the

seabed. The contact force is expressed as,

FN
node i ¼ Klele i zseabed � znode ið Þ 0 0 1½ �T

Fd
node i ¼ �Clele i _znode i 0 0 1½ �T

Ff
node i ¼ �l FN

node i

�� �� _rnode i
_rnode ik k

8
>><

>>:
ð48Þ

where FN
node i, F

d
node i and Ff

node i are the support force,

damping force and friction force at node i, respec-

tively. K and C are the stiffness and damping

Table 3 Parameters of case 2

Parameters value dc (m) Cdt Cdn Cm E (N/m2) qc (kg/m3)

0.04 0.01 2 0.2 5e10 4000

Parameters value qf (kg/m3) c vw (m/s) aw (m/s2) Simulation time (s)

1025 10–5 [1 0 0]T [0 0 0]T 2000

Parameters value Element length in ALE-ANCF (m) Element length in ALE-GLMF (m)

50 5

Fig. 16 cable length variation over time

Fig. 17 Trace of top node in circle, straight-line and screw routes

Fig. 18 X-position of last node
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Fig. 19 Y-position of last

node

Fig. 20 Z-position of last node

Fig. 21 Cable shape at 2000th

Fig. 22 Position error of last node
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coefficients of the normal contact, respectively. l
represents the friction coefficient of contact. zseabed is

the z coordinate of seabed. znode i and _znode i represent

the z-directional position and velocity of node i.

The contact force between cable and seabed of

ALE-ANCF element is written as,

fcontact¼K zseabed � zrð Þ 0 0 1½ �T

� Clele i _zr 0 0 1½ �T�lK zseabed � zrj j
_r

_rk k
ð49Þ

where fcontact is the contact force, zr is the z-coordinate

of vector r, and _zr is the velocity in Z-axis. The

external force of ALE-ANCF is written as,

f ¼ 1

2
Cnqf dc Pvk kPvþ p

2
Cfqf dc t

Tv
�� ��ttTv

þ 1þCmð ÞAqfPaw þ fcontact
Fex
node i

Fex
node iþ1

	 

¼ pnode iþ1 � pnode i

2

Z 1

�1

NT fds

8
>>>><

>>>>:

ð50Þ

The initial shape of cable is shown in Fig. 23, and

the top node of cable is driven by a straight-line route,

as shown in Fig. 24. The variation of the cable length

over time is illustrated in Fig. 25. The simulation

result of ALE-ANCF and ALE-GLMF are presented

in Figs. 26, 27, 28.

Simulation results indicate that the cable modeled

by ALE-GLMF exhibits broken lines when the

elements start to contact with the seabed, as illustrated

Table 4 Computational time for case 2

Route type ALE-ANCF ALE-GLMF

Circle 1816.66 s 5287.78 s

Straight 1200.45 s 1999.09 s

Screw 1737.97 s 4972.51 s

Fig. 23 Initial positions

Fig. 24 Trace of the top node

Fig. 25 cable length variation over time

Fig. 26 Cable shape at the 53th s
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by black circles in Figs. 26, 27, 28. While, the cable

modeled by ALE-ANCF consistently presents smooth,

continuous curves. Based on lump mass method, the

cable element in ALE-GLMF only has axial deforma-

tion and cannot express bending deformation within

element, whereas, the bending deformation is well

expressed by the element of ALE-ANCF.

Although the accuracy of ALE-GLMF is lower than

that of ALE-ANCF in expressing bending deforma-

tion, the cable elements that have contacted with

seabed show almost the same accuracy as ALE-

ANCF. Additionally, the computational time of ALE-

GLMF is much less than that of ALE-ANCF, as shown

in Table 5. Therefore, ALE-GLMF has advantages in

analyzing the cases where the bending deformation

within elements is negligible, and many cable nodes

are needed to express contact or concentrated mass

points.

4 Conclusion

This paper addresses the singularity issues associated

with traditional lumped mass methods in modeling

underwater cables by proposing a Global Lumped

Mass Formulation (GLMF) expressed solely using

global nodal coordinates. Additionally, the combina-

tion of Arbitrary Lagrangian–Eulerian (ALE) and

GLMF results in the ALE-GLMF, suitable for mod-

eling cables with variable lengths, commonly used in

marine towing and cable laying systems. The perfor-

mance of ALE-GLMF is validated against ALE-

ANCF, which employs third-order shape functions to

express cable deformation. The key conclusions are as

follows:

(1) GLMF avoids singularity issues in transforma-

tion matrices by directly expressing all element

forces and masses using global node coordi-

nates, distinguishing it from the Euler frame,

Frenet frame, and RVEF.

(2) GLMF outperforms traditional element frames

in efficiency due to the absence of an element

frame.

Fig. 27 Cable shape at the 56th s

Fig. 28 Cable shape at the 58th s

Table 5 Parameters of case 3

Parameters value dc (m) Cdt Cdn Cm E (N/m2)

0.04 0. 01 1 1 7.02 9 107

Parameters value qc (kg/m3) lele i (m) K (N/m2) l qf (kg/m3)

4000 5 400 0.01 1025

Parameters value c vw (m/s) aw (m/s2) zseabed (m) C(N�s/m2)

10–5 [0 0 0]T [0 0 0]T - 10 100

Parameters Value Simulation time(s) Computation time of ALE-ANCF Computation time of ALE-GLMF

1000 20,070.05 s 5054.68 s
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(3) Because each GLMF node requires only 3

coordinates compared to the 6 coordinates of

ANCF nodes, GLMF offers greater computa-

tional efficiency than ANCF when they have the

same number of nodes.

(4) GLMF requires much shorter element lengths to

achieve the same accurate as ANCF in express-

ing cable bending behaviors, which spends more

computational time than ANCF.

(5) ALE-GLMF effectively models cable deploy-

ment and retrieval in marine towing and cable

laying systems.

(6) GLMF and ALE-GLMF are preferable for

cables with low bending deformation, particu-

larly in scenarios requiring numerous cable

nodes to express concentrated loads or mass

points.

(7) Overall, GLMF and ALE-GLMF offer robust

solutions for modeling underwater cables, par-

ticularly in scenarios with low bending defor-

mation and complex loading conditions.
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