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Abstract This paper investigates the fixed-time pre-
scribed performance tracking control problem for a
class of nonlinear systems with multiple uncertainties.
The considered systems involve input delay, coeffi-
cients, nonlinear functions and external disturbances
which are both unknown, posing significant challenges.
To overcome these challenges, a compensation system
is introduced to eliminate the impact of time-varying
input delay. Subsequently, new adaptive parameters are
introduced into the Lyapunov–Krasovskii functional
to address unknown external disturbances. By incor-
porating a specific funnel function to constrain the
transient behavior of tracking error, along with back-
stepping method and bounded estimation techniques,
a novel fixed-time control tracking scheme is pro-
posed which ensures the prescribed transient perfor-
mance. Ultimately, the efficacy of the proposed con-
trol methodology is substantiated through simulation
examples.
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1 Introduction

Time delay refers to the phenomenon between the
response and the input of the system, which is widely
existed in various fields in the real world, including
biology, control engineering, transportation and so on
[1–3]. The study of time delay systems can help us
understand the stability and control performance of
the system, and provide a theoretical basis for system
design. For example, in control engineering, time delay
have an important impact on the stability and perfor-
mance of the system [4,5]. In the field of biology, the
conduction delay in the nervous system is a kind of
time-delay phenomenon, and studying the time-delay
system is helpful to understand the dynamic character-
istics of the nervous system [6]. Therefore, the study of
time-delay systems is of great significance and value
for theoretical research and practical application.

In recent years, a wealth of results have been
obtained for systems with constant or known time-
varying delay, such as [7–13]. To be specific, the study
conducted in [7] addressed the global stabilization issue
of nonlinear systems featuring unknown control direc-
tions and constant parameter uncertainties within the
delay domain. In the realm of feedback systems with
input delay, an adaptive neural control approach was
proposed in [9]. The predicator-based controller for
uncertain nonlinear systems with matching conditions
was developed in [11,12], which included finite inte-
grals of past control values. References [13] exam-
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ined strictly feedback nonlinear systems using the
Pade approximation method and utilized fuzzy sys-
tems to approximate unknown functions, but the Pade
approximation method is only applicable to situations
where the input delay is very small. However, in many
practical systems, specific information about system
delay is unknown, and unknown delay are frequently
encountered in practical engineering systems. There-
fore, studying the impact of unknown delay is crucial
and has receivedwidespread attention, such as [14–18].
For example, for a class of uncertain nonlinear systems
with unknown time-varying input delay and interfer-
ence, the asymptotic tracking controller was designed
in [16].

It is noteworthy that, in contrast to asymptotic sta-
bility, fixed-time stability offers superior control per-
formance and is better suited for practical systems, see
as [19–23]. However, to our knowledge, there are rela-
tively few results concerning fixed-time control prob-
lems. Designing a controller for fixed-time control
remains a highly challenging and difficult task when
such a requirement is imposed on the system. While
the fixed-time control problem for high-order nonlin-
ear systems was addressed in [23], the presence of sin-
gularity issues during the analysis restricts the overall
generality of the proof.

As is well known, the concept of prescribed perfor-
mance control was initially introduced by Bechlioulis
and Rovithakis [24]. Prescriptive performance control
entails the convergence of tracking errors to a prede-
fined small residual set, where the maximum fluctu-
ation of errors is less than a predetermined constant,
and the convergence time is not less than a specified
duration. There are numerous intriguing results associ-
atedwith prescribed performance control. For instance,
for uncertain MIMO nonlinear systems, a new robust
tracking controller was proposed in [25], which can
guarantee output tracking with specified performance.
In the realm of uncertain strict feedback nonlinear sys-
tems with arbitrary relative degrees and unknown con-
trol directions, an asymptotic tracking control approach
was introduced in [26], which guarantees the specified
transient behavior of the system. A hybrid control strat-
egy was proposed in [27] to ensure asymptotic conver-
gence and transient behavior of tracking errors.

Furthermore, in recent years, the combination of
backstepping control with neural network control or
fuzzy logic systems has been widely applied to miti-
gate the impact of uncertainties in the system, such as

[8,10,23,28–33]. Thanks to the unique general approx-
imation, adaptive capabilities, and learning abilities
of radial basis function neural networks (RBFNNs),
they can effectively approximate unknown contin-
uous functions. In more specific terms, the design
of adaptive control strategies utilizing RBFNNs to
approximate unknown functions for nonlinear systems
with unknown nonlinear functions was discussed in
[8,23,29]. Moreover, a self-adaptive output feedback
control scheme for nonlinear quantized system, devel-
oped based on the backstepping method and general
approximation, was presented in [33].

In particular,when consideringunknown input delay
and fixed-time control, the design of the controller
becomesmore complex in the presence of uncertainties
such as unknown control coefficients, unknown nonlin-
ear functions, and external disturbances. To date, there
appear to be no existing results to address these chal-
lenges. Therefore, inspired by the aforementioned dis-
cussion, this paper addresses the problem of fixed-time
prescribed performance adaptive control for nonlinear
systems with uncertainties including unknown input
delay, unknown control coefficients and external distur-
bances. The contributions of this paper are highlighted
as follows:

1. We introduce a novel bounded estimation mech-
anism in the L-K functional to design adaptive
parameters and combine it with the backstepping
method. This marks the first consideration of the
fixed-time prescribed performance adaptive track-
ing control problem for nonlinear systems with
various uncertainties, including unknown coeffi-
cients, delay, nonlinear functions and external dis-
turbances. Importantly, our proposed approach not
only eliminates the reliance on priori knowledge
of desired signal but also effectively enhances the
disturbance rejection performance of the closed-
loop system, further extending existing results as
shown in [20,34–40].

2. In contrast to the existing work on unknown input
delay [16,23], this paper introduces a novel adap-
tive tracking scheme by incorporating a special
funnel function and a logarithmic L–K functional.
A key feature of our design is that it ensures glob-
ally prescribed transient performance, indepen-
dent of initial conditions.

3. To address the impact of unknown input delays,
introduce a compensation system aimed at elim-
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inating the effects of these delay while demon-
strating the fixed-time stability of the compen-
sator system. Furthermore, our approach does not
rely on restrictive conditions such as bounded
inputs or prior information about signals, and rig-
orously establishes the fixed-time stability of the
compensation system. Different from the major-
ity of current results with input delay, such as
[10,16,23,28,41–44].

The paper is structured as follows: Sect. 2 presents
the problem formulation and some preliminary results.
The controller design and the stability analysis are
detailed in Sect. 3. Section4 presents the simulation
examples. Lastly, the paper wraps up with the conclu-
sion in Sect. 5.

2 Preliminary

2.1 Problem formulation

Consider a class of nth-order nonlinear systems

ẋi (t) = gi xi+1(t) + fi (x, t) + di (x, t),

ẋn(t) = gnu(t − τ(t)) + fn(x, t) + dn(x, t),

y = x1, r(t) = y − yr , (1)

where the system state variable x = [x1, x2, ..., xn]T ,
u(t − τ(t)) ∈ R is the control input with input delay,
τ(t) denotes unknown time-varying input delay, r(t)
is tracking error, y is the system output, yr denotes the
desired signal, the constants gi is unknown and can take
either positive or negative values for i = 1, 2, ..., n.
fi (x, t) and di (x, t) represent the unknown smooth
nonlinear function and unknown additive disturbance
for i = 1, 2, ..., n, respectively. In the subsequent sec-
tions of the paper, when it is not misleading, nonlinear
functions fi (·), di (·), etc., will be abbreviated as fi , di ,
etc.

The control objective of this paper is to design an
adaptive controller for nonlinear system (1) such that

1. All the closed-loop signals of the system are semi-
globally fixed-time uniformly ultimately bounded;

2. The tracking error r(t) will remain within a small
bounded range of the origin in finite time;

3. The tracking error r(t) can be guided to a predeter-
mined accuracy set �r = {r(t) ∈ R ||r(t)| < ε }
within a specified finite time Tk , where both ε and

Tk can be preassigned, ensuring the transient per-
formance of r(t).

In order to achieve the control objective for system
(1), we introduce the following assumptions and defi-
nition.

Assumption 1 Thenonlinear external disturbancedi (x,
t) is bounded by constants dim > 0 for i = 1, 2, ..., n.

Assumption 2 The desired trajectory yr and its first
derivative ẏr exist and bounded.

Assumption 3 Without loss of generality, we assume
that the signs of gi , where i = 1, 2, ..., n, are positive
throughout this article.

Assumption 4 The input time-varying delay τ(t) is
bounded such that τ(t) < τmax for all t ∈ R and slowly
varying such that τ̇ (t) < μ̄ < 1, where τmax and μ̄ are
positive constants. Moreover, there exists a sufficiently
accurate constant estimate τ̂ ∈ R of τ which is avail-
able. Then defined τ̃

�= τ − τ̂ and τ̃ satisfies |τ̃ | � τ̄

for all t ∈ R where τ̄ is a known positive constant.

Remark 1 Since the bounds on input delay are attain-
able in many applications, it is reasonable to assume
that the maximum allowable error τ̄ and error estima-
tion τ̂ are known in Assumption 4. Such assumptions
are common in addressing the problem of unknown
time-varying input delay, as in [16].

Definition 1 [45] Consider the nonlinear system

ẋ = f (x, t), f (t, 0) = 0, x(0) = x0, (2)

where state vector x ∈ Rn and f : R+ × Rn → Rn is
the nonlinear function. For any initial state x(0), if the
solution of the system can converge to the set� in finite
time, then set � is referred to as the system’s fixed-
time attractor, i.e. ∃Tmax , such that for any t � T (x0),
x(t, x0) ∈ � where T (x0) � Tmax . In particular, when
� = 0, the system is termed fixed-time stable at the
origin.

Lemma 1 [46] For all x0 ∈ Rn, if there exists a glob-
ally radially unbounded and positive definite C1 func-
tion V (x), for some constants α, β, p, q, k > 0 with
0 < pk < 1 and qk > 1, such that

V̇ (x) � −(αV p(x) + βV q(x))k (3)

123



Z. Hua

holds, then the system (2) is globally fixed-time stable
at the origin and the settling time function T (x0) is
satisfied

T (x0) � Tm = 	(mp)	(mq)

αk	(k)(q − p)

(
α

β

)mq

, (4)

where m p = 1−pk
q−p > 0, mq = qk−1

q−p > 0 and 	(z) :=∫ +∞
0 e−t t z−1dt denote the gamma function [47].

Lemma 2 [48] For x > 0, y > 0, m > 0, n > 0 and
p > 0, which yields

|x |m |y|n � m

m + n
p|x |m+n + n

m + n
p−m

n |y|m+n .

(5)

Lemma 3 [49] For zi ∈ R, 0 � i � n and 0 � a � 1,
than

(
n∑

i=1

|zi |
)a

�
n∑

i=1

|zi |a � n1−a

(
n∑

i=1

|zi |
)a

. (6)

Lemma 4 [49] For xi > 0 and 0 � i � n, such that

(
n∑

i=1

xi

)2

� n
n∑

i=1

xi
2. (7)

2.2 State transformation

The presence of unknown control coefficients gi com-
plicates the design of the controller for system (1). To
facilitate the controller design, we introduce a linear
transformation on the system state xi . Through this
linear transformation, system (1) is transformed into
a nonlinear system with only one unknown coefficient.

Define e1 = x1 and ei = xi/gi gi+1...gn , then we
have

ė1(t) = a0e2(t) + f̃1(x, t) + d̃1(x, t),

ėi (t) = ei+1(t) + f̃i (x, t) + d̃i (x, t),

ėn(t) = u(t − τ(t)) + f̃n(x, t) + d̃n(x, t),

y = e1, r(t) = y − yr = e1 − yr , (8)

where a0 = g1g2...gn , d̃1(x, t) = d1(x, t), d̃i (x, t) =
di (x, t)/gi gi+1...gn for i = 2, 3, ..., n, and f̃1(x, t) =
f1(x, t), f̃i (x, t) = fi (x, t)/gi gi+1...gn for i =

2, 3, ..., n. According to Assumption 3, we can eas-
ily get that there is a constant d̄i > 0 such that∣∣∣d̃i (x, t)

∣∣∣ � d̄i .

2.3 Compensation system

To mitigate the impact of input delay in system (1), we
introduce the following compensation system:

λ̇i = − p̂iλi − piλ
3
i + λi+1, for i = 2, ..., n − 1,

λ̇n = − p̂nλn − pnλ
3
n + u(t) − u(t − τ̂ )

− sign(λn)

∫ t−τ̂+τ̄

t−τ̂

|u̇(s)|ds, (9)

where p̂i and pi > 0 are designed parameters and the
initial condition is λi (0) = 0 for i = 2, 3, ..., n.

Remark 2 It is worth mentioning that:

1. In the existing literature as in [23,47,50,51], they
have also investigated the adaptive control prob-
lem with input delay. These references introduced
novel coordinate transformations to effectively
compensate for the effects of input delay.However,
the design approach mentioned above overlooked
the impact of the compensation function on the
stability of the closed-loop system, leading to cer-
tain limitations in the conclusions. In contrast, in
this paper, we introduce an auxiliary system (9) to
effectively eliminate the influence of time-varying
input delay and the expression of the compensator
system aids us in proving its fixed-time conver-
gence property in subsequent sections.

2. In the compensation system, the initial condition
is set as λi (0) = 0, which means that when there
is no input delay in the system, λi remain zero,
and thus it will not affect the controller design of
system (1). When the input delay of the system is
non-zero, we will utilize the compensation system
to mitigate the impact of input delay.

3. In the compensation system (9), there are signals
related to u in the auxiliary system. In subsequent
sections, we will demonstrate the boundedness
of the input u, thereby obtaining the fixed-time
boundedness of the auxiliary system (9).
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2.4 Funnel constraint function

To impose transient behavior constraints on the system
tracking error, inspired by [52–54],wedefine the funnel
function as follows:

Definition 2 For any convergence time Tk and positive
error precision ε, a function taking non-negative values
μ(t) ∈ R is called a funnel constraint function if it
satisfies:

1. μ(0) = 0 and μ(t) > 0 for all t > 0;
2. μ(t) and μ̇(t) are bounded by positive constants

μd and μdm ;
3. there exist a time ts � Tk , such that μ(t) � 1

ε

holds for all t > ts .

Then, the prescribed performance funnel can be
defined as

F = {
(t, r) ∈ R+ × R |μ(t) |r | < 1

}
. (10)

Remark 3 The tracking error evolution curve within
the funnel is depicted in Fig. 1. By constructing an
appropriate L-K functional, we confine the product of
the tracking error r(t) and the funnel constraint func-
tion μ(t) within F , thereby regulating the transient
behavior of tracking error r(t). Moreover, there are
various options for the specific expression of funnel
constraint function μ(t), such as

μ(t) = t

ε(αt + (1 − α)Tk)
, (11)

μ(t) =
{
tβT β

k /ε, t ∈ [0, Tk),
1/ε, t ∈ [Tk,∞),

(12)

where 0 < α < 1, β > 0 are design constants.

Fig. 1 The trajectory of tracking error within the funnel

2.5 RBF neural networks

Radial basis function neural networks (RBFNNs) are
widely used for the control and identification of non-
linear systems with uncertainties due to their ability to
effectively approximate nonlinear functions [55,56]. In
this section, we will introduce the fundamental knowl-
edgeofRBFNNs to facilitate their use in the subsequent
controller design process.

For any continuous unknown function f (Z), there
exist suitable neural network W ∗T S(Z) such that

f (Z) = W ∗T S(Z) + δ(Z), (13)

where S(Z) = (s1(Z), ..., sl(Z)) ∈ Rl denote the basis
function vector, where the Gaussian function si (Z) are
defined as following:

si (Z) = exp[−(Z − ξi )
T (Z − ξi )/σ

2
i ], i = 1, 2, ..., l,

(14)

where σi is the width of the Gaussian functions
and ξi = [ξ1, ξ2, ..., ξn]T denotes the center of the
receptive domain. Additionally, l > 1 represents
the number of nodes in the neural network, Z =
[Z1, Z2, ..., Zq ]T ∈ �Z ∈ R represents the input vec-
tor, W = (w1, ..., wl) ∈ Rl is the weight vector and
δ(Z) represents the approximation error which satis-
fies |δ(Z)| � ε with ε > 0. The ideal weight vector
W ∗ = [w1, w2, ..., wq ]T ∈ Rl is define as

W ∗ := arg min
W∈Rl

{
sup
Z∈�Z

∣∣∣F(Z) − WT S(Z)

∣∣∣
}

. (15)

3 Controller design and stability analysis

3.1 Controller design

In this section, we will utilize the backstepping method
to provide the detailed procedure for designing fixed-
time adaptive controller.

To begin with, by using system (8) and the compen-
sator system (9), we introduce the following coordinate
transformation:

z1 = μ(t)(e1 − yr ),

zi = ei − αi−1 + λi , for i = 2, 3, ..., n, (16)
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whereαi−1 is the virtual controller thatwill be designed
in the subsequent steps.

Step 1: According to (8) and (9), differentiating z1,
one has

ż1 = μ(t)(ė1 − ẏr ) + μ̇(t)(e1 − yr )

= μ(t)(a0e2(t) + f̃1(x, t)

+ d̃1(x, t) − ẏr ) + μ̇(t)(e1 − yr ). (17)

Then let the Lyapounov function be

V1 = 1

2a0
ln

1

1 − z21
+ θ̂21

2β1
+ η̂21

2γ1
, (18)

where β1 and γ1 are positive design parameters, θ̂1 =
θ1 − θ∗

1 and η̂1 = η1 − η∗
1 are the estimation error

with θ∗
1 and η∗

1 represent the estimate of θ1 and η1,
respectively. The positivity definiteness and continuous
differentiability of V1 for |z1| < 1 can be confirmed,
establishing it as a suitable candidate for a Lyapunov
function.

Further, by differentiating V1 with respect to t , we
get

V̇1 = χ z1 ż1
a0

+ θ̂1
˙̂
θ1

β1
+ η̂1 ˙̂η1

γ1

= χ z1
a0

(μ(t)(a0e2(t) + f̃1(x, t)

+ d̃1(x, t) − ẏr ) + μ̇(t)(e1 − yr ))

+ θ̂1
˙̂
θ1

β1
+ η̂1 ˙̂η1

γ1

= χ z1(μ(t)z2(t) + F1(Z1) + μ(t)d̃1
a0

+ μ(t)α1)

+ θ̂1
˙̂
θ1

β1
+ η̂1 ˙̂η1

γ1
, (19)

where F1(Z1) = (μ(t)( f̃1(x, t) − ẏr − a0λ2) +
μ̇(t)(e1 − yr ))/a0 and Z1 = [x1, x2, ..., xn, μ, μ̇, yr ,
ẏr , λ2]T and χ = 1

1−z21
.

Since F1(Z1) is an unknown continuous function,
we will utilize RBFNNs from Sect. 2.5 to approxi-
mate F1(Z1). Therefore, by using RBFNNs in (13) and
Young’s inequality, we infer that

χ z1F1(Z1) =χ z1W
∗T
1 S1(Z1) + χ z1δ1(Z1)

� (χ z1)2

2a1
θ1S

T
1 S1 + a1

2
+ |χ z1| ε1, (20)

where θ1 = ∥∥W ∗T
1

∥∥2, a1 > 0 is design parameter and
ε1 is the upper bound of the estimation error.

Inserting the above inequality into (19), one has

V̇1 � χ z1μ(t)(z2(t) + α1) + (χ z1)2

2a1
θ1S

T
1 S1

+ a1
2

+ θ̂1
˙̂
θ1

β1
+ η̂1 ˙̂η1

γ1
+ |χ z1|

(
μd d̄1
a0

+ ε1

)

� χ z1μ(t)(z2(t) + α1) + (χ z1)2

2a1
θ1S

T
1 S1

+ a1
2

+ θ̂1
˙̂
θ1

β1
+ η̂1 ˙̂η1

γ1
+ (χ z1)2

2b1
η1 + b1

2
, (21)

where μd > 0 is the upper bound of μ, η1 = (
μd d̄1
a0

+
ε1)

2 and b1 > 0 is design parameter.

Remark 4 In contrast to the general approach in adap-
tive controllers for handling unknown external distur-
bances and NNs error, in this paper, we consider the
unknown external disturbances d̃1 and NNs error ε1 as
a collective uncertainty, and then introduce the estimate
η1 to quantify this uncertainty. This approach not only
eliminates the need for a priori knowledge of bound-
ary information but also enhances the robustness of the
closed-loop system.

Then, let the virtual control signal α1 and the adap-
tive law be designed as

α1 = − 1

2a1
χrθ∗

1 S
T
1 S1 − 1

2b1
χrη∗

1

− 1

2
χ z1μ − K1χr − L1χ

3r, (22)

θ̇∗
1 = β1

2a1
(χ z1)

2ST1 S1 − m1θ
∗
1 − q1

β1
θ∗3
1 , (23)

η̇∗
1 = γ1

2b1
(χ z1)

2 − r1η
∗
1 − s1

γ1
η∗3
1 , (24)

where m1, q1, r1, s1, K1 and L1 are positive design
parameters and error r = e1 − yr .
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Then substituting (22)–(24) into (21), we arrive at

V̇1 � −K1χ
2z21 − L1χ

4z21 + m1
θ̂1θ

∗
1

β1
+ q1

θ̂1θ
∗3
1

β2
1

+ r1
η̂1η

∗
1

γ1
+ s1

η̂1η
∗3
1

γ 2
1

+ 1

2
z22 + a1

2
+ b1

2
. (25)

Noting that

− K1(z
2
1χ

2 + ln χ − ln χ)

= −K1((χ − 1)χ + ln χ − ln χ)

� −K1

2
χ2 + K1 ln χ − K1 ln χ + K1

2

� −K1 ln χ + K1

2
,

− L1(z
2
1χ

4 + ln2 χ − ln2 χ) � − L1

4
χ4

+ L1 ln
2 χ − L1 ln

2 χ + L1

4

� −L1 ln
2 χ + L1

4
.

Then we can rewrite (25) as

V̇1 � −K1 ln χ − L1 ln
2 χ + m1

θ̂1θ
∗
1

β1
+ n1

θ̂1θ
∗3
1

β2
1

+ r1
η̂1η

∗
1

γ1
+ s1

η̂1η
∗3
1

γ 2
1

+ 1

2
z22 + σ̄1, (26)

where σ̄1 = K1
2 + L1

4 + a1
2 + b1

2 .
Step 2: With the help of (8) and (9), differentiating

z2, we deduce that

ż2 = ė2 − α̇1 + λ̇2

= e3(t) + f̃2(x, t) + d̃2(x, t) − α̇1 + λ3

− p̂2λ2 − p2λ
3
2. (27)

Define the Lyapounov function as follow

V2 = V1 + z22
2

+ θ̂22

2β2
+ η̂22

2γ2
, (28)

where the design parameters β2 > 0 and γ2 > 0, and
the estimation errors are defined as θ̂2 = θ2 − θ∗

2 and
η̂2 = η2 − η∗

2 with θ∗
2 and η∗

2 being the estimates of θ2
and η2, respectively.

Thus, V̇2(t) can be derived from (27) and (28) that

V̇2 = z2 ż2 + θ̂2
˙̂
θ2

β2
+ η̂2

˙̂η2
γ2

+ V̇1

= z2(e3(t) + f̃2(x, t) + d̃2(x, t)

− α̇1 + λ3 − p̂2λ2 − p2λ
3
2) + θ̂2

˙̂
θ2

β2
+ η̂2

˙̂η2
γ2

+ V̇1

= z2(z3(t) + F2(Z2) + d̃2 + α2) + θ̂2
˙̂
θ2

β2

+ η̂2
˙̂η2

γ2
+ V̇1, (29)

where F2(Z2) = f̃2(x, t) − α̇1 − p̂2λ2 − p2λ32 and
Z2 = [x1, x2, ..., xn, θ∗

1 , η∗
1, λ2]T .

Similar to the calculation of (20), one can get

z2F2(Z2) =z2W
∗T
2 S2(Z2) + z2δ2(Z2)

� z22
2a2

θ2S
T
2 S2 + a2

2
+ |z2| ε2, (30)

where θ2 = ∥∥W ∗T
2

∥∥2, a2 > 0 is design parameter and
ε2 is the upper bound of identify error.

Substituting (30) into (29), we can get

V̇2 � z2(z3(t) + α2) + z22
2a2

θ2S
T
2 S2 + a2

2
+ θ̂2

˙̂
θ2

β2

+ η̂2 ˙̂η2
γ2

+ V̇1 + z22
2b2

η2 + b2
2

, (31)

where η2 = (d̄2+ε2)
2 and b2 > 0 is design parameter.

Then, the virtual control signal α2 and the adaptive
law are designed as below

α2 = − 1

2a2
z2θ

∗
2 S

T
2 S2 − 1

2b2
z2η

∗
2

− (K2 + 1)z2 − L2z
3
2, (32)

θ̇∗
2 = β2

2a2
z22S

T
2 S2 − m2θ

∗
2 − q2

β2
θ∗3
2 , (33)

η̇∗
2 = γ2

2b2
z22 − r2η

∗
2 − s2

γ2
η∗3
2 , (34)

where m2, q2, r2, s2, K2 and L2 are positive design
parameters.

Recalling the inequality in Lemma 2, one has
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|z2| 32 = (z22)
3
4 × 1

1
4

�
3
4

1
× 4

3
(z22)

3
4+ 1

4 + 1

4
×

(
4

3

)− 3
4 / 1

4 × 1
3
4+ 1

4

= z22 + 1

4
×

(
4

3

)−3

= z22 + σ2, (35)

where σ2 = 1
4 × ( 43 )

−3. Taking (32)–(35) into (31),
yields

V̇2 � −
(
K2 + 1

2

)
z22 − L2z

4
2 + m2

θ̂2θ
∗
2

β2
+ q2

θ̂2θ
∗3
2

β2
2

+ r2
η̂2η

∗
2

γ2
+ s2

η̂2η
∗3
2

γ 2
2

+ 1

2
z23 + K2|z2| 32 − K2|z2| 32 + a2

2
+ b2

2
+ V̇1

� −K1 ln χ − L1 ln
2 χ − K2|z2| 32 − L2z

4
2

+
2∑

i=1

mi
θ̂iθ

∗
i

βi
+

2∑
i=1

qi
θ̂iθ

∗3
i

β2
i

+
2∑

i=1

ri
η̂iη

∗
i

γi

+
2∑

i=1

si
η̂iη

∗3
i

γ 2
i

+
2∑

i=1

σ̄i + 1

2
z23, (36)

where σ̄2 = K2σ2 + a2
2 + b2

2 .
Step i (3 � i � n − 1): Based on (8) and (9),

differentiating zi , we have

żi = ėi − α̇i−1 + λ̇i

= ei+1(t) + f̃i (x, t) + d̃i (x, t) − α̇i−1

+ λi+1 − p̂iλi − piλ
3
i .

Thenconsider the followingLyapounov functiondefined
as

Vi = Vi−1 + z2i
2

+ θ̂i
2

2βi
+ η̂i

2

2γi
,

where βi and γi are the positive design parameters, and
θ̂i = θi −θ∗

i and η̂i = ηi −η∗
i are the estimation errors,

θ∗
i and η∗

i represent the estimates of unknown constants
θi and ηi , respectively.

Differentiating Vi (t), yields that

V̇i = zi żi + θ̂i
˙̂
θ i

βi
+ η̂i ˙̂ηi

γi
+ V̇i−1

= zi (ei+1(t) + f̃i (x, t) + d̃i (x, t) − α̇i−1

+ λi+1 − p̂iλi − piλ
3
i ) + θ̂i

˙̂
θ i

βi
+ η̂i ˙̂ηi

γi
+ V̇i−1

= zi (zi+1(t) + Fi (Zi ) + d̃i + αi ) + θ̂i
˙̂
θ i

βi

+ η̂i ˙̂ηi
γi

+ V̇i−1, (37)

where Fi (Zi ) = f̃i (x, t) − α̇i−1 − p̂iλi − piλ3i and
Zi = [x1, ..., xn, θ∗

1 , ..., θ∗
i , η∗

1, ..., η
∗
i , λ2, ..., λi ]T .

Similar as in (20), we immediately get

zi Fi (Zi ) =ziW
∗T
i Si (Zi ) + ziδi (Zi )

�
z2i
2ai

θi S
T
i Si + ai

2
+ |zi | εi , (38)

where θi = ∥∥W ∗T
i

∥∥2, the design parameter ai > 0 and
εi > 0 is a constant.

Inserting (38) into (37), we can get

V̇i � zi (zi+1(t) + αi ) + z2i
2ai

θi S
T
i Si + ai

2
+ θ̂i

˙̂
θ i

βi

+ η̂i ˙̂ηi
γi

+ z2i
2bi

ηi + bi
2

+ V̇i−1, (39)

where ηi = (d̄i + εi )
2 and bi is positive design param-

eter.
Next, we design the virtual controller αi and the

adaptive law as follows

αi = − 1

2ai
ziθ

∗
i S

T
i Si − 1

2bi
ziη

∗
i

− (Ki + 1)zi − Li z
3
i , (40)

θ̇∗
i = βi

2ai
z2i S

T
i Si − miθ

∗
i − qi

βi
θ∗3
i , (41)

η̇∗
i = γi

2bi
z2i − riη

∗
i − si

γi
η∗3
i , (42)

where mi > 0, qi > 0, ri > 0, si > 0, Ki > 0 and
Li > 0 are design parameters.

Furthermore, holds (40)–(42) on the hand, one can
rewrite (39) as

V̇i � −
(
Ki + 1

2

)
z2i − Li z

4
i + mi

θ̂iθ
∗
i

βi
+ qi

θ̂iθ
∗3
i

β2
i

+ ri
η̂iη

∗
i

γi
+ si

η̂iη
∗3
i

γ 2
i
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+ 1

2
z2i+1 + Ki |zi | 32 − Ki |zi | 32 + ai

2
+ bi

2
+ V̇i−1

� − K1 ln χ − L1 ln
2 χ −

i∑
j=2

K j
∣∣z j ∣∣ 32

−
i∑

j=2

L j z
4
j +

i∑
j=1

m j
θ̂ jθ

∗
j

β j

+
i∑

j=1

q j
θ̂ jθ

∗3
j

β2
j

+
i∑

j=1

r j
η̂ jη

∗
j

γ j

+
i∑

j=1

s j
η̂ jη

∗3
j

γ 2
j

+
i∑

j=1

σ̄ j + 1

2
z2i+1, (43)

where σ̄i = Kiσi + ai
2 + bi

2 .
Step n: Noting the definition on (8) and (9), differ-

entiating zn , we deduce that

żn = ėn − α̇n−1 + λ̇n

= u(t − τ(t)) + f̃n(x, t) + d̃n(x, t)

− α̇n−1 − p̂nλn − pnλ
3
n

+ u(t) − u(t − τ̂ ) − sign(λn)

∫ t−τ̂+τ̄

t−τ̂

|u̇(s)|ds.

Consider the Lyapounov function candidate as

Vn = Vn−1 + z2n
2

+ θ̂n
2

2βn
+ η̂n

2

2γn
, (44)

where the design parameters βn > 0 and γn > 0, and
θ∗
n , η

∗
n denote the estimation of unknown constants θn

and ηn , respectively, and η̂n = ηn − η∗
n , θ̂n = θn − θ∗

n
mean the estimation errors.

Furthermore, the time derivative of Vn(t) can be cal-
culated as follows:

V̇n = zn żn + θ̂n
˙̂
θn

βn
+ η̂n ˙̂ηn

γn
+ V̇n−1

= zn(u(t − τ(t)) + f̃n(x, t) + d̃n(x, t)

− α̇n−1 − p̂nλn − pnλ
3
n + u(t)

− u(t − τ̂ ) − sign(λn)

∫ t−τ̂+τ̄

t−τ̂

|u̇(s)|ds)

+ θ̂n
˙̂
θn

βn
+ η̂n ˙̂ηn

γn
+ V̇n−1

= zn(u(t) + u(t − τ(t)) − u(t − τ̂ ) − sign(zn)

∫ t−τ̂+τ̄

t−τ̂

|u̇(s)|ds + Fn(Zn) + d̃n)

+ θ̂n
˙̂
θn

βn
+ η̂n ˙̂ηn

γn
+ V̇n−1, (45)

where Fn(Zn) = f̃n(x, t) − α̇n−1 − p̂nλn − pnλ3n +
(sign(zn) − sign(λn))

∫ t−τ̂+τ̄

t−τ̂
|u̇(s)|ds and Zn =

[x1, ..., xn, θ∗
1 , ..., θ∗

n , η∗
1, ..., η

∗
n, λ2, ..., λn]T .

Following the similar calculation process as in (20),
we infer that

zn Fn(Zn) =znW
∗T
n Sn(Zn) + znδn(Zn)

� z2n
2an

θn S
T
n Sn + an

2
+ |zn| εn, (46)

where the design parameters an and εn are positive con-

stants, and ϑn = ∥∥W ∗T
n

∥∥2. Next, we estimate the first
few terms in (45), and by utilizing Assumption 4, we
can derive that

zn(u(t) + u(t − τ(t)) − u(t − τ̂ ) − sign(zn)∫ t−τ̂+τ̄

t−τ̂

|u̇(s)|ds)

� zn

(∫ t−τ(t)

t−τ̂

u̇(s)ds − sign(zn

)

∫ t−τ̂+τ̄

t−τ̂

|u̇(s)|ds + u(t))

� znu(t) + |zn|
∣∣∣∣∣
∫ t−τ(t)

t−τ̂

u̇(s)ds

∣∣∣∣∣
− |zn|

∫ t−τ̂+τ̄

t−τ̂

|u̇(s)|ds
� znu(t), (47)

where sign(·) =
⎧⎨
⎩
1, · > 0,
0, · = 0,
−1, · < 0.

Substituting (46)–(47)

into (45), yields

V̇n � znu(t) + z2n
2an

θn S
T
n Sn + an

2
+ θ̂n

˙̂
θn

βn
+ η̂n ˙̂ηn

γn

+ V̇n−1 + z2n
2bn

ηn + bn
2

, (48)
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where ηn = (d̄n+εn)
2 and bn > 0 is design parameter.

Then, the actual controller u and the adaptive law
are selected as

u = − 1

2an
znθ

∗
n S

T
n Sn − 1

2bn
znη

∗
n

−
(
Kn + 1

2

)
zn − Lnz

3
n, (49)

θ̇∗
n = βn

2an
z2n S

T
n Sn − mnθ

∗
n − qn

βn
θ∗3
n , (50)

η̇∗
n = γn

2bn
z2n − rnη

∗
n − sn

γn
η∗3
n , (51)

where mn > 0, qn > 0, rn > 0, sn > 0, Kn > 0 and
Ln > 0 are design parameters.

In view of (49)–(51), we arrive at

V̇n � −
(
Kn + 1

2

)
z2n − Lnz

4
n + mn

θ̂nθ
∗
n

βn
+ qn

θ̂nθ
∗3
n

β2
n

+ rn
η̂nη

∗
n

γn
+ sn

η̂nη
∗3
n

γ 2
n

+ Kn|zn| 32 − Kn|zn| 32 + an
2

+ bn
2

+ V̇n−1

� −K1 ln χ − L1 ln
2 χ −

n∑
j=2

K j
∣∣z j ∣∣ 32 −

n∑
j=2

L j z
4
j

+
n∑
j=1

m j
θ̂ jθ

∗
j

β j
+

n∑
j=1

q j
θ̂ jθ

∗3
j

β2
j

+
n∑
j=1

r j
η̂ jη

∗
j

γ j

+
n∑
j=1

s j
η̂ jη

∗3
j

γ 2
j

+
n∑
j=1

σ̄ j , (52)

where σ̄n = Knσn + an
2 + bn

2 .

3.2 Stability analysis

Now we are in the position to the proof of Theorem 1.

Theorem 1 Suppose that Assumptions 1–4 hold. For
systems (1)with unknown time-varying input delay and
disturbance, an adaptive controller (49) coupled with
the virtual controller (22), (32), (40) and the adaptive
laws (23), (24), (33), (34), (41), (42), (50) and (51)
exist. By appropriately choosing the function μ(t) to
meet Definition 2, the following assertions hold for any
bounded initial states:

1. All the closed-loop signals of the system are semi-
globally fixed-time uniformly ultimately bounded;

2. The tracking error r(t) will remain within a small
bounded range of the origin in finite time if suitable
design parameters are chosen;

3. The tracking error r(t) canbeguided to apredeter-
mined accuracy set �r = {r(t) ∈ R ||r(t)| < ε }
within a specified finite time Tk, where both ε and
Tk can be pre-set, ensuring the transient perfor-
mance of r(t).

Proof First, let us prove the first two assertions. Notice
that for any 1 � i � n, one has

θ̂iθ
∗
i � 1

2
θ2i − 1

2
θ̂2i , η̂iη

∗
i � 1

2
η2i − 1

2
η̂2i .

Then, by differentiating Vn(t) with respect to t , we
can derive that

V̇n � −K1 ln χ − L1 ln
2 χ −

n∑
j=2

K j
∣∣z j ∣∣ 32

−
n∑
j=2

L j z
4
j +

n∑
j=1

m j
θ̂ j θ

∗
j

β j

+
n∑
j=1

q j
θ̂ j θ

∗3
j

β2
j

+
n∑
j=1

r j
η̂ jη

∗
j

γ j

+
n∑
j=1

s j
η̂ jη

∗3
j

γ 2
j

+
n∑
j=1

σ̄ j

� −K1 ln χ − L1 ln
2 χ −

n∑
j=2

K j
∣∣z j ∣∣ 32 −

n∑
j=2

L j z
4
j

−
n∑
j=1

m j

2β j
θ̂2j −

n∑
j=1

q j
2γ j

η̂2j +
n∑
j=1

r j
θ̂ j θ

∗3
j

β2
j

+
n∑
j=1

s j
η̂ jη

∗3
j

γ 2
j

+
n∑
j=1

σ̄ j

+
n∑
j=1

m j

2β j
θ2j +

n∑
j=1

q j
2γ j

η2j

� −K1 ln χ − L1 ln
2 χ −

n∑
j=2

K j (z
2
j )

3
4 −

n∑
j=2

L j (z
2
j )
2

−
⎛
⎝ n∑

j=1

m j

2β j
θ̂2j

⎞
⎠

3
4

+
⎛
⎝ n∑

j=1

m j

2β j
θ̂2j

⎞
⎠

3
4
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−
⎛
⎝ n∑

j=1

q j
2γ j

η̂2j

⎞
⎠

3
4

+
⎛
⎝ n∑

j=1

q j
2γ j

η̂2j

⎞
⎠

3
4

−
n∑
j=1

m j

2β j
θ̂2j −

n∑
j=1

q j
2γ j

η̂2j +
n∑
j=1

r j
θ̂ j θ

∗3
j

β2
j

+
n∑
j=1

s j
η̂ jη

∗3
j

γ 2
j

+
n∑
j=1

σ̄ j

+
n∑
j=1

m j

2β j
θ2j +

n∑
j=1

q j
2γ j

η2j . (53)

In addition, with the help of Lemma 2, one gets

⎛
⎝ n∑

j=1

m j

2β j
θ̂2j

⎞
⎠

3
4

�
n∑
j=1

m j

2β j
θ̂2j + 1

4
×

(
3

4

)3

, (54)

⎛
⎝ n∑

j=1

q j

2γ j
η̂2j

⎞
⎠

3
4

�
n∑
j=1

q j

2γ j
η̂2j + 1

4
×

(
3

4

)3

, (55)

−K1 ln χ � −K1 ln
3
4 χ + K1

4
×

(
3

4

)3

. (56)

Moreover, utilizing Young’s inequality, we can
deduce that

θ̂ jθ
∗3
j � − θ̂4j + 3θ̂3j θ j − 3θ̂2j θ

2
j + θ̂ jθ

3
j

� − θ̂4j − 3θ̂2j θ
2
j + 9w

4
3

4
θ̂4j

+ 3

4w4 θ4j + 3θ̂2j θ
2
j + 1

12
θ4j

� −
(
1 − 9w

4
3

4

)
θ̂4j +

(
3

4w4 + 1

12

)
θ4j , (57)

η̂ jη
∗3
j � −

(
1 − 9v

4
3

4

)
η̂4j + (

3

4v4
+ 1

12
)η4j , (58)

where w j and v j are positive design parameters.
Inserting (54)–(58) into (53), yields

V̇n � −K1 ln
3
4 χ − L1 ln

2 χ −
n∑
j=2

K j (z
2
j )

3
4

−
n∑
j=2

L j (z
2
j )
2 −

⎛
⎝ n∑

j=1

m j

θ̂2j

2β j

⎞
⎠

3
4

−
⎛
⎝ n∑

j=1

q j
η̂2j

2β j

⎞
⎠

3
4

−
n∑
j=1

r j

(
1 − 9w

4
3

4

)
θ̂4j

β2
j

−
n∑
j=1

s j

(
1 − 9v

4
3

4

)
η̂4j

γ 2
j

+
n∑
j=1

σ̄ j

+
n∑
j=1

r j

(
3

4w4 + 1

12

) θ4j

β2
j

+
n∑
j=1

s j

(
3

4v4
+ 1

12

) η4j

γ 2
j

+
n∑
j=1

m j

2β j
θ2j

+
n∑
j=1

q j
2γ j

η2j + 1

2
×

(
3

4

)3
+ K1

4
×

(
3

4

)3

� − H1

(
ln χ

2a0

) 3
4 − H1

n∑
j=2

(
z2j
2

) 3
4

− H1

⎛
⎝ n∑

j=1

θ̂2j

2β j

⎞
⎠

3
4

− H1

⎛
⎝ n∑

j=1

η̂2j

2β j

⎞
⎠

3
4

− H2

(
ln χ

2a0

)2
− H2

n∑
j=2

( z2j
2

)2

− H2

n∑
j=1

(
θ̂2j

β j

)2

− H2

n∑
j=1

( η̂2j

γ j

)2
+ F , (59)

whereH1 := min
1� j�n

{(2a0) 3
4 K1, 2

3
4 K j ,m

3
4
j , q

3
4
j },H2 :=

min
1� j�n

{4a20L1, 4L j , r j (1 − 9w
4
3

4 ), s j (1 − 9v
4
3

4 )} and

F =
n∑
j=1

σ̄ j +
n∑
j=1

( 3
4w4 + 1

12 )
θ4j

β2
j
+

n∑
j=1

( 3
4v4

+ 1
12 )

η4j

γ 2
j
+

n∑
j=1

1
2β j

θ2j +
n∑
j=1

1
2γ j

η2j + 1
2 × ( 34 )

3 + K1
4 × ( 34 )

3.

By using Lemmas 3 and 4, we conclude that

V̇n � −H1

⎛
⎜⎝

(
ln χ

2a0

) 3
4 +

⎛
⎝ n∑

j=1

z2j
2

⎞
⎠

3
4

+
⎛
⎝ n∑

j=1

θ̂2j

2β j

⎞
⎠

3
4

+
⎛
⎝ n∑

j=1

η̂2j

2β j

⎞
⎠

3
4
⎞
⎟⎠

− H2

n

⎛
⎜⎝

(
ln χ

2a0

)2
+

⎛
⎝ n∑

j=1

z2j
2

⎞
⎠
2

+
⎛
⎝ n∑

j=1

θ̂2j

β j

⎞
⎠
2

+
⎛
⎝ n∑

j=1

η̂2j

γ j

⎞
⎠
2
⎞
⎟⎠ + F
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� −H1

⎛
⎝ ln χ

2a0
+

n∑
j=1

z2j
2

+
n∑
j=1

θ̂2j

2β j

+
n∑
j=1

η̂2j

2β j

⎞
⎠

3
4

− H2

n

⎛
⎝ ln χ

2a0
+

n∑
j=1

z2j
2

+
n∑
j=1

θ̂2j

β j
+

n∑
j=1

η̂2j

γ j

⎞
⎠
2

+ F

� −H1Vn − (1 − ε1)
H2

n
Vn − ε1

H2

n
Vn + F , (60)

where 0 < ε1 < 1. Therefore, according to inequality
(60), for Vn � nF/H2, we have the boundedness of
Vn . Furthermore, if Vn > nF/H2, one can obtain

V̇n � −σV
3
4
n − νV 2

n ,

where σ = H1 and ν = (1 − ε1)
H2
n . Thus, according

to Lemma 1, Vn is bounded, and the settling time can
be set as

T � Tm = 	
( 1
5

)
	

( 4
5

)
4
5σ

(σ

ν

) 4
5
. (61)

Review the expression for Vn , we have the bounded-
ness of zi , θ̂i and η̂i for i = 1, 2, ..., n. And owing to
the initial value z1(0) = μ(0)r(0) = 0 < 1, which
means that for all t � 0, z1(t) strictly within the set
�z1 = {z1(t) ∈ R ||z1(t)| < 1 }. As r(0) is bounded
and μ(t) > 0 for t > 0, r(t) = z1(t)/μ(t) is well
defined and bounded. Hence, χ and the virtual con-
troller αi are bounded. Moreover, the estimated param-
eters θ∗

i = θi − θ̂i and η∗
i = ηi − η̂i are bounded due

to the boundedness of θi , θ̂i , ηi , η̂i for i = 1, 2, ..., n.
Besides, since u is made up of bounded signals, we get
the boundedness of u.

Next, we will prove the fixed-time boundedness of
the compensator system λi . To begin with, consider the
following Lyapounov function as

Vλ =
n∑

i=2

λ2i

2
. (62)

Recalling the definition in (9), we can infer that

V̇λ =
n∑

i=2

λi λ̇i

� −
(
p̂2 − 1

2

)
λ22 −

n−1∑
i=3

( p̂i − 1)λ2i −
(
p̂n − 1

2

)
λ2n

−
n∑

i=2

piλ
4
i + λn(u(t) − u(t − τ̂ )

− sign(λn)

∫ t−τ̂+τ̄

t−τ̂
|u̇(s)|ds). (63)

Furthermore, based on the boundedness of u, we have
the following fact

λn(u(t) − u(t − τ̂ ) − sign(λn)

∫ t−τ̂+τ̄

t−τ̂

|u̇(s)|ds)

�λn(u(t) − u(t − τ̂ )) − |λn|
∫ t−τ̂+τ̄

t−τ̂

|u̇(s)|ds

�λnhu � 1

4ε2
λ2n + ε2h

2
u, (64)

where hu > 0 is a constant and ε2 is a design parameter.
Thus, putting (64) into (63), yields

V̇λ � −
(
p̂2 − 1

2

)
λ22

−
n−1∑
i=3

( p̂i − 1)λ2i −
(
p̂n − 1

2
− 1

4ε2

)
λ2n

−
n∑

i=2

piλ
4
i + ε2h

2
u

� −P1

(
n∑

i=2

λ2i

) 3
4

− (1 − ε1)P2
n

(
n∑

i=2

λ2i

)2

− ε1P2
n

(
n∑

i=2

λ2i

)2

+ ζ

� −σ1

(
n∑

i=2

λ2i

) 3
4

− ν1

(
n∑

i=2

λ2i

)2

, (65)

where σ1 = P1 = min
3�i�n−1

{
p̂2 − 1

2 , p̂i − 1, p̂n − 1
2

− 1
4ε2

}
, P2 = min

2�i�n
{pi }, ζ = ε2h2u + nP1

4 × ( 34 )
3 and
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ν1 = (1−ε1)P2
n . Therefore, we immediately observe the

fixed-time boundedness of compensation system, and
the fixed time can be given as

T � Tm = 	
( 1
5

)
	

( 4
5

)
4
5σ1

(
σ1

ν1

) 4
5

. (66)

Therefore, based on coordinate transformation (16),
we immediately get the boundedness of ei and xi for
i = 1, 2, ..., n. Then we get the conclusion that all
the closed-loop signals of the system are semi-globally
fixed-time uniformly ultimately bounded.

Next, we proceed to prove the third assertion. Build-
ing upon the previous analysis where we have estab-
lished that z1 ∈ �z1 , we now recall the definition and
properties of μ(t) to obtain |r(t)| < 1

μ(t) � ε for all
t > ts . This implies that the tracking error r(t) can
be guided to a pre-specified accuracy region (−ε, ε)

within the specified finite time ts � Tk .

Remark 5 Due to the presence of unknown time delay
in the system input, these delays cannot be explicitly
expressed, meaning that direct introduction of approxi-
mations or upper bound of unknown delay to eliminate
its impact is not feasible. Given the unknown nature of
the delay, neither coordinate transformations nor delay
compensation within the controller can be employed.
Therefore, in this paper, compensation for the unknown
delay is achieved by introducing an additional compen-
sator system using an input u containing approxima-
tion and approximation error. Furthermore, the integral
term ensures the boundedness of the compensator sys-
tem in fixed-time. Particularly, the compensator system
described in this paper can also be applied to scenar-
ios with known input delay by replacing u(t − τ̂ ) and

sign(λn)
∫ t−τ̂+τ̄

t−τ̂
|u̇(s)|ds in the compensator system

with u(t − τ(t)), thus directly compensating for the
effects of known input time delay.

Remark 6 The existing methods for nonlinear systems
with input delay as in [28,41–44,57] were not applica-
ble to address unknown delay. This paper, however, has
obtained fixed-time control results through compensa-
tion systems and the construction of a novel L-K func-
tional. In comparison to asymptotic control, fixed-time
control offers rapid convergence, high precision, and
independence from initial conditions. Additionally, the
transient behavior constraint method designed here is
applicable to more complex systems, as well as scenar-

ios where reference signal information is not provided
in advance or where the desired trajectories are gener-
ated by online planners andmeasurement devices. Typ-
ical applications include missile attitude control sys-
tems, spacecraft control [58], intelligent driving sys-
tems, and so on.

Remark 7 In the control method proposed in this
paper, while ensuring globally specified transient per-
formance, it eliminates most of the initial condition-
dependent restrictions in most prescribed performance
bound-based results and the requirement for any high-
order (n � 2) derivatives of yr , relaxing the conditions
in related results such as [34–37].

3.3 Corollary

According to the proof process of the previous Theo-
rem 1, even when saturation exists in the input delay
of a nonlinear system, we can still draw conclusions
regarding fixed-time control. Therefore, in this section,
we introduce input saturation to the system (1) with
unknown input delay, and consider the following sys-
tem:

ė1(t) = a0e2(t) + f̃1(x, t) + d̃1(x, t),

ėi (t) = ei+1(t) + f̃i (x, t) + d̃i (x, t),

ėn(t) = S(u(t − τ(t))) + f̃n(x, t) + d̃n(x, t),

y = e1, (67)

where the definition of system variables is the same as
in (8), and let the system saturation be

S(u − τ(t)) =
⎧⎨
⎩
ū, u(t − τ(t)) > ū,

u(t − τ(t)),−ũ � u(t − τ(t)) � ū,

−ũ, u(t − τ(t)) < −ũ,

(68)

where ū and ũ are positive known constants.

Assumption 5 [29,59] For given system input with
saturation and time-varying delay, aswell as the nonlin-
ear system (67), there are feasible actual input control
thresholds and the controller u, allowing the system
output y to track the desired trajectory yr .

First of all, owing to the presence of unknown time
delay and input saturation in the system (67), the com-
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pensator system (9) will be modified as follows:

λ̇i = − p̂iλi − piλ
3
i + λi+1, for i = 2, ..., n − 1

λ̇n = − p̂nλn − pnλ
3
n + u(t) − sign(wn)(ū + ũ),

(69)

where pi > 0 are designed parameters and the initial
condition is λi (0) = 0.

Then, the coordinate transformations can be given
as

w1 = μ(t)(e1 − yr ),

wi = ei − αi−1 + λi , for i = 2, 3, ..., n, (70)

where αi−1 is the virtual controller.
Similar to the design process in Sects. 3.1 and 3.2,

we can also apply the backstepping method to obtain
the controller design for the i-th step (1 � i < n).
Therefore, for the sake of brevity and readability, we
will not delve into the specific design process here.
However, in the design of the n-th step, due to the con-
sideration of input saturation in the system, unlike the
previous design methods, we will focus on introducing
the design process for step n.

Step n: Based on (67) and (69), differentiating wn ,
one has

ẇn = ėn − α̇n−1 + λ̇n

= S(u(t − τ(t))) + f̃n(x, t) + d̃n(x, t)

− α̇n−1 − p̂nλn − pnλ
3
n + u(t)

− sign(wn)(ū + ũ).

Let the Lyapounov function be

Vn = Vn−1 + w2
n

2
+ ϑ̂n

2

2ςn
+ μ̂n

2

2ξn
, (71)

whereςn > 0 and ξn > 0 are thedesignparameters,ϑ̂n =
ϑn−ϑ∗

n , μ̂n = μn−μ∗
n denote the estimation errors and

ϑ∗
n , μ

∗
n represent the estimation of ϑn and μn , respec-

tively.
Further, by differentiating Vn(t) with respect to t ,

we can derive

V̇n = wnẇn + ϑ̂n
˙̂
ϑn

ςn

+ μ̂n
˙̂μn

ξn
+ V̇n−1

= wn(S(u(t − τ(t))) + f̃n(x, t) + d̃n(x, t) − α̇n−1

− p̂nλn − pnλ
3
n

+ u(t) − sign(wn)(ū + ũ)) + ϑ̂n
˙̂
ϑn

ςn

+ μ̂n
˙̂μn

ξn
+ V̇n−1

= wn(u(t) + S(u(t − τ(t)))

− sign(wn)(ū + ũ) + Fn(Zn)

+ d̃n) + ϑ̂n
˙̂
ϑn

ςn
+ μ̂n

˙̂μn

ξn
+ V̇n−1, (72)

where Fn(Zn) = f̃n(x, t) − α̇n−1 − p̂nλn − pnλ3n and
Zn = [x1, ..., xn, ϑ∗

1 , ..., ϑ∗
n , μ∗

1, ..., μ
∗
n, λ2, ..., λn]T .

Then, similar as in (46), one obtains

wn Fn(Zn) =wnW
∗T
n Sn(Zn) + wnδn(Zn)

� w2
n

2an
ϑn S

T
n Sn + an

2
+ |wn| εn, (73)

where θn = ∥∥W ∗T
n

∥∥2, the design parameter an > 0 and
εn > 0 is constant. Next, we estimate the first few terms
in (72), then by usingAssumption 4,we can deduce that

wn(u(t) + S(u(t − τ(t))) − sign(wn)(ū + ũ))

� wnu(t). (74)

Remark 8 It is worth noting that we do not employ the
method for handling unknown time delay as described
in Sect. 3.1 here. This is because, in the presence of
input saturation, it is challenging to construct integral
terms associatedwith unknown time delay and requires
a case-by-case discussion. However, fortunately, when
input saturation exists, we can estimate the input with
unknown time delay by utilizing the upper and lower
bounds of the saturation existing in the system input.

Substituting the above inequalities into (72), yields

V̇n � wnu(t) + w2
n

2an
ϑn S

T
n Sn + an

2
+ ϑ̂n

˙̂
ϑn

ςn

+ μ̂n
˙̂μn

ξn
+ |wn| (d̄n + εn) + V̇n−1
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� wnu(t) + w2
n

2an
ϑn S

T
n Sn + an

2
+ ϑ̂n

˙̂
ϑn

ςn

+ μ̂n
˙̂μn

ξn
+ w2

n

2bn
μn + bn

2
+ V̇n−1, (75)

whereμn = (d̄n+εn)
2 and bn > 0 is design parameter.

Given the actual controller u and the adaptive law
be designed as

u = − wn

2an
ϑ∗
n S

T
n Sn − wn

2bn
μ∗
n −

(
Kn + 1

2

)
wn − Lnw

3
n,

(76)

ϑ̇∗
n = ςnw

2
n

2an
STn Sn − mnϑ

∗
n − qn

ςn
ϑ∗3
n , (77)

μ̇∗
n = ξn

2bn
w2
n − rnμ

∗
n − sn

ξn
μ∗3
n , (78)

where the design parameters mn , qn , rn , sn , Kn and Ln

are positive.
Together with (43) and (76)–(78), yields

V̇n � −
(
Kn + 1

2

)
w2
n − Lnw

4
n + mn

ϑ̂nϑ
∗
n

ςn
+ qn

ϑ̂nϑ
∗3
n

ς2
n

+ rn
μ̂iμ

∗
n

ξi
+ sn

μ̂iμ
∗3
i

ξ2i

+ Knw
3
2
n − Knw

3
2
n + an

2
+ bn

2
+ V̇n−1

� −K1 ln χ − L1 ln
2 χ −

n∑
j=2

K jw
3
2
j

−
n∑

i=2

L jw
4
j +

n∑
j=1

m j
ϑ̂ jϑ

∗
j

ς j

+
n∑
j=1

q j
ϑ̂ jϑ

∗3
j

ς2
j

+
n∑
j=1

r j
μ̂ jμ

∗
j

ξ j

+
n∑
j=1

s j
μ̂ jμ

∗3
j

ξ2j
+

n∑
j=1

σ̄ j , (79)

where σ̄n = Knσn + an
2 + bn

2 .
In accordance with the above design and the proof

of Theorem 1, we immediately obtain the following
theorem:

Theorem 2 Suppose that Assumptions 1–5 hold. For
systems (67) with disturbance, unknown time-varying
input delay and saturation, an adaptive controller (76)

coupled with the virtual controller and the adaptive
laws (77) and (78) exist, ensuring that all the closed-
loop signals of the system are semi-globally uniformly
ultimately bounded in fixed time. By choosing appro-
priate function μ(t) to satisfy Definition 2, for any
bounded initial states, the following facts hold:

1. All the closed-loop signals of the system are semi-
globally fixed-time uniformly ultimately bounded;

2. The tracking error r(t) will remain within a small
bounded range of the origin in finite time if suitable
design parameters are chosen;

3. The tracking error r(t) canbeguided to apredeter-
mined accuracy set �r = {r(t) ∈ R ||r(t)| < ε }
within a specified finite time Tk, where both ε and
Tk can be pre-set, ensuring the transient perfor-
mance of r(t).

Proof Please refer to Theorem 1 for detail.

4 Numerical example

In this section, we will present the following sim-
ulation examples to demonstrate the performance of
the designed controller. Furthermore, we will conduct
comparisons to highlight the innovativeness and con-
tribution of our research results.

4.1 Example 1

Consider the nonlinear system with input delay in [60]
as follows

ẋ1(t) = g1x2(t) + f1(x, t) + d1(x, t),

ẋ2(t) = g2x3(t) + f2(x, t) + d2(x, t),

ẋ3(t) = g3u(t − τ(t)) + f3(x, t) + d3(x, t),

y = x1, (80)

where g1 = 2, g2 = g3 = 1, unknown function,
disturbance are defined as f1 = sin(x1x3), f2 =
x21 x3e

x2 , f3 = x1x2ex3 , d1 = x3, d2 = 0, d3 =
x3sin(x1x2), respectively. To facilitate a direct com-
parison with the literature [60] under identical con-
ditions, we will simulate based on the design pro-
cedures outlined in [60]. Then the initial conditions
are selected as [x1(0), x2(0), x3(0)]T = [0.01, 0, 0]T ,
and the desired trajectory yr (t) is chosen as yr =
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Fig. 2 The trajectory of y and yr in [60] when τ = 0.02

Fig. 3 The trajectory of y and yr in [60] when τ = 0.03

0.5sint+0.5sin(0.5t). The performance of the system
output, based on the parameters and controller design
from [60], is illustrated in Figs. 2, 3.

It is evident from Figs. 2, 3 that as the input delay
increases, the controller described in the aforemen-
tioned literature may exhibit growth and oscillations.
Consequently, under large input delay (τ � 0.03),
the state of the nonlinear system may experience an
unbounded scenario. Next, we will use the scheme pro-
posed in this paper for numerical simulation. Firstly, the
compensation system is given by

λ̇2 = − p̂2λ2 − p2λ
3
2 + λ3,

λ̇3 = − p̂3λ3 − p3λ
3
3 + u(t) − u(t − τ̂ )

− sign(λn)

∫ t−τ̂+τ̄

t−τ̂

|u̇(s)|ds. (81)

The design parameters are set asm1 = 10,m2 = m3 =
20, q1 = 4, q2 = q3 = 16, r1 = r2 = 4, r3 = 4,
s1 = 40, s2 = 20, s3 = 10, a1 = 1, a2 = a3 = 5, b1 =
b2 = 1, b3 = 0.5, β1 = 2, β2 = β3 = 8, K1 = K2 =
0.5, K3 = 9, L1 = 0.2, L2 = 5, L3 = 3, γ1 = 20,
γ2 = 10, γ3 = 5, p2 = 2, p̂2 = 5, p3 = 1.5, p̂3 = 2,
τ̂ = τ̄ = 0.04, Tk = 4 seconds, ε = 0.18. And the
initial condition are select as [θ̂1(0), θ̂2(0), θ̂3(0)]T =
[η̂1(0), η̂2(0), η̂3(0)]T = [0, 0, 0]T . Then, the results
of the numerical simulation are shown in the pictures
below.

It can be observed from Figs. 4 and 5 that our
designed adaptive tracking controllers, whether the
input delay is constant or time-varying, are capable
of effectively tracking the desired trajectory yr with

Fig. 4 Output y and desired trajectory yr when τ = 0.04

Fig. 5 Output y and desired trajectory yr when τ = 0.03 +
0.02sint

Fig. 6 The trajectory of tracking error r(t)

Fig. 7 The trajectories of state x2, x3 and input u

minimal error, demonstrating excellent tracking per-
formance. Furthermore, we can observe from Fig. 6
that when we set Tk = 4 and ε = 0.18, the system
error r(t) can satisfy the predetermined transient per-
formance criteria .

The operational trajectories of the compensation
system λ2, λ3, the adaptive laws θ̂1, θ̂2, θ̂3 and η̂1, η̂2,
η̂3 and system state x2, x3, input u are depicted in Figs.
7, 8, 9 and 10, demonstrating that all signals of the
closed-loop system are bounded.
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Fig. 8 The trajectory of compensation system λ2 and λ3

Fig. 9 The trajectory of adaptive parameters θ̂1, θ̂2 and θ̂3

Fig. 10 The trajectory of adaptive parameters η̂1, η̂2 and η̂3

Fig. 11 The trajectory of [x1(0), x2(0), , x3(0)] =
[0.05, 0.1, 0.1]

Then, setting w
4
3 = v

4
3 = 2

9 , ε1 = 1
4 , we have

σ = 2− 1
4 and ν = 1.25. By reviewing (61), we can

calculate the setting time Tm as

Tm = 	
( 1
5

)
	

( 4
5

)
4
5σ

(σ

ν

) 4
5 ≈ 4.9(s).

To demonstrate that our designed controller can
achieve fixed-time tracking control, we now present
the tracking trajectories for initial values [x1(0), x2(0),
x3(0)] set at [0.05, 0.1, 0.1], [0.5, 0.6, 0.2], and
[0.7, 0.2, 0.3] in Figs. 11, 12 and 13. The time required
for achieving bounded tracking will not exceed the set-
tling time Tm .

Fig. 12 The trajectory of [x1(0), x2(0)] = [0.5, 0.6, 0.2]

Fig. 13 The trajectory of [x1(0), x2(0), x3(0)] = [0.7, 0.2, 0.3]

It is evident from the above three figures that as the
initial value increases, the timeT required for achieving
bounded tracking also increases, yet all remain below
4.9 s, not exceeding the settling time Tm . This indicates
that our controller can achieve the goal of fixed-time
tracking control without depending on the initial value.

4.2 Example 2

Considering the following nonlinear system with input
saturation

ẋ1(t) = 0.5x2(t) + 0.4sint,

ẋ2(t) = 0.75u(t − τ(t)) + 1.2x1x2 + 0.5sin(x2),

y = x1, (82)

with compensation system

λ̇2 = − p̂2λ2 − p2λ
3
2 + u(t) − sign(wn)(ū + ũ).

(83)

The design parameters are set as m1 = 2, m2 = 2,
q1 = 12, q2 = 4, r1 = 2, r2 = 4, s1 = 20, s2 = 40,
a1 = 25/3, a2 = 2.5, b1 = 1, b2 = 2, β1 = β2 = 2,
K1 = 4, K2 = 3, L1 = 10, L2 = 5, γ1 = 10, γ2 = 20,
p2 = p̂2 = 2, Tk = 3 seconds, ε = 0.1. Let the initial
condition are select as [x1(0), x2(0)]T = [0.05, 0.1]T ,
[θ̂1(0), θ̂2(0)]T = [0, 0.1]T and [η̂1(0), η̂2(0)]T =
[0.1, 0.05]T , yr = 0.5sint + 0.25sin(0.5t) and the
saturation threshold set to ū = 4.5 and ũ = 2.5. The
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Fig. 14 Output y and desired trajectory yr

Fig. 15 The trajectory of tracking error r(t)

Fig. 16 The trajectory of system input u with saturation

numerical simulation results are shown in the following
picture.

From Figs. 14, 15 and 16, it can be observed that our
adaptive controller remains effective in the presence of
unknown input delay and input saturation in nonlinear
systems, as the output y can closely track the desired
trajectory yr . And the tracking error r(t) satisfies the
specified transient performance.

Therefore, the numerical simulation experiments
above validate the effectiveness of the controller we
have designed.

5 Conclusion

The study has investigated the fixed-time tracking
control problem for uncertain nonlinear systems with
unknown input delay, nonlinear function and external
disturbances. Initially, the impact of unknown input
delay have been mitigated by introducing a compen-
sation system, and a specific funnel function has been
constructed to constrain the transient performance of
tracking error. Subsequently, new adaptive parameters
have been introduced into the Lyapunov-Krasovskii

functional to address unknowndisturbances, alongwith
a novel bounded estimation method and radial basis
function neural network to handle systemuncertainties.
An adaptive controller is designed using backstepping
method to demonstrate the fixed-time boundedness of
all signals in the closed-loop system and ensure the
transient behavior of tracking error. Finally, the effec-
tiveness of the proposed method has been validated
through numerical simulations.
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