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Abstract This study develops a novel control

scheme to address the challenge of establishing a heat

transfer mechanism model for continuous annealing

furnaces, which poses obstacles to the implementation

of conventional model-based control strategies for

regulating strip annealing temperature. The proposed

approach involves integrating partial form dynamic

linearization with model-free adaptive control

(MFAC) using sliding time window technology to

enhance adjustability and flexibility. In addition, an

energy function penalty term is incorporated into the

performance index function to minimize energy loss.

Besides, an enhanced quantum-behaved particle

swarm optimization algorithm is introduced, address-

ing the problems associated with parameter tuning in

the MFAC algorithm. Finally, the developed method

is applied to simulate continuous annealing furnace

operations in a cold rolling environment and is

compared with conventional MFAC and propor-

tional-integral-derivative control methods. The results

indicate that the proposed algorithm is more efficient

compared to existing algorithms, with a mean absolute

error of 4.85 8C and an energy conservation rate of

4.3%.
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1 Introduction

The continuous annealing furnace (CAF) models are a

typical class of nonlinear systems, which play a crucial

role in the continuous annealing treatment line for cold

rolled sheet steel strips, primarily serving the purpose

of strip annealing. Annealing is an essential heat

treatment process in cold rolled steel strip production

[1, 2], and the primary function is to reinstate the

malleability of metal particles that have been previ-

ously hardened [3–6]. In CAF, the strip undergoes

preheating using exhaust gas heat from both the

heating furnace and soaking furnace before entering

the heating section (HS) for further temperature

elevation following preheating [7–9]. Each furnace

area within the HS is heated by radiation tube heaters

as depicted in Fig. 1 [10]. The annealing temperature

of steel strip directly affects the quality of steel strip

products. Therefore, accurate regulation of tempera-

ture within the HS is a critical factor in production

operations [11].

The CAF exhibits intricate characteristics such as

nonlinearity, substantial time delays, and robust

coupling [12–14]. When there are changes in external

factors or steel profiles, it is common for operation

technicians to make adjustments to the furnace

temperature or modify the strip speed to ensure that

the strip temperature aligns with the desired heating

target. However, it is noted that the furnace temper-

ature too high can lead to several undesirable conse-

quences that include increased fuel consumption and

the strip products do not meet the required quality

standards [15]. With the progress made in modern

control theory, various techniques such as PID control

[16–18], fuzzy control [19, 20], adaptive control

[21–23], and predictive control [24, 25] have emerged,

and these techniques have been effectively applied in

industrial production. For example, Agajie et al. [26]

designed a novel self-tuning fuzzy PID controller for

controlling frequency and power deviations in hybrid

renewable energy generation systems. Elsisi consid-

ered the impact of system visual uncertainty on the

safety of autonomous vehicles and proposed an

improved adaptive model predictive control optimiza-

tion design [27]. The conventional approach used for

strip temperature regulation in CAF usually employs

PID controllers [28]. Despite its extensive utilization,

the system fails to satisfy the performance criteria

when exposed to external disturbances within the

CAF, and these can result in system shocks or longer

adjustment times, ultimately affecting the quality of

the steel strip. To address these issues, Wu et al.

introduced a nonlinear model predictive control

(MPC) method to enhance the accuracy of adjusting

strip temperature in CAF [29]. Niederer et al. [30]

proposed a nonlinear model predictive controller to

regulate strip temperature in CAF with mixed com-

bustion combinations. However, the availability of

accurate model information becomes crucial when

employing MPC. Nevertheless, the absence of on-site

measurement sensors introduces numerous unknown

parameters into the CAF posing challenges in accu-

rately predicting outcomes through mathematical

models. Consequently, to efficiently regulate a
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Fig. 1 Process diagram of heating section of continuous annealing furnace
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complex system such as a CAF, it is essential to

modify the model and decrease the level of control

complexity. In this study, a novel partial form dynamic

linearization data model based MFAC (PFDL-MFAC)

scheme is proposed as an effective method to deal with

the above problems.

MFAC is a well-known control approach that relies

on data-driven techniques and does not require detailed

knowledge of the controlled system [31]. On the

contrary, the design and implementation of this method

completely depend on real-time input and output (I/O)

data, and effectively solving the parameter tuning

problem of PID control when dealing with complex

systems. Additionally, this study considers the energy

loss index of CAFs to mitigate energy wastage.

However, the majority of current PFDL-MFAC

schemes commonlyemployfixedcontroller parameters,

which offer operational simplicity but lack adaptability

to the dynamic changes of the system [32]. Metaheuris-

tic algorithms, including genetic algorithms, particle

swarm optimization (PSO), and others, belong to a

category of algorithms that draw inspiration from

natural phenomena or biological behaviors. They are

employed to address optimization problems and find

applications in industrial production. For instance, in

[33], a novel cooperative optimization algorithm is

employed to improve the trajectory tracking of robotic

arms. In [34], a combination of fuzzy logic and Harris

Hawks optimization algorithm is utilized to achieve the

optimal energy management strategy for a seawater

desalination plant. Metaheuristic algorithms are also

commonly used to optimize the parameters of con-

trollers. Essa et al. [35] proposed an intelligent tuning

method forMPC based on the Bat algorithm to enhance

the control accuracy for aircraft flight control problems.

Bergies et al. [36] addressed the issue of uncertainties in

autonomous vehicle steering angle adjustments caused

by road undulations and visual system dynamics,

employing a dandelion optimization strategy to obtain

the optimal parameters for MPC. To address the

parameters tuning issue of model-free adaptive con-

trollers, an enhanced QPSO (EQPSO) algorithm, which

dynamically adjusts controller parameters using real-

time I/O information is utilized in this study [37]. The

QPSO algorithm, which incorporates principles derived

from quantum theory, is an advanced iteration of the

particle swarmoptimization algorithm.Whencompared

with other intelligent algorithms, this algorithmdoes not

require the calculation of particle velocity, has fewer

control parameters, and offers faster convergence speed

[38, 39]. Hence, this study introduces an enhanced

QPSO algorithm that integrates the differential evolu-

tion algorithm (DE) and generalized opposition-based

learning (GOBL) to dynamically optimize the param-

eters of the model-free adaptive controller [40, 41]. By

integrating the parameters of PFDL-MFAC as variables

for optimization within the EQPSO algorithm and

utilizing a newly proposed fitness function, optimal

values are chosen to attain enhanced performance in

accordance with the current system conditions.

Based on the aforementioned analysis, this study

presents an improved PFDL-MFAC approach for the

regulation of strip temperature in CAF. In contrast to

currently available technologies, this study presents

several distinct advantages as follows.

1. A novel methodology has been devised to opti-

mize the parameters of a model-free adaptive

controller. This methodology enhances the quan-

tum particle swarm algorithm to address its

limitations, such as slow convergence and a

tendency to produce local optima. The refined

algorithm is then used to dynamically adjust the

parameters of the PFDL-MFAC controller based

on changes in steel strip specifications, effectively

solving the parameter calibration challenge.

2. Compared to the findings in reference [29], this

study posits that the continuous annealing furnace

functions as a high-energy-consuming apparatus.

To address this, an energy penalty term has been

integrated into the performance index function of

the controller within the framework of the steel

strip annealing temperature control scheme. The

primary objective of this integration is to promote

energy conservation and emission reduction.

Notably, this aspect is rarely considered in other

control strategy studies.

3. In contrast to the research conducted in reference

[30], a model-free adaptive control approach utiliz-

ing data-driven technology is introduced to tackle

the challenge of strip temperature regulation in

continuous annealing furnaces. This method aims to

overcome the limitations of conventional controllers

that heavily depend on mathematical models.

Notation In this study, all the real numbers and

positive integers are represented by R and Zþ; k k
denotes Euclidean norm of vectors or matrices; sign
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indicates symbolic function; randðr1; r2Þ denotes the
random number uniformly distributed in the interval

r1; r2ð Þ; and k represent the ‘AND’ and ‘OR’ relation-
ships of an equation, respectively.

2 Prediction model for the strip temperature

of CAF

The derivation of a mathematical model for CAFs is

challenging due to their complex and nonlinear

relationships, which makes mechanism modeling

difficult. The analysis of the process principle of a

CAF shows that the strip temperature is influenced by

various significant factors, including strip width, strip

thickness, production speed, furnace temperature, and

air–fuel ratio. This study utilizes autoregressive mov-

ing average (ARMA) modeling theory and considers

temporal characteristics, to forecast the dynamic

model of strip temperature.

Remark 1 The control scheme implemented in this

study does not incorporate any information from the

established model, which solely depends on the

predicted model to generate the required output data

for controller design, without actively engaging in the

controller design process.

The modeling data utilized in this study were

obtained from real-time CAF data collected at the

production site. The ARMA model of CAF is simpli-

fied as

!aðz�1ÞTðkÞ ¼ !bðz�1ÞuðkÞ ð1Þ

where uðkÞ and TðkÞ are the input and output variables,
respectively; k denotes the sampling time;

!aðz�1Þ;!bðz�1Þ are shown in (2).

!aðz�1Þ ¼ I þ !a
1z

�1 þ !a
2z

�2 þ � � � þ !a
na
z�na

!bðz�1Þ ¼ !b
1z

�1 þ !b
2z

�2 þ � � � þ !b
nb
z�nb

(

ð2Þ

where I is the identity matrix; na and nb represent the

dimensions of the matrices !a and !b, respectively.

In this study, an experiment was conducted to

collect production data from the CAF within a

specified period on the continuous annealing line.

The sampling time interval was configured to one

minute, and a total of 4800 consecutive data sets were

chosen. The initial 2400 data sets were selected for

training, while the remaining data sets were reserved

for testing. By conducting experiments, the values of

!aðzÞ;!bðzÞ are obtained as

!aðzÞ ¼ 1� 0:902z�1;!bðzÞ

¼
�0:06116z�1 þ 0:05815z�2; 0:03834z�1 � 0:03201z�2;

0:05552z�1 þ 0:02338z�2; 0:008416z�1 � 0:002905z�2

" #
:

3 A design of partial form dynamic linearization-

improved model-free adaptive control (PFDL-

IMFAC)

The PFDL-IMFAC control scheme is a proposed

energy-saving solution for CAF. It is developed by

integrating the MFAC and PFDL data models, as well

as incorporating constraints on energy consumption.

This algorithm takes into account not only the tracking

error of strip temperature but also addresses the issue

of energy loss that occurs during continuous anneal-

ing. Meanwhile, the EQPSO optimization algorithm is

employed to optimize the parameters of the PFDL-

IMFAC method.

3.1 Dynamic linearization

The strip temperature in the CAF is not solely

determined by a single control input at any given

moment. By linearizing, it becomes possible to

analyze the effects of various input changes within a

predetermined time frame on subsequent output

changes. The aforementioned methodology is referred

to as the PFDL data processing method, which is

capable of capturing intricate dynamics in the original

system, while simultaneously mitigating system com-

plexity through dynamic linearization.

For the nonlinear system of CAF, the dynamic

equation can be established as follows

Tðk þ 1Þ ¼ f TðkÞ; . . .; Tðk � nTÞ; uðkÞ; . . .; uðk � nuÞð Þ
ð3Þ

where uðkÞ 2 Rm and TðkÞ 2 Rn, respectively; nu and

nT denote the orders of the input and output, respec-

tively; f ð�Þ represents the nonlinear time-varying

function. UqðkÞ 2 Rmq is defined as
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UqðkÞ ¼ uTðkÞ; . . .; uTðk � qþ 1Þ
� �T ð4Þ

which satisfiesUqðkÞ ¼ 0q, when k� 0, where q 2 Zþ

represents the integer length of the linearized control

input. For system (3), two assumptions can be

established as follows:

Assumption 1 The nonlinear time-varying function

f ð�Þ possesses continuous partial derivatives with

respect to input uðkÞ; uðk � 1Þ; . . .; uðk � qþ 1Þ,
respectively.

Assumption 2 The system (3) satisfies the general-

ized Lipschitz condition, which guarantees that for any

given time interval k1 6¼ k2 � 0 and Uqðk1Þ 6¼ Uqðk2Þ,
there exists a positive constant b meets Tðk1 þ 1Þk
�Tðk2 þ 1Þk� b Uqðk1Þ � Uqðk2Þ

�� ��, and DUqðkÞ ¼
UqðkÞ � Uqðk � 1Þ is precisely defined.

Remark 2 Assumption 1 is a common constraint in

CAF controller design, while Assumption 2 sets a limit

on the maximum rate of output change of the CAF.

Theorem 1 can be derived from Assumptions 1 and 2.

Theorem 1 The nonlinear time-varying system (3)

which satisfying Assumptions 1 and 2 can be trans-

formed into a PFDL model as shown in (5) by

introducing a time-varying pseudo-Jacobian block

matrix (PJM) NpqðkÞwhen DUqðkÞ
�� �� 6¼ 0 is given for

a positive integer q:

Tðk þ 1Þ ¼ TðkÞ þ NpqðkÞDUqðkÞ ð5Þ

For any given time, NpqðkÞ ¼ N1ðkÞ; . . .;NqðkÞ
� �

varies within a bounded range, and its corresponding

sub-square matrix can be expressed as

NiðkÞ ¼

N11iðkÞ N12iðkÞ � � � N1nuiðkÞ
N21iðkÞ N22iðkÞ � � � N2nuiðkÞ

..

. ..
. . .

. ..
.

NnT1iðkÞ NnT2iðkÞ � � � NnTnuiðkÞ

2
66664

3
77775;

i ¼ 1; . . .; q:

ð6Þ

Proof Theorem 1 has been rigorously proven in [31],

demonstrating that different PFDL data models can be

obtained by selecting various values of q.

3.2 Control design

The inclusion of the penalty term in the energy

function is a key aspect addressed in this study,

therefore, the new performance index function is

selected by PFDL-IMFAC as follows

J uðkÞð Þ ¼ Tmðk þ 1Þ � Tðk þ 1Þk k2þn uðkÞk
�uðk � 1Þk2þf uðkÞk k2:

ð7Þ

The output Tmðk þ 1Þ serves as the reference of

strip temperature, and n[ 0 acts as the weight factor

to restrict changes in control input. The role of

f uðkÞk k2 is to minimize energy loss in CAF.

Remark 3 The index function in (7) evaluates the

control performance, stability, and fuel consumption

management capability of the strip temperature con-

trol system.

Substituting (5) into (7) obtains

J uðkÞð Þ ¼ Tmðk þ 1Þ � Tðk þ 1Þk
�NpqðkÞDUqðkÞ

��2þn uðkÞ � uðk � 1Þk k2

þ f uðkÞk k2:
ð8Þ

Taking the first-order partial derivative of (8) with

respect to uðkÞ is

nI þ NT
1 ðtÞN1ðtÞ

� �
DuðkÞ þ fuðkÞ � NT

1 ðtÞ

Tmðk þ 1Þ � TðkÞ �
Xq
i¼2

NiðtÞDuðk � iþ 1Þ
 !

¼ 0:

ð9Þ

Due to the matrix inversion involved in (9), it is

challenging to compute for high-dimensional systems.

To address this issue, a simplified algorithm is

proposed by referring to the control algorithm for a

single output, uðkÞ is proposed as

uðkÞ ¼
nþ N1ðkÞk k2
� �

uðk � 1Þ

nþ N1ðkÞk k2þf

þ NT
1 ðkÞq1 Tmðk þ 1Þ � TðkÞð Þ

nþ N1ðkÞk k2þf

� NT
1 ðkÞ

Pq
i¼2 qiNiðkÞDuðk � iþ 1Þ
nþ N1ðkÞk k2þf

ð10Þ
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where qi 2 ð0; 1� is used to enhance the generality of

the PFDL-IMFAC algorithm.

The real-time estimation of NpqðkÞ is achieved by

introducing the parameter estimation criterion func-

tion as follows

J NpqðkÞ
� �

¼ DTðkÞ � NpqðkÞDUqðk � 1Þ
�� ��2

t þ l NpqðkÞ � N̂pqðkÞ
�� ��2 ð11Þ

where l[ 0 is used to constrain the rate of variation

among adjacent parameters.

The estimation algorithmofNpqðkÞ can be derived as

N̂pqðkÞ ¼N̂pqðk � 1Þ þ g DTðkÞð

�N̂pqðk � 1ÞDUqðk � 1Þ
� DU

T
q ðk � 1Þ

lþ DUqðk � 1Þ
�� ��2

ð12Þ

where N̂pqðkÞ ¼ N̂1ðkÞ; . . .; N̂qðkÞ
� �T

is the estimated

value of NpqðkÞ; g 2 ð0; 2� is the step factor.

To enhance the robustness of the PJM parameter

estimation algorithm, a parameter reset algorithm (13)

is introduced.

N̂ii1ðkÞ ¼ N̂ii1ð1Þ; N̂ii1ð1Þ
		 		\b2k N̂ii1ð1Þ

		 		
[ ab2k sign N̂ii1ðkÞ

� �
6¼ sign N̂ii1ð1Þ

� �
N̂ij1ðkÞ ¼ N̂ij1ð1Þ; N̂ij1ð1Þ

		 		[ b1k sign N̂ij1ðkÞ
� �

6¼ sign N̂ij1ð1Þ
� �

8>>>>><
>>>>>:

ð13Þ

where b1 and b2 represent small positive numbers that

satisfy the condition Nij1ðtÞ
		 		� b1; b2 � Nii1ðtÞj j

� ab2; 1� a; N̂ii1ð1Þ and N̂ij1ð1Þ are the initial values
of N̂ii1ðkÞ and N̂ij1ðkÞ, respectively.

According to (3) and (10), it is possible to calculate

the strip temperature. Meanwhile, it has been demon-

strated by (10) that the energy-saving control algo-

rithm of the CAF is dependent solely on the furnace

temperature.

Remark 4 The selection of different control inputs

for linearizing the length of the constant q results in

distinct PFDL data models. By judiciously choosing q

and NpqðkÞ, the flexibility of the dynamic linearized

data model can be enhanced to accurately represent

the original nonlinear system.

3.3 Stability analysis of PFDL-IMFAC

The boundedness of NpqðkÞ has been established, and

the convergence of the system output error is subse-

quently proven. For ease of explanation, the stability

analysis for the case nu ¼ 1; nT ¼ 1; q ¼ 1 is provided

below, with a similar proof procedure applicable to

other cases [42].

According to (10), the control law at nu ¼
1; nT ¼ 1; q ¼ 1 is expressed as

uðkÞ ¼ nþ N̂2ðkÞ
nþ N̂2ðkÞ þ f

uðk � 1Þ þ qN̂ðkÞ
nþ N̂2ðkÞ þ f

eðkÞ ð14Þ

where N̂ðkÞ is the estimated value of the time-varying

parameter NðkÞ.

Assumption 3 The partial derivative of the nonlin-

ear time-varying function f ð�Þ with respect to the

system input uðkÞ remains continuous for a single-

input single-output system in the form (3).

Assumption 4 The system satisfies the generalized

Lipschitz condition for any time 0� k1 6¼ k2, and

supposes that uðk1Þ 6¼ uðk2Þ, where Tðk1 þ 1Þ � Tðk2j
þ1Þj � b uðk1Þ � uðk2Þj j exists. Here, b represents a

positive constant.

Lemma 1 The output errorwill converge to a constant

w, i.e. limk!1 eðkÞj j �w, which is related to f, if the
nonlinear time-varying system satisfies Assumptions 3

and 4, and the control method is employed as in (10).

Proof Define the output error as

eðkÞ ¼ TmðkÞ � TðkÞ: ð15Þ

From (15) and DTðk þ 1Þ ¼ NðkÞDuðkÞ, we get

eðk þ 1Þ ¼ TmðkÞ � TðkÞ � NðkÞDuðkÞ
¼ eðkÞ � NðkÞDuðkÞ: ð16Þ

Then, (14) can be rewritten as

DuðkÞ ¼ � f

nþ N̂2ðkÞ þ f
uðk � 1Þ

þ qN̂ðkÞ
nþ N̂2ðkÞ þ f

eðkÞ: ð17Þ

Substituting (17) into (16) obtains
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eðk þ 1Þ ¼ eðkÞ � NðkÞDuðkÞ

¼ 1� qN̂ðkÞNðkÞ
nþ N̂2ðkÞ þ f

 !
eðkÞ

þ fNðkÞ
nþ N̂2ðkÞ þ f

uðk � 1Þ: ð18Þ

According to (14), the uðk � 1Þ is defined as

uðk � 1Þ ¼ nþ N̂2ðk � 1Þ
nþ N̂2ðk � 1Þ þ f

uðk � 2Þ

þ qN̂ðk � 1Þ
nþ N̂2ðk � 1Þ þ f

eðk � 1Þ: ð19Þ

Substituting (19) into (18) gives

eðk þ 1Þ ¼ 1� qN̂ðkÞNðkÞ
nþ N̂2ðkÞ þ f

 !
eðkÞ þ fNðkÞ

nþ N̂2ðkÞ þ f

nþ N̂2ðk � 1Þ
nþ N̂2ðk � 1Þ þ f

uðk � 2Þþ

qN̂ðk � 1Þ
nþ N̂2ðk � 1Þ þ f

eðk � 1Þ

0
BBBB@

1
CCCCA

� s1eðkÞ þ s2s4
Xk�1

j¼1

sk�1�j
3 eðjÞ þ s2s

k�1
3 uð0Þ

ð20Þ

where

s1 ¼ max 1� qN̂ðkÞNðkÞ
nþ N̂2ðkÞ þ f

					
					; . . .; 1� qN̂ð1ÞNð1Þ

nþ N̂2ð1Þ þ f

					
					

 !
;

s2 ¼ max
fNðkÞ

nþ N̂2ðkÞ þ f

					
					; . . .; fNð1Þ

nþ N̂2ð1Þ þ f

					
					

 !

s3 ¼ max
nþ N̂2ðk � 1Þ

nþ N̂2ðk � 1Þ þ f

					
					; . . .; nþ N̂2ð1Þ

nþ N̂2ð1Þ þ f

					
					

 !
;

s4 ¼ max
qN̂ðk � 1Þ

nþ N̂2ðk � 1Þ þ f

					
					; . . .; qN̂ð1Þ

nþ N̂2ð1Þ þ f

					
					

 !

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

.

Taking the absolute value on both sides of (20) as

eðk þ 1Þj j � s1 eðkÞj j þ s2s4
Xk�1

j¼1

sk�1�j
3 eðjÞj j

þ s2s
k�1
3 uð0Þj j: ð21Þ

It can be deduced that

eðkÞj j � s1 eðk � 1Þj j þ s2s4
Xk�2

j¼1

sk�2�j
3 eðjÞj j

þ s2s
k�2
3 uð0Þj j: ð22Þ

Substituting (22) into (21) yields

eðk þ 1Þj j � s21 eðk � 1Þj j þ s1s2s4
Xk�2

j¼1

sk�2�j
3 eðjÞj j

þs2s4
Xk�1

j¼1

sk�1�j
3 eðjÞj j þ s1s2s

k�2
3 uð0Þj j

þs2s
k�1
3 uð0Þj j:

ð23Þ

In the same way, the output error inequality of other

processes gives

eðk � 1Þj j � s1 eðk � 2Þj j þ s2s4
Xk�3

j¼1

sk�3�j
3 eðjÞj j

þs2s
k�3
3 uð0Þj j

eðk � 2Þj j � s1 eðk � 3Þj j þ s2s4
Xk�4

j¼1

sk�4�j
3 eðjÞj j

þs2s
k�4
3 uð0Þj j

..

.

eð2Þj j � s1 eð1Þj j þ s2s4 eð0Þj j þ s2s3 uð0Þj j:½

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð24Þ

Substituting (24) into (23) yields

eðk þ 1Þj j � s21 eðk � 1Þj j

þ s1s2s4
Xk�2

j¼1

sk�2�j
3 eðjÞj j

þ s2s4
Xk�1

j¼1

sk�1�j
3 eðjÞj j þ s1s2s

k�2
3 uð0Þj j

þ s2s
k�1
3 uð0Þj j; . . .; � sk1 eð1Þj j

þ s2s4
Xk�1

m¼1

sm1
Xk�m�1

j¼1

sk�m�1�j
3 eðjÞj j

þ s2 uð0Þj j
Xk�1

m¼1

sm1 s
k�m�1
3 :

ð25Þ

Define

hðk þ 1Þ ¼sk1 eð1Þj j þ s2s4
Xk�1

m¼1

sm1

Xk�m�1

j¼1

sk�m�1�j
3 eðjÞj j

þs2 uð0Þj j
Xk�1

m¼1

sm1 s
k�m�1
3 :

ð26Þ
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For hðk þ 1Þ, the (27) holds

hðk þ 2Þ ¼ skþ1
1 eð1Þj j þ s2s4

Xk
m¼1

sm1
Xk�m

j¼1

sk�m�j
3 eðjÞj j

þ s2 uð0Þj j
Xk
m¼1

sm1 s
k�m
3

� skþ1
1 eð1Þj j þ s2s4

Xk�1

m¼1

sm1
Xk�m�1

j¼1

sk�m�j�1
3 eðjÞj j

þ s2 uð0Þj j
Xk�1

m¼1

sm1 s
k�m�1
3 þ s2 uð0Þj jsk1:

ð27Þ

The boundedness of pseudo-partial derivatives

(PPD) is introduced, and demonstrating that for any

time k, NðkÞ is always less than the constant b2. The

proof of this boundedness has been established in [34].

Define nmin þ fmin ¼ 0:25b2 and then select

nmin þ fmin\nþ f. The existence of a constant M1

is necessary for the validity of the following inequality

0\M1 �
N̂ðkÞNðkÞ

nþ N̂2ðkÞ þ f
� b2N̂ðkÞ

nþ N̂2ðkÞ þ f

� b2N̂ðkÞ
2
ffiffiffiffiffiffiffiffiffiffiffi
nþ f

p
N̂ðkÞ

\
b2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nmin þ fmin

p ¼ 1:

ð28Þ

According to (28) and q 2 0; 1ð �, (29) holds

s1 ¼ max 1� qN̂ðkÞNðkÞ
nþ N̂2ðkÞ þ f

					
					; . . .; 1� qN̂ð1ÞNð1Þ

nþ N̂2ð1Þ þ f

					
					

 !
� 1� qM1j j\1:

ð29Þ

Because of 0\s1\1, (27) can be further simplified

as

hðk þ 2Þ� s1s
k
1 eð1Þj j þ s2s4

Xk�1

m¼1

sm1

Xk�m�1

j¼1

sk�m�j�1
3 eðjÞj j þ s2 uð0Þj j

Xk�1

m¼1

sm1 s
k�m�1
3

þs2 uð0Þj jsk1

� sk1 eð1Þj j þ s2s4
Xk�1

m¼1

sm1
Xk�m�1

j¼1

sk�m�j�1
3 eðjÞj j

þs2 uð0Þj j
Xk�1

m¼1

sm1 s
k�m�1
3 þ s2 uð0Þj jsk1\hðk þ 1Þ

þs2 uð0Þj jsk1:
ð30Þ

The existence of 0\M2\1 is necessary for (31) to

hold as stated

hðk þ 2Þ\M2hðk þ 1Þ þ s2 uð0Þj jsk1: ð31Þ

The following relation can thus be deduced

hðk þ 1Þ\M2hðkÞ þ s2 uð0Þj jsk�1
1 : ð32Þ

Combining (31) and (32) obtains

hðk þ 2Þ\M2hðk þ 1Þ þ uð0Þs2sk1\M2
2hðkÞ

þ uð0Þs2sk1 þM2uð0Þs2sk�1
1 \ � � �\Mkþ1

2 hð1Þ
þ uð0Þs2s1 þ � � � þ uð0Þs2sk1\Mkþ1

2 hð1Þ

þ uð0Þs2
s1ð1� sk1Þ
1� s1

:

ð33Þ

Because 0\M2\1, the result is

lim
k!1

hðk þ 2Þ ¼ lim
k!1

eðk þ 2Þj j � uð0Þs2s1
1� s1

: ð34Þ

Thus, let w ¼ uð0Þs2s1
1�s1

, Theorem 1 be proved to hold,

i.e. limk!1 eðkÞj j �w.

3.4 EQPSO algorithm design

The PFDL-IMFAC algorithm proposed in this study

encompasses a substantial number of parameters.

However, the conventional method of manually

adjusting these parameters not only incurs a significant

time cost but also fails to attain optimal control

performance. Therefore, this study utilizes the benefits

of EQPSO to optimize the control parameters of

PFDL-IMFAC.

The initial position of particles randomly generated

within the search range is shown in (35). The position

of ith particle and the dimension of the particle are

defined as Xi ¼ xi1; xi2; . . .xiDð Þ and D, respectively.

According to the upper and lower bound constraints,

the particle position is limited within the specified

search range.

xijð0Þ ¼xlowij þ rand xupij � xlowij

� �
;

xijð0Þjxlowij � xijð0Þ� xupij

n o
;

i ¼ 1; 2; . . .;M; j ¼ 1; 2; . . .;Dð Þ

ð35Þ

where xijð0Þ is the jth component of the ith individual

in the initial population; M denotes the population
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size; xlowij and xupij represent the upper and lower limits

of the population position, respectively.

The average optimal position of the particle swarm

Zt
mbst is calculated by

Zt
mbst ¼

PM
i¼1

ZiðtÞ
f ti
bstPM

i¼1
1
f ti
bst

ð36Þ

where ZiðtÞ denotes the historical optimal position of

an individual particle; f tibst represents the fitness value

corresponding to the historical best position of the ith

particle at the tth iteration, and the fitness calculation

formula is

f XiðtÞð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M

XM
i¼1

Yi XiðtÞð Þ � Tmsð Þ2
vuut ð37Þ

where XiðtÞ denotes the position of the particle; YiðXt
iÞ

and Tms are the actual values and target values

obtained after parameter optimization, respectively.

The attractor ziðtÞ of the particle is

ziðtÞ ¼ iti � ZiðtÞ þ 1� iti
� �

� ZgðtÞ; iti 2 randð0; 1Þ
ð38Þ

where ZgðtÞ represents the global historical optimal

position of the particle swarm.

The particle position is updated by

XiðtÞ ¼
ziðtÞ � c Zt

mbst � XiðtÞ
		 		 ln 1

viðtÞ

				
				; 0\viðtÞ� 0:5

ziðtÞ þ c Zt
mbst � XiðtÞ

		 		 ln 1

viðtÞ

				
				; 0:5\viðtÞ� 1

8>><
>>:

ð39Þ

where c is used to regulate the convergence speed of

the particles, and defined as

c ¼ ca � cbð Þ � Imax � t

Imax

þ cb ð40Þ

where Imax is the maximum number of iterations; c 2
ca; cb½ � and ca; cb 2 Zþjcb [ caf g.

Remark 5 Although the QPSO algorithm enhances

the global optimization capability of particles to some

extent, it tends to generate local optimal solutions due

to its inherent characteristics. To enhance the global

search capability of particles in the QPSO algorithm,

this study proposes an improved search strategy.

The search strategy of the QPSO algorithm is

initially proposed by incorporating DE, which

employs the mechanisms of crossover, mutation, and

selection mechanisms to update the population,

thereby facilitating algorithm optimization through

iterative population evolution.

The DE algorithm randomly selects two distinct

individuals from the current population, and generates

the mutation operator using the difference method as

follows

vijðtÞ ¼ xr1;jðtÞ þ -z xr2;jðtÞ � xr1;jðtÞ
� �

ð41Þ

where r1 6¼ r2, and r1; r2 2 1;M½ � are all random

integers; -z represents the scaling factor.

To ensure that -z becomes a non-repeated pseudo-

random number within the interval 0; 1½ �, the sinu-

soidal chaotic random sequence is utilized by

-zðIevÞ ¼ sin2 hv arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
-zðIev � 1Þ

p� �
;-zð0Þ

2 randð0; 1Þ ð42Þ

where Iev denotes the evolutionary algebra; hv [ 1 is a

constant.

The individuals xiðtÞ and viðtÞ were subjected to a

cross, resulting in the acquisition of the experimental

individual wijðtÞ as follows

wijðtÞ ¼
vijðtÞ; while : randð0; 1Þ�Pev & j ¼ jd
xijðtÞ; other

�
ð43Þ

where Pev is the crossover probability, and

Pev 2 0:8; 1½ �; jd 2 1; 2; . . .;Df g is a random integer.

The greedy strategy is used to choose the one with

lower fitness as the next generation by (44).

xijðt þ 1Þ ¼ wijðtÞ; while f wijðtÞ
� �

� f xijðtÞ
� �

xijðtÞ; other

�
ð44Þ

The use of the difference operator in the DE

algorithm effectively maintains population diversity,

thus enhancing its overall performance. Additionally,

the incorporation of crossover and selection operators

further enhances the ability of the local search.

However, the efficiency of the DE algorithm gradually

decreases during its operation. To solve this problem,

the GOBL algorithm is integrated into QPSO, along

with a dynamically updated search boundary, to
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enhance the likelihood of discovering the global

optimal solution.

The reverse solution Xop
i of Xi can be obtained by

Xop
i ¼ kop Wt

up þWt
low

� �
� Xt

i ; kop ¼ randð0; 1Þ

Xop
i ¼ rand Wt

low;W
t
up

h i
; if Xop

i \Wt
low k Xop

i [Wt
up

Xop
i ¼ rand Wt

low;W
t
up

h i
; if Xop

i \Xmin k Xop
i [Xmax

8>>><
>>>:

ð45Þ

where Wt
up and Wt

low represent the upper and lower

bounds of the generalized inverse solution produced,

respectively; Xmin;Xmax½ � is the upper and lower

bounds on the search space.

By incorporating the concepts of DE and GOBL,

the global search capability of QPSO is significantly

reinforced. The pseudo-code algorithm procedure of

the EQPSO is revealed in Algorithm 1.

The main steps of the EQPSO algorithm pseudo

code

Algorithm 1 The main steps of the EQPSO algorithm pseudo

code

1. The initialization process involves randomly generating

the initial positions of a set of particles and the number of

EQPSO iterations

2. Calculate the inverse solution of the particle by (45)

3. The objective function values of all particles and their

reverse solutions were computed, and the optimal M
particles were selected as their initial positions

4. Initialize ZiðtÞ and ZgðtÞ, and then update Zt
mbst and ziðtÞ

5. Calculate the objective function values of the particles

6. Mutation operation is performed on particles by (41)

7. The fitness value of the current particle is calculated using

(37) and compared with the individual optimal fitness

value. The individual optimal position with a lower

fitness is selected for updating the individual optimal

value ZiðtÞ

8. The current fitness value of the particle is compared with

the swarm optimal fitness value, and the position with a

smaller fitness value is selected as the new swarm

optimal fitness value, and updated ZgðtÞ
9. Let t ¼ t þ 1, the output condition being met, ZgðtÞ shall

be outputted; otherwise, return to step 2

10. end

3.5 PFDL-IMFAC based on EQPSO parameter

optimization

In the control scheme outlined in Fig. 2, the EQPSO

algorithm is utilized to dynamically optimize the

parameters of the PFDL-IMFAC controller. By con-

sidering the controller parameters as optimization

variables within the EQPSO algorithm framework,

appropriate values for these parameters are deter-

mined using a proposed fitness function.

Based on previous experimental verification, it has

been determined that the parameters of

k; l; g; qiði ¼ 1; 2; 3Þ; Nii1ð0Þ; Nij1ð0Þ sig-
nificantly affect the performance of the controller.

Therefore, this study adopts these parameters as the

optimization variables in the EQPSO algorithm to

identify suitable controller parameters for the current

system based on a proposed fitness function.

The main parameters of EQPSO are set as follows:

the population size M ¼ 20, the maximum number of

iterations Imax ¼ 20, and the maximum and minimum

values of the particles are set as xlowij ¼ 0:1 and

xupij ¼ 10, respectively; the EQPSO error threshold is

set as 10�3.

Fig. 2 The strip

temperature control

scheme based on EQPSO for

PFDL-IMFAC
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The pseudo-code algorithm procedure of the

PFDL-IMFAC is presented in Algorithm 2.

Algorithm 2 EQPSO-PFDL-IMFAC controller pseudo code

Input: The historical input and output data of the control system
are denoted as uðkÞ;TðkÞ, while the desired strip temperature

is represented by TmðkÞ. Additionally, the termination

conditions and constraints are taken into consideration

Output: The actual strip temperature at the outlet of CAF is

Tðk þ 1Þ;
1. Initialized the controller parameters

k; l; g; qiði ¼ 1; 2; 3Þ;Nii1ð0Þ;Nij1ð0Þ;
2. for i ¼ 1; 2; . . .; Imax do;

3. Using the EQPSO optimization algorithm, the current

control step parameter values are

k; l; g; qiði ¼ 1; 2; 3Þ;Nii1ð0Þ;Nij1ð0Þ;
4. The value of N̂pqðkÞ can be determined by (12);

5. According to (17), the control variable DuðkÞ is obtained;
6. The current step control quantity uðkÞ can be calculated

using (10), and then substituted into (5) to obtain the

actual output TðkÞ of the system;

7. end

Figure 3 is the fitness curve graph, it can be seen

from Fig. 3 that after 8 iterations, the adaptive degree

function converges to a fixed value.

The PFDL-IMFAC improved by the EQPSO algo-

rithm, along with the fixed parameter MFAC and the

PID parameter values participating in the comparison,

are presented in Table 1. Here, Kp, KI , and KD denote

the PID controller parameters; fuT and vsp represent

the furnace temperature regulator and the strip speed

regulator, respectively. The Nonlinear MPC (NMPC)

method is employed for comparative experiments, as

outlined in reference [29], with parameter selection

based on the recommendations from this document.

4 Analysis of simulation results

To evaluate the effectiveness of the PFDL-IMFAC

scheme, this study conducted a series of MATLAB

simulation experiments. In these experiments, four

control methods—PID controller (as described in

reference [28]), NMPC (in [29]), PFDL-MFAC, and

the proposed PFDL-IMFAC—were assessed using the

same model for output data generation. Additionally,

the correlations between strip temperature, furnace

temperature, strip speed, and fuel loss were analyzed.

To accurately reflect on-site production phenomena,

the reference input is given by

Fig. 3 The best fitness curve of EQPSO

Table 1 Controller

parameters settings
Control algorithms PFDL-MFAC PFDL-IMFAC PID

N11ð0Þ,N12ð0Þ 1,2 0.5280,1.6643 KfuT
P ¼ 1:7190

N21ð0Þ,N22ð0Þ 1,2 0.6795,0.7328 KfuT
I ¼ 0:4819

N31ð0Þ,N32ð0Þ 1,2 1.4384,1.9809 KfuT
D ¼ 3:2428

g 1 2 Kvsp
P ¼ 9:4455

l 1 0.6472 Kvsp
I ¼ 3:1005

qi 0.8 0.4 Kvsp
D ¼ 0

k 1 2.8216 –

f 0 0.001 –
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TmðkÞ ¼

682:0; ð0\k� 240&2640\k� 2880Þ
747:6; ð960\k� 1200&2400\k� 2640Þ
764:0; ð240\k� 480&1680\k� 1920. . .
&2160\k� 2400; 2880\k� 3120; 3840\k� 4080Þ
780:4; ð1200\k� 1440&3120\k� 3360; 4080\k� 4800Þ
813:2; ð720\k� 960&1440\k� 1680&3360\k� 3600Þ
846:0; ð480\k� 720&1920\k� 2160&3600\k� 3840Þ:

8>>>>>>>><
>>>>>>>>:

ð46Þ

The control performances of four different control

methods are presented in Table 2. To visually evaluate

the effectiveness of the controller, two performance

indicators, namely root mean square error (RMSE)

and energy loss W ; are utilized for assessment. The

calculation formulas for these indicators are presented

in (47), where uk is the control input. According to the

process requirements, the strip speed and the CAF

temperature are within the ranges of 0 * 550 m/min

and 500 * 9008C, respectively. It is evident that both
the PFDL-MFAC and PFDL-IMFAC schemes demon-

strate similar control performances. However, the

PFDL-IMFAC scheme is distinguished as the most

energy-efficient, achieving a notable energy savings of

4.3% compared with PID controller.

RMSE ¼ 1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼1

TmðkÞ � TðkÞj j2
vuut

W ¼
PM

k¼1 u
2
k :

8>><
>>: ð47Þ

The comparison of the strip temperatures using

PID, NMPC, PFDL-MFAC, and PFDL-IMFAC is

illustrated in Fig. 4, while Fig. 5 presents the error

comparison between actual and expected strip tem-

peratures. According to Figs. 4 and 5, using the PID

controller results in more significant fluctuations in the

annealing temperature of the steel strip due to

variations in its specifications, compared to the

NMPC, PFDL-MFAC, and PFDL-IMFAC controllers.

These fluctuations significantly impact the yield rate

of steel strip products. For precise temperature control

of the steel strip, the PFDL-MFAC and PFDL-IMFAC

controllers outperform the PID and NMPC controllers.

Furthermore, the PFDL-IMFAC controller provides

smoother transitions in control effects when switching

between different steel strip specifications.

The curves depicted in Figs. 6 and 7 demonstrate

the fluctuations in furnace temperature and strip speed

for the CAF equipped with PID, NMPC, PFDL-

MFAC, and PFDL-IMFAC controllers, respectively.

The annealing temperature of the strip is controlled by

adjusting the furnace temperature and the strip speed.

Based on the findings presented in Fig. 6, it is evident

that the furnace’s required temperature is higher when

using PID, NMPC, and PFDL-MFAC controllers

compared to PFDL-IMFAC, leading to increased fuel

consumption for PID, NMPC, and PFDL-MFAC

controllers. Notably, the PID controller results in

more frequent temperature fluctuations in the furnace,

suggesting instability and diminished robustness.

Figure 7 shows the adjustment of strip speed,

Table 2 Comparison of intelligent algorithms

Intelligent algorithms RMSE Energy loss Savings rate

PID 28.069 2.9219e ? 9 –

NMPC 16.152 2.9013e ? 9 0.0071

PFDL-MFAC 10.082 2.8892e ? 9 0.0112

PFDL-IMFAC 13.608 2.7962e ? 9 0.0430

Fig. 4 Strip temperature curve at the outlet of CAF

Fig. 5 Strip temperature error curve
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revealing that PFDL-IMFAC achieves significantly

higher average strip speeds than other controllers

while maintaining precise steel strip annealing tem-

peratures. The findings indicate that the utilization of

PFDL-IMFAC within the acceptable parameters of

continuous annealing line speeds and furnace temper-

ature has the potential to improve product output and

fuel efficiency.

The plot illustrating the variation of PPD in PFDL-

MFAC can be observed in Fig. 8. It can be inferred

that the optimal initial value of PPD can be obtained

by employing the EQPSO algorithm to achieve the

most efficient control. The PPD consistently regulates

the strip temperature in response to variations in its

specifications.

From the above analysis, it can be concluded that

the proposed PFDL-IMFAC control scheme can opti-

mize the fuel utilization efficiency of CAF and

increase the unit capacity while ensuring the accurate

annealing precision of the strip.

5 Conclusion

This study has proposed an improved model-free

adaptive control method based on a partial form

dynamic linearization and solved the temperature

control problem of the steel strip with a continuous

annealing furnace. By introducing the quantum-

behaved particle swarm optimization algorithm for

dynamic parameter adjustment, the system could be

adapted to changes in external interferences effec-

tively. To improve the energy efficiency of the

continuous annealing furnace, an energy penalty

function has been incorporated into the criterion

function. The simulation results have shown that the

PFDL-IMFAC control scheme has superior control

performance compared to the PID and PFDL-MFAC

control schemes. In conclusion, the proposed control

scheme effectively meets the specific requirements of

industrial processes, providing valuable insights for

improving industrial production quality and increasing

finished product output. Regrettably, the study failed

to consider the interaction effects between the heating

segment of the CAF and its adjacent processes. This

oversight highlights a critical area for future research:

the exploration of refined methods for integrated

decision-making and control. Such methods should

aim at achieving fully automated and intelligent

production within the CAF system. By employing

these advanced strategies, we can expect significant

Fig. 6 CAF temperature change curve

Fig. 7 Strip speed set value change curve in CAF

Fig. 8 PPD change graph
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improvements in efficiency and quality control

throughout the manufacturing process [43, 44].
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