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Abstract The singular value decomposition order

determination method used in nonlinear subspace

identification may encounter challenges due to the

noise in signals, resulting in the omission of modes or

the occurrence of spurious mode. Additionally, the

lack of an iterative process in the nonlinear subspace

identification, which primarily relies on matrix oper-

ations, will lead to suboptimal solutions. To address

these challenges, an improved framework for nonlin-

ear subspaces identification is proposed in this paper.

False modes are eliminated through data preprocess-

ing and modal stability criteria, followed by the

clustering of stable modes using the Density-Based

Spatial Clustering of Applications with Noise algo-

rithm for automatic order determination; Simultane-

ously, an iterative optimization approach based on

response prediction error minimization is introduced

to enhance the accuracy of the state-space model

estimation results. The effectiveness of proposed

method is validated through two simulation cases

and one experimental verification. The results show

that the clustering algorithm effectively distinguishes

real modes from false ones and achieves automatic

system order determination across various SNR con-

ditions. The iterative optimization process notably

enhances state-space model estimation accuracy.

Compared to original nonlinear subspace identifica-

tion, proposed method significantly improves identi-

fication accuracy.

Keywords Nonlinear subspace identification �
DBSCAN algorithm �Automatic order determination �
State-space model optimization

1 Introduction

Nonlinear system identification refers to determining

the mathematical model of a nonlinear dynamical

system from input and output data [1–3]. Accurate

dynamic models play a crucial role in various fields

such as vibration isolation, structural optimization,

and damage identification [4–6]. Several papers have

reviewed the development history and major methods

of nonlinear system identification [7–9].
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In recent years, many nonlinear system identifica-

tion methods have been proposed and developed

[10–12]. One notable method is the Nonlinear Sub-

space Identification (NSI) introduced by Marchesiello

and Garibaldi [13, 14]. This method combines

nonlinear feedback interpretation with the classical

subspace identification framework, showcasing strong

effectiveness and robustness, making it one of the

classic approaches in nonlinear system identification

[15–17]. Anastasio et al. [18] integrated NSI with the

harmonic balance method, utilizing this enhanced

approach to identify and analyze periodically excited

dynamic systems to investigate the stability of system

periodic solutions, showcasing promising prospects

for applications in rotating machinery such as rotors.

Zhu et al. [19] applied NSI to the aerodynamics

domain, enabling systematic identification and anal-

ysis of the nonlinear airfoil-store system, demonstrat-

ing its robustness and flexibility across various wind

speeds. Liu et al. [20] combined NSI with the Krotov

method to establish a nonlinear Hammerstein model

for multivariate molten iron quality, addressing the

control issues encountered in the blast furnace iron-

making process.

However, NSI still faces significant challenges,

notably in accurately determining the system order, a

crucial aspect of the method. In NSI method, the

system order is determined using Singular Value

Decomposition (SVD), where the number of singular

values before the largest difference between adjacent

singular values corresponds to the system order [13].

But the higher-order singular values of the Hankel

matrix are often susceptible to noise, hindering the

clear detection of singular value jumps and accurate

system order determination, leading to mode omission

or pseudo-mode phenomena [21, 22]. To address this

challenge, numerous scholars have conducted

research [23–25]. Among these efforts, the introduc-

tion of stability diagram techniques has provided a

novel approach to determining system order [26, 27].

Zhou et al. [28] proposed a stability diagram method

that combines Monte Carlo techniques, effectively

distinguishing between system modes and spurious

modes caused by noise, thereby accurately determin-

ing the system’s order. The application of clustering

techniques also supports the automatic determination

of system order [29, 30]. Bakir [31] introduced the

modal phase collinearity index to remove false modal

poles, followed by hierarchical clustering to group real

modes into large clusters. Zhang et al. [32] proposed

an algorithm utilizing fast-density peak clustering,

enabling the automatic determination of system modal

parameters without requiring user intervention.

Moreover, the NSI method suffers from the limi-

tation that its computed identification results might not

always represent the optimal solution, thereby com-

promising the accuracy of the identification process

[13]. To address this issue, Wei et al. [33] introduced

an enhanced NSI method that integrates the prediction

error method (PEM) to re-estimate the coefficient

matrix within the state-space representation. This

refinement step occurs after obtaining the initial

system model through the NSI method. The enhanced

approach has demonstrated significantly improved

recognition accuracy, especially in challenging and

noisy environments, surpassing the performance of the

conventional NSI method.

This paper addresses the issues above by proposing

an improved framework for nonlinear subspace iden-

tification. Through the amalgamation of the Density-

Based Spatial Clustering of Applications with Noise

(DBSCAN) clustering algorithm and the stabilization

graph method, automatic determination of system

order is achieved. Before ordering, eliminate false

modes and erroneous estimates caused by noise

through data preprocessing and modal stability crite-

ria, thereby enhancing the algorithm’s robustness to

noise and improving computational efficiency. At the

same time, an iterative optimization algorithm based

on response prediction error minimization is intro-

duced in the process of estimating the state-space

model, ensuring that the obtained state-space matrices

are all optimal solutions, further enhancing the

identification accuracy. Finally, the feasibility of the

proposed method is validated through two multi-

degree-of-freedom simulation cases, complemented

by experimental verification on a multilayer building

with nonlinear characteristics.

2 Theoretical basis

2.1 Automatic order determination

NSI is a nonlinear system identification method that

establishes a relationship between the underlying

frequency response function and nonlinear parame-

ters. Appendix A offers a succinct introduction to the
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NSI method. Estimating the state-space model con-

stitutes the central aspect of the NSI method. For a

nonlinear system with N degrees of freedom, the state-

space model can be represented as follows:

The continuous time state-space model can be

discretized using a sampling interval Dt, with the

relationship between the continuous time and discrete

time models expressed as:

A ¼ eAcDt;B ¼ eAcDt � I
� �

A�1
c Bc ð2Þ

In Eq. (1), Ac represents the dynamical system

matrix, Bc represents the input matrix,C represents the

output matrix, and D represents the direct feedthrough

matrix. The mass matrix M, stiffness matrix K, and

damping matrix Cv constitute the underlying linear

components, while local nonlinear factors are gov-

erned by position vector Li and nonlinear parameter hi.

The output y(t) is a q-dimensional column vector,

where t denotes time. The input u(t) is an m-

dimensional column vector, and the system order,

denoted by the dimension of the state vector x(t), is n.

As mentioned in the introduction, NSI methods

determine the system order n through singular value

decomposition, which is susceptible to noise interfer-

ence. The following section introduces an improved

method to address automatic order determination in

noisy environments.

2.1.1 Data preprocessing

After each NSI run, matrices A, B, C, and D are

identified. The system matrix A contains modal

information and the system order n can be determined

by the stable modal parameter count.

The number of identifiable modal parameters varies

with different orders ofA. Initially, the system order is

changed from a small value nmin, to a sufficiently large

value nmax and NSI is performed separately for each.

Assuming R identifications are conducted during this

process, performing eigenvalue decomposition on the

R identified A matrices yields Rn complex eigenval-

ues. The eigenvalues are represented by the vector

k = [k1, k2, …, kRn]
T and the eigenvectors by the

matrix U = [/1, /2, …, /Rn]. To match the modal

shape measured from the sensor, each complex

eigenvector is multiplied by the output matrix C asso-

ciated with the identification, and the resulting matrix

is still denoted by U. The modal frequency and

damping ratios of the system can be obtained from k,

and the modal shapes can be obtained from U.

During the process, noise can introduce errors in the

decomposition of matrix A. Hence, some evidently

incorrect decomposition outcomes should be elimi-

nated. Specifically, the correct eigenvalues should

possess the following properties:

1. The real part of the eigenvalues is directly linked

to the damping ratio. It is crucial for this real part

to be non-negative, as negative values would not

make physical sense.

2. The eigenvalues need to belong to the complex

number field, indicating that their imaginary parts

should not be zero.

3. The eigenvalues always appear as complex con-

jugate pairs. This property reflects the inherent

symmetry of the system and should be maintained

throughout the decomposition process.

These properties can be expressed mathematically:

Re kið Þ[ 0

Im kið Þ 6¼ 0

kj ¼ k�i

8
><

>:
ð3Þ

_x tð Þ ¼ Acx tð Þ þ Bcu tð Þ
y tð Þ ¼ Cx tð Þ þ Du tð Þ

Ac ¼
0 I

�M�1K �M�1Cv

" #

;Bc ¼
0 0 � � � 0

M�1 h1M�1L1 � � � hpM�1Lp

" #

C ¼ IN�N 0N�N½ �;D ¼ 0N�N 0N�1 � � � 0N�1½ �

8
<

:

ð1Þ
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According to Eq. (3), any eigenvalue ki and its

corresponding eigenvector /i that do not satisfy any of

the three conditions are eliminated. For each pair of

complex conjugate modes, only one eigenvalue and

one eigenvector are retained. Consequently, the cor-

rect eigenvalue decomposition is obtained, consisting

of the remaining Rr eigenvalues and eigenvectors

denoted by kr = [k1, k2,…, kRr]
T andU = [/1,/2,…,

/Rr] respectively.

This data preprocessing operation effectively elim-

inates numerous erroneous estimates, resulting in an

improved quality of analysis. Moreover, the compu-

tational workload of the algorithm is significantly

reduced as a result.

2.1.2 Mode stability criteria

After removing erroneous estimates, stable modes are

determined by specifying modal stability criteria.

The vectors f [ RRr and f [ RRr are introduced to

capture the frequency and damping ratio from the

eigenvalue vector kr, respectively. Consider a pair of

identified modes characterized by their respective

frequency, damping ratio, and mode shape vector,

denoted as fi, fi and /i for one mode, and fj, fj and /j

for the other mode. For the quantitative assessment of

the correlation between these modes, the following

calculation criteria are introduced:

Dfij ¼
fi � fj
�� ��

fj

Dfij ¼
fi � fj
�� ��

fj

MACij ¼ MAC /i;/j

� �

ð4Þ

where MAC is defined as the mode confidence

criterion, it quantifies the correlation between the

identified mode shape /i and /j. MAC is calculated

using the formula |/i
Tuj|

2/(/i
T/i)•(uj

Tuj), with values

ranging from 0 to 1.MAC value closer to 1 indicates a

stronger correlation, suggesting that the identified two

modes are of the same order. Conversely,MAC value

of 0 indicates no relationship between the modes.

Equation (4) indicate the degree of similarity

between the two modes. Define a matrix D where

the elements in the matrix D are represented as:

Dij ¼
1; Dfij � ef ;Dfj � ef; 1�MAClj � eMAC

0; else

�

ð5Þ

where ef, ef, and eMAC represent custom tolerances for

frequencies, damping ratios, and mode shapes, respec-

tively, all pertaining to modes of the same order. In

this paper, the tolerance values were determined as

follows: ef = 0.01, ef = 0.04, eMAC = 0.05.

When Dij = 1, it signifies that the ith and jth modes

belong to the same mode order. Consequently, by

performing a statistical analysis on the jth column of

the matrixD, the count of modes belonging to the same

mode order as the jthmode can be determined. Define a

new vector z to represent the statistical result of all

modes, whose elements are integers, and the element

values can be expressed as:

zj ¼
�1þ

PNr

i¼1

Dij; fj 2 0; fmax½ �

0; fj 62 0; fmax½ �

8
<

:
ð6Þ

where fmax is the maximum value of the estimated

value of the mode damping ratio of the structure,

which can be assumed to be 0.1–0.2 depending on the

structural characteristics.

By utilizing the vector z, stable and spurious modes

can be distinguished. A significant coefficient zj in

z indicates that Rr modes possess comparable fre-

quencies, damping ratios, and mode shapes to the jth
mode, thus suggesting its stability. Conversely, a

smaller zj value indicates sporadic recognition of the

mode, rendering it unsuitable for classification as

stable. To identify a set of stable modes rather than

noisy modes, it is essential to establish a minimum

number of similar modes, zmin. The selection of zmin
should not be excessively large, as it may inadver-

tently eliminate low-frequency stable modes, albeit

enhancing the reliability of false mode detection.

Conversely, opting for a smaller zmin value effectively

removes most noise modes without compromising

low-frequency modes. In this study, the value of zmin is

established as the smallest integer greater than or equal

to 0.3 times R.

To determine the desired number of stable modes, a

new binary vector s = [s1, s2, …, sRr] is derived from

the vector z. Here, sj takes a value of either 0 or 1, for

all j = 1, 2,…,Rr. If zj is greater than or equal to zmin, sj
is set to 1, indicating the jth mode as stable and thus
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retained. Conversely, if sj is assigned a value of 0, it

signifies that the jth mode is considered noise and

subsequently discarded.

Calculating the non-zero terms in s yields P

stable modes. At this point, vector f, f, and matrix U
become:

f ¼

f1
f2

..

.

fP

2

6664

3

7775
; f ¼

f1
f2
..
.

fP

2

6664

3

7775
;U ¼ /1 /2 � � � /P½ �

ð7Þ

Clearly, many components of the obtained vectors

f and f, as well as the corresponding columns in matrix

U, are highly like each other, representing information

about the same-order modes. Therefore, the number of

clusters for determining stable modes can be identified

through clustering, thereby achieving automatic deter-

mination of the system order.

2.1.3 Determining system order using DBSCAN

The DBSCAN clustering algorithm [34, 35] is

employed to determine the system order. This algo-

rithm operates on the premise that each point within a

cluster must have a minimum number of neighboring

points (MinPts) within a specified radius e, and the

density within this neighborhood should surpass a

certain threshold. The process involves iteratively

examining whether the mode quantity associated with

any of the P modes corresponds to the representative

of a specific cluster. The algorithm terminates when all

Pmodes are assigned to clusters or rejected as outliers.

In mode clustering, a set of integers {a1, a2,…, ag}

represents the positions of cluster elements within the

vectors f, f, and matrixU, where the dimension of the

cluster is denoted by g. Thus, for the ith cluster,

denoted as Ci with a dimension of gi, a set of integers

{a1, a2, …, agi} is employed for representation. The

modal information within cluster Ci are expressed as

Cif = {fa1,fa2,…,fagi},Cif = {fa1,fa2,…,fagi},Ci/ = {/a1,

Ci/ = {/a1, /a2, … /agi}, respectively. The mean

values of these sets are fCi, fCi, and /Ci, representing

the centroid coordinates of cluster Ci.

To do clustering, first define a vector p = [1, 2, …,

P]T and v = [v1, v2, …, vp]
T, the elements of v are a

random permutation of the elements in p. At the

beginning, each element of the vector v is marked as

‘‘not accessed’’.

In the qth step, assuming that l clusters have already

been identified, each cluster contains a different

number of modal parameters. The qth element vq in v

is used to compute the distance d(vq) between the qth
modal parameter and the rest of the modal parameters.

The distance calculation is performed using the

Euclidean distance measure. Subsequently, a new

modal set Sq is created, containing Kq modes that all

within a radius distance e of the modal corresponding

to vq.Based on the minimum number of points MinPts,

a new cluster Cl?1 can be initialized.

Kq �MinPts ) Clþ1 ¼ vq
� �

ð8Þ

Alternatively, this point can be classified as an

outlier or noise mode and subsequently assigned to

cluster C0, which is specifically designated as the

outlier cluster:

Kq\MinPts ) C0 ¼ C0 [ vq
� �

ð9Þ

If the mode corresponding to vq is identified as an

outlier or noise mode, the next ‘‘not accessed’’ element

in vector v is considered. In case the new cluster Cl?1

has been initialized, the set Sq consisting of all points

within the vicinity of e is examined. Each point is then

reassigned either to the new Cl?1 cluster or to a

predefined cluster Ci.

The iterative process continues until all elements of

vector v are marked as ‘‘accessed,’’ resulting in the

completion of the clustering. Consequently, every

point in vector p will be assigned to a mode class or an

outlier class.

The DBSCAN algorithm needs to select two

parameters: the neighborhood distance e, and the

minimum number of points MinPts to form a dense

area. In general, for datasets with high noise levels and

large datasets, larger MinPts values are usually better

to form more significant clusters; For the threshold

distance e, if the value selected is too small, a large

part of the data cannot be correctly clustered. In the

follow-up study of this paper, MinPts was set as

MinPts = ln(P) and e was set as 0.01.

2.2 Iterative optimization of state-space matrices

Automatic determination of system order relies on

estimating the system matrix A in the state-space
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model. Likewise, NSI for nonlinear parameter iden-

tification is grounded in state-space model estimation.

Nevertheless, NSI lacks nonlinear optimization meth-

ods, resulting in its numerical procedures (e.g.,

projection, QR decomposition, SVD decomposition)

being non-iterative and thus yielding suboptimal

solutions for the state-space model. To further enhance

the identification performance of the proposed

method, an iterative optimization method based on

response prediction error minimization is integrated

into the framework.

The predicted value of the output y of the system

can be determined iteratively by Eq. (1).

ŷk ¼ CAkx0 þ CAk�1Bu0 þ . . .þ CABuk�2

þCBuk�1 þ Duk
ð10Þ

Then the error between the measured output and the

predicted output can be expressed as:

ek ¼ yk � ŷk ð11Þ

The error matrix can be further determined:

De ¼ ek ekþ1 � � � ekþsh½ � ð12Þ

where sh is the number of selected output samples.

Different models have different error criterion

functions. Here the function is set as:

J ¼ h
1

sh
detðDeTDeÞ

� 	
ð13Þ

where det (�) represents the determinant of the

computed matrix (�) and h(�) represents a scalar

monotonically increasing function.

Optimal estimates for the state-space matricesA,B,

C, and D are obtained by solving a minimization

problem

A;B;C;Df g ¼ argmin
A;B;C;D

Jð Þ; ð14Þ

several established methods can be used for this

purpose, such as the steepest descent method, the

Gauss–Newton method, or the Levenberg–Marquardt

algorithm. In this study, the Levenberg–Marquardt

algorithm was chosen for its ability to quickly

converge to an optimal solution.

After obtaining the optimal matrix estimation, the

parameter identification is completed according to

Eq. (15).

HE xð Þ ¼ Dþ CðixI� AcÞ�1Bc

¼ H xð Þ h1L1H xð Þ ::: hpLpH xð Þ½ �
ð15Þ

2.3 Algorithm implementation process

Figure 1 summarizes the proposed method in this

paper. Specifically, the main steps include:

1. Perform eigenvalue decomposition of the system

matrix A for different orders and store the

complex eigenvalues and eigenvectors in vectors

k and U, respectively.

2. Preprocess the data and eliminate incorrect eigen-

values and eigenvectors using Eq. (3);.

3. Calculate the modal parameters using the eigen-

values and eigenvectors, and compute the matrix

D based on the stability criterion in Eq. (4).

4. Determine the minimum number of similar modes

zmin, create a binary vector s, and select which

modes to retain to eliminate noise modes and keep

only the stable modes.

5. Apply the DBSCAN algorithm to cluster the

stable modes, with the number of clusters repre-

senting the mode system order.

6. Identify the state matrix A, B, C, and D of the

system after determining the system order.

7. Predict the measured response using the state

matrix based on Eq. (10) and determine the error

criterion function.

8. Solve the optimized A, B, C, and D in Eq. (14)

using a nonlinear optimization algorithm.

9. Identify the nonlinear parameters using the opti-

mized matrix.

3 Simulation cases

3.1 Four degrees of freedom system

Consider a four-degree-of-freedom system with cubic

stiffness nonlinearity. The schematic of this system is

depicted in Fig. 2, while its pertinent physical param-

eters are delineated in Table 1. The nonlinear restor-

ing force operative within the system can be expressed

as:

fnl ¼ knx
3
2 ð16Þ
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At t = 0 s, a zero-mean Gaussian random force

(r.m.s = 500 N) is applied to DOF 2 to simulate the

forced response of the system at a sampling frequency

fs = 1000 Hz and a total simulation time of 10 s. The

fourth-order Runge–Kutta time integration

scheme was used to obtain the time response history

of the system, the response data length was 104, and a

zero-mean Gaussian white noise with SNR = 20 dB

was added to each analog output.

Fig. 1 Improved framework for nonlinear subspace identification

Fig. 2 Four-degree-of-freedom nonlinear systems

Table 1 Four-degree-of-freedom nonlinear system parameters

Mass (kg) m1 = 0.55, m2 = m3 = m4 = 1

Stiffness (N/m) k1 = k2 = k3 = k4 = k5 = 2 9 105

Viscous damping coefficient (Ns/m) c1 = c2 = c3 = c4 = c5 = 5

Nonlinear parameters kn = 8 9 1012 N/m3
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The NSI method determines the system order

through singular value decomposition. If the signal

is noise-free, as shown in Fig. 3a, the singular value

decomposition yields clear jumps in singular values at

the 8th order, allowing for the determination of the

system order. However, in the presence of noise,

depicted in Fig. 3b, no significant singular value

Fig. 3 Singular values of the skew projection matrix

Fig. 4 Modal parameter estimation results
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jumps are apparent, rendering the NSI method inad-

equate for system order determination.

Using the automated order determination method

introduced in Sect. 2.1, the system order was initially

varied from 2 to 200, and the eigenvalues and

eigenvectors of the system matrix A were extracted

respectively. Throughout this process, a total of

10,100 complex eigenvalues and eigenvectors were

obtained. The systemmode parameters estimated from

all eigenvalues and eigenvectors are illustrated in

Fig. 4a and b. These figures exhibit numerous false

modes generated by noise, such as damping ratio

values exceeding 100% at low frequencies in Fig. 4b.

Subsequently, the 10,100 modes were preprocessed

and assessed for modal stability using the principles

outlined in Eq. (3)–(6). Throughout this process,

numerous false modes and erroneous estimations were

eliminated, reducing the total number of stable modes

to 525. The stable modal results are illustrated in

Fig. 4c and d, where Fig. 4c displays four stable fre-

quency axes, and Fig. 4d shows clusters of four modal

damping ratios.

The DBSCAN clustering algorithm was employed

to cluster the 525 frequency and damping data points

obtained in the preceding step. The modal clustering

results are illustrated in Fig. 5. During the grouping

process facilitated by DBSCAN, a total of four clusters

were identified within the stable modes, as shown in

Fig. 5a. The distribution of modes in each cluster is

depicted in Fig. 5b, and more fourth-order modes are

identified. Particularly noteworthy is the algorithm’s

efficacy in distinguishing closely aligned second and

third-order modes. Regarding the clustering results,

the system order is determined to be 4 9 2 = 8.

Once the system order is determined, the A, B, C,

and Dmatrices in the state-space model can be readily

established. The frequency response curve H22 is

estimated directly using Eq. (15), as depicted by the

red dashed line in Fig. 6. The directly estimated results

exhibit considerable deviations from the theoretical

values, particularly at the peaks. Subsequently, by

optimizing the A, B, C, and D matrices based on the

principles outlined in Sect. 2.3, the optimized esti-

mated frequency response curve is represented by the

blue dashed line in Fig. 6. The optimized results

demonstrate a higher level of consistency with the

theoretical values.

Figure 7 presents the identification results of non-

linear parameters in the form of histograms. Figure 7a

displays the identification results directly obtained

through NSI method, while Fig. 7b illustrates the

identification results of proposed method. It can be

observed that the parameter results obtained directly

from identification exhibit greater dispersion, whereas

the results from proposed method are more concen-

trated and closer to the theoretical values. The

identification results, determined by taking the aver-

age, are shown in Table 2. Evidently, the proposed

method significantly enhances the accuracy of param-

eter identification in noisy environments. In this case

study, the error of the optimized estimation results is

reduced by approximately 20%.

The simulation case was then replicated under

different noise levels, and the outcomes of parameter

identification errors are depicted in Fig. 8. From the

figure, it can be observed that under low noise

intensity conditions, the proposed method exhibits a

slight improvement in identification accuracy. How-

ever, as the noise level increases, a significant

discrepancy in accuracy between the NSI method

and the proposed method emerges, with the gap

widening as the noise level rises.

Fig. 5 Modal clustering

results
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3.2 Complex multi-degree-of-freedom example

To further verify the recognition performance of the

algorithm in complex structures, consider a complex

multi-degree-of-freedom system as shown in Fig. 9

where nonlinearity consists of cubic stiffness between

degrees of freedom 2 and 5, Coulomb friction at

degrees of freedom 6, in the form of:

fnl1 ¼ kn x2 � x5ð Þ3; fnl2 ¼ cnsgn _x6ð Þ ð17Þ

Detailed values for the physical and nonlinear

parameters of the system are shown in Table 3. At

t = 0 s, a zero-mean Gaussian random force (r.m.s =

30 N) is applied to DOF 1 to simulate the forced

response of the system at a sampling frequency

fs = 1000 Hz and a total simulation time of 10 s. The

response is calculated using the fourth-order Runge–

Kutta algorithm, adding zero-mean white Gaussian

noise with SNR = 20 dB to each analog output.

The system order was increased from 2 to 220, and

the modal parameters of the system were estimated by

extracting the eigenvalues and eigenvectors of the

system matrix A, as shown in Fig. 10. Like the four-

degree-of-freedom case, without data preprocessing

and modal stability criterion, Fig. 10a and b exhibits

Fig. 6 Frequency response curve H22

Fig. 7 Histograms of

nonlinear parameters

identified

Table 2 Nonlinear parameter identification values and errors

Nonlinear parameters Theoretical value NSI method Error (%) Proposed method Error (%)

kn 8 9 1012 6.07 9 1012 24.09 7.63 9 1012 4.56

Fig. 8 Recognition results under different intensity noise
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numerous spurious frequency axes and inaccurate

damping ratios. The identification results in Fig. 10c

and d show significant improvement, revealing six

stable frequency axes and a more concentrated rela-

tionship between frequency and damping ratios.

However, unlike the four-degree-of-freedom case,

there are still some erroneous estimation points at high

frequencies.

Figure 11 depicts the clustering outcomes of the

DNSCAN algorithm for stable mode frequency and

damping. Six normal clusters and one outlier cluster

are discernible. The elements within the normal

clusters exhibit a balanced distribution, whereas the

outlier cluster comprises only a few elements, signi-

fying their outlier status. By disregarding the outlier

cluster, the system order can be established as

6 9 2 = 12.

Similar to Sect. 3.1, once the system order is

determined, the A, B, C, and D matrices can be

estimated within the state-space framework. By

incorporating the estimated A, B, C, and D matrices

into the optimization algorithm detailed in Sect. 2.3,

the frequency response curve H21 is estimated, as

depicted in Fig. 12. The estimated frequency response

curve demonstrates a strong alignment with the

theoretical values.

Figure 13 presents parameter identification results

in the form of a statistical histogram. From the graph,

it is evident that both the nonlinear stiffness param-

eters and damping parameters are concentrated near

their theoretical values.

Table 4 summarizes the parameter identification

results by averaging. The results indicate that despite

the complexity of the nonlinear system, this method

Fig. 9 Complex multi-

degree-of-freedom systems

Table 3 Complex multi-

degree-of-freedom systems

parameters

Mass (kg) m1 = m3 = m5 = 1

m2 = m4 = m6 = 0.5

Stiffness (N/m) k01 = k04 = 6 9 105

k12 = k23 = 2 9 105

k45 = 4000, k56 = 5 9 105

k14 = k25 = k36 = 1 9 105

k03 = k06 = 1 9 105

Viscous damping coefficient (Ns/m) c01 = c12 = c23 = c04 = c45 = c56 = 5

c14 = c25 = c36 = 1

c03 = c06 = 2

Nonlinear parameters kn1 = 1 9 1012 N/m3, cn = 1 N/m
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maintains a commendable level of identification

accuracy.

4 Experimental verification

An experimental investigation was undertaken to

explore the practical application of the methodology

proposed in this paper to real structures. The exper-

imental dataset was generously provided by Prof.

Stefano Marchesiello [36, 37] from the Department of

Fig. 10 Modal parameter

estimation results

Fig. 11 Modal clustering results

Fig. 12 Frequency

response curve H21
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Mechanics and Aerospace at Politecnico di Torino,

Italy.

The test object used in the study is a five-story

structure consisting of five aluminum laminates

interconnected by thin steel beams. The schematic

representation of the structure is shown in Fig. 14. By

simplifying the frame structure as a 5-degree-of-

freedom system, it can be assumed that the vertical

Fig. 13 Histograms of

nonlinear parameters

identified

Table 4 Nonlinear parameter identification results and errors

Nonlinear parameters Theoretical value identification results Error (%)

kn 1 9 1012 9.29 9 1011 7.06

cn 1 1.06 6.11

Fig. 14 multilayer nonlinear structure

Table 5 Physical parameters of the test device

No Laminate Thin steel beams

Mass (kg) Width (mm) Length (mm) Thickness (mm) Length (mm) Sectional area (mm2)

1 4.30 270 250 24 50 60 9 0.3

2 2.15 270 250 12 30 60 9 0.3

3 1.97 270 250 10 60 60 9 0.3

4 1.79 270 250 10 60 60 9 0.3

5 1.99 270 250 10 60 60 9 0.3
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thin steel beams contribute primarily to the bending

stiffness. Table 5 provides the essential physical

parameters of the structure.

The fifth layer of the structure is equipped with a

thin tension metal wire that exhibits nonlinear stiffness

when subjected to significant oscillations. The total

restoring force exerted by the wire can be represented

as the sum of a linear stiffness force klx5 and a cubic

nonlinear stiffness force kn x5
3. This nonlinear term in

the system can be expressed as:

fnl ¼ knx5 tð Þ3 ð18Þ

In the second layer of the structure, an electric

shaker applies a random external force with an r.m.s.

value of 20.89 N. Each layer is equipped with an

acceleration sensor to obtain displacement signals by

integrating the acceleration response. Figure 15 illus-

trates the inputs and responses for the second layer.

When applying the NSI method to all displacement

and excitation signals, the singular value decomposi-

tion results in Fig. 16 are similar to the simulation

cases. Noise components in the signals disrupt the

decomposition, resulting in several singular value

spikes. Consequently, determining the system order

based on singular values becomes unfeasible.

System orders, ranging from 2 to 200 in even

increments, were employed, and the NSI method was

executed individually. Eigenvalue decomposition of

the recognized system matrix A generated a total of

10,100 eigenvalues and eigenvectors from 100 iden-

tifications. Subsequently, by employing data prepro-

cessing and modal stability criteria to eliminate

Fig. 15 Excitation and

displacement response for

layer 2

Fig. 16 Singular value distribution
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spurious modes and erroneous estimations, the modal

identification results transition from Fig. 17a and b to

Fig. 17c and d. In Fig. 17c and d, five frequency axes

and five modal damping ratio points are evident.

However, unlike the simulation cases, the first

frequency axis appears sparse, indicating a potential

occurrence of excessive denoising.

In Fig. 18, observe the frequency-damping cluster-

ing outcomes. These results reveal the presence of five

distinct clusters within the stable modes, with the fifth

Fig. 17 System mode

identification results

Fig. 18 Modal clustering

results

Fig. 19 Frequency

response curves
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cluster corresponding to the recognition of the first-

order mode. Notably, the elements in this cluster are

notably lower, approximately 1/6 to 1/7 compared to

those in the other clusters, indicating relatively

unstable recognition. Based on this clustering out-

come, the automatic determination of the system order

can be established as 5 9 2 = 10.

In reference [36], modal parameters of the structure

were estimated using low-level excitation, with the

first five modal frequencies depicted by the blue

dashed lines in Fig. 19. It can be observed from

Fig. 19 that the peaks of the frequency response curves

Fig. 20 Real part of the

identified nonlinear

parameters

Fig. 21 Reconstructed

displacement response

Table 6 R-squared coefficient

x1 (%) x2 (%) x3 (%) x4 (%) x5 (%)

NSI method 55.64 48.72 57.35 50.95 53.37

Proposed method 66.85 62.59 64.31 60.84 61.96
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estimated by the proposed method are closer to the

natural frequencies, indicating higher credibility com-

pared to the directly estimated results.

The real part of the identified nonlinear parameters

at each frequency is shown in Fig. 20. Taking the

mean value of the real part in the range of 0 * 30 Hz

as the final identification result, the value of kn
obtained from NSI method is 3.80 9 107 N/m3, and

the value of kn obtained from proposed method is

5.78 9 107 N/m3.

Since an accurate nonlinear restoring force model

cannot be determined, the identification results are

evaluated by reconstructing responses. The response is

reconstructed using the identified state-space model,

and the reconstructed response is shown in Fig. 21.

The fitting between the response signal and the

measured signal is evaluated using the R-squared

coefficient. A higher R-squared coefficient, closer to 1,

indicates a better accuracy of response reconstruction

and consequently a better identification result of the

system. The results of the R-squared coefficient are

presented in Table 6, where it’s clear that for each

response, the R-squared coefficients obtained from

NSI method are lower than the proposed method. The

lowest R-squared coefficient obtained from NSI

method is 48.72%, and the highest is 57.35%, whereas

all optimized R-squared coefficients obtained from

proposed method exceed 60%.

5 Conclusions

This paper presents an improved framework for

nonlinear subspace identification. The proposed

method utilizes the DBSCAN algorithm for cluster

analysis of stable modes, enabling automatic determi-

nation of system order and enhancing the estimation

accuracy of the state-space model through an iterative

optimization algorithm based on response prediction

error minimization. These measures effectively

improve the accuracy of nonlinear parameter identi-

fication. The effectiveness of this method is demon-

strated through simulation studies involving two

multi-degree-of-freedom systems and experimental

validation on a multilayer building with nonlinear

characteristics.

The main conclusions of this paper are as follows:

1. Through data preprocessing and modal stability

criteria, a significant number of false modes and

erroneous estimates induced by noise can be

eliminated. Results from two numerical examples

demonstrate that over 90% of the erroneous

estimates are eliminated through this process.

2. In noisy environments, the NSI method of deter-

mining system order via singular value decompo-

sition in subspace methods may fail. The

DBSCAN clustering algorithm introduced in this

paper effectively automates the determination of

system order.

3. The response prediction error minimization

method optimizes the identification results of

system matrices. Compared to NSI methods, the

proposed approach exhibits strong noise resis-

tance. Simulation results indicate that under

SNR = 20 dB, the parameter identification accu-

racy of the method surpasses NSI methods by over

20%. Experimental results also show that the

method achieves approximately 10% higher

fidelity in reconstructing responses compared to

NSI methods.

Despite these promising results, there are several

limitations to the proposedmethod that warrant further

investigation:

1. The current methodology cannot be applied to

systems with inherent time delays. Time-delay

systems introduce additional complexity into the

model, which requires specialized techniques to

accurately capture the delay dynamics.

2. Another limitation of the proposed method is its

inability to perform real-time identification. This

issue arises from the construction of the Hankel

matrix in subspace identification methods. Future

work might overcome this limitation by integrat-

ing the proposed approach with real-time identi-

fication techniques such as recursive subspace

methods.
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Appendix

The dynamic control equations for an N-degree-of-

freedom mechanical structure with localized nonlin-

earity can be formulated as follows:

M€q tð Þ þ Cv _q tð Þ þKq tð Þ þ f nl tð Þ ¼ f tð Þ ðA:1Þ

where M€q tð Þ represents the inertial force with M

denoting the mass matrix and €qðtÞ(t) indicating the

acceleration at time t. Cv _qðtÞ denotes the damping

dissipative force, with Cv as the damping matrix, and

_q(t) representing velocity. Kq(t) signifies the elastic

force, withK as the stiffness matrix, and q(t) denoting

displacement. These forces, damping dissipative and

elastic, are linear restorative components within the

system. fnl(t) characterizes the non-linear restorative

force within the system, which depends on displace-

ment and velocity and can be expressed as the sum of p

forces:

f nl tð Þ ¼
Xp

i¼1

hiLigi tð Þ ðA:2Þ

where gi(t) signifies the functional form of the ith
nonlinear elastic or damping force, Li represents the

force location, and hi denotes the stiffness and

damping coefficients of the ith non-linear force, which

are the parameters to be identified in this study.

Moving the nonlinear terms to the right-hand side

results in:

M€q tð Þ þ Cv _q tð Þ þK _q tð Þ ¼ f tð Þ �
Xp

i¼1

hiLigi tð Þ

¼ f tð Þ � f nl tð Þ
ðA:3Þ

Equation (A.3) considers nonlinearity as internal

feedback forces applied to the underlying linear

system. Consequently, the measured output of a non-

linear system can be seen as the result of the combined

action of external force f(t) and internal feedback force

fnl(t) on the underlying linear system.

The state-space representation of Eq. (A.3) for the

defined state vector x(t) = [q(t) _q(t)]T, input vector

u(t) = [f(t) -g1(t) … -gp(t)]
T, and output vector y(t) =

q(t) can be expressed as follows:

_x tð Þ ¼ Acx tð Þ þ Bcu tð Þ
y tð Þ ¼ Cx tð Þ þ Du tð Þ

ðA:4Þ

where Ac, Bc, C, D, respectively, denote the system

matrices and can be expressed as follows:

where I denotes the unit matrix.

It is possible to transform the continuous-time state-

space model into a discrete-time model. Given a

sampling interval Dt, the relationship between the

continuous-time and discrete-time state-space models

are as follows:

A ¼ eAcDt;B ¼ eAcDt � I
� �

A�1
c Bc ðA:6Þ

Ac ¼
0 I

�M�1K �M�1Cv


 �
;Bc ¼

0 0 � � � 0

M�1 h1M�1L1 � � � hpM�1Lp


 �

C ¼ IN�N 0N�N½ �;D ¼ 0N�N 0N�1 � � � 0N�1½ �

8
<

:
ðA:5Þ
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The Fourier transform of Eq. (A.4) yields the

extended frequency response function matrix:

HE ¼ Dþ C ixI� Acð Þ�1Bc ðA:7Þ

where i denotes the unit imaginary number, i =
ffiffiffiffiffiffiffi
�1

p
.

Defining the Matrix:

N ¼ N11 N12

N21 N22


 �
¼ ixI� Ac;P ¼ P11 P12

P21 P22


 �

¼ ixI� Acð Þ�1

ðA:8Þ

Substituting Eq. (A.8) into Eq. (A.7) yields:

HE xð Þ ¼ P12 M�1 h1M�1L1 � � � hpM�1Lp


 �

ðA:9Þ

This is obtained according to the chunked matrix

inversion rule:

P12 ¼ �N�1
11 N12 N22 � N21N

�1
11 N12

� ��1

¼ Kþ ixCv � x2M
� ��1

M ¼ H�1 xð ÞM
ðA:10Þ

Thus, Eq. (A.7) can finally be expressed as:

HE xð Þ ¼ H xð Þ h1L1H xð Þ � � � hpLpH xð Þ½ �
ðA:11Þ

where H(x) is the underlying linear system frequency

response function.

From Eq. (A.11), it is evident that nonlinear

parameters can be obtained by calculating the

extended frequency response function HE(x). Con-
sidering the presence of the imaginary unit i, identified

nonlinear parameters are complex quantities associ-

ated with frequency. At each frequencyx, the real part
represents the parameter estimate, ideally having a

zero imaginary component. However, the presence of

noise and nonlinear modeling errors can introduce

non-zero imaginary components.
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