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Abstract Every sensory neural system falls under
the purview of large-scale neuroscience. The olfactory
neural system, as a paradigm within this field, encoun-
ters challenges akin to other sensory models, including
intricate model construction and the difficulty of align-
ing computational outcomes with experimental data.
Some outcomes, despite their theoretical significance,
demand excessive computational resources, present-
ing formidable barriers. Hence, unraveling the poten-
tial mechanisms of olfactory information processing
and achieving precise odor identification remain daunt-
ing tasks. This article proposes a neural energy theory
applicable to large-scale neuroscience research on odor
recognition and coding in the olfactory system. Utiliz-
ing the W–Z neuron energy model, we developed a
neural network model of the olfactory system based on
its anatomical structure. By computing the total energy
spike sequences for various odors in the piriform cor-
tex and employing kernel function methods for odor
pattern recognition in mixtures, we discussed the non-
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linear energy coding characteristics of odors in the pir-
iform cortex. Our findings suggest that utilizing the
total energy of the olfactory system network for pattern
recognition of external odor inputs can yield effective,
straightforward, and reliable identification results. This
research approach not only harmonizes computational
outcomes of olfactory models across different levels
but also offers the potential for analyzing and interpret-
ing experimental data obtained at various levels within
an energy-centric framework in the future. This under-
scores the advantage of large-scale neuroscience.

Keywords W–Z neuron model · Neural energy
coding · Olfactory nervous system · Odor pattern
recognition

1 Introduction

From insects to mammals, early olfactory pathways
exhibited very similar dynamic behaviors in response
to odors, frequently involving transitions between qui-
escence, collective network oscillations, and asyn-
chronous firing [1]. Theoretical research on olfac-
tory neural networks for odor pattern recognition was
primarily divided into two directions: (1) artificial
intelligence-based electronic olfaction technology; (2)
olfactory computational models based on biological
neural systems. In the realm of artificial intelligence-
based electronic olfaction technology, research con-
centrated on the comprehensive utilization of machine
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learning, deep learning algorithms employed in olfac-
tory neural networks, and sensor technologies coupled
with them for odor pattern recognition in the envi-
ronment. Gardner introduced the fundamental prop-
erties and standards of an electronic nose (i.e., a
selective electrochemical sensor array) [2], which dif-
fered from the sensitive and precise characteristics
of gas chromatography–mass spectrometry (GC–MS)
[3]. The electronic nose proved more adept at char-
acterizing human olfactory perception of odors. This
was due to the treatment of odor stimulus informa-
tion received by the electronic nose as a multiple-input
multiple-output (MIMO) problem, analyzed and rec-
ognized using computer algorithms [4]. This research
direction foundwidespread application in practical pro-
duction and life. However, it failed to unveil the bio-
logical mechanisms and features of the olfactory sys-
tem from a biological perspective. In the field of olfac-
tory cognitive computational research, the emphasis
lay in establishing biological neural network models
of the olfactory neural system. Early research primarily
employed nonlinear dynamical system methods, with
Freeman’s K-series model standing out as the most
representative work based on olfactory physiological
experiments. This model offered a detailed description
of various neuronal groups in the olfactory neural path-
way, and during simulation and calculation, chaotic
attractor phenomena in the olfactory neural network
emerged [5–7]. Some studies compared the computa-
tional results of the model with biological rhythm phe-
nomena to uncover occurrences such as gamma oscilla-
tions andmechanisms in the olfactory system [8].How-
ever, although these research findings could uncover
some new dynamic and physiological phenomena in
the olfactory system, they merely mechanistic descrip-
tions of certain olfactory neural network oscillation
phenomena. Chaotic attractors and gamma oscillations
could manifest in various network systems with differ-
ent functions and lacked uniqueness, thus bearing only
theoretical significance.

In fact, the olfactory neural system demonstrates
universality in odor pattern recognition accuracy across
different species [1], and the emotional information
of each individual can be modulated by environmen-
tal odor stimulation [9]. Our research indicates that
studying emotional information encoding using energy
offers more advantages compared to studying emo-
tional information encoding using membrane potential
[10–12].

Throughout the historyof neuroscience, theHodgkin–
Huxley (H–H) model has been widely utilized to
construct various sensory networks and extensively
employed in exploring olfactory mechanisms [13–
15]. However, the H–H model constitutes a high-
dimensional complexnonlinear coupled equation,which
generally presents computational challenges for large-
scale neural networks comprised of a significant num-
ber of neurons. Moreover, simplified neuron models
derived from the H–H model possess limitations such
as limited expressive power and difficulty in generaliz-
ing computational results [9,16]. Particularly, simula-
tion results of different models at the same level often
conflict with each other, resulting in a lack of mutual
influence and promotion of research outcomes [17].
The objective of theoretical neuroscience is to formu-
late theories and methods for odor pattern recognition
in the olfactory system in a biological sense, thereby
furnishing a reliable theoretical foundation for compar-
ison with experimental data.

In summary, whether commencing from construct-
ing the biological network of the olfactory systemusing
the K-series model [17] or simulating various olfactory
encodings based on the H–Hmodel, there exist various
challenging issues that are arduous to surmount. Fur-
thermore, even if a certain type of neural systemmodel
holds some theoretical academic value, it may neces-
sitate excessive computational time and high computa-
tional costs, which are impractical in terms of compu-
tational environment and hardware development.

To address these issues, we have innovatively pro-
posed a theory and method for new neural information
processing: the neural energy theory and neural energy
coding. The characteristics of this neural energy theory
are as follows: (1) It is not only applicable to the cal-
culation of inter-communication between brain regions
but also to the computation at various levels of the brain
and their integration [18,19]; (2) At the micro, meso,
and macro cognitive behavior levels, the neural energy
theory can filter out secondary informationwithout los-
ing the primary information [18,20]; (3) The computa-
tional methods are simple and dependable [20,21]. The
neural energymodel is universal: (1) It has beendemon-
strated that the W–Z neuron model based on neural
energy is equivalent to theH–Hmodel [22–24]; (2) The
neural energy coding method can transform various
complex, coupled, highly nonlinear membrane poten-
tial firing patterns into energy firing patterns for anal-
ysis, significantly simplifying computational costs; (3)
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It can be employed to study and predict new unknown
neural phenomena [25].

Building upon the novel neural energy theory and
neural energy coding method mentioned above, we
have achieved a series of groundbreaking research
results. The essence of this new theory and method
of neural information processing lies in the symme-
try relationship we have uncovered between neuronal
membrane potential and neuronal energy [21]. Lever-
aging this core concept, Wang introduced a method for
analyzing synchronized oscillations of neuronal groups
using neural energy coding [23] and elucidated the
mechanism of place field formation in hippocampal
place cells based on energy coding principles [26]. The
W–Z model was utilized to elucidate the neural mech-
anism behind the formation of hemodynamic phenom-
ena in the visual neural system [27].

This approach unveiled the mechanisms of interac-
tion between the default mode network (DMN) and
working memory network (WMN), as well as the con-
nections in different brain regions during the encoding,
maintenance and retrieval phases of working memory,
replicating the dynamic mechanisms of the coupling
betweenWMNandDMN [28]. In the realm of intellec-
tual exploration research, the intellectual exploration
model constructed based on the W–Z neuronal energy
coding theory proves to bemore efficient in exploration
than neural network models constructed using the H–
H neuron [29]. In summary, the W–Z neuron model
stands as a computationally simple, reliable, and effec-
tive neural energy model.

Based on the aforementioned research findings, this
article introduces an innovative olfactory neural net-
work model based on the principle of energy coding.
The specific steps are outlined as follows: firstly, a
structural model derived from the olfactory neural net-
work is established according to the biological anatom-
ical olfactory pathway. Subsequently, the odor stimu-
lus signals received by the olfactory sensory neurons
(OSNs) (referred to as the input space) for a single
odor are abstractly represented as an odor feature. This
abstraction enables so that the utilization of the energy
coding characteristics of the W–Z model to input the
odor into the olfactory neural network. The total energy
change over time in the pyramidal cell group (Pyr)
(referred to as the output space) in the piriform cortex
(PC) under the odor stimulus (termed as total energy
spike sequence) is then calculated. In instances where
the OSNs are stimulated by a mixed odor, the simi-

larity between the mixed odor and the single odor is
determined based on the total energy spike sequence
of the mixed odor in the Pyr utilizing a kernel func-
tion method. Subsequently, the category of the mixed
odor is classified based on this similarity. Throughout
the classification process, it is observed that the repre-
sentation of odor in the Pyr exhibits nonlinear charac-
teristics. To address this characteristic, the mechanism
of the nonlinear encoding of odor stimuli in the PC
is explored by fully leveraging the principle of energy
coding.

2 Model and method

2.1 Topological structure of the olfactory neural
network

The core components of the olfactory neural network
consist of olfactory sensory neurons (OSNs),the olfac-
tory bulb (OB), and the piriform cortex (PC). Odor
stimuli originate from OSNs and travel to the OB,
where the information undergoes initial processing
before being transmitted to the PC. Within the PC, fur-
ther processing of the odor information occurs, facili-
tating the learning of odor characteristics.Various types
of connections exist within both the OB and PC, as
well as betweenOSNs, OB, and PC. These connections
include excitatory and inhibitory connections [30], as
illustrated in Fig. 1.

Inside the OB, subdivisions known as olfactory
glomeruli (Glo) and granule cells (MC) interconnect
different Glo. Glo consist of mitral cells (MC) and
periglomerular cells (PG). Distinct OSNs exhibit vary-
ing sensitivities to the same odor, and MC and PG
within the same Glo receive excitatory stimuli from
the same type of OSN [31,32]. PG within the same
Glo exert neural inhibitory effects on MC, establishing
a feedback inhibition loop [33]. Granule cells (GC) out-
side the Glo integrate excitatory stimuli from different
Glo and inhibit some MC within specific Glo, creat-
ing lateral inhibition [34]. MC within the Glo generate
direct excitatory stimuli to pyramidal cells (Pyr) in the
PC and exert inhibitory effects on Pyr through feedfor-
ward cells (FF). Pyr within the PC are interconnected
excitatorily, and feedback cells (FB) impose inhibitory
effects on certain Pyr [35].

In this study, the number of neurons in the olfactory
neural network is determined by proportionally scaling
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Fig. 1 The topological
structure of the olfactory
neural network. Exhibitory
synaptic connections are
denoted in red, while
inhibitory synaptic
connections are represented
in blue. OSNs correspond to
olfactory sensory neurons,
OB to olfactory bulb, Glo to
olfactory glomeruli, PC to
piriform cortex, PG to
periglomerular cells, MC to
mitral cells, GC to granule
cells, Pyr to pyramidal cells,
FF to feedforward cells, and
FB to feedback cells

Table 1 Number of neurons in the olfactory neural network

Type Number Type Number

OSN 10 Pyr 4000

MC 100 FF 400

PG 4000 FB 600

GC 10000

Table 2 Connection probabilities between and within groups of
neurons in the olfactory neural network

Type Probability Type Probability

OSN → PG (+) 1 Pyr → FB (+) 0.18

OSN → MC (+) 1 PG → MC (−) 1

MC → GC (+) 0.4 GC → MC (−) 0.4

MC → FF (+) 0.4 FF → Pyr (−) 0.3

MC → Pyr (+) 0.2 FB → Pyr (−) 0.35

Pyr → Pyr (+) 0.2

For neuron groups not listed in the table, there are no connections
between or within them. “+” represents an excitatory connection,
while “−” represents an inhibitory connection

the neuroanatomical structure of the biological olfac-
tory pathway, as presented in Table 1 [30,36]. Further-
more, the connections between neurons in the olfac-
tory neural network are probabilistic, indicating that

presynaptic neurons are randomly linked to postsynap-
tic neurons with a certain probability [37], as detailed
in Table 2 [38,39].

2.2 W–Z neuron energy model

To calculate the energy consumption of the neural
network, Wang–Zhang proposed a novel biophysical
model for neuron, as illustrated in Fig. 2.

By Kirchhoff’s law, it is not difficult to derive:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Um − Imrm + (I1m + CmU̇0m − I0m)rm
−(I0m − I1m)r2m − I0mr0m = 0

−U0m − I2mr3m − (I1m
+CmU̇0m − I0m)rm + Imrm = 0

− İ1mLm − I1mr1m − I0mr0m +Um = 0

(m = 1, . . . , N , the same below) (1)

To simplify the form, suppose:

1 + r2m
rm

− r1m
Lm

Cm

(

r2m + r3m + r2mr3m
rm

)

= 0 (2)

And without loss of generality, suppose that the
inputs Im from other neurons to the m-th neuron have
the form:
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Fig. 2 W–Z neuron energy model. This is a schematic diagram
of the total effect of stimulation from other neurons on the m-th
neuron. Cm represents the membrane capacitance, Im represents
the total current input from external neurons, and Um represents
the voltage source. rm represents the internal resistance of the cur-
rent source Im , and r0m represents the internal resistance of the

voltage sourceUm . The current source and voltage source divide
the membrane resistance into three parts: r1m , r2m , and r3m . In
addition, various charged ions such as sodium ions, potassium
ions, and calcium ions flow in and out of ion channels, forming
a loop current that causes self-induction, which is equivalent to
an inductance Lm

Im = i1m +
n∑

j=1

i0m( j − 1) sinωm( j − 1)(t j − t j−1)

+i0m(n) sinωm(n)(t − tn) (3)

Since power represents energy per unit time, the fol-
lowing expressions will use power to represent energy.
The energy of the m-th neuron can be represented as:

Pm = Um I0m + (Cmr3mU̇0m +U0m)Im (4)

Substituting Eqs. 1, 2, and 3 into Eq. 4, we obtain
the

Pm = Pm(t,U0m, U̇0m) (5)

To obtain the total energy of a neuron group consist-
ing of N neurons, sum up N Pm terms to get:

P =
N∑

m=1

Pm = P(t,U0m, U̇0m) (6)

In the provided neuron model, the assumption of
constant potential energy implies that power represents
average energy. This suggests that the power consumed

in this biophysical model can be conceptualized as the
energy function of a dynamical system, thus prompting
the introduction of the Lagrangian function. Serving as
a constraint for this electrical model, the Lagrangian
function plays a pivotal role in fully elucidating the
biophysical model.

d

dt

(
∂P

∂U̇0m

)

− ∂P

∂U0m
= 0 (7)

Therefore, by using the Lagrange equation as a con-
straint, we can solve for:

P = P(t), U0m = U0m(t) (8)

The expressions for energy and membrane poten-
tial derived in Eq. 8 can both portray the computa-
tional outcomes of the W–Z model, and they exhibit a
dual nature. Since energy is a scalar quantity, it can be
superimposed, enabling the summation of the energy
of each neuron to represent the total energy of the neu-
ron group. To investigate the computational outcomes
of neuron energy from a systemic standpoint, energy is
thus regarded as the computational result of the W–Z
model in subsequent analyses.
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2.3 Model of the olfactory neural network

2.3.1 Odor stimulus input

Linda’s research has demonstrated that various individ-
ual odors can trigger distinct combinations of olfactory
receptors, and the utilization of different combinations
of olfactory receptors can delineate the characteristics
of odors [40]. Hence, it becomes feasible to represent
different types of odors using a vector, as illustrated in
Eq. 9, termed as an odor vector.

s = (sglo1, . . . , sglon )
T

sgloi = abs(Xi ), Xi ∼ N (0, 100) (i = 1, . . . , n)

(9)

Here, sglo1, . . . , sglon represent the n components
of odor s, while n is equal to the number of OSN in
this model. The method for generating the odor in this
study involves taking the absolute value of the random
variable Xi as the value of sgloi , where Xi follows a
normal distribution with a mean of 0 and a variance of
100.

The Euclidean distance between odor vectors is
defined as the distance on the odor stimulus signal
received by olfactory receptors (i.e., input space), as
depicted in the following equation:

Di j = ∥
∥si − s j

∥
∥ (10)

Here, si and s j denote two distinct odors, and Di j

represents the Euclidean distance between the two odor
vectors.

Based on Table 1, it is established that the OSNs
consist of 10 types, with one representative for each
type. In the discussion of the topology of the olfac-
tory neural network, it becomes apparent that the same
OB receives stimuli from the same type of OSNs. Con-
sequently, there are a total of 10 OBs in the model.
This suggests that the odor vector in Eq. 9 is a 10-
dimensional vector.

Polese’s research suggests that the intensity of odor
stimulus increases linearlywith the concentration of the
odor [41]. Meanwhile, Xu’s study accounts for the sat-
uration effect of the stimulus by introducing a concen-
tration saturation term and incorporates the respiratory
cycle into the odor stimulus [30]. Considering these
discussions, the expression for odor stimulus input is
provided as shown in Eq. 11.

Sodor =
(

1

1 + e−c
− 1

2

)

· s · abs
(
sin

(π

T
t
))

(11)

T represents the respiratory cycle of odor stimulus
input, which is set to 0.2. c represents the concentration
of the odor. Given that an increase in concentration is
analogous to a proportional increase in the variable s in
Eq. 9 and has an insignificant impact on the final result,
we assume c to be a constant value of 0.5. This assump-
tion simplifies the model. Since s is a 10-dimensional
vector, Sodor is also a 10-dimensional vector at any
time, as shown in Figs. 3 and 4.

For mixed odors (represented by the odor vector sα),
a convex combination of two odors (represented by the
odor vectors sodor1 and sodor2 ) is used to represent them
[41], as shown in Eq. 12.

sα = αsodor1 + (1 − α)sodor2 , α ∈ [0, 1] (12)

For the sake of convenience in calculation, let α uni-
formly take values in the range [0, 1] to discretize α,
as shown in Eq. 13.

si = sodor1 + (
sodor2 − sodor1

)

· i

nodor
(i = 0, 1, 2 . . . nodor ) (13)

Using Eq. 13, we can obtain s0,s1,...,snodor for a total
of nodor + 1 mixed odors.

2.3.2 Network connections

At time t , the m-th neuron receives the total effect of
stimuli from N other neurons

Sm(t) =
N∑

j=1

ωmj Q(t − τ, j)

(m = 1, . . . , N , the same below) (14)

Here,ωmj represents the connectionweight from the
j-th neuron to the m-th neuron, τ represents the time
delay. In this study, we assume that the firing of neu-
rons depends solely on the previous moment, hence the
time constant τ is set to 1. Q(t,m) represents the firing
status of the m-th neuron at time t . If the total effect of
stimulation received by the m-th neuron from N other
neurons at time t exceeds the threshold of them-th neu-
ron (which is represented as thm in Eq. 15), then the
m-th neuron fires and is denoted as 1; otherwise, it is
denoted as 0. This can be expressed by the following
equation:

Q(t,m) = sgn(Sm(t) − thm) (15)
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Assuming that Im(t) in Eq. 8 has the following
expression [27]:

Im (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

im1 +
n∑

j=1

(
i0m ( j − 1)

sin
(
ωm ( j − 1)(t j − t j−1)

) )

+ i0m (n) sin(ωm (n)(t − tn)), Sm (t) ≥ thm

im1, Sm (t) < thm

(16)

where im1 represents the current component neces-
sary to maintain the resting membrane potential of the
mth neuron. The term i0m signifies the current stim-
ulation received by the mth neuron from the input of
the surrounding N neurons, which contributes to the
sub-threshold current level. Furthermore, ωm is used to
denote the frequency of action potentials [21].

Substituting this expression into the energy expres-
sion of the W–Z model (i.e., Eq. 8) yields the total
energy of the neuronal group.

The synaptic connections between neurons are
determined by the Hebbian rule [27]:

ωmj (t + 1) = ωmj (t) · (1 + L · Q(t,m) · Q(t − τ, j))

(m, j = 1, . . . , N ) (17)

In which, L is set to 0.02, ωmj (0) is set to 0.06, and
max(ωmj ) is set to 1.5.

2.3.3 Clustering methods for odor pattern recognition

Through the calculation of the olfactory neural net-
work, the total energy of the Pyr group in the PC can
be obtained after learning from odor stimulation. Exist-
ing studies have indicated that the membrane poten-
tial spike sequences of the olfactory neural network
under olfactory stimulation are crucial for odor cod-
ing [42,43]. From the perspective of energy coding,
the spike sequences of total energy are also important
for odor coding and can serve as an important method
for studying the overall activity of the PC under odor
stimulation. Therefore, the core issue in odor pattern
recognition is to adopt an appropriate measure of the
distance between different total energy spike sequences
of Pyr in the PC under different odor stimulations.

Due to the fact that under different odor stimulations,
the length of the total energy spike sequences of the Pyr
group in the PC and the corresponding spike moments
are not exactly the same, the chosen distance measure-
ment approach here needs to adapt to this property of

the spike sequences and should provide better discrim-
ination for different odors. Therefore, an appropriate
kernel method is selected here to measure the distance
of odor in the PC through sequence distance under the
kernel function [30].

d2i j = ∥
∥φ(Xi ) − φ(X j )

∥
∥2

= 〈φ(Xi ) − φ(X j ), φ(Xi ) − φ(X j )〉
= K (Xi , Xi ) + K (X j , X j ) − 2K (Xi , X j )

(18)

Where φ(Xi ) represents the total energy spike
sequence corresponding to the i-th neural group Xi ,
and K is the kernel function defined as follows:

K (Xi , X j ) = 〈φ(Xi ), φ(X j )〉 =
Ni∑

m=1

N j∑

n=1

e−|tm−tn |

(19)

In this expression, Ni represents the total energy
spike count (sequence length) of the i-th neural group
Xi , and tm represents the timing of them-th total energy
spike of the i-th neural group Xi .

For mixed odors, the distance between the mixed
odor and single odors (i.e., the distance between the
total energy spike sequences of the Pyr group in the
PC) can be calculated. This allows the adoption of a
nearest-neighbor method for odor pattern recognition,
where if the distance between the mixed odor and a
specific single odor is the smallest, the mixed odor is
recognized as that single odor. This method is natural
because similar odors will generate similar responses
in the PC [44].

To more intuitively represent the similarity between
odors, the term “similarity”will be used instead of “dis-
tance” to denote the final calculation result. Assuming
that a set of distances is computed in subsequent cal-
culations:

d = (d1, d2, ..., dn)
T (20)

Normalize and scale D (where high similarity and
large distance are considered “positive”) using the fol-
lowing equation:

ri = 1 − di − min d

max d − min d
(i = 1, . . . , n) (21)
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Fig. 3 The odor vectors and odor stimulus inputs
for the two single odors are as follows: sodor1 =
(16.2, 202.1, 19.4, 39.7, 78.0, 62.5, 37.5, 25.2, 57.0, 67.9),
sodor2 = (14.7, 99.1, 46.6, 91.8, 9.9, 67.0, 214.5, 54.3, 6.6, 19.9).
a The blue bars represent the values of each component of the
odor vector sodor1 for the first odor, while the red bars represent
the values of each component of the odor vector sodor2 for the

second odor. The values labeled above the bars indicate the
values of the components of the odor vectors. b The graph shows
the variation of each component of the odor stimulus input for
the first odor, Sodor1 , over one respiratory cycle (0.2 s) with time.
c The graph shows the variation of each component of the odor
stimulus input for the second odor, Sodor2 , over one respiratory
cycle (0.2 s) with time

3 Results

3.1 Pattern recognition of mixed odors by the Pyr
group of the PC

Through Eq. 9, the odor vectors sodor1 and sodor2 for
two odors, odor1 and odor2, are generated, as shown
in Fig. 3a. Using Eq. 11, the odor stimulus inputs for
the two odors, Sodor1 and Sodor2 , within one respira-
tory cycle (0.2 s) can be obtained. In the discussion of
the olfactory neural network model, it is specifically
mentioned that Sodor is a 10-dimensional vector at any
time, thus requiring representation with 10 curves, as
shown in Fig. 3b, c.

First, the network is given odor stimuli to learn about
these two odors. The odors are presented in the order
of odor1 and odor2, with each odor presented three
times alternatingly. Each odor lasts for one respiratory
cycle (0.2 s), and the learning process lasts for a total of
1.2 s, as shown in Fig. 4. The total energy of each neu-
ral group in the network during the learning process
(1.2 s) is calculated, as shown in Fig. 5. From Fig. 5,
it can be observed that the total energy of each neu-
ral group in the olfactory network undergoes dynamic
changes during the learning process of the odor stim-
uli, while the total energy of the Pyr group (as shown
in Fig. 5d) reaches a relatively stable state by the end
of the learning process.
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Fig. 4 Odor stimuli input
during the odor learning
process. During the odor
learning process, the two
types of odors are
alternately presented as
stimuli. Each stimulus lasts
for 0.2 s, which is equivalent
to one respiratory cycle.
Specifically, the following
time intervals correspond to
the input of the first odor,
odor1: 0–0.2 s, 0.4–0.6 s,
0.8–1s. And the following
time intervals correspond to
the input of the second odor,
odor2: 0.2–0.4 s, 0.6–0.8 s,
1–1.2 s

Fig. 5 Total energy of various neural groups during the learning
process: a Total energy of the PG group. b Total energy of the
MC group. c Total energy of the GC group. d Total energy of the

Pyr group. e Total energy of the FF group. f Total energy of the
FB group
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Fig. 6 Odor stimuli input during the odor pattern recognition
process. Here, s12 = (15.3, 140.3, 35.7, 70.9, 37.2, 65.2, 143.7,
42.7, 26.8, 39.1). a The blue bars represent the values of each
component of the odor vector sodor1 for the first odor, while the
yellow bars represent the values of each component of the odor
vector sodor2 for the second odor. The yellow bars represent the
values of each component of the odor vector s12 for the mixed

odor stimulus S12. The values labeled above the bars indicate the
values of the components of the odor vectors. s12 is the mixed
odor obtained by combining 60% of odor2 and 40% of odor1. b
The input of the mixed odor. During the odor pattern recognition
process, the duration of the mixed odor stimulus input is 0.4 s
(two respiratory cycles)

Through learning, the network weights of the olfac-
tory neural network can be determined. By setting
nodor to 20 in Eq. 13, a total of 21 mixed odor vec-
tors, s0, s1, ..., s20, can be obtained by convexly com-
bining the odor vectors of single odors, sodor1 and
sodor2 . Each mixed odor vector is then used as odor
stimuli input to the network for 0.4 s (two respiratory

cycles), resulting in the calculation of the total energy
of each neural group. Taking the example of odor vec-
tor s12, As Eq. 13, s12 is calculated by the expression:
s12 = 8

20 sodor1 + 12
20 sodor2 , odor stimuli S12 can be cal-

culated by the Eq. 11 The odor vector and odor stimuli
input are illustrated in Fig. 6, while the total energy of
each neural group is shown in Fig. 7.
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Fig. 7 Total energy of various neural groups during the odor
pattern recognition process. a Total energy of the PG group. b
Total energy of the MC group. c Total energy of the GC group.

d Total energy of the Pyr group. e Total energy of the FF group.
f Total energy of the FB group

In the clusteringmethod of odor pattern recognition,
it has been discussed that the spike sequence of total
energy can represent the encoding of olfactory stimuli
in the PC. By calculating the distance of odors in the
output space through kernel functions, the similarity of
odors in the output space can be obtained. Therefore,
by substituting the total energy spike sequence of the
Pyr group under each mixed odor stimulus into Eq. 18,
and then normalizing and scaling it through Eq. 21, a
curve showing the variation of the similarity between
the mixed odor and odor1 (in the output space) as a
function of the proportion of odor1 in the mixed odor
can be obtained, as shown in Fig. 8.

The results indicate that, firstly, as the proportion
of a single odor component in the mixed odor in the
input space approaches 100%, the similarity between
the mixed odor and that single odor in the output space
also approaches 1. This indicates a stronger tendency
to recognize the mixed odor as that single odor, reflect-
ing a higher olfactory recognition ability. As shown in
Fig. 8, when the proportion of odor1 in the mixed odor
is higher, the similarity between the mixed odor and

odor1 in the output space increases. Conversely, when
the proportion of odor1 is smaller, or in other words,
when the proportion of odor2 is higher, the similarity
between the mixed odor and odor1 in the output space
decreases, indicating a higher similarity to odor2 in the
output space.Secondly, when two single odors, odor1
and odor2, are almost evenly mixed, i.e., when odor1
comprises close to 50%of themixedodor, the similarity
between the mixed odor and odor1 in the output space
is around 0.5. This aligns with our cognitive under-
standing that when two odors are nearly evenly mixed,
themixedodor cannot be completely attributed to either
single odor. Lastly, it isworth noting that although over-
all, the similarity between the mixed odor and odor1
in the output space increases with an increase in the
proportion of odor1 (solid red curve in Fig. 8), this
trend differs from the input space (dashed red curve in
Fig. 8).While in the input space, the similarity between
the mixed odor and odor1 linearly increases with the
proportion of odor1, in the output space, this change
is nonlinear. When the similarity between the mixed
odor and odor1 is 0.5 in the input space, the proportion
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Fig. 8 Relationship between the similarity of mixed odors in
the output space to odor1 and the proportion of odor1 in the
mixed odor. The solid red curve represents the variation of the
similarity between the mixed odor and odor1 in the output space
with respect to the proportion of odor1 in themixed odor. The red
dashed curve represents the variation of the similarity between
the mixed odor and odor1 in the input space with respect to the
proportion of odor1 in the mixed odor. The black dashed line
represents the mixed odor with a similarity of 0.5 to odor1. The
blue circle represents the proportion of odor1 in the mixed odor
where the similarity to odor1 is 0.5. At this point, the proportion
of odor1 in the mixed odor is 42.6% in the output space and 50%
in the input space

of odor1 is 50%, it is termed as the boundary point in
the input space. However, in the output space, when
the similarity is 0.5, the proportion of odor1 is 42.6%,
which is labeled as the boundary point of odor in the
output space. This slight decrease compared to the input
space is termed as the displacement phenomenon of
odor boundaries. This displacement may lead to a ten-
dency to recognize the mixed odor as one of the single
odors when two odors are evenly mixed. This tendency
towards recognizing a specific single odor may be a
coding characteristic of the PC, which will be further
analyzed and discussed below.

3.2 Encoding of odors in the Pyr group of the PC

In order to investigate the nonlinear increase in simi-
larity between mixed odors and single odors with an
increasing proportion of the single odor in the output
space (as shown in Fig. 8), we first studied the encod-
ing characteristics of single odors and odors similar to
the single odor (in the input space) in the PC. Using
Eq. 9, we first presented a single odor (sglo1, ..., sglo10 )

as shown in Fig. 9a. For convenience and to facili-
tate intuitive presentation of the results, sglo3, ..., sglo10
were fixed, only sglo1 and sglo2 were changed, and s0
= (sglo1, sglo2 ) was defined as this single odor. Thus,
to study the distance between s0 and similar odors, 25
similar odors (including s0) were uniformly selected in
the rectangular neighborhood of s0 as shown in Fig. 9b.
The similarity between the 25 similar odors and s0 in
the input space was calculated, as shown in Fig. 9c. It
can be seen that there is a linear relationship between
the similarity between s0 and similar odors.

The stimuli of the aforementioned 25 similar odors
were input into the olfactory neural network, and a total
energy spike sequence was obtained in the PC. By cal-
culating the kernel distance between the sequences, the
similarity between s0 and the similar odors in the out-
put space was obtained, as shown in Fig. 10. It can be
observed that the similarity between similar odors and
s0 changed after being processed by the olfactory neu-
ral network. Specifically, the similarity between sim-
ilar odors in the input space is linearly related to the
distance between them, while the similarity between
similar odors in the output space is nonlinearly related
to the distance between them in the input space. It can
be seen that the sensitivity of odor vectors in the direc-
tions of sglo1 and sglo2 around s0 is different. More
specifically, changes in the direction of sglo1 have a rel-
atively smaller impact on the similarity between odor
vectors in the output space, while changes in the direc-
tion of sglo2 have a relatively larger impact. This sug-
gests that the nonlinear representation of odors in the
output space can be used to calculate the boundaries
for odor discrimination and to analyze and explain the
phenomenon of displacement of the boundary inmixed
odor pattern recognition.

Two similar odors, sodor1 = (70.7, 13.8) and sodor2
= (90.7, 33.8), were selected from the 25 similar odors
in the neighborhood of s0. Firstly, similarly, sodor1 was
input as a single odor, and the similarity between the
similar odors (25 above-mentioned) and sodor1 in both
the input andoutput spaceswere calculated, as shown in
Fig. 11a, b. For sodor2 , it was also input as a single odor,
and the similarity between the similar odors and sodor2
in both the input and output spaces were calculated, as
shown in Fig. 11c, d.

Then, the 25 odors were used as the mixed odors
of sodor1 and sodor2 . To facilitate the analysis of the
results, the distance between the mixed odor and sodor1
was taken as a positive value, the distance between the
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Fig. 9 Odor vectors of single and similar odors
and their similarity in the input space. Here, s =
(80.7, 23.8, 74.8, 120.8, 51.6, 45.9, 71.5, 50.0, 60.1, 4.4). a
The bar chart shows the values of each component of the odor
vector of the single odor, and the values above the bar chart
are the component values of the odor vector. b The single
odor s0 = (80.7, 23.8) and the similar odors in the rectangular

neighborhood; the similar odors are selected with a step size
of 5 in the directions of sglo1 and sglo2 with s0 as the center,
totaling 25 similar odors (including s0). c, d The single odor
s0 = (80.7, 23.8), and the similarity between the similar odors
and the single odor in the input space is measured using the
Euclidean distance

mixedodor and sodor2 was taken as a negative value, and
the sum of the two was normalized and scaled to obtain
the similarity between the mixed odor and single odor.
This is because when the mixed odor is more similar to
sodor1 , the distance between the mixed odor and sodor1
is smaller than the distance between the mixed odor
and sodor2 , so the difference between the distances is
negative.After scaling and normalizing, it is closer to 1;

conversely, it is closer to 0.This also indicates thatwhen
the normalized and scaled result is 0.5, the similarity
between the mixed odor and the two odors is the same
(distances are equal). The results are shown in Fig. 11e,
f.

From the above analysis, it can be understood that
the contour line formed by the similarity of 0.5 between
mixed odors and two single odors is the boundary
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Fig. 10 Similarity between single odor and similar odor in output space. The single odor is s0 = (80.7, 23.8), and the similarity between
the similar odor and the single odor in the output space is measured using kernel distance

Fig. 11 The similarity between two single odors and similar
odors in the input–output space, as well as the similarity between
mixed odors and the two single odors in the input–output space.
The two single odors are sodor1 = (70.7, 13.8) and sodor2 = (90.7,
33.8). a Similarity between sodor1 and similar odors in the input
space; b Similarity between sodor1 and similar odors in the out-
put space; c Similarity between sodor2 and similar odors in the

input space; d Similarity between sodor2 and similar odors in the
output space; e Similarity between mixed odors and the two sin-
gle odors in the input space; f Similarity between mixed odors
and the two single odors in the output space. e, f The closer the
similarity value is to 1, the more similar the mixed odor is to
sodor1 ; conversely, the closer the value is to 0, the more similar
the mixed odor is to sodor2

123



Odor pattern recognition of olfactory neural network

Fig. 12 The boundary curvess in the input–output space for
mixed odors and the two single odors. The black dashed curve
represents the boundary curve for mixed odors in the input space,
while the red dashed curve represents the boundary curve for
mixed odors in the output space. When a mixed odor is located
to the left of the odor boundary curve, it is classified as sodor1 ;
otherwise, it is classified as sodor2

curve dividing the mixed odor into sodor1 and sodor2 ,
as shown in Fig. 12. It was observed that the boundary
curves for mixed odors in the input space and output
space were different, which was termed as the phe-
nomenon of odor boundary curve displacement. When
mixed odors were constrained to convex combinations
of two single odors, the intersection of the line connect-
ing the two single odors with the boundary curve of the
mixed odor was the mixed odor boundary point dis-
cussed earlier, as shown in Fig. 8. This indicated that
when mixed odors were limited to convex combina-
tions of two single odors, the odor boundary curves
degenerated into odor boundary points. Through the
phenomenon of odor boundary curve displacement, a
more intuitive and profound understanding of the dis-
placement in odor boundary points could be achieved,
reflecting the nonlinear characteristics in the encoding
of odors by the PC more profoundly.

4 Discussion

Based on the anatomical structure of the olfactory neu-
ral system, this article constructed an olfactory neural
systemnetworkbasedon theW–Zneural energymodel.
The complex behavioral characteristics of the network

model under various odor input conditions were stud-
ied, and pattern recognition of the total energy of neu-
ron groups in response to external odor inputs was
conducted, resulting in effective and reliable results.
Additionally, a detailed study of the behavioral charac-
teristics of the Pyr group in the PC during odor pattern
recognition and encoding processes led to the follow-
ing three important conclusions:

4.1 Dynamic behavior in the olfactory neural network

During the process of learning and recognizing odors,
the total energy of various neuron groups in the
olfactory neural network underwent dynamic changes,
which were observable in Figs. 5 and 7. When OSNs
in the olfactory neural network received odor stimuli
and engaged in the process of learning and recognition,
including the Pyr group in the PC, the total energy
of various neuron groups exhibited oscillations with
different waveforms and amplitudes over time. This
reflected the energy representation during the process
of stimulation, learning, and recognition in olfactory
cognition. Only when olfactory cognition was formed
did the energy oscillation pattern tend to stabilize.
On one hand, this demonstrated the dynamic behav-
ior of the olfactory neural network based on energy
coding induced by odor stimuli; on the other hand,
this dynamic behavior was closely related to odor pat-
tern recognition and encoding. Generally, after action
potentials were generated in the form of electrical
energy, a portion of the energy was metabolized in
various forms of heat energy, while another portion
of the energy might be generated in the form of cog-
nition. Therefore, olfactory cognition was a form of
information energy, and the sum of these two energy
components followed the principle of energy conser-
vation with the energy of action potentials.

4.2 Nonlinear features in odor pattern recognition and
encoding

In the process of odor pattern recognition in the olfac-
tory neural network, there existed a nonlinear rela-
tionship between the similarity of various odors in the
output space and the proportion of odor components.
When odors and similar odors exhibited a linear rela-
tionship in the input space (Euclidean distance), as
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shown in Figs. 9 and 11; after information processing
by the olfactory neural network, on the output space
of the Pyr group in the PC, odors and similar odors
exhibited a nonlinear relationship (kernel distance), as
shown in Figs. 10 and 11. This transition from linearity
to nonlinearity reflected the nonlinear characteristics
of odor processing in the olfactory neural network, and
this nonlinear characteristic represented a high-level
representation of odors encoded in the PC after odor
information underwent a series of processing in the
olfactory neural system and was projected to the PC.
This high-level representation was calculated based on
the kernel distance of the total energy of the Pyr group
in the PC. This provided a new perspective for under-
standing the complexity of odor recognition based on
the principle of energy coding in the future.

4.3 Boundary displacement phenomenon in mixed
odor pattern recognition

In the computational results of the olfactory neural net-
work for the recognitionofmixedodors, a displacement
of the odor boundary point was observed, as shown
in Fig. 8. This phenomenon could be more generally
summarized as the displacement of the odor bound-
ary curve, as shown in Fig. 12. The cause of this odor
boundary displacement could be attributed to the phys-
ical nonlinear characteristics of odor processing and
encoding in the olfactory neural network. This could
lead to a greater tendency to identifymixedodors as sin-
gle odors in the output space, namely the PC, reflecting
the differences in olfactory recognition thresholds (i.e.,
sensitivity to different components) of mixed odors
within the olfactory system [45]. This phenomenon, as
part of the odor encoding characteristics of the PC, pro-
vided important insights into the mechanisms of odor
pattern recognition.

Understanding how to properly construct models of
the olfactory neural system and employ suitable meth-
ods to study the encoding of the olfactory neural sys-
tem was crucial not only for accurately identifying and
evaluating olfactory cognition and olfactory cognitive
impairments using quantitative approaches but also for
assessingmedical treatments related to olfactory amyg-
dala in Parkinson’s disease (PD) patients [46,47].

These research findings once again demonstrated
that the H–H model was suitable for modeling, ana-
lyzing, and computing neural networks with a small

number of simple and local neurons, while the W–Z
model was suitable for modeling, analyzing, and com-
puting complex networks with a large number of neu-
rons. Particularly, due to the symmetric relationship
between neural information and neural energy, as well
as the advantages of simplicity in computation and the
preservation of key information, the neural energy the-
ory and the W–Z neuron model held great potential as
research methods for constructing large-scale neuro-
science models.
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