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Abstract In this study, we particularly address the
generalized (3+1)-dimensionalKortewegdeVries (KdV)
problem as one variation of the KdV equation. This
equation can be utilized to simulate a wide range of
physical events in a variety of domains, such as nonlin-
ear optics, fluid dynamics, plasma physics, and other
fieldswhere coupledwavedynamics are significant.We
first construct a Hirota bilinear form for the generalized
KdV equation, and then we derive two different Bäck-
lund transformations (BT). The first Bäcklund trans-
formation includes eleven arbitrary parameters, while
the second form contains eight parameters. Rational
and exponential traveling wave solutions with random
wave numbers are found based on the suggested bilin-
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ear Bäcklund transformation. These solutions of the
rational and exponential functions lead to the forma-
tion of dark and bright solitons. Moreover, we utilize
the bilinear form of the equation to fully comprehend
the behavior of lump-kink, breather, rogue, two-wave,
three-wave, andmulti-wave solutions. In-depth numer-
ical simulations using 3-Dprofiles and contour plots are
carried out while carefully taking into account relevant
parameter values, offeringmore insights into theunique
characteristics of the solutions that are obtained. Our
results demonstrate the effectiveness and efficiency of
the method used to obtain analytical solutions for non-
linear partial differential equations.

Keywords Mathematical model · Bäcklund trans-
form · Soliton solutions · Visualization

1 Introduction

Nature’s nonlinearity is a captivating phenomenon, and
many scientists perceive nonlinear research as the most
promising area for developing fundamental knowledge
of nature. The study of an extensive range of nonlinear
ordinary and partial differential equations is crucial to
the mathematical modeling of complex processes that
evolve over time. These equations are generated in a
broad spectrum of domains, encompassing economics,
elasticity, plasma physics, population ecology, and the
physical and natural sciences [1,2]. Soliton solutions
to the aforementioned phenomena have consequently
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been a fascinating and exceptionally dynamic field of
study for the past few decades, and the associated chal-
lenge has been the development of closed-form solu-
tions to a broad range of nonlinear partial differential
equations (NLPDEs). Closed-form solutions for soli-
tary waves offer more internal information about these
types of events. Consequently, a great deal of effort has
been put forward by mathematics and physical scien-
tists to obtain wave solutions of these NLPDEs, and
several effective and potent techniques such as, mod-
ified extended tanh function method [3], Riccati sub-
equationmethod [4], sinh-Gordon expansion technique
[5], Bäcklund transformation [6], and extended trans-
formed rational function approach [7], have been dis-
covered.

A soliton is a single, self-sustaining wave which
maintains its shape and speed while moving over a sur-
face while not ever dispersing or dissipating. Because
of their peculiar behavior, solitons are exceptionally
stable and can retain their shape over extended dis-
tances. Planar wave-guides and optical fibres are two
examples of waveguide structures where these solitons
might occur. The physical relevance of soliton solu-
tions stems from their capacity to counterbalance the
opposing impacts of dispersion and nonlinearity. A
pulse’s tendency to spread out over time due to dis-
persion causes it to expand and distort. Conversely,
nonlinearity can cause a self-focusing effect that com-
presses the pulse, which lowers dispersion. A balanced
coexistence of dispersion and nonlinearity is neces-
sary for the emergence of solitons. Several researchers
have used various mathematical models and tech-
niques to investigate the theory of soliton. Wang [8]
obtained Y-type soliton and complex multiple soliton
solutions to the extended (3+1)-dimensional Jimbo–
Miwa equation by employing Hirota bilinear method,
Wang and Liu [9] explored some semi-domain soli-
ton solutions for the fractal (3+1)-dimensional gener-
alized Kadomtsev–Petviashvili–Boussinesq equation
through Bernoulli sub-equation function approach, and
Nisar et al. [10] investigated different NLPDEs and
retrieved many solutions containing one-, two-, and
triple-soliton solutions via the multiple Exp-function
method.

The novel (2+1)-dimensional generalized
Korteweg–de Vries (gKdV) equation emerged recently
[11],

ut + 6uux + uxxx + ux +
∫ x

−∞
uytdx + uy + uxxy

+3uuy + 3ux

∫ x

−∞
uydx = 0, (1)

which, by taking into account the potential u(x, y, t)
= φx (x, y, t), is similar to following equation:

ϕxt + 6ϕxϕxx + ϕxxxx + ϕxx + ϕyt

+ϕxy + ϕxxxy + 3ϕxϕxy + 3ϕxxϕy = 0. (2)

Lu and Chen [11] looked into this equation and came
up with several different soliton solutions as well as
results about its integrability.

A new (3+1)-dimensional integrable gKdV equa-
tion was recently constructed by Ismaeel et al. [12],
by changing the previous (2+1)-dimensional gKdV
Eq. (1).

ut + 6uux + uxxx + ux +

∫
x

−∞
uytdx + uy + uxxy

+3uuy + 3ux

∫
x

−∞
uydx

+βuz + β1

∫
x

−∞
uyzdx + γ

∫
x

−∞
uyydx = 0, (3)

where, u = u(x, y, z, t) and β, β1, and γ , are any non-
zero parameters. Three further terms have been added
to Eq. (1), which are second-order derivatives, to gener-
ate Eq. (3). By examining the compatibility conditions,
Ismaeel et al. [12] used the Painlevé test to show that
Eq. (3) is Painlevé integrable only when β = β1. Fur-
thermore, by adjusting the relevant parameters, they
investigated a set of lump and multi-soliton solutions.
Therefore, based on the compatibility conditions pre-
sented before, Eq. (3) becomes:

ut + 6uux + uxxx + ux +

∫
x

−∞
uytdx + uy + uxxy

+3uuy + 3ux

∫
x

−∞
uydx

+βuz + β

∫
x

−∞
uyzdx + γ

∫
x

−∞
uyydx = 0. (4)

123



Analyzing coupled-wave dynamics: lump, breather, two-wave

Over the past few years, a number of researchers
have shown a significant deal of interest in discover-
ing the solutions for generalized KdV equation. Hos-
seini et al. [13] discovered lump-type, complexiton,
and soliton solutions for gKdv equation by utilizing
the bilinear form of model, Xia et al. [14] discovered
conservation laws and soliton solutions for generalized
seventh order KdV equation by using a direct alge-
braic method, Khan et al. [15] applied hirota bilinear
technique and found multiple bifurcation solitons and
rogue waves of a generalized perturbed KdV equation,
and Xu [16] used Nucci’s method to find the lax pais
of a generalized seventh-order KdV equation and per-
formed a singularity structure analysis to assess the
equation’s integrability.

TheHirota bilinear transformation is a helpfulmath-
ematical method for researching nonlinear integrable
systems, particularly soliton theory [17]. Since its
invention, it has been used to transform nonlinear par-
tial differential equations into a bilinear form, simpli-
fying analysis and facilitating the methodical develop-
ment of soliton solutions. Because it is algorithmic,
applicable to a wide range of integrable systems, and
intimately associated with the inverse scattering trans-
form, this approach is efficient [18]. Apart from mak-
ing it easier to find soliton solutions, this approach
provides researchers with a uniform and systematic
means to study and understand how solitons behave
in various physical systems. Our goal is to utilize the
gKdV equation’s bilinear representation to find Bäck-
lund transformation. In order to solve NLPDEs, the
Bäcklund transformation is a helpful analytical tech-
nique that creates new solutions based on preexisting
ones [19]. In comparison to more recent methods, the
bilinear Bäcklund transformation provides a system-
atic and flexible method that maintains the integrabil-
ity of the original equation, ensuring accurate solutions,
even though it can be complex and requires a profound
understanding of bilinear forms and transformations.
Numerous equations, such as the sine-Gordon Eq. [20],
the Kadomtsev–Petviashvili–Sawada–Kotera–Ramani
equation [21], the Konopelchenko–Dubrovsky equa-
tion [22], and the Boussinesq equation [23], have been
successfully solved using theBäcklund transformation.

The computational techniques that are suggested
here are straightforward, explicit, reliable, and mini-
mize the amount of computational labor, which con-
tributes to their broad applicability. With all these
characteristics, our research deserves more attention

because it is effective and influential in handling
other nonlinear partial differential equations that arise
in other scientific domains. Additionally, we’ll delve
into various hypotheses using the provided model’s
bilinear structure. Our investigation will encompass a
range of conjectures, including those involving two,
three, multi-wave, breather, rogue, and lump-cross-
kink wave solutions. It is noteworthy that the afore-
mentionedmethodologies are never implemented in the
past research for the model under consideration.

The article is formatted as follows: In Sect. 2, the
Bäcklund transformation is examined, and outcomes
for rational and exponential functions are shown. In
Sect. 3, the bilinear form is used to analyze different
wave forms and their dynamic nature. Lastly, a final
synopsis of the work is provided.

2 Bäcklund transformation

By taking the following transformation,

u(x, y, z, t) = 2(ln P)xx , (5)

we can obtain the following bilinear representation of
Eq. (4) by inserting Eq. (5) into Eq. (4),
(
Dt Dx + DyDt + Dx Dy + D4

x + D3
x Dy + D2

x

+βDx Dz + βDyDz + γ D2
y

)
P · P = 0, (6)

the Hirota bilinear operator is given by,

D�1
x D�2

y D�3
z D�4

t (P · G) =
(

∂

∂x
− ∂

∂xi

)�1

(
∂

∂y
− ∂

∂yi

)�2
(

∂

∂z
− ∂

∂zi

)�3
(

∂

∂t
− ∂

∂ti

)�4

× P(x, y, z, t)G(xi , yi , zi , ti )

∣∣∣∣
xi=x,yi=y,zi=z,ti=t

,

where,�1,�2,�3 and�4 are integers. Also, the func-
tions P and G are differentiable.

2.1 The first Bäcklund transformation

Let G(x, y, z, t) be an additional function that denotes
the bilinear form’s solution,
(
Dt Dx + DyDt + Dx Dy + D4

x + D3
x Dy + D2

x

+βDx Dz + βDyDz + γ D2
y

)
G · G = 0, (7)
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and by using [24], we consider the expression:

2Q = 2[(Dt Dx + DyDt + Dx Dy + D4
x + D3

x Dy

+ D2
x + βDx Dz + βDyDz + γ D2

y

)
G · G]P2

− 2G2[(Dt Dx + DyDt + Dx Dy + D4
x

+ D3
x Dy + D2

x + βDx Dz + βDyDz

+ γ D2
y

)
P · P],

(8)

wherein the following list includes some of the char-
acteristics associated with the Hirota Bilinear operator
[25]:(
Dx Dt B · B)

A2 − B2(Dx Dt A · A)
= 2Dx

(
Dt B · A) · AB,(

D4
x B · B

)
A2 − B2

(
D4
x A · A

)

= 2Dx

(
D3
x B · A

)
· AB

+ 6Dx

(
D2
x B · A

)
· (
Dx A · B)

,

2
((

D3
x Dy B · B

)
A2 −

(
D3
x Dy A · A

)
B2

)

= Dx [
(
3D2

x Dy B · A
)

· AB
+

(
3D2

x B · A
)

· (
Dy A · B)

+ (
6Dx Dy B · A) · (Dx A · B)]

+ Dy[
(
D3
x B · A

)
·

AB +
(
3D2

x B · A
)

· (
Dx A · B)],(

D2
x B · B

)
A2 − B2

(
D2
x A · A

)

= 2Dx
(
Dx B · A) · AB,(

D2
y B · B

)
A2 − B2

(
D2

y A · A
)

= 2Dy
(
DyB · A) · AB,(

Dp(Dq B.A
)
.AB = Dq

(
DpB.A

)
.AB.

Using Eq. (8) and the previously indicated features, we
obtain the following expression:

2Q = 2[(Dt Dx + DyDt + Dx Dy + D4
x

+ D3
x Dy + D2

x + βDx Dz

+ βDyDz + γ D2
y

)
G · G]P2

− 2G2[(Dt Dx + DyDt + Dx Dy

+ D4
x + D3

x Dy + D2
x + βDx Dz

+ βDyDz + γ D2
y

)
P · P]

= 2[(Dt DxG · G)P2 − G2(Dt Dx P · P)]

+ 2[(Dt DyG · G)P2 − G2(Dt Dy P · P)]
+ 2[(Dx DyG · G)P2 − G2(Dx Dy P · P)]
+ 2[(D4

xG · G)P2 − G2(D4
x P · P)]

+ 2[(D3
x DyG · G)P2 − G2(D3

x Dy P · P)]
+ 2[(D2

xG · G)P2 − G2(D2
x P · P)]

+ 2β[(Dx DzG · G)P2 − G2(Dx Dz P · P)]
+ 2β[(DyDzG · G)P2 − G2(DyDz P · P)]
+ 2γ [(D2

yG · G)P2 − G2(D2
y P · P)]

= 4Dx (DtG · P) · PG + 4Dy(DtG · P)

· PG + 4Dx (DyG · P) · PG
+ 2[2(Dx (D

3
xG · P) · PG)

+ 6(Dx (D
2
xG · P).(Dx P · G))]

+ Dx [
(
3D2

x DyG · P
)

· PG
+

(
3D2

xG · P
)

· (
Dy P · G)

+ (
6Dx DyG · P) · (Dx P · G)]

+ Dy[
(
D3
xG · P

)
· PG +

(
3D2

xG · P
)

· (
Dx P · G)] + 4[Dx (DxG · P) · PG]

+ 4β[Dx (DzG · P) · PG]
+ 4β[Dy(DzG · P) · PG]
+ 4γ [[Dy(DyG · P) · PG]

= Dx [(4D3
x + 4Dx + 3D2

x Dy + χ1Dy

+ χ2Dz + χ3Dt + χ4)G · P] · PG
+ Dy[(4Dx + 4γ Dy + D3

x

− χ1Dx + χ5)G · P] · PG
+ Dz[(4βDx + 4βDy − χ2Dx + χ6)G · P] · PG
+ Dt [(4Dy + 4Dx − χ3Dx + χ7)G · P] · PG
+ Dx [(3D2

x + χ8Dy + χ11)G · P] · (Dy P · G)

+ Dx [(12D2
x + 6Dx Dy + χ9Dx )G · P]

· (Dx P · G)

+ Dy[(3D2
x + χ10Dx − χ11)G · P] · (Dx P · G).

The given characteristics of the bilinear operator
explainwhy the coefficients ofχi , (i = 1, 2, 3, . . . , 11)
in the previous formula are zero: Da P · P = 0,
Dx (Dy P ·G) · PG = Dy(Dx P ·G) · PG, Dx P ·G =
−DxG · P . Consequently, the equation that represents
the Bäcklund transform of Eq. (4) is as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
4D3

x + 4Dx + 3D2
x Dy + χ1Dy + χ2Dz + χ3Dt + χ4

)
G · P = 0,(

4Dx + 4γ Dy + D3
x − χ1Dx + χ5

)
G · P = 0,(

4βDx + 4βDy − χ2Dx + χ6
)
G · P = 0,(

4Dy + 4Dx − χ3Dx + χ7
)
G · P = 0,(

3D2
x + χ8Dy + χ11

)
G · P = 0,(

12D2
x + 6Dx Dy + χ9Dx

)
G · P = 0,(

3D2
x + χ10Dx − χ11

)
G · P = 0.

(9)

For the bilinear form (7), we investigate the solution
P = 1. Now, the aforementioned system utilizes the
following characteristic:

Dq
pG · 1 = ∂ p

∂q p
G.

After that, the bilinear Bäcklund transformation Eq. (9)
is transformed into a group of linear partial differential
equations:

⎧⎪⎪⎨
⎪⎪⎩

(
4Gxxx + 4Gx + 3Gxxy + χ1Gy + χ2Gz + χ3Gt + χ4

) = 0,(
4Gx + 4γGy + Gxxx − χ1Gx + χ5

) = 0,
(
4βGx + 4βGy − χ2Gx + χ6

) = 0,(
4Gy + 4Gx − χ3Gx + χ7

) = 0,
(
3Gxx + χ8Gy + χ11

) = 0,(
12Gxx + 6Gxy + χ9Gx

) = 0, (3Gxx + χ10Gx − χ11) = 0.

(10)

2.1.1 Rational function solution

We consider a first order polynomial function solution
as,

G(x, y, z, t) = k1x + k2y + k3z + k4t, (11)

where k1, k2, k3, and k4 are random constants. The fol-
lowing results from inserting the aforementioned equa-
tion into system (10):

⎧⎪⎨
⎪⎩
k1 = − k2χ8

χ10
, χ4 = − k2χ1χ10+k3χ2χ10+k4χ3χ10−4 k2χ8

χ10
, χ5 = − k2(4 γ χ10+χ1χ8−4χ8)

χ10
,

χ6 = 4 β k2χ8−4β k2χ10+k3χ2χ10
χ10

, χ7 = − k2(χ3χ8−4χ8+4χ10)
χ10

, χ9 = 0, χ11 = −k2χ8,

k2 = k2, k3 = k3, k4 = k4, χ1 = χ1, χ2 = χ2, χ3 = χ3, χ8 = χ8, χ10 = χ10,

thus, Eq. (4) has the following solution:

u(x, y, z, t)

= −2
k22χ

2
8

(tk4χ10 − xk2χ8 + yk2χ10 + zk3χ10)2
.

(12)

2.1.2 Exponential function solution

The following is considered the solution of the bilinear
Form Eq. (7).

G = 1 + k5e
ax+by+gz+ht , (13)

where the constants are represented by a, b, g, and
h. The following results from inserting Eq. (13) into
system (10):
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⎧⎪⎪⎨
⎪⎪⎩

b = −2 a − 1
6 χ9, β = −36 a4−6 a3χ9+144 γ a2+24 aγ χ9+γ χ9

2−36 a2−36 ha−6 aχ9−6 hχ9
6a(6 a+χ9)

,

χ1 = −−3 a3+24 aγ+2 γ χ9−12 a
3a , χ2 = −−36 a4−6 a3χ9+144 γ a2+24 aγ χ9+γ χ9

2−36 a2−36 ha−6 aχ9−6 hχ9
9ag ,

χ3 = − 2
3

6 a+χ9
a , χ8 = 18 a2

12 a+χ9
, χ10 = −3 a.

(14)

Thus, the solution to Eq. (4) can be obtained by substi-
tuting Eq. (14) in (5),

u(x, y, z, t) = 2
k5a2eax−2 ya− 1

6 χ9y+gz+ht

(1 + k5eax−2 ya− 1
6 χ9y+gz+ht )2

. (15)

2.2 The second Bäcklund transformation

For Eq. (4), we employ the following exchange identity
to obtain the second BT:

(
D3
x DyG · G

)
P2 −

(
D3
x Dy P · P

)
G2

= 2Dy

(
D3
xG · P

)
· FG + 6Dx

(
Dx DyG · P)

· (Dx P · G) . (16)

Now, by using this identity in Eq. (8) and following the
similar procedure,

Q = 2Dx (DtG · P) · PG + 2Dy(DtG · P) · PG
+ 2Dx (DyG · P) · PG + 2(Dx (D

3
xG · P) · PG)

+ 6(Dx (D
2
xG · P).(Dx P · G)) + 2Dy

(
D3
xG · P

)

· PG + 6Dx
(
Dx DyG · P) · (

Dx P · G)
+ 2[Dx (DxG · P) · PG]
+ 2β[Dx (DzG · P) · PG] + 2β[Dy(DzG · P) · PG]
+ 2γ [Dy(DyG · P) · PG]

= 2Dx [(D3
x + Dx + χ1Dy

+ χ2Dz + χ3Dt + χ4)G · P] · PG
+ Dy[(Dx + γ Dy + D3

x − χ1Dx + χ5)G · P]
· PG + Dz[(βDx + βDy − χ2Dx + χ6)G · P] · PG
+ Dt [(Dy + Dx − χ3Dx + χ7)G · P]
· PG + Dx [(3D2

x + 3Dx Dy

+ χ8Dx )G · P] · (Dx P · G).

Eight arbitrary parameters are suggested in this partic-
ular case. As a result,the Bäcklund transformation of
Eq. (4) is,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
D3
x + Dx + χ1Dy + χ2Dz + χ3Dt + χ4

)
G · P = 0,(

Dx + γ Dy + D3
x − χ1Dx + χ5

)
G · P = 0,(

βDx + βDy − χ2Dx + χ6
)
G · P = 0,(

Dy + Dx − χ3Dx + χ7
)
G · P = 0,(

3D2
x + 3Dx Dy + χ8Dx

)
G · P = 0.

(17)

Now, the bilinear Bäcklund transformation Eq. (17) is
transformed into a group of linear partial differential
equations,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Gxxx + Gx + χ1Gy + χ2Gz + χ3Gt + χ4

) = 0,(
Gx + γGy + Gxxx − χ1Gx + χ5

) = 0,(
βGx + βGy − χ2Gx + χ6

) = 0,(
Gy + Gx − χ3Gx + χ7

) = 0,(
3Gxx + 3Gxy + χ8Gx

) = 0.

(18)

2.2.1 Rational function solution

We take the same rational function solution as Eq. (11),
and after plugging it into Eq. (18), we obtain the fol-
lowing constraints:⎧⎪⎪⎨
⎪⎪⎩

k2 = k1χ3 − k1 − χ7,

χ4 = −k1χ1χ3 + k1χ1 − k3χ2 − k4χ3 + χ1χ7 − k1,
χ5 = −γ k1χ3 + γ k1 + γ χ7 + k1χ1 − k1,
χ6 = −β k1χ3 + β χ7 + k1χ2, χ8 = 0,

therefore, the rational function solution is given as,

u(x, y, z, t)

= −2
k21

(yk1χ3 + tk4 + xk1 − yk1 − yχ7 + zk3)2
.

(19)

2.2.2 Exponential function solution

Similarly taking the same solution asEq. (13), and solv-
ing for parameters results in,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b = aχ3 − a,

β = − a3χ3+aγ χ3
2−2 aγ χ3+aγ+aχ3+hχ3

gχ3
,

χ1 = a2 + γ χ3 − γ + 1,

χ2 = − a3χ3+aγ χ3
2−2 aγ χ3+aγ+aχ3+hχ3

g ,

χ8 = −3 aχ3,
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therefore, by substituting the above solution set along
with Eq. (13) into (5), the solution is,

u(x, y, z, t) = 2
k5a2eayχ3+ax−ay+gz+ht

(1 + k5eayχ3+ax−ay+gz+ht )2
. (20)

3 Interactional solutions

3.1 Two wave solutions

The following function is employed to obtain two-wave
solutions to Eq. (4):

P(x, y, z, t) = n1e
(−δ1) + n2e

(δ1) + n3 sin(δ2)

+n4 sinh(δ3), (21)

where, δ1 = (a1y + b1t + c1z + d1x), δ2 = (a2y +
b2t + c2z + d2x), and δ3 = (a3y + b3t + c3z + d3x).
Furthermore, (5) can be used to transform the bilinear
form (6) into the following expression,

PPxt − Px Pt + PPyt − Py Pt + PPxy − Px Py + (PPxxxx − 4Px Pxxx + 3P2
xx )

+(PPxxxy − 3Px Pxxy + 3Pxx Pxy − Pxxx Py) + PPxx − P2
x

+β(PPxz − Px Pz) + β(PPyz − Px Py) + γ (PPyy − P2
y ) = 0. (22)

Plugging Eq. (21) into Eq. (22) yields the following set
of solutions:
Set 1:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n3 = 0, b1 = 6a14+12a13+a12(6a2(a2+2)−β+7)+2a1a2(β+5)−a22(β+5)
(a1−a2)2

,

b2 = 6a13(a2−1)+a12(18a2−β−9)+2a1a2(3a2(a2+1)+β+9)+a22(6a2−β+3)
(a1−a2)2

,

b3 = 6a14+12a13+a12(6a2(a2+2)−β+7)+2a1a2(β+5)−a22(β+5)
(a1−a2)2

,

a3 = a1, γ = − 6(a1+1)(a1(a1+2)+a2(a2+2)+2)
(a1−a2)2

,

(23)

plugging Eq. (23) into Eq. (21), gives,

P(x, y, z, t)

= n1 exp

(
− t

(
6a14 + 12a13 + a12(6a2(a2 + 2) − β + 7) + 2a1a2(β + 5) − a22(β + 5)

)
(a1 − a2)2

− a1y − c1z − d1x

)

+n2 exp

(
t
(
6a14 + 12a13 + a12(6a2(a2 + 2) − β + 7) + 2a1a2(β + 5) − a22(β + 5)

)
(a1 − a2)2

+ a1y + c1z + d1x

)

+n4 sinh

(
t
(
6a14 + 12a13 + a12(6a2(a2 + 2) − β + 7) + 2a1a2(β + 5) − a22(β + 5)

)
(a1 − a2)2

+ a1y + c3z + d3x

)
.

(24)

Set 2:
{
b1 = −

(
a12−2

)
γ

a1+1 − β + 1, b2 = (a1(a1+4)+2)γ
a1+1 − β − 3,

n1 = n32

4n2
, n4 = 0, a2 = −a1 − 2,

(25)

plugging Eq. (25) into Eq. (21), gives,

P(x, y, z, t)

=
n3

2 exp

(
t

(
−

(
−

(
a1

2−2
)
γ

a1+1 − β + 1

))
− a1y − c1z − d1x

)

4n2

+ n2 exp

⎛
⎝t

⎛
⎝−

(
a1

2 − 2
)

γ

a1 + 1
− β + 1

⎞
⎠ + a1y + c1z + d1x

⎞
⎠

+ n3 sin

(
t

(
(a1(a1 + 4) + 2)γ

a1 + 1
− β − 3

)

+(−a1 − 2)y + c2z + d2x) . (26)
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Plugging in Eqs. (24) and (26) into Eq. (5) yields the
solution to Eq. (4).

3.2 Three wave solutions

The following function is utilized to obtain three wave
solutions for Eq. (4):

P(x, y, z, t) = l1 exp(
1) + exp(−
1) + l2 cos(
2)

+l3 sin(
3), (27)

where, 
1 = p1x + p2y + p3t + p4 + q1z, 
2 =
p5x + p6y+ p7t + p8 +q2z, and
3 = p10y+ p11t +
p12 + p9x +q3z. By putting Eq. (27) into Eq. (22), the
following solution set is obtained:
Set 1:{
l2 = 0, p11 = β(−q3) − 24, p10 = −3,
γ = −6, p3 = β(−q1) − 2,

(28)

the outcome of inserting this solution set into Eq. (27)
is:

P(x, y, z, t) = e(−p1x−p2 y−p4−t (β(−q1)−2)−q1z) + l1e
p1x+p2 y+p4+t (β(−q1)−2)+q1z

+l3 sin(p12 + p9x + t (β(−q3) − 24) + q3z − 3y). (29)

Set 2:

⎧⎨
⎩
l1 = l32

(
γ (p10−1)2−6(p10+1)(p10(p10+2)+5)

)
4γ (p10−1)2+48(p10(p10+2)+5)

, l2 = 0, p11 = γ−γ p10
(
p102+p10+3

)
p10(p10+2)+5 + β(−q3) − 3,

p3 = − 2γ (p10+1)
p10(p10+2)+5 + β(−q1) + 1,

(30)

therefore, Eq. (27) yields,

P(x, y, z, t)

=
l32

(
γ (p10 − 1)2 − 6(p10 + 1)(p10(p10 + 2) + 5)

)
exp

(
p1x + t

(
− 2γ (p10+1)

p10(p10+2)+5 + β(−q1) + 1
)

+ p2y + p4 + q1z
)

4γ (p10 − 1)2 + 48(p10(p10 + 2) + 5)

+ exp

(
−p1x − t

(
− 2γ (p10 + 1)

p10(p10 + 2) + 5
+ β(−q1) + 1

)
− p2y − p4 − q1z

)

+l3 sin

(
t

(
γ − γ p10

(
p102 + p10 + 3

)
p10(p10 + 2) + 5

+ β(−q3) − 3

)
+ p10y + p12 + p9x + q3z

)
. (31)

Plugging in Eqs. (29) and (31) into Eq. (5) yields the
solution to Eq. (4).

3.3 Multi wave solutions

To obtain multi wave solutions to Eq. (4), the function
used is as follows:

P(x, y, z, t) = n2 cos(θ1) + n1 cosh(θ2)

+n3 cosh(θ3), (32)

where, θ1 = a1y + b1t + c1z + x , θ2 = a2y + b2t +
c2z + x , and θ3 = a3y + b3t + c3z + x . By plugging
Eq. (32) into Eq. (22) we get:
Set 1:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n1 = 0, n2 = in3
√

(a3−1)2γ+6(a3+1)(a3(a3+2)+5)√
(a3−1)2(−γ )+12a3(a3+2)+60

,

c1 = −
2(a3+1)γ

a3(a3+2)+5+b1+3

β
,

b3 = γ−a3
(
a32+a3+3

)
γ

a3(a3+2)+5 + β(−c3) + 1,

(33)

upon rearranging these parameters in Eq. (32), the out-
come is:
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P(x, y, z, t) = n3 cosh

(
t

(
γ − a3

(
a32 + a3 + 3

)
γ

a3(a3 + 2) + 5
+ β(−c3) + 1

)
+ a3y + c3z + x

)

+
in3

√
(a3 − 1)2γ + 6(a3 + 1)(a3(a3 + 2) + 5) cos

(
a1y − z

(
2(a3+1)γ

a3(a3+2)+5+b1+3
)

β
+ b1t + x

)

√
(a3 − 1)2(−γ ) + 12a3(a3 + 2) + 60

. (34)

Set 2:

{
n2 = −in1, n3 = 0, c1 = − 2b1+γ+6

2β , c2 = − 2b2+γ−2
2β , (35)

then Eq. (32) yields,

P(x, y, z, t) = n1 cosh

(
a2y + b2t − z(2b2 + γ − 2)

2β
+ x

)
− in1 cos

(
a1y + b1t − z(2b1 + γ + 6)

2β
+ x

)
.(36)

Plugging Eqs. (34) and (36) into Eq. (5) yields the
solution to Eq. (4).

3.4 Breather solutions

The following function is employed to obtain breather-
wave solutions for Eq. (4):

P(x, y, z, t) = n2 exp(θ1) + exp(−θ1) + n1 cos(θ2),

(37)

where, θ1 = q1(a1y + b1t + c1z + d1x), and θ2 =
q0(a2y + b2t + c2z + d2x). By substituting Eq. (37)
into Eq. (22), we obtain the following solution set:
Set 1:

{
b1 = 4

(
5−6a12

)
n2+n12

n12−4n2
− βc1, b2 = − 3

(
n12−4(4a1n2+n2)

)
n12−4n2

− βc2, γ = 24(a1+1)n2
n12−4n2

, a2 = −1, (38)

the outcome of inserting this solution set into Eq. (37)
is:

P(x, y, z, t) = n2 exp

(
q1

(
t

(
4

(
5 − 6a12

)
n2 + n12

n12 − 4n2
− βc1

)
+ a1y + c1z + d1x

))

+ exp

(
−q1

(
t

(
4

(
5 − 6a12

)
n2 + n12

n12 − 4n2
− βc1

)
+ a1y + c1z + d1x

))

+n1 cos

(
q0

(
t

(
−3

(
n12 − 4(4a1n2 + n2)

)
n12 − 4n2

− βc2

)
+ c2z + d2x − y

))
. (39)

Set 2:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b1 =
n12

(
6(a2+1)√
−(a2+1)2

−βc1+1

)
+4n2(βc1+5)

n12−4n2
,

b2 =
4n2

(
− 6(a2+1)√

−(a2+1)2
+βc2+3

)
+n12(3−βc2)

n12−4n2
,

γ = 0, a1 = √−(a2 + 1)2 − 1,

(40)
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therefore the outcome of Eq. (37) is,

P(x, y, z, t)

= n2 exp

⎛
⎜⎜⎝q1

⎛
⎜⎜⎝
t

(
n12

(
6(a2+1)√
−(a2+1)2

− βc1 + 1

)
+ 4n2(βc1 + 5)

)

n12 − 4n2
+

(√
−(a2 + 1)2 − 1

)
y + c2z + d1x

⎞
⎟⎟⎠

⎞
⎟⎟⎠

+ exp

⎛
⎜⎜⎝−q1

⎛
⎜⎜⎝
t

(
n12

(
6(a2+1)√
−(a2+1)2

− βc1 + 1

)
+ 4n2(βc1 + 5)

)

n12 − 4n2
+

(√
−(a2 + 1)2 − 1

)
y + c2z + d1x

⎞
⎟⎟⎠

⎞
⎟⎟⎠

+n1 cos

⎛
⎜⎜⎝q0

⎛
⎜⎜⎝
t

(
4n2

(
− 6(a2+1)√

−(a2+1)2
+ βc2 + 3

)
+ n12(3 − βc2)

)

n12 − 4n2
+ a2y + c2z + d1x

⎞
⎟⎟⎠

⎞
⎟⎟⎠ . (41)

Plugging in Eqs. (39) and (41) into Eq. (5) yields the
solution to Eq. (4).

3.5 Lump-cross kink solution

The following function is employed to obtain lump
cross kink wave solutions for Eq. (4):

P(x, y, z, t)

= k1e
(b10x+b11y+b12t+z) + b9 + g2 + h2/.

{g = b1x + b2y + b4t + z, h = b5x + b6y + b8t + z}. (42)

By putting Eq. (42) into Eq. (22), gives the following
solution set:

{
k1 = 0, b4 = b8, b6 = −1 + i

√
2, b9 = 2

(
2−5i

√
2
)

3γ , β = −b8 − i
√
2γ − 1, (43)

upon inserting Eq. (43) into Eq. (42), the outcome is,

P(x, y, z, t) = (b1x + b2y + b8t + z)2 +
(
b5x + b8t +

(
−1 + i

√
2
)
y + z

)2 +
2

(
2 − 5i

√
2
)

3γ
. (44)

Plugging in Eq. (44) into Eq. (5) yields the solution
to Eq. (4).

3.6 Lump-cross two kink solutions

The following function is employed to obtain lump
cross two kink wave solutions for Eq. (4):

P(x, y, z, t)

= (a1x + a2y + a4t + z)2 + a11e
(k1x+k2 y+k6t+z)

+a12e
(k3x+k4y+k5t+z)

+a13 + (a6x + a7y + a9t + z)2. (45)

By plugging Eq. (45) into Eq. (22), gives the following
solution set:
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Set 1:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k2 =
√

a7
4

2 +a73+a72

a7
− 1, a2 = −2, a12 = 0, a4 = − 3a72

2 − 3
√

a74
2 + a73 + a72 + a9,

k6 = − 3
2

√
a74
2 + a73 + a72 + 3a7

2 + a9 + 2, a13 = 4
√
2
√

a72(a7(a7+2)+2)−4a72

(a7+2)2
,

γ = − 3(a7(a7+2)+2)
(
a72+

√
2
√

a72(a7(a7+2)+2)
)

2a7(a7+2)2
,

β = a7
(
a7

(
a7

(
3
√
2
√

a72(a7(a7+2)+2)+3a7(a7+1)−2a9−2
)
+3

√
2
√

a72(a7(a7+2)+2)−8a9−20
)
−8(a9+1)

)
−12

√
2
√

a72(a7(a7+2)+2)

2a7(a7+2)2
.

Equation (45) yields the following result when this
solution set is entered:

P(x, y, z, t) =
⎛
⎝a1x + t

⎛
⎝−3a72

2
− 3

√
a74

2
+ a73 + a72 + a9

⎞
⎠ − 2y + z

⎞
⎠

2

+a11 exp

⎛
⎝t

⎛
⎝−3

2

√
a74

2
+ a73 + a72 + 3a7

2
+ a9 + 2

⎞
⎠

+
⎛
⎝

√
a74
2 + a73 + a72

a7
− 1

⎞
⎠ y + k1x + z

⎞
⎠

+(a6x + a7y + a9t + z)2 + 4
√
2
√
a72(a7(a7 + 2) + 2) − 4a72

(a7 + 2)2
. (46)

Set 2:

⎧⎪⎪⎨
⎪⎪⎩

k4 = −2, a7 = −√
1 − a2(a2 + 2) − 1, k2 = −2, k5 = a9 + 2, a4 = a9,

k6 = a9 + 2, a13 = 4
(
a22+a2+√

1−a2(a2+2)−1
)

a22
, γ = 3(a2+√

1−a2(a2+2)+3)
2(a2+2)2

,

β = −a2(a2(a9+4)+4a9+10)+6
√
1−a2(a2+2)−4a9+2

(a2+2)2
,

(47)

then Eq. (45), results in,

P(x, y, z, t) = (a1x + a2y + a9t + z)2 + a11e
(a9+2)t+k1x−2y+z

+a12e
(a9+2)t+k3x−2y+z + 4

(
a22 + a2 + √

1 − a2(a2 + 2) − 1
)

a22

+
((

−√
1 − a2(a2 + 2) − 1

)
y + a6x + a9t + z

)2
. (48)

Plugging in Eqs. (46) and (48) into Eq. (5) yields the
solution to Eq. (4).
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3.7 Rogue wave solutions

The following function is utilized to obtain rogue wave
solutions for Eq. (4):

P(x, y, z, t)

= (a1x + b1y + d1t + z)2 + (a2x

+b2y + d2t + z)2

+k1 cosh(a3x + b3y + d3t + z) + k2. (49)

Equation (49) can be plugged into Eq. (22) to yield the
following solution set:
Set 1:

{
b2 = −√

1 − b1(b1 + 2) − 1, k2 = 6(2(
√
1−b1(b1+2)−1)+b1(2

√
1−b1(b1+2)+b1(b1+√

1−b1(b1+2)+3)))
b12(b1+2)2γ

,

k1 = 0, β = (−b1 + √
1 − b1(b1 + 2) + 1

)
γ − 2,

(50)

The outcome of inserting this solution set into Eq. (49)
is:

P(x, y, z, t) = (a1x + b1y + d1t + z)2 +
(
a2x +

(
−√

1 − b1(b1 + 2) − 1
)
y + d2t + z

)2

+6
(
2

(√
1 − b1(b1 + 2) − 1

) + b1
(
2
√
1 − b1(b1 + 2) + b1

(
b1 + √

1 − b1(b1 + 2) + 3
)))

b12(b1 + 2)2γ
. (51)

Set 2:

{
b1 = −1 + i√

3
, b2 = −1 + i√

3
, b3 = −1 − i√

3
, k1 = −4, γ = i

√
3

4 , β = 1
2 i

(√
3 + 5i

)
, (52)

subsequently, Eq. (49) yields,

P(x, y, z, t)

=
(
a1x + d1t +

(
−1 + i√

3

)
y + z

)2

+
(
a2x + d2t +

(
−1 + i√

3

)
y + z

)2

−4 cosh

(
a3x + d3t +

(
−1 − i√

3

)
y + z

)

+k2. (53)

Plugging in Eqs. (51) and (53) into Eq. (5) yields the
solution to Eq. (4).

4 Concluding remarks

This study investigated various methods for addressing
the significant nonlinear equation (3+1)-dimensional

generalized KdV equation, which is used to describe
the waves on shallow water surfaces.

• First, two separate Bäcklund transformations with
distinct exchange identities were carefully derived
using the Hirota bilinear form. Eight parameters
were used in the second transformation, whereas
eleven were used in the first. By means of this con-
version procedure, solutions with exponential and
rational functions were acquired. Using the first
Bäcklund transformation, a singular dark soliton
was obtained as a result of the rational function

solution (Fig. 1), and a bright soliton was obtained
as a result of the exponential function solution
(Fig. 2). Similarly, using the rational solution of the
second Bäcklund transformation, a singular dark
solitonwas observed as a result of the rational func-
tion solution (Fig. 3), and a singular bright soliton
was seen as a result of the exponential function
solution (Fig. 4).

• Furthermore, a variety of solutions were obtained
by applying the bilinear form and distinct ansatz,
such as breather, rogue waves, lump cross kink
wave solutions, and two-, three-, and multi-wave
solutions. These solutions, which illustrate the
unique characteristics and behaviors found in these
wave solutions, are displayed inFigs. 5, 6, 7, 8, 9, 10
and 11. The solutions are significant because they
provide insight into the intricate dynamics of non-
linear wave equations, advancing both theoretical
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Fig. 1 Visual depiction of Eq. (12) when k2 = −1.2, k4 = 2, k3 = 3, χ8 = −1, χ10 = 2, y = 1, z = 1

Fig. 2 Visual depiction of Eq. (15) when a = 1, g = 1, h = 0.5, k5 = 2, χ9 = 2, y = 1.2, z = 0.5

Fig. 3 Visual depiction of Eq. (19) when k1 = 1, χ7 = 0.2, k4 = −0.02, k3 = −0.2, χ8 = −1, χ3 = −0.2, y = 0.1, z = 0.1

knowledge and possible real-world applications in
domains including fluid dynamics, optical fibres,
and plasma physics.

One important characteristic that both dark and bright
solitons have in common is their robustness, which is
crucial for guaranteeing their usefulness in optical com-

munications. These solutions can also continue tomove
at the same speed and form over extended distances.
These findings indicate that further research should be
conducted because our studies are useful in addressing
additional nonlinear partial differential equations that
arise in various scientific domains.
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Fig. 4 Graphical representation of Eq. (20) when a = −5, g = 1, h = 0.5, k5 = 0.2, χ3 = 0.2, y = 1, z = 1

Fig. 5 Visual depiction of two-wave solution when (A) n4 =
−0.1, n1 = 1, z = 1, n2 = −1, y = 1, a1 = −5, a2 = 1, β =
1.1, d1 = 0.5, d2 = −1.1, c3 = 1, d3 = −1, c1 = 1, c2 = 1,

(B) z = 5, n2 = 1, γ = 0.2, y = 2, a1 = 1, a2 = 1, β =
1, d1 = 1, d2 = 1, c1 = 0.1, c2 = 0.1, n3 = 1.1
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Fig. 6 Visual depiction of
three-wave solution when
(A)l3 = 1, z = 1, p1 =
1, p4 = −1, q1 =
−0.1, γ = −1, p9 =
−1.1, y = 1, β = 1.2, α =
5, p12 = −1.1, p11 =
−0.1, q3 = 1.1, p3 =
−1, p10 = 1, p2 =
−0.2, l1 = 1.1, (B)l3 =
5
9 , z = 0, p1 = −0.1, p4 =
−0.1, q1 = −0.1, γ =
−0.1, p9 = −5.1, y =
0, β = 6.2, p12 =
−5.1, p11 = −5.1, q3 =
−5.1, p3 = −5.1, p2 =
−5.1, p10 = −5.1

Fig. 7 Visual depiction of
Multi-wave solution when
(A)n3 = 1, c1 =
−0.7, a3 = −1, c3 =
1.51, y = 1, z = 1, β =
−1.5, γ = −5, b3 =
12, b1 = 1, a1 = 2, (B)a2 =
−2.1, y = 1, z = 0, n1 =
5, β = −1.5, γ = −5, b1 =
1, b2 = −2, a1 = 2
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Fig. 8 Visual depiction of
breather solution when
(A)y = 1, z = 1, n1 =
0.1, β = 0.01, a1 = 2, q0 =
1.2, q1 = 0.1, d1 = 1, d2 =
2, c1 = 0.2, c2 = 0.1, n2 =
0.1, (B)a2 = 1, y = 1, z =
1, n1 = 0.1, β = 0.1, q0 =
0.2, q1 = 0.1, d1 =
1.01, d2 = 1.02, c1 =
2, c2 = −1, n2 = 0.1

Fig. 9 Visual depiction of
lump-kink solution when
b5 = −1.5, y = 1, b8 =
1.3, b2 = −0.5, γ =
0.02, b1 = 2.1, z = 0
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Fig. 10 Visual depiction of
lump cross two kink wave
solution when
(A)a1 = −0.4, a9 =
1.1, a6 = −0.1, a11 =
0.6, y = 1, k1 = 1, a6 =
1, a1 = 1, a2 = 1, z =
1, a7 = −0.3,
(B)a12 = 1, a2 = 2, a1 =
−1, a9 = −5, a6 =
−0.1, a11 = 5, y = 1, z =
1, k1 = −0.5, k3 = −5.8

Fig. 11 Visual depiction of
rogue wave solution when
(A)d2 = −0.2, a2 =
1, d2 = −0.1, y = 1, b1 =
−1, a1 = −0.1, z =
5, d1 = 2, γ = 2, (B)d2 =
1.2, k2 = −0.11, a2 =
1.1, d2 = −2.1, y =
1, a3 = 0, a1 = −1.1, z =
5, d1 = −2.5, d3 = 0
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