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Abstract Coupled map lattice (CML), as a classical
model of the higher-dimensional chaotic system, pos-
sesses outstanding chaotic dynamic behavior both at
time and space. Compared with one-dimensional CML
and two-dimensional CML, three-dimensional (3D)
CML has more complicated chaotic behavior, and it
is pretty suitable for designing chaos-based crypto-
graphic schemes. In this paper, foremost, theoretical
mathematical expressions of Lyapunov exponent (LE)
and synchronization stability in the 3D CML model
are deeply and comprehensively obtained, which guide
the parameters setting to keep the model in the fully
chaotic state and avoid synchronization state. Also,
other chaotic behaviors such as bifurcation, ergodic-
ity, and probability density distribution are analyzed,

Z. Liu
School of Mathematics and Big Data, Guizhou Education Uni-
versity, Guiyang, China

Y. Wang (B)
College of Computer Science and Technology, Chongqing Uni-
versity of Posts and Telecommunications, Chongqing, China
e-mail: wangyong_cqupt@163.com

J. Liu
School of Intelligent Technology and Engineering, Chongqing
University of Science and Technology, Chongqing, China

J. Feng
School of Cyber Science and Engineering, Huazhong University
of Science and Technology, Wuhan, China

L. Y. Zhang
School of Information and Communication Technology, Griffith
University, Gold Coast, Australia

and all of those demonstrate the 3D CML model has
complex chaotic performance. Furthermore, according
to the 3D CML model and theoretical results, a novel
pseudo-random number generator (PRNG) has been
proposed with safety assurance via the simple inter-
ception operation. Finally, large amounts of simula-
tions verify the theoretical results are correct and our
proposed PRNG scheme possesses outstanding perfor-
mance. Finally, the 3DCMLmodel is extended into the
ND CML one, LE expression is also derived. Above
all, our research can provide some theoretical guidance
for using the CMLmodel (i.e. 3D CML and NDCML)
as a core component to construct chaos-based crypto-
graphic schemes, and it ownswell potential application.

Keywords Higher-dimensional chaotic system ·
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1 Introduction

Chaos, primarily observed in the meteorology, is com-
plex and irregular [23], it possesses some outstand-
ing characteristics, e.g. randomness, extreme sensitiv-
ity to initial values and the unpredictable orbit. Since
those special properties are essentially similar to those
of cryptography [7], chaos has been widely used as
a core component for designing chaos-based crypto-
graphic schemes [4,9,21,25–27,30,37]. Besides those
application schemes, chaos theory is also an essential
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foundation for leading to the growing development of
chaos cryptography [2,3,20]. Many researchers have
explored chaos theory in the domain of chaos-based
cipher [8,11].

The chaotic system used in chaos cryptography is
commonly simplified into two categories. One is the
simple chaotic system, since having a simple structure,
high efficiency and mature theoretical foundation [14],
they are prevalent in those chaos-based cryptographic
schemes. Another is the higher-dimensional chaotic
system, compared with a simple one, it has more
complicated chaotic dynamic behavior and unique
advantages to be the core component for confus-
ing information in a secure scheme. Among those
higher-dimensional chaotic models, coupled map lat-
tice (CML) is one of the most classic model [12],
which has those highlights of the parallel structure and
high computational efficiency, as well as keeping chaos
both at time and space. Based on the above-mentioned
highlights, CML has been universally used as a core
component to design cryptographic primitives in those
sub-fields, such as stream cipher [15,18], Hash func-
tion [32,34] and multimedia encryption [31,33]. Com-
bining two-dimensional (2D) CML and partitioned cel-
lular automation, a novel and excellent stream cipher
algorithm is proposed in [18]. In [32], a new hash func-
tion is designed via an improvedCML,which combines
floating-point chaotic computations and algebraic oper-
ations, as well as local and global couplings, and finally
achieves high bit confusion and diffusion. The 2DCML
owns good statistical properties, and it is used for con-
structing the one-way hash function algorithm [34].
The bit-level image encryption scheme is designed
based on an enhanced cross CML in [31], which
has high effectiveness and safety against the common
attacks. A new encryption scheme via the wide-range
system mixed CML model is proposed [33], which is
effective for securing both grayscale and color images.

Meanwhile, the pseudo-random number generator
(PRNG) is commonly considered as a core component
of chaos-based cryptography schemes. For enhancing
security, the higher-dimensional chaotic system is pop-
ularly used to construct amounts of PRNG schemes[16,
31]. However, for the higher-dimensional chaotic sys-
tem, it is important to obtain a better trade-off between
security and efficiency. For instance, in [28], a novel
dynamical 4-D chaotic circuit is designed, and then
generates PRNG sequences by construction of chaotic
circuits with competent S-Box parameters. However,

its efficiency needs further improvement. Furthermore,
combining three different fractional chaotic systems, a
novel structure for the PRNG scheme is proposed as a
keystream to encrypt the image. For this scheme, both
security and efficiency are weak. During our previous
researchwork [36], the 2DCMLmodel is analyzed and
designed for the PRNG scheme, the relation between
chaos and the pseudo-random number is established,
and our scheme has high security and efficiency. How-
ever, it is well acknowledged that in such chaos-based
cryptography applications, more complexity underly-
ing a chaotic system indicates much security. There-
fore, suppose using the 3D CML model to design the
PRNG scheme, and it is coupled by those adjacent six
nodes from there dimensional. Under the premise of
considering security, the security of 3D CML-based
cryptography scheme will be probably improved, this
point needs further verification in this paper.

The above-mentioned existing research shows that
ensuring the complex dynamic behavior of CML by
reasonably configuring its structure and parameters is
of great significant and timely to the security schemes.
From this perspective, extending 2D CML into 3D
CML is a promising approach to obtaining more com-
plicated dynamic behavior. However, to the best of our
knowledge, there are only a few scientific theoretical
studies on the behavior of 3D CML. From the view
of using it for confusing or encrypting information, in
this paper, two core metrics: Lyapunov exponent (LE)
and synchronization stability are chosen and analyzed,
because, from the view of cryptography, LE is usually
used to measure the diffusion performance of a chaotic
system, synchronization stability is closely related to
the complexity of a system. To design security schemes
based on 3D CML, we definitely expect this model to
be in the asynchronous state, which is the opposite side
of synchronization stability.

Motivated by this, the 3D CML model is taken
for a case study, its LE and synchronization stabil-
ity are theoretically derived, which provides impor-
tant theoretical guidelines for cryptographic applica-
tion. Bifurcation, ergodicity and probability density
distribution (PDD) of the 3D CML model are simu-
lated to show it has outstanding chaotic performance.
Based on the above-mentioned theoretical outcome,
our PRNG scheme is designed, and experimental simu-
lations illustrate our scheme possesses outstanding per-
formance.
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To summarise, among others, the main objectives of
our study include:

1. The mathematical expression of LE in the 3D CML
model is given theoretically, according to the accu-
rate LE values, it is easy to judge whether the 3D
CMLmodel is in a chaotic state or not, aswell as pro-
viding important theoretical guidelines for ensuring
the model in the fully developed chaotic state of
cryptographic application.

2. The mathematical formula of synchronization sta-
bility in the 3D CML model is derived, according
to theoretical results, the parameters are set reason-
ably to avoid synchronization phenomenon, and it
improves the security of the chaos-based crypto-
graphic application.

3. Finally, all experiment simulations of LE and syn-
chronization stability align perfectly with the the-
oretic formulas, those conclusions greatly enrich
and support the development of chaos cryptog-
raphy. Also, bifurcation, ergodicity and PDD of
the 3D CML model are analyzed. Compared with
one-dimensional (1D) CML and two-dimensional
(2D) CML, 3D CML has more complicated chaotic
behavior for designing the chaos-based crypto-
graphic scheme.

4. According to the 3D CML model, based on those
theoretical results, a novel PRNG scheme is con-
structed with safety assurance, and all simulation
results verify that our scheme is both secure and
efficient.

5. Some important conclusion of LE in the ND CML
model is derived, it can provide some theoretical
guidance for application of the CML model.

The rest of this paper is written as follows. Section 2
shows some preliminary knowledge. Theoretical anal-
ysis of LE and synchronization stability in 3D CML is
presented in Sect. 3, meanwhile, bifurcation,ergodicity
and PDD of the 3D CML model are simulated in this
section. In Sect. 4, our PRNG scheme is proposed via
the 3DCMLmodel. Somenumerical tests are presented
to further verify those theoretical results are correct,
and our scheme has excellent performance via exten-
sive simulation analyse in Sect. 5. Furthermore, some
important conclusion of the ND CML model is shown
in Sect. 6. Finally, the conclusion is drawn in Sect. 7.

Fig. 1 The 3D CML model

2 Preliminaries

2.1 The 3D CML model

It is well known that the 2D CML model has outstand-
ing chaotic dynamic behavior performance [31], in
which, the current node value is decided by those adja-
cent four nodes.To further enhance the chaotic dynamic
behavior, the 2D CML model is extended into a three-
dimensional one, as depicted in Fig. 1, the current node
value of 3D CML is calculated by those adjacent six
nodes, and its mathematical definition is described as

Definition 1 The three-dimensional CML model is
defined as

xs,t,un+1 = (1 − ε)F(xs,t,un ) + ε

6

[
F(xs+1,t,u

n ) + F(xs−1,t,u
n )

+F(xs,t+1,u
n )+F(xs,t−1,u

n )+F(xs,t,u−1
n )+F(xs,t,u+1

n )
]
,

(1)

where s = 1, 2, · · · , R, t = 1, 2, · · · , L and u =
1, 2, · · · ,U . And R, L andU are the row, column and
height indexes of the 3D CML model, respectively.

And its periodic boundary conditions are xs+R,t,u
n =

xs,t,un , xs,t+L ,u
n = xs,t,un and xs,t,u+U

n = xs,t,un .

2.2 Lyapunov exponent

LE is significantly important in judging the chaotic
behavior of a dynamic system quantitatively. In a sys-
tem of xn+1 = F(xn), LE ≥ 0 indicates the system is
chaotic, LE < 0 shows the system is regular, which is
shown as

LE = lim
n→∞

1

n
ln

∣∣
∣∣∣

n∏

m=1

F
′
(xm)

∣∣
∣∣∣
. (2)
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For a higher-dimensional chaotic system, according to
the order from large to small, it hasmultiple LEs shown
as {LE1,LE2, · · · ,LEn}, where LE1 is the maximum
LE (MLE).

2.3 Pseudo-randomness

For a floating number x , it exists the following impor-
tant theoretical results, and Theorem 1 is decipted and
proven in [36].

Theorem 1 For a random (or pseudo-random) dis-
tribution in [0, 1], assume that the density function
has a bounded first-order derivative.For any sample
x = 0.w1w2 · · · wz−1wz (wi ∈ {0, 1} and i ∈ [1, z])
from this distribution, one has

lim
z→∞ P(wz = 0) = lim

z→∞ P(wz = 1). (3)

According to Theorem 1, it is clear that z → +∞
indicates P(wz = 0) = P(wz = 1) = 1

2
.

3 The performace analyses of the 3D CML model

3.1 Lyapunov exponent analysis

In this section, we mathematically derive the LE
expression of the 3DCMLmodel.According to the the-
oretical formula, the parameters are properly set and its
LEs are calculated accurately for evaluating its chaotic
performance, which makes sure the model in the most
complicated chaotic state and avoids it in the synchro-
nization state. The details of derivation are described
in the appendix A.

Proof See the appendix A. ��
According to the appendix A, it is easy to obtain the
mathematical expression in LE of the 3D CML model,
which is shown as

LE=LEF+ln |1−ε

+ε

3
(cos

2πk

U
+cos

2πr

R
+cos

2πl

L
)

∣∣∣∣ , (4)

In Eq. (4), for k = 0, 1, · · · ,U − 1, r =
0, 1, · · · , R − 1 and l = 0, 1, · · · , L − 1, it is evi-
dent that we can accurately calculate the LEs of the 3D
CMLmodel for different sizes and the coupling param-
eters. In addition, when k = 0, r = 0 and l = 0, it is

immediate that we can obtain Theorem 2 about MLE
of the 3D CML model, which provides the theoretical
foundation for engineering application.

Theorem 2 The maximum Lyapunov exponent (MLE)
of the 3D CML model is solely determined by the local
chaotic map.

Proof For Eq. (4), satisfying k = 0, r = 0 and l = 0,
the MLE of the 3D CML model is calculated as

LEMLE = LEF + ln
∣
∣∣1 − ε + ε

3
(cos 0 + cos 0 + cos 0)

∣
∣∣

= LEF.

(5)

��
LEMLE = LEF implied Theorem 2 is correct, it pro-

vides theoretical guidelines for 3D CML’s application.
For different parameters, one can easily calculate LEs,
take the Logistic map xn+1 = 4xn(1− xn) as the local
map, according to Theorem 2, it is clear that MLE of
3D CML is ln2. Furthermore, the Piece-Wise Logistic
map (PLM) defined in Eq. (6) is an enhanced version
of well-known Logistic map with much larger LE and
more complex chaotic characteristics than the Logistic
map [35].

xm+1 = PLM(xm)

=

⎧
⎪⎨

⎪⎩

μN2(xm− i−1
N )( i −xm), i−1

N < xm < i
N ,

· · ·
1−N2μ(xm− i−1

N )( i+1
N −xm), i

N < xm < i+1
N ,

(6)

where xm ∈ (0, 1) is the state value, μ ∈ (0, 4] is
the control parameter, and N is the segment number
of PLM. For comparison, PLM is selected as the local
map, its MLE is 4.574594. When the 3D CML model
is used for designing the chaos-based cryptography
scheme, PLM is a better choice than the Logistic map.
Consequently, for numerous of chaos-based cryptog-
raphy schemes, Theorem 2 is a theoretical foundation
for judging the chaotic dynamic behavior of the 3D
CMLmodel. Meanwhile, it is easy to get the following
corollaries via Theorem 2.

Corollary 1 The MLE is independent of the size of the
3D CML model.

Corollary 2 In the 3D CML model, increasing LE of
the local chaotic map F leads to an increase in theMLE
of the model.
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From the view of cryptography, the 3D CML model
used in the encryption applications should own good
chaotic performance. Corollaries 1 and 2 show that
the local chaotic map is all-important for the 3D CML
model, which directly determines its chaotic dynamic
behavior. The larger the MLE of the local chaotic map
is, themore complex the 3DCMLmodelwill be. There-
fore, when designing those encryption schemes based
on the 3D CML model, we should choose the local
chaotic map F with a large MLE.

Here, to further verify those theoretical results, we
select the classical Logistic map xn+1 = 4xn(1 − xn)
and PLM with μ = 4 and N = 64 as the local map,
denoted as L-3D CML and PLM-3D CML, respec-
tively. Figure 2 illustrates the LEs of them via the sim-
ulation method and formula method. As can be seen
from the figure, those simulation LEs and theoretical
LEs are almost the same, which fully verifies the theo-
retical results in LE are correct.

According to theoretical results, it is easy to get the
different parameter changes on the chaotic behavior,
since we can accurately compute the LE values via
Eq. (4). Take PLM with μ = 4, N = 64 and Logistic
with μ = 4 as the local map for example, for PLM, set
ε = 0.1,U = R = L = 4; ε = 0.8,U = R = L = 4;
while in Logistics map, make ε = 0.1,U = R = L =
6 and ε = 0.8,U = R = L = 6. Calculate their LE
values and show their LE values as following in Fig. 3.
According to this figure, it is clear that the local map
decides MLE of the 3D CML model, we choose the
local map with larger LE. So, PLE is selected for dis-
play better chaotic performance. And also ε effect the
other LE values, to demonstrate this point theoretically,
take the derivative of Eq. (4) with respect to ε,then LE

′

is expressed as

LE
′ =

cos
2πk

U
+ cos

2πr

R
+ cos

2πl

L
− 3

3 + ε(cos
2πk

U
+ cos

2πr

R
+ cos

2πl

L
− 3)

.

(7)

To select the coupling parameter ε with better
chaotic property, we first consider the case that the

denominator 3+ε(cos
2πk

U
+cos

2πr

R
+cos

2πl

L
−3)

of Eq. (7) is 0. In this case, k = r = l = 4 and ε = 0.5,
so ε = 0.5 should be avoided. We then investigate the
value of LE′ by enumerating all the possibilities of k,
l and r . It turns out that when ε ∈ (0, 0.5), LE′ < 0
regardless the choices of k, l and r . And depending on

Fig. 2 LEs of the 4 × 4 × 4 3D CML model with the Logistic
map and PLM

specific choices of k, l and r , LE′ can be either positive
and negative for ε ∈ (0.5, 1). That said, the value of LE
monotonically decreases for ε ∈ (0, 0.5) and fluctuates
for ε ∈ (0.5, 1) and smaller ε achieves better chaotic
property.

To sumup, themathematical formula ofLE in the 3D
CML model is essential for the application research in
chaos cryptography, which guides the setting of param-
eters to remain the 3D CML model keep in a fully
chaotic state.

3.2 Synchronization stability analysis

For the higher-dimensional chaotic system, the stability
of periodic orbit and synchronization chaos are sub-
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Fig. 3 LE values of the 3D CML model with different parameters

stantially more complicated than the simple chaotic
system. From the standpoint of cryptography appli-
cation, as appropriate parameter tuning is critical for
applications based on chaotic systems, the parameter
settings should ensure that the chaotic model keeps in
a fully developed chaotic state with asynchronous.

In the3DCMLmodel, the indicator {LE2, · · · ,LEn}
should be discussed, with LE2 > 0meaning in an asyn-
chronous state and LE2 < 0 meaning in a synchronous
state. Thus, the theoretical investigation of the synchro-
nization stability of the model is presented as follows:

To begin with, let k = R, l = L − 1 and r = U ,
according to Eq. (4), we can get the second maximum
LE value LE2 as

LE2 = LEF + ln

∣
∣∣∣1 − ε + ε

3

(
2 + cos

2π(L − 1)

L

)∣
∣∣∣ .(8)

Then, set LE2 = 0, the critical value of L is calcu-
lated as

Lc =
⌊

2π

arccos 3e−LEF−3+ε
ε

⌋

. (9)

Here, Lc represents the minimum number of nodes
that can ensure the system keeps in an asynchronous
state, i.e., L > Lc should be used to make LE2 > 0.
According to Eq. (9), one can get the following theo-
rem.

Theorem 3 In the 3D CML model, the critical value
Lc of the synchronization stability is only related to
LEF and ε.

For those chaos-based cryptographic schemes, acco-
rding to Eq. (9) andTheorem3, one can choose the suit-
able parameters and effectively avoid the chaotic itera-
tion values appearing in the synchronous phenomenon
in the 3DCMLmodel, and it can guarantee the security
of those chaos-based cryptographic schemes theoreti-
cally.

Furthermore, take the Logistic map and PLM as the
local map to verify the synchronization stability. For
the Logistic map, according to Eq. (9), set ε = 0.9,
and Lc = 2 is obtained. So, initialize the 3D CML
model with size 2 × 2 × 2. Then, iterate 3D CML for
100 times and 1000 times denoted as xu,v,w

100 and xu,v,w
1000 ,

respectively. we plot them in Fig. 4. From this figure,
we can observe the 3D CML model is not in a fully
developed chaotic pattern. To make LE2 > 0, select
the 2×2×4 3D CMLmodel, other parameters remain
unchanged, simulation results are depicted in Fig. 5. As
can be seen from the table, no stable synchronous chaos
can be observed in the 3D CML model here. At the
same time, based on Eq. (9), whatever the parameters
are, PLM-3D CML is still in the asynchronous state.

This once again illustrates that PLM-3D CML
model’s performance is better thanL-3DCMLmodel’s.
With this consideration and to maintain a certain level
of coupling effect, we take the empirical value ε = 0.1
for 3D CML instantiated with PLM in the rest of this
paper.
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Fig. 4 The state values of the 2 × 2 × 2 L-3D CML

3.3 Bifurcation analysis

For the dynamic system, bifurcation intuitively dis-
plays the sudden change process near the critical point,
it is used to effectively observe and analyze the dynamic
behavior under different parameters. In the 3D CML
model, choose PLM with μ = 4, N = 64 as the local
map, set R = L = U = 4 and ε = 0.1. Accord-
ing to extensive experiments of all 64 nodes in the 3D
CML model, it is observed that the bifurcation of all
the nodes is basically the same, so, take the first node as
an example for analyzing the bifurcation. The results
are shown in Fig. 6. From the figure, it can be seen that
the change of ε has a significant impact on the bifurca-
tion of the model, with the increasing of ε, bifurcation

Fig. 5 The state values of the 2 × 2 × 4 L-3D CML

Fig. 6 Bifurcation of the 3D CML model
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becomes more and more sufficient. When μ = 4, LE
of PLM is maximum, and bifurcation of the 3D CML
is the most comprehensive. Therefore, when μ = 4,
chaotic dynamics behavior is the most complex, and
cryptography applications have the best performance.

3.4 Ergodicity analysis

Ergodicity is that chaotic motion orbit would pass
through the state point in the phase space in the finite
time. It is closely related to randomness, the wider
ergodicity indicates its randomness is difficult to pre-
dict. So, selecting a chaotic system with a wider and
more uniform traversal interval is a better choice for
designing kinds of chaos-based cryptography systems.

In the 3D CML model, choose PLM with N = 64
as the local map, and set R = L = U = 4 and
ε = 0.1. For different μ with 0.1, 0.5, 1.0,1.5,2.0,3.0,
3.5, and 4.0, respectively, the interval is shown in Fig. 7.
According to the figure, it is clear that the traver-
sal interval becomes much wider along the change of
μ. When μ = 0.1, the interval lies in [0, 0.1] and
[0.9, 0.1], when μ = 2, the interval is [0, 1], and most
of values are mainly concentrated in [0.4, 0.6], when
μ = 4, the state values of the 3D CML model are
uniformly distributed throughout the traversal interval
[0, 1]. At this point, the chaotic performance of model
is best, and the randomness and uniformity of chaotic
sequences are also perfect.

3.5 PDD analysis

PDD describes the probability and distribution of the
output values of a random variable in a certain region.
From the view of cryptography, when using a chaotic
system as the core component of designing a crypto-
graphic algorithm, the more uniform PDD of chaotic
sequences means stronger security of the algorithm. In
this section, choose PLMwith N = 64 and μ = 0.1 as
the local map, and set R = L = U = 4 and ε = 0.1.
Then, generate the 3D CML model for multiple iter-
ations and count the distribution of chaotic sequences
in intervals [0, 1], the details are shown in algorithm 1.
The results of algorithm 1 are plotted in Fig. 8, and it
is clear that PDD of 3D CML is uneven.

Algorithm 1: PDD of PLM-3D CML
Input: The 4 × 4 × 4 3D CML model with ε = 0.1.
Output: PDD.
Function Main:

Step 1 Run the 4 × 4 × 4 3D CML for 1000 times and
abandon them to eliminate influence of initial values;
Step 2 Continue to iterate the model for 300000 times
and obtian {xi }19200000i=1 ;
Step 3 Divide (0, 1) into evenly into 1000 intervals.
for xi do

Compute frequency of xi in each interval;
end

Output the diagram of PDD;
return 0

3.6 Comparative analysis

To verify the 3D CMLmodel has better chaotic perfor-
mance than 1DCMLand 2DCML,we do the following
analyses.

Kolmogorov entropy is an important index to depict
the chaotic behavior of a dynamic system, it is calcu-
lated as Eq. (10). According to Eq. (10), it is clear that
the K is the sum of all positive LEs. The larger the
value of K is, the more complex the dynamic behavior
becomes.

K = lim
LEn>0

LEn . (10)

Kolmogorov entropyvalues of the 641DCML, the 8×8
2D CML and the 4× 4× 4 3D CML are calculated as
K1 = 41.03428, K2 = 41.05647 and K3 = 41.06386,
respectively, it is easy to get

K3 > K2 > K1.

For the same 64 nodes in different CMLmodels (i.e.1D
CML, 2D CML and 3D CML), the 3D CML model
owns the highest information loss rate, which indicates
the 3DCMLmodel holds the best chaotic performance.

Considering the synchronization stability of 1D
CML, 2D CML and 3D CML, selecting the Logistic
map xn+1 = 4xn(1 − xn) as the local map. According
to the corresponding equations in [8], LEF = ln2, it
is easy to calculate the critical node number Lc, those
values of Lc are shown in Table 1. According to this
table, it is clear that those three models can appear
the synchronization under certain conditions. When
ε = 0.5, 0.8, 0.9 and 0.999999999, those three model
appear the synchronization state. For instance, Lc of 1D
CML, 2D CML and 3D CML are 7, 2 and 2, respec-
tively, in this case, 1D CML and 2D CML appear syn-
chronization state, but 3D CML don’t. Consequently,
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Fig. 7 Ergodicity of the 3D CML model with different parameters μ

Fig. 8 PDD of the 3D CML model

Table 1 Critical node number of the 3D CML model with syn-
chronization

Parameter ε Lc of 3D CML Lc of 2D CML Lc of 1D CML

0.01 0 0 109

0.1 0 0 42

0.3 0 0 18

0.5 1 1 11

0.8 2 2 7

0.9 2 3 6

0.999999999 2 3 6

1D CML and 2D CML are more likely in the synchro-
nization state for the same parameters. Above all, it
demonstrates the 3D CML model has better chaotic
performance than others.

4 The proposed PRNG scheme

According to the above-mentioned analysis, the 3D
CML model possesses remarkable chaotic perfor-
mance. So, it is taken as a core component for con-
structing the PRNG scheme, the details are depicted in
algorithm 2 and summarized in the following steps.

Step 1: Set R = L = U = 4, ε = 0.1 in the 3D
CML and select PLMwith μ = 4, N = 64 as the local
map. Iterate the model 1000 times and then give up to
eliminate the influence of the initial values.

Step 2: Continue to iterate the model and obtain the
z floating number for one iteration. For each number
xk ,k ∈ [1, z], it can be transformed into

xk = 0.w1w2 · · ·wz−1wz, wz ∈ {0, 1}. (11)

Step 3: The pseudo-randomness chaotic sequences w

with (z−s+1)-bit can be intercepted via the following
equation.

w = wsws+1 · · · wz−1wz . (12)

Here, one can select z = 64 and s = 33, in order
to further reducing computational complexity or mem-
ory usage, we perform algorithm optimization mea-
sure. For each xi , we do the operation of extracting
bits firstly, then, itarate the model, this can effectively
reduce memory space. Its pseudocode is shown as in
algorithm3,which is parameterized based on algorithm
2. According to this algorithm, clearly, for one iteration
of model, 2048-bit sequences are generated, then, for
n times, 2048n-bit sequences are obtained. The per-
formance analyses of our proposed PRNG scheme are
shown in the following section.
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Algorithm 2: Our proposed PRNG scheme
Input: Initial conditions and system parameters of the 3D

CML model.
Output: Pseudo-random bits.
Function Main:

Step 1 Run the 3D CML instances and collect the
corresponding orbits {xi }li=0 and update the states;
while xk ∈ {xi } do

xk = 0.w1w2 · · ·wz−1wz
w = wsws+1 · · ·wz−1wz

end
Go back to Step 1
return 0

Algorithm 3: Our proposed PRNG scheme for
parameter concretization
Input: The 4 × 4 × 4 PLM-3D CML model with ε = 0.1.
Output: 2048-bits.
Function Main:

Step 1 Run the 4 × 4 × 4 PLM-3D CML for 1000
times and abandon them to eliminate the influence of
initial values, then, continue to iterate the model once;
Step 2 To each node value xi , perform the following
operation;
xi = 0.w1w2 · · ·w63w64
w = w33w34 · · ·w63w64

for i = 0, i + +, i < 64 do
Go back to Step 2;

end
return 0

5 Performance analysis of the proposed PRNG

According to the above-mentioned analyses, those the-
oretical results in LE and synchronization stability pro-
vide the critical theoretical foundation for chaos cryp-
tography. To further verify those theoretical results, and
also test the performance of the pseudo-random num-
ber generator, we have carried out the following exper-
imental simulations.

5.1 The advantage of our scheme

Our proposed PRNG scheme based on the 3D CML
model has those following highlights.

1. The 3D CML model, as a higher-dimensional
chaotic model, has pretty chaotic dynamic behav-
ior. Considering the 3D CML model as the core
component, it can greatly improve the security of
our scheme. And also, mathematical expression of

LE and synchronization stability are given, it pro-
vides important theoretical guidelines for ensuring
the model in the fully developed chaotic state of
cryptographic application.

2. In our scheme, 32-bit sequences are directly obtained
by intercepting the state value, no additional com-
putational operations are required. One iteration of
the model can generate 2048-bit, and it can greatly
improve the efficiency of our scheme.

3. Our scheme is designed according to Theorm 1, its
uniformity is theoretically guaranteed. Meanwhile,
one can ensure the 3D CML model possesses best
performance theoretically.

5.2 Randomness tests

The statistical test package STS launched by NIST
is currently the most authoritative tool for testing the
pseudo-random sequences, and it contains 15 items.
For each item, there exists P-Value for measuring
whether the sequences can pass the random testing suc-
cessfully. SupposeP-Value ≥ α, it indicates the testing
sequences pass the random testing successfully. Other-
wise, it fails the random testing.

In our testing simulation, according to the algorithm
3, for each iteration of our algorithm, 2048-bit random
sequences are obtained. For NIST testing, the dataset
with 1 000 000 000 bit sequences is required. So, iterate
algorithm 3 for 62036 times to have 1 000 000 000 bit
sequences, the details are shown in Fig. 9. Moreover,

Fig. 9 The diagram of NIST testing in algorithm 3
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set α = 0.01 and test 1000 pairs with each length of
1000 000 bit, the NIST test results are listed in Table 2.
According to Table 2, it is clear that all the P-Value are
greater than 0.01, the minimum pass rate and the maxi-
mum pass rate are 0.9863 and 0.9936, respectively. We
can get all the pass rates in an acceptable interval. The
testing results of P-Value and pass rates show that all
the chaotic sequences produced by the 3D CMLmodel
possess perfect random characteristics.

TestU01 test is a statistical random testing tool,
offering a collection of utilities for the uniform ran-
dom number generators.We have unitized the 3DCML
model to produce the chaotic sequences with length
of 220,225 and 230, respectively. Considering the three
indexes ofRabbit test,Alphabit test, andBlockAlphabit
test, we test the chaotic sequences and show the test-
ing results in Table 3. According to Table 3, the dif-
ferent chaotic sequences can all pass the TestU01 test
successfully. The TestU01 test verifies that the chaotic
sequences have excellent randomness.

Above all, the above-mentioned testing of NIST and
TestU01 test both prove that the chaotic sequences have
outstanding random performance and those sequences
are proper for being applied as the core model in the
cryptography system.

5.3 Correlation tests

Correlation coefficient is an indicator that measures the
degree of linear relationship between two sequences,
its interval is [−1, 1]. The closer the value is to 0, the
independence between these two sequences is much
stronger. When it is equal to 0, two sequences are inde-
pendent. When in the interval (−0.3, 0.3), it demon-
strates those two sequences are independent. Correla-
tion coefficient can be calculated as

cov(x, y) = E(x − E(x))(y − E(y)), (13)

rxy = cov(x, y)√
D(x)

√
D(y)

, (14)

where x and y are two sequences with the length of

l, E(x) = ∑l
i=1

xi
l
, D(x) = ∑l

i=1
(xi − E(x))2

l
, xi

and y j are the i th and j th element of x and y, respec-
tively.

In our test, select PLM with N = 64 and μ = 4 as
the local map. For the 3D CMLmodel, choose ε = 0.1
and R = L = U = 4, according to our proposed

PRNG scheme, set 1000 initial value vectors randomly,
1000 different sets of chaotic sequences with 66000-
bit are generated, then utilize those 1000 different sets
and calculate the correlation coefficient value rxy , the
values are shown in the Fig. 10. According to the figure,
it can be seen that rxy lies in the interval (−0.02, 0.02),
which fully indicates that those chaotic sequences are
mutually independent.

5.4 Key space

From a security perspective, key space must be large
enough to effectively resist violent attacks. In our pro-
posed scheme, initial all 64 nodes of the 3D CML
as X (0, 0, 0), X (0, 1, 0), · · · , X (3, 3, 3), and all those
nodes are taken as the secret key. According to the
IEEE 754 standard, a 64-bit floating-point precision
degree is 10−15, and each node of the 4 × 4 × 4 3D
CML model has 1015 key space, 64 nodes totally own
1015×64 = 10960. Therefore, the time of cracking the
key space is calculated as

10960/(2168 × 5.9 × 1030) = 2.7 × 10953year. (15)

The time of cracking the key space 10960 is 10953 year,
it can effectively resist violent attack, and also verifies
our proposed algorithm is pretty secure.

5.5 Key sensitivity

Key sensitivity is a considerable indicator for measur-
ing the security of encryption algorithm, itmeasures the
change in output ciphertext through small changes in
initial parameters, so, set the following two situations:

Case1: ε = 0.1, μ = 4, x0 = 0.7639248273644901;
Case2: ε = 0.1, μ = 4, x0 = 0.7639248373644901.

According to the above-mentioned two cases, two
different chaotic sequences are produced to encrypt
the same image Airplane, adopt the XOR operation
between 8-bit chaotic sequences and image grayscale
values. The encrypted images are described as in
Figs. 11b, c, differences of those encrypted images are
shown in Fig. 11d, its value is 0.9961. Meanwhile,
count the histograms of these two encrypted images,
the results are depicted in Figs. 11f, g, it is clear that
the histogram is uneven. It demonstrates that the 3D
CML model possesses strong key sensitivity.

123



Z. Liu et al.

Table 2 NIST 800-22 test
results on the chaotic
sequences of our proposed
PRNG scheme

No. Test index Test number /Failure number Pass rate P-Value Results

1 Frequency 1000/11 0.9890 0.3669 Success

2 Block Frequency 1000/14 0.9860 0.4410 Success

3 Cumulative Sums(forward) 1000/07 0.9930 0.3804 Success

Cumulative Sums(reverse) 1000/06 0.9940 0.8832 Success

4 Runs 1000/07 0.9930 0.3736 Success

5 Longest Run 1000/13 0.9870 0.5443 Success

6 Rank 1000/14 0.9860 0.0590 Success

7 Discrete Fourier Transform 1000/16 0.9840 0.0753 Success

8 Nonoverlapping Template* 1000/10 0.9899 0.4796 Success

9 Overlapping Template 1000/08 0.9920 0.7715 Success

10 Universal 1000/13 0.9870 0.8891 Success

11 Approximate Entropy 1000/08 0.9920 0.9724 Success

12 Random Excursions(the sample size=636)

(1) 636/12 0.9811 0.4015 Success

(2) 636/08 0.9874 0.7743 Success

(3) 636/08 0.9874 0.7681 Success

(4) 636/04 0.9937 0.7743 Success

(5) 636/09 0.9858 0.3609 Success

(6) 636/05 0.9921 0.4506 Success

(7) 636/05 0.9921 0.5729 Success

(8) 636/08 0.9874 0.9780 Success

13 Random Excursions Variant(the sample size=636)

(1) 636/05 0.9921 0.8572 Success

(2) 636/10 0.9843 0.2597 Success

(3) 636/10 0.9843 0.2790 Success

(4) 636/10 0.9843 0.4777 Success

(5) 636/10 0.9843 0.1084 Success

(6) 636/10 0.9843 0.0814 Success

(7) 636/07 0.9890 0.6619 Success

(8) 636/08 0.9874 0.2993 Success

(9) 636/07 0.9890 0.4071 Success

(10) 636/06 0.9906 0.1943 Success

(11) 636/05 0.9921 0.9292 Success

(12) 636/07 0.9890 0.6915 Success

(13) 636/09 0.9858 0.4329 Success

(14) 636/03 0.9953 0.4156 Success

(15) 636/02 0.9969 0.6980 Success

(16) 636/02 0.9969 0.4747 Success

(17) 636/05 0.9921 0.8572 Success
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Table 2 continued No. Test index Test number /Failure number Pass rate P-Value Results

(18) 636/07 0.9890 0.9970 Success

14 Serial 1 1000/04 0.9960 0.2133 Success

Serial 2 1000/03 0.9970 0.2066 Success

15 Linear Complexity 1000/11 0.9890 0.1959 Success

5.6 Differential attack analysis

When adversaries perform differential attack on the
encryption algorithm, according to minor adjustments
of the plaintext, then, compare the difference between
theoriginal plaintext ciphertext and the slightly adjusted
plaintext ciphertext. In the 3DCMLmodel, make small
changes and verify the algorithm’s resistance to differ-
ential attack. The key parameters are set in the follow-
ing four cases:

Case 1: ε = 0.1, μ = 4, x0 = 0.7639248273644901;
Case 2: ε = 0.1, μ = 4+�t, x0 = 0.763924827364-
4901;
Case 3: ε = 0.1, μ = 4, x0 = 0.763924827364490-
1 + �t ;
Case 4: ε = 0.1 + �t, μ = 4, x0 = 0.76392482736-
44901;

where �t = 2−20. According to the above-mentioned
cases, generate four pairs of chaotic sequence S1, S2,
S3, S4 with 10000000-bit. Then, compute average
absolute distance d of sequences (S1, S2),(S1, S3) and
(S1, S4) via the following Eq. (16).

d = 1

M

M∑

i=1

∣∣∣ei − e
′
i

∣∣∣ , (16)

where ei and e
′
i are the original sequence and the new

sequence, respectively. The ideal value of average abso-
lute distance d is 85.333. According to Eq. (16), the
results are depicted in the Table 4. From this table, it
is clear that all the values are near 85.333, and it fully
demonstrates that our proposed scheme owns strong
resistance to differential attacks.

5.7 Balanced analysis

We have plotted the number of 1 s with respect to dif-
ferent lengths of our PRNG outputs,shown in Fig. 12.
According to this figure, it is easy to see that the bit

Table 3 TestU01 test results on the chaotic sequences of our
proposed PRNG scheme

Length Rabbit Alphabit BlockAlphabit

230 38/38 17/17 17/17

225 38/38 17/17 17/17

220 38/38 17/17 17/17

Fig. 10 Correlation coefficient values

sequences generated by our scheme have an approxi-
mately equal number of 0 s and 1s, and almost coincide

with the ideal line y = n

2
. This indicates that our PRNG

scheme has good balanced performance.

5.8 Periodicity analysis

PRNGs are necessarily periodic, which is a serious
problem when the generation of random numbers is
in question. For that reason, cycles of PRNGs should
have great length in order to enable the smooth func-
tioning for a long period of time. Some of the previ-
ous chaos-based PRNGs were evaluated on the basis
of non-periodicity, but on a relatively small amount of
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Fig. 11 The results of Airplane and the encrypted Airplane
a Airplane; b The encrytped Airplane with Case 1; c The
encrytped Airplane with Case 2; d The different image of Case 1

and Case 2; e The histogram result of Airplane; f The histogram
result of encrytped Airplane with Case 1; g The histogram result
of encrytped Airplane with Case 2

data (less than 240 bits).However, none of these PRNGs
have estimated cycle length.

Period of sequence in our proposed PRNG scheme
is 2128, while the classical period of PRNG scheme
is 240. Consequently, our proposed PRNG scheme has
sufficient length.

5.9 Entropy analysis

The entropy is an key indicator for measuring state’s
uncertainty. If an n-bit number sequence has a good
disorder, it will be considerd as a random one. A good
PRNG should generate unexpected sequence with high
disorder. So, we use Eq. (17) to determine those prop-
erties of our PRNG scheme.

Em =
2N−1∑

i=0

p(mi ) logb
1

p(mi )
, (17)

where N is the number of bits in each element of the
sequence m, p(mi ) is the chance that the element mi

will appear in the sequence, Em is the entropy value,
and b represents the radix value.

To fully verify the entropy value of our PRNG
scheme, take the radix b = 2 and b = 8 for example,
according to Eq. (17), we can caculate entropy values

Table 4 The average absolute of chaotic sequences

The chaotic sequences d

(S1, S2) 85.3122

(S1, S3) 85.3426

(S1, S4) 85.3401

of our PRNG scheme, the results are plotted in Figs. 13
and 14. From those figures, we can see the numerical
results are very close to the ideal value. It indicates that
the generated binary sequences of our PRNG scheme
have high complexity.

5.10 Efficiency analysis

To further assess the performance of our proposed
PRNG algorithm, it is evaluated through comparing
with other chaotic PRNGs [1,10,17,19,36]. The meth-
ods in [1] and [19] are more recent heuristic proposals
based on enhancing simple chaotic systems and using
CML, respectively. By enhancing 1D chaotic systems,
the work in [10] is a famous heuristic PRNG design
due to its simplicity and thorough experimental eval-
uation. It is noted that the design in [17] is the only
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Fig. 12 The ratio of 0/1 in the random sequences generated by
our PRNG scheme

Fig. 13 Entropy values with radix=2

Fig. 14 Entropy values with radix=8

previously known method that provides theoretically
guaranteed uniform randomness from chaotic systems.
For the 2D CML mode used for PRNG in [36]. For

PRNGs in [1,10,17,19,36], the same settings of the
original works are used. All the algorithms are then
implemented on a Laptop with the Core i7-10710U
CPU and 16G RAM.

Table 5 lists the running speed (averaged from1, 000
tests) for generating 1 MByte binary stream from all
these methods.With a running speed of 23.85MByte/s,
the proposed method is more efficient than the other
theoretical sound RPNGs [17] and [36], and is also
more efficient than the heuristic designs [1] (with
running speed 0.3338 MByte/s), [13] (with running
speed 22.84 MByte/s), [19] (with running speed 17.24
MByte/s) and [35] (with running speed 22.16MByte/s),
but inferior to the method in [10] (with running speed
62.50 MByte/s). However, looking further at the third
and fourth column of Table 5, it is clear that the pro-
posed method provides theoretical randomness guar-
antee while the method in [10] does not.

To further verify the efficiency of our proposed
scheme, other similar classical schemes are used to
compare with ours. Basic operations for generating
8-bit are counted and presented in Table 6. Accord-
ing to this table, our scheme requires 27 basic oper-
ations. While basic operations of other schemes in
[1,6,10,13,17,19,24,35,36] are 27 basic operations,
1628 basic operations, 24.88 basic operations, 13.33
basic operations, 35.13 basic operations, 40 basic oper-
ations, 42 basic operations, 18 basic operations, 56
basic operations and 51.50 basic operations, repec-
tively. Therefore, our scheme possesses a significant
advantage in efficiency, also with theoretical analysis
and experimental analysis to make sure its security.

5.11 Comparison analysis

Some chaos-based PRNGs are currently being pro-
posed in the cryptographic field. Even though those
schemes can pass some randomness analysis such as
NIST testing, some or no security analysis have been
mentioned in those schemes. PRNG is an core compo-
nent of constructing the cyrptographic scheme, a thor-
ough security analysis should be carried out to show
its good performance. So, we perform the cpmparison
analysis of our scheme with others in [5,22,29,38,39].

The comparison results are shown in Table 7,this
table shows the investigated aspects of several PRNGs.
According to this table, it is clear that our proposed
scheme has been tested the most. In addition, note that
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Table 5 Running speed
comparison

Methods Running speed (MByte/s) Theoretical analysis Experimental analysis

Ours 23.85 Yes Yes

[1] 0.3338 No Yes

[10] 62.50 No Yes

[13] 22.84 No Yes

[17] 21.28 Yes Yes

[19] 17.24 No Yes

[35] 22.16 No Yes

[36] 12.80 Yes Yes

Table 6 Number of basic operations in schemes for generating 8-bit

Number of operations Ours [1] [6] [10] [13] [17] [19] [24] [35] [36]

No. of exclusive OR 0 0 24 0 8 0 0 1 0 8

No. of interception 1/4 0 0 2/3 0 0 1 0 0 0

No. of Modulo 0 8 0 8 0 0 0 0 0 0

No. of comparison 0 4 0 1/3 0 32 0 2 8 0

No. of inversion 0 0 0 0 0 0 0 1 0 8

No. of addition/subtraction 15/2 248 3/8 8/3 9 8 14 5 16 59/4

No. of multiplication/division 19 1368 4/8 5/3 18 0 26 7 32 83/4

No. of converting floating-point to char 1/4 0 0 0 1/8 0 1 2 0 0

Total 27 1628 24.88 13.33 35.13 40 42 18 56 51.50

Table 7 Analysis of our PRNGs in comparison to other existing schemes

No. Item Ours [5] [22] [29] [36] [38] [39]

1 Chaotic Map 3D CML Generalized
Sprott-A
system

Enhanced
Logistic
map

Skew Tent
map

2D CML Piecewise
Cubic map

Lorenz
system

2 LE(theory) � × × × � � ×
3 LE(simulation) � � � � � � �
4 Synchronization Stability � × × × × × ×
5 Bifurcation � � � � � � �
6 NIST SP800-22 � � � � � � �
7 TestU01 � × � × � � ×
8 Key Space � � � � � � �
9 Key Sensitivity � � � � � � �
10 Differential Attack � × × × × � ×
11 Correlation Test � � � � × � �
12 Entropy � � � � × � ×
13 Periodicity � × � � × × ×
14 Efficiency � � � � � � �
15 Comparison � � � � × × ×
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this linear complexity test is just the frequency sub-
test of NIST SP800-22, where 1000 binary sequences
with length 106-bit (produced by our PRNG) have been
already tested extensively with results summarized in
Table 2.

6 Promotion of the 3D CML model

According to the performance analyses of the 3D CML
model in section 3, it is well known as a higher-
dimensional chaotic for constructing numerous cryp-
tographic schemes. With the increasing demand for
security, and also in order to apply to more applica-
tion scenarios in the future, the 3D CML model can
be extended into the ND CML one, which is shown in
definition 2.

Definition 2 The N -dimensional CML model is def-
ined as

xl1,l2,··· ,lN−1,lN
n+1 = (1 − ε)F(xl1,l2,··· ,lN−1,lN

n )

+ ε

2N

[
F(xl1+1,l2,··· ,lN−1,lN

n ) + F(xl1−1,l2,··· ,lN−1,lN
n )

+F(xl1,l2+1,··· ,lN−1,lN
n ) + F(xl1,l2−1,··· ,lN−1,lN

n )

+ · · · + F(xl1,l2,··· ,lN−1+1,lN
n ) + F(xl1,l2,··· ,lN−1−1,lN

n )

+F(xl1,l2,··· ,lN−1,lN+1
n ) + F(xl1,l2,··· ,lN−1,lN−1

n )
]
.

(18)

where l1 = 1, 2, · · · , L1, l2 = 1, 2, · · · , L2, · · · ,
lN−1 = 1, 2, · · · , LN−1 and lN = 1, 2, · · · , LN are
the indexes of all the nodes, respectively.

According to LE results of the 3D CML model, the
significant theoretical results for LE can be conjectured
as the following equation.

LE =LEF + ln

∣∣∣∣1 − ε + ε

N
(cos

2πk1
L1

+ cos
2πk2
L2

+ · · · + cos
2πkN−1

LN−1
+ cos

2πkN
LN

)

∣∣
∣∣ .

(19)

To veridate the conclusion of Eq. (19) is correct, the
details are represented as in the following proof.

Proof See the appendix B. ��
According to the appendix B, it is clear Eq. (19) is

correct, we can get the following important theorem.

Theorem 4 The maximum Lyapunov exponent (MLE)
of the NDCMLmodel is solely determined by the local
chaotic map.

Proof For Eq. (19), satisfying k1 = 0, k2 = 0, · · · ,

kN−1 = 0, kN = 0, the MLE of the ND CML model
is calculated as

LEMLE = LEF + ln
∣∣∣1 − ε + ε

N
(cos 0 + cos 0

+ · · · + cos 0 + cos 0| ,
= LEF.

(20)

��
This important conclusion for LE in the ND CML

model is obtained according to the process of 3D CML
model, the LE values of the ND CML model can be
calculated accurately, the model parameters would be
set reasonably to keep the model in the fully chaotic
state. Furthermore, the dynamic performance of the
ND CML model is related to the security of chaotic-
based cyrptographic schemes. Therefore, it is greatly
beneficial to the application of the ND CML model.

7 Conclusion

The 3D CML model, as a higher-dimensional chaotic
system, owns some special chaotic dynamic behavior,
as well as more complicated peformance than 1DCML
and 2D CML. Its mathematical expression of LE is
derived, which is significantly used to set the param-
eters of 3D CML and ensure the model is in a fully
chaotic state. Meanwhile, the synchronization stabil-
ity expression of the 3D CML is given, this devotes
itself to the suitable parameters for avoiding the syn-
chronous state. The LE and synchronization stability
analyses in the 3D CML model give new insights,
as well as provide a theoretical foundation in crypto-
graphic application. Based on those theoretical results,
our PRNG scheme is designed, the simulation demon-
strates our scheme possesses outstanding performance.
In our scheme, massive bits are produced efficiently,
it is suitable for lightwight devices. In fact, in sce-
narios where security requirements are not too high,
the 3D CML model with the local Logistic map is a
good choice, since Logistic map is faster than PLM,
but the security is lower than PLM’s. In the future, the
cryptographic application of the 3D CML model with
different local map will be the focus area via scenar-
ios with different levels of security, especially, for the
chaos-based encryption schemes of massive images.
Furthermore, the 3D CML model is extended into a
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ND CML one, its LE expression is obtained, it is sub-
stantial helpful for theoretical research and application
development of the higher-dimensional model.
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Appendix A

The proof details of theorem 2 in the 3D CML model
are shown as

Proof To begin with, the 3D CML model is converted
into a one-dimensional CML as Eq. (21)

x (s−1)L+t+(u−1)RL
n+1 = (1 − ε)F(x (s−1)L+t+(u−1)RL

n )

+ ε

6

[
F(xsL+t+(u−1)RL

n + F(x (s−2)L+t+(u−1)RL
n

+ F(x (s−1)L+t+1+(u−1)RL
n + F(x (s−1)L+t−1+(u−1)RL

n

+F(x (s−1)L+t+(u−2)RL
n + F(x (s−1)L+t+uRL

n

]
.

(21)

and the periodic boundary conditions are rewritten as

x (s−1)L+t+(u−1)RL
n = x (s−1+R)L+t+(u−1)RL

n ,

x (s−1)L+t+(u−1)RL
n = x (s−1+R)L+t+L+(u−1)RL

n ,

x (s−1)L+t+(u−1)RL
n = x (s−1+R)L+t+L+(u−1+U )RL

n .

(22)

The 3D CMLmodel can be expressed as an R× L×U
dimensional column vector

zn =
[
x1n , x

2
n , · · · , x Ln , x L+1

n , · · · , x2Ln , · · · ,

x R×L
n , x R×L+1

n , · · · , x R×L×U
n

]
.

Assume that all the nodes of the 3D CML model keep
the synchronization state among them, so

x1n = x2n = · · · = x Ln = x L+1
n = · · · = x2Ln

= · · · = x R×L
n = x R×L+1

n = · · · = x R×L×U
n .

(23)

Then, we can obtain the derivatives of F as

F
′
(x (s−1)L+t+(u−1)RL

n ) = F
′
(x (sL+t+(u−1)RL

n )

= F
′
(x (s−2)L+t+(u−1)RL

n ) = F
′
(x (s−1)L+t+1+(u−1)RL

n )

= F
′
(x (s−1)L+t−1+(u−1)RL

n ) = F
′
(x (s−1)L+t+(u−2)RL

n )

= F
′
(x (s−1)L+t+uRL

n ) = F
′
(n).

(24)

and the differentials of Eq. (21) are

δ(x (s−1)L+t+(u−1)RL
n+1 ) =

(1 − ε)F
′
(x (s−1)L+t+(u−1)RL

n )δx (s−1)L+t+(u−1)RL
n

+ ε

6

[
F

′
(xsL+t+(u−1)RL

n )δxsL+t+(u−1)RL
n

+ F
′
(x (s−2)L+t+(u−1)RL

n )δx (s−2)L+t+(u−1)RL
n

+ F
′
(x (s−1)L+t+1+(u−1)RL

n )δx (s−1)L+t+1+(u−1)RL
n

+ F
′
(x (s−1)L+t−1+(u−1)RL

n )δx (s−1)L+t−1+(u−1)RL
n

+ F
′
(x (s−1)L+t+uRL

n )δx (s−1)L+t+uRL
n

+F
′
(x (s−1)L+t+(u−2)RL

n )δx (s−1)L+t+(u−2)RL
n

]
.

(25)

Furthermore, based on Eq. (24), Eq. (25) is simplified
as

δ(x (s−1)L+t+(u−1)RL
n+1 )=F

′
(n)

{
(1−ε)δx (s−1)L+t+(u−1)RL

n

+ ε

6

[
δxsL+t+(u−1)RL

n + δx (s−2)L+t+(u−1)RL
n

+ δx (s−1)L+t+1+(u−1)RL
n + δx (s−1)L+t−1+(u−1)RL

n

+ δx (s−1)L+t+(u−2)RL
n +δx (s−1)L+t+uRL

n

]}
.

(26)

Then, considering the position relation among the
nodes of 3D CML, according to Eqs. (24) and (26),
we have the Jacobin matrix for δzn+1 = Jnzn as

Jn = F
′
(xn)K, (27)

where K is a RLU × RLU block circulant matrix
defined as

K =

⎡

⎢⎢⎢
⎣

G1 G2 · · · GU

GU G1 · · · GU−1
...

...
. . .

...

G2 G3 · · · G1

⎤

⎥⎥⎥
⎦

,
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in K, G1,G2, · · · ,GU−1,GU with RL × RL are
shown as

G1 =

⎡

⎢⎢⎢⎢
⎣

A1 A2 · · · AR

AR A1
. . . AR−1

...
...

. . .
...

A2 A3 · · · A1

⎤

⎥⎥⎥⎥
⎦

,

G2 =
⎡

⎢
⎣

A2
. . .

A2

⎤

⎥
⎦ ,GR =

⎡

⎢
⎣

AR
. . .

AR

⎤

⎥
⎦ ,

and

G3 = G4 = · · · = GR−1 = 0,

Among them,

A1 =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

1 − ε
ε

6
0 · · · ε

6
ε

6
1 − ε

ε

6

. . . 0

0
ε

6
1 − ε

. . . 0

...
...

. . .
. . .

ε

6ε

6
0 · · · ε

6
1 − ε

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

,

A2 = AR =

⎡

⎢
⎢⎢
⎣

ε

6
. . .

ε

6

⎤

⎥
⎥⎥
⎦

,

and

A3 = A4 = · · · = AR−1 = 0.

Set G = J1 × J2 × · · · × Jn = Kn
n∏

i=1
F

′
(x), and

the eigenvalue of K is λ. So, the eigenvalue of G is

λn
n∏

i=1
F

′
(x) and its norm is |λ|n

∣∣∣∣
n∏

m=1
F

′
(xm)

∣∣∣∣, the LE

of 3D CML is formulated as

LE = lim
n→∞

1

n
ln

∣∣∣∣∣
|λ|n

n∏

m=1

F
′
(xm)

∣∣∣∣∣

= lim
n→∞

1

n
ln

∣∣∣∣
∣

n∏

m=1

F
′
(xm)

∣∣∣∣
∣
+ ln |λ| .

(28)

Moreover, K is a block circulant matrix and G3 =
G4 = · · · = GU−1 = 0, its eigenpolynomial are given
as
U∏

r=1

∣∣∣G1 + G2ωk + GUωU−1
k − λE

∣∣∣ , (29)

where k = 0, 1, 2, · · · ,U − 1, E is an identity matrix

and ωk = cos(
2πk

U
) + i sin(

2πk

U
).

Then, let A = G1 +G2ωk +GUωU−1
k − λE, and it

is represented as

A =

⎡

⎢
⎢⎢⎢
⎣

A′
1 A2 · · · AR

AR A′
1

. . . AR−1
...

...
. . .

...

A2 A3 · · · A′
1

⎤

⎥
⎥⎥⎥
⎦

,

where

A′
1 =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

P
ε

6
0 · · · ε

6
ε

6
P

ε

6

. . . 0

0
ε

6
P

. . . 0

...
...

. . .
. . .

ε

6ε

6
0 0 · · · P

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

,A2 = AR =

⎡

⎢⎢⎢
⎣

ε

6
. . .

ε

6

⎤

⎥⎥⎥
⎦

,

and

A3 = A4 = · · · = AR−1 = 0,

where P = 1 − ε + ε

6
ωk + Gkω

U−1
k − λ.

Since A is a block circulant matrix, its eigen poly-
nomial are shown as

R∏

k=1

U∏

r=1

∣∣
∣A′

1+A2ωk+AUωU−1
k +A2ωr +AUωR−1

r −λE
∣∣
∣ ,

(30)

where ωr = cos(
2πr

R
) + i sin(

2πr

R
). According to

the above-mentioned analysis, the eigenvalues ofK are
obtained as

λ=1−ε+ ε

6
ωk+ ε

6
ωU−1
k + ε

6
ωr + ε

6
ωR−1
r

+ε

6
ωl+ ε

6
ωL−1
l , (31)

where ωl = cos(
2πl

L
) + i sin(

2πl

L
).

Substituting Eq. (31) into Eq. (28), we can get the
LEs of 3D CML as

LE=LEF+ln

∣∣
∣∣1−ε+ ε

3
(cos

2πk

U
+cos

2πr

R
+cos

2πl

L
)

∣∣
∣∣ ,

(32)

��
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Appendix B

The proof details of theorem 4 in the ND CML model
are represented as

Proof To begin with, the ND CML model is trans-
formed into a one-dimensional one as Eq. (33)

x (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n+1

= (1 − ε)F(x (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n )

+ ε

2N

[
F(xl1L2+l2+···+lN−1+(lN−1)L1L2···LN−1

n )

+F(x (l1−2)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n )

+ F(x (l1−1)L2+l2−1+···+lN−1+(lN−1)L1L2···LN−1
n )

+ F(x (l1−1)L2+l2+1+···+lN−1+(lN−1)L1L2···LN−1
n )

+ · · · + F(x (l1−1)L2+l2+···+lN−1−1+(lN−1)L1L2···LN−1
n

+ F(x (l1−1)L2+l2+···+lN−1+1+(lN−1)L1L2···LN−1
n )

+ F(x (l1−1)L2+l2+···+lN−1+lN L1L2···LN−1
n )

+F(x (l1−1)L2+l2+···+lN−1+(lN−2)L1L2···LN−1
n )

]
.

(33)

and its periodic boundary conditions are changed into

x (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n

= x (l1−1+L1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n ,

x (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n

= x (l1+L1−1)L2+l2+L2+···+lN−1+(lN−1)L1L2···LN−1
n ,

· · ·
x (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n

= x (l1+L1−1)L2+l2+L2+···+lN−1+LN−1+(lN−1)L1L2···LN−1
n ,

x (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n

= x (l1+L1−1)L2+l2+L2+···+lN−1+LN−1+(lN+LN−1)L1L2···LN−1
n .

(34)

The ND CMLmodel can be shown as a L1 × L2 · · · ×
LN−1 × LN dimensional column vector

zn =
[
x1n , x

2
n , · · · , x L1

n , x L1+1
n , · · · , x2L1

n , · · · , x L1×L2
n ,

x L1×L2+1
n , · · · , x L1×L2×···×LN−1×LN

n

]
.

Assume that all the nodes of the ND CMLmodel keep
the synchronization state among them, so

x1n = x2n = · · · = x L1
n = x L1+1

n = · · · = x2L1
n = · · ·

= x L1×L2
n = x L1×L2+1

n

= · · · = x L1×L2×···×LN−1×LN
n .

(35)

Then, we can obtain the derivatives of F as

F
′
(x (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1

n )

= F
′
(xl1L2+l2+···+lN−1+(lN−1)L1L2···LN−1

n )

= F
′
(x (l1−2)L2+l2+···+lN−1+(lN−1)L1L2···LN−1

n )

= F
′
(x (l1−1)L2+l2−1+···+lN−1+(lN−1)L1L2···LN−1

n )

= F
′
(x (l1−1)L2+l2+1+···+lN−1+(lN−1)L1L2···LN−1

n )

= · · · = F
′
(x (l1−1)L2+l2+···+lN−1−1+(lN−1)L1L2···LN−1

n )

= F
′
(x (l1−1)L2+l2+···+lN−1+1+(lN−1)L1L2···LN−1

n )

= F
′
(x (l1−1)L2+l2+···+lN−1+1+lN L1L2···LN−1

n )

= F
′
(x (l1−1)L2+l2+···+lN−1+1+(lN−2)L1L2···LN−1

n )

= F
′
(n).

(36)

and the differentials of Eq. (33) are

δ(x (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n+1 ) =

(1 − ε)F
′
(x (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1

n )

δx (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n

+ ε

2N

[
F

′
(xl1L2+l2+···+lN−1+(lN−1)L1L2···LN−1

n )

δxl1L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n

+ F
′
(x (l1−2)L2+l2+···+lN−1+(lN−1)L1L2···LN−1

n )

δx (l1−2)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n

+ F
′
(x (l1−1)L2+l2−1+···+lN−1+(lN−1)L1L2···LN−1

n )

δx (l1−1)L2+l2−1+···+lN−1+(lN−1)L1L2···LN−1
n

+ F
′
(x (l1−1)L2+l2+1+···+lN−1+(lN−1)L1L2···LN−1

n )

δx (l1−1)L2+l2+1+···+lN−1+(lN−1)L1L2···LN−1
n

+ · · · + F
′
(x (l1−1)L2+l2+1+···+lN−1−1+(lN−1)L1L2···LN−1

n )

δx (l1−1)L2+l2+1+···+lN−1−1+(lN−1)L1L2···LN−1
n

+ F
′
(x (l1−1)L2+l2+1+···+lN−1+1+(lN−1)L1L2···LN−1

n )

δx (l1−1)L2+l2+1+···+lN−1+1+(lN−1)L1L2···LN−1
n

+ F
′
(x (l1−1)L2+l2+1+···+lN−1−1+lN L1L2···LN−1

n )

δx (l1−1)L2+l2+1+···+lN−1−1+lN L1L2···LN−1
n

+ F
′
(x (l1−1)L2+l2+1+···+lN−1−1+(lN−2)L1L2···LN−1

n )

δx (l1−1)L2+l2+1+···+lN−1−1+(lN−2)L1L2···LN−1
n

]
.

(37)
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Furthermore, based on Eq. (36), Eq. (37) is simplified
as
δ(x (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1

n+1 )

= F
′
(n)

{
(1−ε)δx (l1−1)L2+l2+···+lN−1+(lN−1)L1L2···LN−1

n

+ ε

2N

[
δxl1L2+l2+···+lN−1+(lN−1)L1L2···LN−1

n

+ δx (l1−2)L2+l2+···+lN−1+(lN−1)L1L2···LN−1
n

+ δx (l1−1)L2+l2−1+···+lN−1+(lN−1)L1L2···LN−1
n

+ δx (l1−1)L2+l2+1+···+lN−1+(lN−1)L1L2···LN−1
n

+ · · · + δx (l1−1)L2+l2+···+lN−1−1+(lN−1)L1L2···LN−1
n

+ δx (l1−1)L2+l2+···+lN−1+1+(lN−1)L1L2···LN−1
n

+ δx (l1−1)L2+l2+···+lN−1−1+lN L1L2···LN−1
n

+δx (l1−1)L2+l2+···+lN−1+1+(lN−2)L1L2···LN−1
n

]}
.

(38)

Then, considering the position relation among the
nodes of ND CML, according to Eqs. (36) and (38),
we have the Jacobin matrix for δzn+1 = Jnzn as

Jn = F
′
(xn)K, (39)

where K is a (L1L2 · · · LN−1LN ) × (L1L2 · · ·
LN−1LN ) block circulant matrix defined as

K =

⎡

⎢⎢⎢
⎣

G1 G2 · · · GLN−1

GLN−1 G1 · · · GLN−1−1
...

...
. . .

...

G2 G3 · · · G1

⎤

⎥⎥⎥
⎦

,

in K, G1,G2, · · · ,GLN−1,GLN with (L1L2

· · · LN−1) × (L1L2 · · · LN−1) are shown as

G1 =

⎡

⎢
⎢⎢
⎢⎢
⎣

A1 A2 · · · ALN−2

ALN−2 A1
. . . ALN−2−1

.

.

.
.
.
.

. . .
.
.
.

A2 A3 · · · A1

⎤

⎥
⎥⎥
⎥⎥
⎦

,

G2 =
⎡

⎢
⎣

A2

. . .

A2

⎤

⎥
⎦ ,GLN−2 =

⎡

⎢
⎣

ALN−2

. . .

ALN−2

⎤

⎥
⎦ ,

and

G3 = G4 = · · · = GLN−1−1 = 0,

Among them, A1 with (L1L2 · · · LN−2) × (L1L2

· · · LN−2) are shown as

A1 =

⎡

⎢⎢⎢
⎣

T1 T2 · · · TLN−3

TLN−3 T1 · · · TLN−3−1
...

...
. . .

...

T2 T3 · · · T1

⎤

⎥⎥⎥
⎦

,

in A1, T1,T2, · · · ,TLN−1,TLN with (L1L2 · · ·
LN−3) × (L1L2 · · · LN−3) are shown as

T1 =

⎡

⎢⎢⎢⎢
⎣

B1 B2 · · · BLN−4

BLN−4 B1
. . . BLN−4−1

...
...

. . .
...

B2 B3 · · · B1

⎤

⎥⎥⎥⎥
⎦

,

T2 =
⎡

⎢
⎣

B2
. . .

B2

⎤

⎥
⎦ ,TLN−4 =

⎡

⎢
⎣

BLN−4

. . .

BLN−4

⎤

⎥
⎦ ,

and

T3 = T4 = · · · = TLN−4−1 = 0,

Iterate T1 for N times, the last iteration result is shown
as

C1 =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

1 − ε
ε

2N
0 · · · ε

2N
ε

2N
1 − ε

ε

2N

. . . 0

0
ε

2N
1 − ε

. . . 0

...
...

. . .
. . .

ε

2N
ε

2N
0 · · · ε

2N
1 − ε

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

,

C2 = CL1 =

⎡

⎢⎢
⎢
⎣

ε

2N
. . .

ε

2N

⎤

⎥⎥
⎥
⎦

,

and

C3 = C4 = · · · = CL1−1 = 0.

Set G = J1 × J2 × · · · × Jn = Kn
n∏

i=1
F

′
(x), and

the eigenvalue of K is λ. So, the eigenvalue of G is

λn
n∏

i=1
F

′
(x) and its norm is |λ|n

∣∣
∣∣

n∏

m=1
F

′
(xm)

∣∣
∣∣, the LE

of 3D CML is formulated as

LE = lim
n→∞

1

n
ln

∣∣
∣∣∣
|λ|n

n∏

m=1

F
′
(xm)

∣∣
∣∣∣

= lim
n→∞

1

n
ln

∣
∣∣∣∣

n∏

m=1

F
′
(xm)

∣
∣∣∣∣
+ ln |λ| .

(40)

Moreover, K is a block circulant matrix and G3 =
G4 = · · · = GLN−1−1 = 0, its eigenpolynomial are
given as

123



Z. Liu et al.

LN−1∏

kN−1=1

∣∣
∣G1 + G2ωkN−1 + GLN−1ω

LN−1−1
kN−1

− λE
∣∣
∣ ,

(41)

where kN−1 = 0, 1, 2, · · · , LN−1 − 1, E is an identity

matrix and ωkN−1 = cos(
2πkN−1

LN−1
) + i sin(

2πkN−1

LN−1
).

Then, let A = G1 +G2ωkN−1 +GLN−1ω
LN−1−1
kN−1

−λE,
and it is represented as

A =

⎡

⎢⎢⎢⎢
⎣

A′
1 A2 · · · ALN−2

ALN−2 A′
1

. . . ALN−2−1
...

...
. . .

...

A2 A3 · · · A′
1

⎤

⎥⎥⎥⎥
⎦

,

where

A′
1 =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

P
ε

2N
0 · · · ε

2N
ε

2N
P

ε

2N

. . . 0

0
ε

2N
P

. . . 0

...
...

. . .
. . .

ε

2N
ε

2N
0 0 · · · P

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

,

A2 = ALN−2 =

⎡

⎢⎢⎢
⎣

ε

2N
. . .

ε

2N

⎤

⎥⎥⎥
⎦

,

and

A3 = A4 = · · · = ALN−2−1 = 0,

where

P =1 − ε + ε

2N
ωk1 + Gk1ω

L1−1
k1

+ · · · +
ε

2N
ωkN−2 + GkN−2ω

LN−2−1
kN−2

− λ.

SinceA is a block circulantmatrix, its eigen polynomial
are shown as
L1∏

k1=1

L2∏

k2=1
· · ·

LN−1∏

kN−1=1

∣∣∣A′
1+A2ωk1+AL1ω

L1−1
k1

+A2ωk2

+AL2ω
L2−1
k2

+ · · · +A2ωkN−1+AL1ω
LN−1−1
kN−1

−λE
∣
∣∣ ,

(42)

where ωk1 = cos(
2πk1
L1

)+ i sin(
2πk1
L1

), · · · , ωkN−1 =

cos(
2πkN−1

LN−1
) + i sin(

2πkN−1

LN−1
).

According to the above-mentioned analysis, the
eigenvalues of K are obtained as

λ=1−ε+ ε

2N
ωk1 +

ε

2N
ω
L1−1
k1

+ ε

2N
ωk2 +

ε

2N
ω
L2−1
k2

+ · · ·

+ ε

2N
ωkN−1 +

ε

2N
ω
LN−1−1
kN−1

+ ε

2N
ωkN + ε

2N
ω
LN−1
kN

,

(43)

where ωkN = cos(
2πkN
LN

) + i sin(
2πkN
LN

).

Substituting Eq. (43) into Eq. (40), we can get the
LEs of ND CML as

LE = LEF + ln

∣∣∣∣1 − ε + ε

N
(cos

2πk1
L1

+ cos
2πk2
L2

+ · · · + cos
2πkN−1

LN−1
+ cos

2πkN
LN

)

∣∣
∣∣ .

(44)

��
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