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Abstract In thiswork, the nonlinear forced vibrations
of doubly curved shells are studied. For this, the Forced
Resonance Curves of four different shells were deter-
mined: a shallow cylindrical panel, a shallow spherical
panel, a non-shallow spherical panel, and a hyperbolic
paraboloid. To model the shells, the Koiter’s nonlinear
shell theory, for both shallow and non-shallow shells,
was applied. The forced resonance curves were deter-
mined using an adaptive harmonic balance method and
through a reduced-order model (ROM) via parame-
terization method for invariant manifolds. The find-
ings of this study reveal the complex dynamic behav-
ior exhibited by doubly curved shells, with various
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types of bifurcations such as Saddle–Node, Neimark–
Sacker, and Period Doubling bifurcations. Thanks to
the general treatment of the forcing term implemented
in the parameterization method, the results highlight
howcomplex high-order resonances can be retrieved by
the ROM, up to a comfortable range of vibration and
forcing amplitudes tested. Finally, it clearly demon-
strates how the Nonlinear Normal Modes as invari-
ant manifolds provide accurate and efficient ROMs for
nonlinear vibrations of shells.

Keywords Koiter theory · Doubly curved shells ·
Nonlinear vibrations · Invariant manifold

1 Introduction

Thin walled doubly curved shells exhibit exceptional
load capacities under transversal and in-plane loads,
making them structurally advantageous systems,which
are extensively utilized across various engineering
domains. To accurately analyze the vibration character-
istics of these shells, it is imperative to incorporate geo-
metrical nonlinearities into their mathematical models
due to their inherent slenderness.

Extensive researches have been focused on diverse
applications of the nonlinear behavior of thin shells.
These studies involve examining how thin shells per-
form under different types of loads, boundary condi-
tions, geometric imperfections, and constitutive laws,
as summarized in review studies [1–4]. Amabili [5]
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explored forced vibrations with geometrical nonlinear-
ities in laminated circular cylindrical shells using the
Amabili-Reddy theory. Du et al. [6] investigated the
nonlinear forced vibrations, including chaotic behav-
ior, in infinitely long, functionally graded cylindrical
shells using the Lagrangian theory and the multi-scale
method. Xie et al. [7] analyzed free and forced vibra-
tions of stepped conical shells with general boundary
conditions using a unified analyticalmethod combining
Flügge shell theory with power series method. Wang et
al. [8] analysed free and forced vibrations of open and
closed cylindrical shells in thermal environments, con-
sidering thermal effects and material property changes.
Amabili andBalasubramanian [9] investigated the non-
linear forced vibrations in laminated composite con-
ical shells using higher-order shear deformation the-
ory. Ye and Wang [10] analyzes the nonlinear forced
vibration of graphene platelet-reinforced metal foam
shells with 1:1:1:2 internal resonances, considering
various porosity and graphene distributions, demon-
strating their influence on vibration behavior andweak-
ening the nonlinear coupling effect. Yadav et al. [11]
analyzed the geometrically nonlinear forced vibrations
in circular cylindrical sandwich shells with cellular
core using higher-order theories. Liu et al. [12] studied
the nonlinear forced vibrationsmagneto-electro-elastic
smart composite cylindrical shells using the Galerkin
scheme and the pseudo-arclength continuationmethod.

Despite significant research on shell applications,
studies on non-shallow doubly curved shells remain
scarce. Applying the Koiter’s theory, Pinho et al.
[13] compared the free vibrations of shallow and
non-shallow shells of various geometries. This study
showed that Marguerre’s shallow shell theory yiels
less accurate results, highlighting the importance of
tensor formulation for non-orthogonal geometries. To
further explore both types of shells, Pinho et al. [14]
combined two approximations of Koiter’s theory with
the Proper Orthogonal Decomposition (POD) for effi-
cient nonlinear static analysis. This approach signifi-
cantly reduced the number of degrees of freedomwhen
compared to the Finite Element Method (FEM) while
maintaining accuracy. Later, Pinho et al. [15] applied
the same approach to analyze nonlinear free vibra-
tions of shells. They employed a combination of multi-
ple shooting and continuation methods to determine
the backbones for various shell geometries, reveal-
ing the presence of internal resonances and complex
modal interactions. Due to the complex interactions

between different vibration modes, many studies focus
on analyzing internal resonances in shells of different
geometries. Chin and Nayfeh [16] examined the non-
linear response of an infinitely long cylindrical shell
under primary resonance excitation, involving internal
two-to-one and one-to-one resonances among flexu-
ral and breathing modes. Amabili et al. [17] inves-
tigated the response-frequency relationship, traveling
wave response, and internal resonances in simply sup-
ported circular cylindrical shells using Donnell’s non-
linear shallow-shell theory, revealing complex modal
interactions in a water-filled shell with 1:1:1:2 internal
resonances. Pellicano et al. [18] expanded the analysis
using a second-order perturbation approach and direct
simulations, finding strongmodal interactionswhen the
structure is excited with small resonant loads. Thomas
et al. [19] analyzed the vibrations of shallow spheri-
cal shells under large amplitude transverse displace-
ment using von Kármán’s theory, predicting energy
exchanges between modes for various internal reso-
nances and specifically examining mode coupling due
to a 1:1:2 internal resonance.

High-order numerical models, requiring a large
number of degrees of freedom (dof), are typically used
to capture the nonlinear response in shells, which are
very costly in terms of memory and processing time.
To address this challenge, several reduced order mod-
els (ROMs) have been employed, including the appli-
cation of Proper Orthogonal Decomposition (POD) to
analyze large amplitude vibrations of shells [20–23].
A comprehensive review of order reduction techniques
for geometrically nonlinear structures can be found in
[24]. Several ROMs have been developed based on
the concept of Nonlinear Normal Modes (NNMs), ini-
tially introduced by Rosenberg [25] as unison vibra-
tions characterized by periodic orbits with coordinates
reaching their maximum amplitude simultaneously.
This concept was later expanded by Shaw and Pierre
[26] who described NNMs as invariant manifolds in
the phase space, a definition that naturally facilitates
the derivation of ROMs. Cabré et al. [27–29] presented
a method to find the invariant manifold while simulta-
neously obtaining a polynomial mapping that is conju-
gate to the reduced dynamics on the invariant manifold,
resulting in an accurate representation of both the man-
ifold and the dynamics on it. An extensive investiga-
tion of the parameterization method for invariant man-
ifolds, including different parameterization styles such
as the normal form and graph style, was made by [30].
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The parameterizationmethod has been applied to study
micro-electromechanical systems (MEMS) [31,32],
rotor-foundation systems [33] and resonant piezoelec-
tric micro-actuators [34]. Early works on the subject
dealt only with the determination of two-dimensional
invariant manifold from dynamic models described in
modal coordinates [35–38], then progressed to auto-
matic computation and applied to high-dimensional
systems [39,40]. An important advancement has been
the development of methods enabling the direct han-
dling of invariant manifolds of arbitrary dimension in
physical coordinates. This capability allows for the
computationof high-order invariantmanifolds for finite
element models [41–47]. However, only recently have
some studies implemented higher-order approxima-
tions of terms involving the non-autonomous part of
the invariance equation, highlighting the importance
of considering these terms to accurately estimate the
maximum vibration amplitude experienced by struc-
tures [48,49].

This study presents an analysis of forced vibra-
tions of thin shells, with particular emphasis on non-
shallow doubly curved shells, using Koiter’s nonlinear
theory in tensor form. Four distinct geometries were
investigated: the spherical cylindrical panel, the shal-
low spherical panel, the non-shallow spherical panel,
and the hyperbolic paraboloid panel. The resonant
behavior of these shells under a concentrated har-
monic load was examined through the determination
of forced resonance curves (FRCs). To capture the
dynamic response, a combination of the continuation
method and the Adaptive Harmonic Balance Method
(AHBM) [50,51]was employed to establish frequency-
response relationships. Subsequently, the FRCs were
re-determined using a ROM via the parameterization
method for invariant manifolds. The findings of this
study reveal the complex dynamic behavior exhibited
by doubly curved shells, with various types of bifur-
cations observed, including Saddle-Node, Neimark-
Sacker, andPeriodDoublingbifurcations.These results
contribute to the understanding of nonlinear vibrations
in non-shallow doubly curved shells, and the applied
methodology can be further extended to the study of
other geometries. This work also helps in understand-
ing the application of the parameterization method for
invariant manifolds, especially to shells that exhibit
internal resonances without necessarily having an inte-
ger ratio between their natural frequencies.

2 Mathematical formulation

This section provides a brief presentation of Koiter’s
theory regarding thin shells, while a more compre-
hensive explanation can be found in the existing lit-
erature [13–15,52]. Greek indices span from 1 to 2,
whereas Latin indices span from 1 to 3, unless explic-
itly stated otherwise. The summation convention for
repeated indices is also employed.

Consider a thin double curved shellwith thickness h,
made of an elastic isotropic material characterized by
a Young’s modulus E , Poisson ratio ν, density ρ and
damping constant c. The motion from reference and
current configurations of the shell is illustrated in Fig. 1.
The shell is oriented in Cartesian directions x1, x2 and
x3 with unit vectors e1, e2 and e3, and its mid-surface
is parameterized by vectors R and r, in reference and
current configurations, respectively. The mid-surface
of the shell in reference configuration is described by
vector R(ξ1, ξ2) = ξ1e1 + ξ2e2 + Z(ξ1, ξ2)e3, where
ξ1 and ξ2 are the curvilinear coordinates and function
Z(ξ1, ξ2) provides the elevation of the mid-surface.
The domain � bounds the mid-surface and is defined
as 0 ≤ ξ1 ≤ a and 0 ≤ ξ2 ≤ b, where a and b cor-
respond to the dimensions of the rectangular projec-
tion of the mid-surface onto the horizontal plane. The
triads vectors Mi and mi are the natural basis of the
mid-surface, respectively, in both reference and current
configuration, meanwhile Mi and mi are the recipro-
cal basis in reference and current configuration, respec-
tively. The vector u = ui (ξ1, ξ2, t)Mi represents the
displacement of the mid-surface, such as ui (ξ1, ξ2, t)
are the displacement fields of the shell’s mid-surface.
Vectors X and x are the positions of any point of the
shell in reference and current configuration, respec-
tively, and depend on the correspondent position of the
mid-surface according to Kirchhoff hypothesis.

According to Koiter’s theory, the components of the
stretching and bending components of the strain tensor
are defined by Eqs. (1a) and (1b), respectively:

γαβ = 1

2

(
gαβ − Gαβ

)
(1a)

ραβ = καβ − Kαβ (1b)

where gαβ and Gαβ represent the components of the
metric tensor in the current and reference configura-
tions, respectively. Similarly, καβ and Kαβ correspond
to the components of the curvature tensor in the current
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Fig. 1 Motion of the shell

and reference configurations, respectively. The compo-
nents Gαβ and Kαβ are functions of vector R, mean-
while gαβ and καβ also depend on the displacement
fields uk(ξ1, ξ2, t). In this study, two approximations
of γαβ and ραβ were employed, one for shallow shells
and another for non-shallow shells, which have been
previously investigated [14,15], and are presented in
Appendix A.

2.1 Lagrange equations of motion

The strain energy, according to Koiter’s shell theory, is
given by

U =
∫∫

�

Cαβθλ

(
h

2
γαβγθλ+ h3

24
ραβρθλ

) √
Gdξ1dξ2

(2)

where Cαβλθ = E
2(1−ν2)

((GαθGβλ

+GαλGβθ )(1− ν) + 2νGαβGλθ ) are the components
of the fourth order constitutive tensor of a linear elastic
material considering plane stress state; G is the deter-
minant of thematrix composed by the componentsGαβ

of the metric tensor.
The kinetic energy, by neglecting rotary inertia, is

given by

T =
∫∫

�

ρ
h

2
Gi j u̇i u̇ j

√
Gdξ1dξ2 (3)

where u̇i is the time derivative of the displacement field
ui .

The Rayleigh dissipation function F is given by:

F =
∫∫

�

c
h

2
Gi j u̇i u̇ j

√
Gdξ1dξ2 (4)

The work done by the external forces considering
a harmonic vertical load F = ε f cos(ωt)e3 applied at
the point (ξ1F , ξ2F ) is given by:

W = F · u(ξ1F , ξ2F , t) (5)

where ε f represents the maximum amplitude of the
load, and ω is the excitation frequency.

In order to reduce the system to a finite num-
ber of degrees of freedom, the displacement fields
ui

(
ξ1, ξ2, t

)
can be expanded using the following

approximate functions:

uk
(
ξ1, ξ2, t

)
≈

mk∑

i=1

nk∑

j=1

uki j (t) φki j

(
ξ1, ξ2

)
(6)

where mk and nk represent the number of func-
tions for each curvilinear coordinate, uki j (t) are the
unknown time-dependent generalized coordinates, and
φki j

(
ξ1, ξ2

)
are the selected shape functions chosen to

satisfy the geometric boundary conditions.
After substituting the field displacement (6) into

Eqs. (2), (3), (4) and (5), the equilibrium condition can
be determined using the Lagrange equations:

d

dt

(
∂L

∂ u̇ki j

)

− ∂L

∂uki j
+ ∂F

∂ u̇ki j
= 0 (7)

where L = T − � represents the Lagrangian function
of the shell, such as� = U−W denotes the total poten-
tial energy, and F is the Rayleigh dissipation given by
Eq. (4).

The Eq. (7) can be rewritten in matrix form as

MÜ + CU̇ + KU + f(U) − εfe cos(ωt) = 0 (8)
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where M is the mass matrix; K is the linear stiffness
matrix; Eq. (4) results in a damping matrix in the form
of C = αM where α = c/ρ, but the proportional
damping matrix C = αM + βK was also considered;
U = [uki j ] is a vector of dimension n = mknk contain-
ing all generalized coordinates uki j , for k = 1 . . . 3, i =
1 . . .mk and j = 1 . . . nk ; and U̇ and Ü denote the first
and second time derivative of the vector U; εfe cos(ωt)
represents the external harmonic load, where ε is a
non-dimensional value that represents the load mag-
nitude. The vector function f contains all quadratic and
cubic nonlinear stiffness terms which components can
be written as

fi =
n∑

j=1

n∑

k=1

f 2i jkU jUk +
n∑

j=1

n∑

k=1

n∑

l=1

f 3i jklU jUkUl (9)

This work employs an Adaptive Harmonic Balance
Method (AHBM) to solve Eq. (8). This method aims to
determine the periodic orbits of the Forced Response
Curve, defined by U(t) = U(t + T ). Here, T = 2π/ω

represents the period of the orbit, andω denotes the cir-
cular frequency. Refer to [50] for a detailed explanation
of both the HBM and the Alternating Frequency-Time
(ATF) scheme employed. Additionally, to improve
computational efficiency, an adaptive procedure based
on simple magnitude comparisons is applied, selecting
dominant harmonics and eliminating unnecessary ones
[51].

The solution U(t) may exhibit internal resonances
without requiring commensurate linear natural fre-
quencies due to the coupling between the vibration
modes during the system’s general motion (combina-
tion internal resonances, see Eq. (3.79) in [53]) [15,54].
In order to analyze these interactions, the time response
of each displacement field in modal coordinates can be
expressed as:

uk
(
ξ1, ξ2, t

)
=

n∑

m=1

μm (t) ψm
k

(
ξ1, ξ2

)
(10)

where μm(t) is the modal coordinate amplitude of
the correspondent eigenfunction ψm

k

(
ξ1, ξ2

)
, which is

determined by:

ψm
k

(
ξ1, ξ2

)
=

mk∑

i=1

nk∑

j=1

ymki j φki j

(
ξ1, ξ2

)
(11)

The values of ymki j are the elements of the eigenvector
ym = [ymki j ], determined by the eigenvalue/eigenvector

problem resulted by the linearization of the Eq. (8) con-
sidering ε = 0:

(K − ω2
mM)ym = 0

ym · Myn = δmn
(12)

whereωm is the correspondent linear natural frequency
of the vibration mode ym , which is normalized by the
mass matrix.

Themodal response is determinedprojecting thedis-
placement vector U onto the orthogonal vector space
of the linear vibration modes, according to

μ(t) = YTMU(t) (13)

where Y = [y1 . . . yN ] is a matrix formed by all
eigenvectors ym and μ is a vector which elements are
the modal coordinate responses μm(t). The vibration
modes and eigenfunctions are sorted according to their
linear natural frequencies.

2.2 Reduced-order model using the parameterization
method for invariant manifold

The study of non-shallow doubly curved shells typ-
ically requires many degrees of freedom for accurate
numerical results [15]. Therefore, ROMs are frequently
used for both continuous and discrete systems, whether
of moderate or large dimension. In this work, the direct
parameterization for invariant manifolds is applied to
solve the non-autonomous system of Eq. (8), which
is transformed into its first-order equivalent system of
dimension N = 2n:

Bż = Az + F (z) + E+ exp(+iωt) + E− exp(−iωt)(14)

where z = [UT, U̇T]T ∈ R
N contains the system’s state

variables. The equivalent coefficients of this system are
shown in Eq. (15):

A =
[

0 −K
−K −C

]
,

B =
[−K 0

0 M

]
,

F (z) =
[

0
−f

]
,

E+ = E− =
[

0
fe/2

]
(15)

Vizzaccaro et al. [49] proposed a parameterization
method for the invariant manifold in which the non-
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autonomous system (14) is transformed into an equiv-
alent augmented autonomous system:

Bż = Az + F (z) + E+ p̃+ + E− p̃−
˙̃p+ = +iω p̃+
˙̃p− = −iω p̃−

(16)

where p+ and p− are dummy variables introduced
to represent the harmonic load, such that p̃+(t) =
ε exp(+iωt) and p̃−(t) = ε exp(−iωt) are the solu-
tions of the last two equations of (16), considering the
initial conditions p̃+(0) = p̃−(0) = ε. By applying the
parameterizationmethod, it is possible to determine the
following ROM:

ṗ(t) = R(p(t)) (17)

wherep = [p1, . . . , pM ]T = [ p̄1, . . . , p̄d , p̃+, p̃−]T ∈
C

M is a augmented vector that contains the normal
coordinates, with the first d � N variables, being the
normal coordinates of the master modes, which span
the spectral subspace E . The spectral analysis of the
linear autonomous part of the system (16) and the deter-
mination of E are shown in Appendix B. The function
R : CM → C

M represents the reduced dynamics, such
that the parameterization function W : C

M → R
N

maps the trajectory p(t) of the reduced model to a tra-
jectory of the fullmodel contained in the invariantman-
ifold:

z(t) = W(p(t)) (18)

Given that the trajectories of the dummy variables are
already known, the least two equations of the system
(17) are equal to the last two equation of (16), and its
dynamics cannot be altered by the method. Addition-
ally, the parameterization method is applied by select-
ing only the physical coordinates z from the augmented
system (16), as shown in left-hand side of the nonlinear
mapping equation (18), as proposed by Vizzaccaro et
al. [49]. Substituting Eqs. (17) and (18) into Eq. (16),
the following invariance equations is determined:

B
dW
dp

R(p) = AW(p) + F(W(p)) + E+ p̃+ + E− p̃−(19)

where the time-dependency is embedded into the
dummy variables.

The parameterization method assumes that the vec-
tor functions R and W are polynomial expansions of
p, truncated to the order O(po), where o represents
the maximum degree of the polynomial expansion and
p = ‖p‖. By treating the dummy variables ( p̃+ and

p̃−) in the same manner as the remaining normal coor-
dinates ( p̄i for i = 1, . . . , d), thismethod facilitates the
fully automated solution for any arbitrary order of ε.
Additionally, one can set themaximumorder of p̃+ and
p̃− to be smaller than o by removing specific monomi-
als from the polynomial expansions of W and R. For
instance, one could consider a case where the maxi-
mum order of the polynomial expansion is O(p5, ε3).
In this scenario, all coordinates are expanded up to the
fifth order, but the non-autonomous variables are lim-
ited up to the power 3 in the expansion. The particu-
lar caseO(po, ε1) coincides with the formulation pre-
sented in [43]. This notation was introduced by Viz-
zaccaro et al. [49], who also provide an interesting
discussion about which terms should be included in
the expansion based on the magnitudes of the normal
coordinates of the master modes and the dummy vari-
ables. Appendix C presents a succinct overview of the
methodology behind determining the invariant mani-
fold and their ensuing reduced-order models using a
bordering technique [41,49], which allows the compu-
tation of the invariant manifold and its reduced model
directly from the equilibrium system (16), presented
in physical coordinates. The methodology described
in Appendix C was implemented in Matlab, and the
code is available in the repository [55]. For an in-depth
insight, the reader is directed to the detailed works in
the literature [41,43,44,48,49].

In the literature, the solution to Eq. (17) of the ROM
is often achieved by parameterizing the variables p in
polar or cartesian coordinates, which results in a system
where finding the fixed points corresponds to a finding
the periodic orbit of the ROM [43,44]. In this work, we
chose to solve Eq. (17) in its presented form, using the
AHBM.

3 Numerical results

3.1 Shallow cylindrical panel

In this section, the FRC of a shallow cylindrical panel
has been determined. This particular shell has been
previously examined in the literature [43,44], where
the FRC was established using a finite element model
with 1320 dof. The shell is depicted in Fig. 2, and its
physical and geometric properties are detailed as fol-
lows: horizontal projection dimensions of a = 2 m
and b = 1 m, thickness h = 0.01 m, Young’s modu-

123



Nonlinear forced vibration analysis of doubly curved shells

Fig. 2 Shallow cylindrical panel

lus E = 70 GPa, Poisson’s ratio ν = 0.33, density
ρ = 2700 kg/m3, along with damping coefficients
α = 0.004ω1ω2/(ω1 +ω2) and β = 0.004/(ω1 +ω2).
In this case, a force is applied at the point with curvi-
linear coordinates ξ1F = a/4 and ξ2F = b/2, with a
maximum magnitude of ε f = 10 N. The numerical
results presented in this section have been performed
using the AHBM with a maximum number of 20 har-
monics.

The boundary conditions on the edges of the shell
are:

u1 = u2 = u3 = M1 = 0 at ξ1 = 0, a (20a)

V1 = N1 = M1 = V2 = N2 = M2 = 0 at ξ2 = 0, b
(20b)

where the shape functions φki j (ξ
1, ξ2) that satisfy

the geometric boundary conditions (20) are given by
Eqs. (D46) presented in Appendix D.

The first two natural frequencies of the shell are
ω1 = 23.99×2π rad/s andω2 = 47.93×2π rad/s, cal-
culated for a model with 147 dof (mk = nk = 7 in Eq.
(6)). These findings closely align with those reported
in the literature [44], i. e. ω1 = 23.75 × 2π rad/s
and ω2 = 47.55× 2π rad/s. Notably, the examination
reveals an inherent 1:2 internal resonance between the
initial two modes, depicted in Fig. 12 in Appendix E.
This resonance arises from the integer ratio between
the frequencies, i. e., ω2 = 2ω1.

Figure 3 compares the FRC obtained via FEM [44]
with the FRCs obtained using the methodology pre-
sented in this work, showing a high degree of simi-
larity, validating the strain–displacement relations, the
displacement expansion with 147 dof and AHBM for-
mulation used. The FEM solution [44] presented in the
figure was determined for a model with 1320 dof using
the shooting method to extract the FRC of the full non-
linear system. The Newmark algorithm was used to
perform numerical integration during the shooting pro-

Fig. 3 Displacement amplitude u3(a/4, b/2, t) of the shallow
cylindrical panel as a function of the excitation frequency, con-
sidering a load of magnitude ε f = 10 N. SN, Saddle–Node
bifurcations; NS, Neimark–Sacker bifurcation

cess, with 100 integration steps per excitation period.
The FRCs display two different families of periodic
orbits corresponding to two different parabolic NNMs
of the underlying conservative problem. Such a phe-
nomenon of internal resonance between the first two
modes was also observed in the analysis of an arch
MEMS resonator [31], resulting in a very similar forced
resonance curve. The FRCs of the shallow cylindri-
cal panel were also determined using the ROM via
parameterization of the invariant manifold. With the
inclusion of the first two modes in the master subspace
(E = E1 ⊕ E2), and adopting the normal form style of
parameterization, allows the ROM to accurately cap-
ture near resonances, achieving convergence up to fifth
orderO(p5, ε1). Given the very small magnitude of the
forcing, a linear approximation is sufficient to properly
describe the harmonic load.

Figure 4 compare the time responses at four points
(a-d) along the FRC, indicated by bullet points in Fig. 3
for both the full model (dashed lines) and the ROM
(solid lines). The close agreement between the results
also demonstrates the effectiveness of the ROM.
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Fig. 4 Time responses in modal coordinates for the periodic
orbits of points a-d on the FRCs of the shallow cylindrical panel.

Mode 1; Mode 2. The solid lines represent the responses
of the reduced model considering an SSM with E = E1 ⊕ E2
and O(p5, ε1). The dashed lines represent the response of the
full model with 147 dof

3.2 Doubly curved shells

Results of forced vibration analyses of three doubly
curved shells are presented in this section. The shells
are depicted in Fig. 5: (a) Shallow spherical panel,
(b) Non-shallow spherical panel, and (c) Hyperbolic
paraboloid. The shells have the following geometric
and physical properties: horizontal projection dimen-
sions a = b = 0.1 m, thickness h = 0.001 m, Young’s
modulus E = 206 GPa, Poisson’s ratio ν = 0.3,
density ρ = 7850 kg/m3, and damping coefficients
α = 2ζω1 with ζ = 0.004 and β = 0. These shells
were previously analyzed by Pinho et al. [15], who
determined the backbone curves of the shells in a non-
linear free vibration analysis. The nonlinear free vibra-
tion analysis helps determine which modes are essen-
tial to include in the master subspace. Again, all the
numerical results presented in this section have been
performed using the AHBM with a maximum number
of 20 harmonics.

In this section, all investigated geometries will be
subjected to a concentrated load applied symmetrically
at shell boundaries, i. e., all shells are subjected to a
vertical harmonic force F = ε f cos(ωt)e3, acting at its
center (ξ1F = a/2, ξ2F = b/2), where ε f represents the
maximum amplitude of the load, andω is the excitation

frequency. It is noteworthy that the presence of any ini-
tial geometric imperfection in shell’s geometry and/or
asymmetric applied load can break the symmetry of the
vibration, leading a modal coupling of the asymmetric
vibration modes. In this work, the numerical results do
not consider any kind of asymmetry. Also, it is impor-
tant to state that some of the investigated geometries
can display snap-through buckling, leading the struc-
tures to a new stable potential-well after inverting the
concavity. This work investigates only the resonance
curves in the potential-well around the initial configu-
ration.

3.2.1 Shallow spherical panel

This section focuses on the nonlinear vibration anal-
ysis of a simply supported with movable edges shal-
low spherical panel with radius R = 1 m, shown in
Fig. 5a. This shell was previously examined in the lit-
erature [56,57], the movable edges allow membrane
displacement in the direction orthogonal to the edge
while restricting membrane displacement tangential to
the edge and transverse displacement. The essential
geometric and natural boundary conditions on the four
edges are given as follows:

u2 = u3 = N1 = M1 = 0 at ξ1 = 0, a (21a)

u1 = u3 = N2 = M2 = 0 at ξ2 = 0, b (21b)

where Nα is the normal force and Mα is the bending
moment per unit of length in the direction of mα . The
shape functions φki j (ξ

1, ξ2), which satisfy the bound-
ary conditions (21), are given by Eqs. (D47) presented
in Appendix D.

The fundamental natural frequency of this shell is
ω1 = 952.2 × 2π rad/s. Previous studies considered
a harmonic load with a maximum magnitude of ε f =
31.2 N and analyzed the shell using Donnell’s theory
[57] with two different displacement field expansions
with 9 (m1 = n1 = m2 = n2 = 2 and m3 = n3 = 1)
and 22 dof (m1 = n1 = m2 = n2 = 3 and m3 =
n3 = 2). Here, two expansions with 22 dof (m1 =
n1 = m2 = n2 = 3 and m3 = n3 = 2) and 27 dof
(mk = nk = 3) were considered to investigate the
solution’s convergence.

Figure 6a–c depict the FRCs of the shallow spheri-
cal panel. The FRC for the 22 dof model aligns with the
FRC determined by Amabili [57], who employed the
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Fig. 5 Shell’s geometry: a shallow spherical panel; b non-shallow spherical panel and c hyperbolic paraboloid. Z(ξ1, ξ2) represents
the elevation of the mid-surface. The axes of the graphs are uniformly scaled and measured in meters

same expansion of the displacement field. Generally,
the FRC indicates a transition from softening to hard-
ening behavior for vibration amplitudes around 1.2h.
Figure 6b provides a zoomed-in view, highlighting the
emergence of a complex curve within the frequency
range 0.9 < ω/ω1 < 0.95. The complex shape of
the FRC is directly linked to the intricate internal reso-
nances that arise in this shell, as also verified in the free
vibration analysis [15] The solutionswith 22 and 27 dof
exhibit very similar results, with slight differences in
the curves observed for amplitudes greater than 1.4h,
as highlighted in Fig. 6c. Furthermore, the figure also
presents the backbone curve determined by Pinho et al.
[15], using the same displacement expansion with 22
dof, demonstrating that the FRC underlines the results
of the conservative problem.

Figure 6a–c also display the FRC for the shallow
spherical panel using ROM via parameterization of the
invariant manifold. The ROM was built using the mas-

ter subspace E = E1 ⊕ E2 ⊕ E3 ⊕ E4, with these
modes – depicted in Fig. 13 in Appendix E – iden-
tified as crucial for internal resonances in the analy-
sis of nonlinear free vibrations [15]. Given the non-
integer frequency ratios of these modes (ω2 = 2.7ω1,
ω3 = 2.7ω1, and ω4 = 4.7ω1), a graph style parame-
terizationwas adopted. Initially, an order ofO(p15, ε1)
was considered, involving only linear terms of the forc-
ing dummy variables in the expansion of the normal
coordinates. However, this approach did not fully cap-
ture the response, particularly struggled to accurately
represent the complex behavior within the frequency
range 0.9 < ω/ω1 < 0.95. Notably, the model fails
to determine displacement amplitudes larger than 1h,
demonstrating the inadequacy of the linear approxima-
tion of the dummy variables. However, when the non-
linear terms of the dummy variables are included in the
polynomials expansion, theROMwith orderO(p5, ε5)
precisely captured the entire FRC, emphasizing the
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Fig. 6 Results of the FRC for the shallow spherical panel
obtained using the full model with 22 and 27 dof and the results
obtained using the ROM. NS, Neimark–Sacker bifurcations; SN,
Saddle–Node bifurcations; PD period doubling bifurcations

importance of nonlinear forcing terms in the param-
eterization of the invariant manifold in this case. The
graph style of parameterization is effective in this case,
as there are no folding points presented in themanifold.

To determine whether the reduced model responses
closely match those of the full model, the time

Fig. 7 Time responses in modal coordinates for the periodic
orbits of points a–d on the FRC of the shallow spherical panel
for ε f = 31.2 N. mode 1; mode 2; mode 4. The
solid lines represent the responses of the reduced-order model
considering an SSMwith E = E1⊕E2⊕E3⊕E4 andO(p5, ε5).
The dashed lines represent the response of the full model with
22 dof

responses in modal coordinates for four points (a-d)
on the FRC of Fig. 6a–c are presented in Fig. 7. The
dashed lines represent the responses of the full model,
while the solid lines represent the responses of theROM
considering E = E1 ⊕ E2 ⊕ E3 ⊕ E4 and O(p5, ε5).
All points exhibit responses identical to those of the
full model. In summary, the reduced model accurately
identified the internal resonances. At point b, there is a
significant 1:3 internal resonance betweenmodes 1 and
2. The other points (a, c and d) also exhibit internal res-
onances, although less pronounced, with the displace-
ment predominantly characterized by the first mode.

3.2.2 Non-shallow spherical panel

In this section, an non-shallow spherical panel with a
radius of R = 0.1 m will be analyzed, subjected to
a concentrated harmonic load of maximum magnitude
ε f = 200 N, as shown in Fig. 5b. The fundamental
natural frequency is ω1 = 8, 271.6 × 2π rad/s. The
shell is simply supportedwith immovable edges, which
means the following boundary conditions apply:

u1 = u2 = u3 = M1 = 0 for ξ1 = 0, a (22a)
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Fig. 8 Maximum amplitude of the displacement field u3 at the
center of the non-shallow spherical panel as a function of exci-
tation frequency considering a load of ε f = 200 N. In a results
for models with 48, 75, and 108 dof. In b a comparison between

the results obtained using the full model with 108 dof and the
reduced-order models via parameterization method for invari-
ant manifolds. In c a zoom of the shaded area in figure (b). NS
Neimark–Sacker bifurcations; SN Saddle–Node bifurcations

u1 = u2 = u3 = M2 = 0 for ξ2 = 0, b (22b)

where the shape functions φki j (ξ
1, ξ2), satisfying the

boundary conditions (22), are defined by Eqs. (D48).
Similar to the previous example, these functions were
chosen to account for symmetric vibrations along the
ξ1 = a/2 and ξ2 = b/2 axes.

To ensure convergence, three expansions were ana-
lyzed with 48 (mk = nk = 4), 75 (mk = nk = 5),

and 108 dof (mk = nk = 6). Figure 8a illustrates
the maximum amplitude of the periodic orbit for the
displacement u3 at the center of the shell as a func-
tion of excitation frequency. In general, all models
exhibit an initial softening behavior, with vibrations
becoming unstable for amplitudes larger than 1h. Fig-
ure 8b presents the results of the FRCs calculated by
the reduced-order models. When only the first mode
is considered in the master subspace (E = E1), the
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Fig. 9 Time responses in modal coordinates for the periodic
orbits of points a–c on the resonance curve of the non-shallow
spherical panel. Mode 1; Mode 3; Mode 13. The

solid lines represent the responses of the reduced model consid-
ering an SSM with E = E1 ⊕ E3 ⊕ E13 and O(9). The dashed
lines represent the response of the full model with 108 dof

reduced-order model diverges from the full model for
vibration amplitudes greater than 0.8h, considering the
order O(p7, ε7).Adding the resonant modes increases
the accuracy of the reduced-order model. When con-
sidering the master subspace E = E1 ⊕ E3 ⊕ E13, the
model captures part of the unstable region. Moreover,
for the order O(p7, ε7), it more precisely captures the
position of the Neimark-Sacker bifurcation compared
to other models. However, the unstable part of the solu-
tion does not exhibit the complexities present in the full
model, specially in the region highlighted in Fig. 8c. It
is crucial to include nonlinear terms in the expansion of
the variables representing the loading. This necessity
becomes clear when comparing results obtained using
the same master subspace (E = E1 ⊕ E3 ⊕ E13) with
an expansion that considers only the linear terms of the
loading, specifically O(p7, ε1).

To characterize the internal resonances, the time
responses in modal coordinates for three points (a-c)
on the FRC of Fig. 8b are displayed in Fig. 9. The
solid lines represent the responses of the reduced-order
model considering E = E1⊕E3⊕E13 andO(p7, ε7),
while the dashed lines represent the responses of the full
model with 108 dof. The influence of modes 1 and 3
at these three points can be observed. It is noteworthy
that a model with only 3 degrees of freedom accurately
describes the internal resonances. Point b exhibitsmore
complex vibrations, with a coupling between modes 1,
3, and 13 in a 1:1:2 internal resonance scenario. This
modes are depicted in Fig. 14 in Appendix E.

3.2.3 Hyperbolic paraboloid

The third example features a hyperbolic paraboloid, as
illustrated in Fig. 5c. A concentrated harmonic load

with a maximum magnitude of ε f = 200 N is applied
at the center of the shell. The shell is simply supported
with immovable edges, as described in Eq. (22). The
shape functions are given by Eqs. (D48), the same as
in the previous example.

Once again, three expansions were used, with 48
(mk = nk = 4), 75 (mk = nk = 5), and 108 dof
(mk = nk = 6). The fundamental natural frequency of
the shell is ω1 = 6,421.1 × 2π rad/s. The FRCs for
these three expansions are shown in Fig. 10a, repre-
senting the maximum value of the displacement field
u3 at the center of the shell as a function of excitation
frequency. The maximum amplitude value decreases
as more degrees of freedom are added, maintaining a
hardening behavior. However, convergence of the solu-
tion is observed starting from 75 dof. The behavior of
the shell is similar to that of a simple Duffing oscillator.

Figure 10b displays the FRC results for a hyper-
bolic paraboloid using a reduced-order model. When
considering only the first mode as the master subspace
(E = E1), the reduced-order model accurately cap-
tures most of the response. Adding modes 4 and 10
brings the solution even closer to the full model, indi-
cating a complex internal resonance that changes the
curvature of the FRCnear the peak, given the difference
between the solutions with one NNM and three NNMs.
This case clearly illustrates the need to include nonlin-
ear terms in the expansion of the forcing. The solution
using the orderO(p9, ε1) is unable to capture the FRC
accurately. However, when consideringO(p9, ε5), the
solution closely aligns with that of the full model. It is
evident that the high-order forcing terms have signif-
icant effects on the reduced dynamics, given the sub-
stantial differences between the solutions considering
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Fig. 10 Maximum displacement of u3 at the center of the hyper-
bolic paraboloid for a load of ε f = 200 N. a Results for models
with 48, 75, and 108 dof.bComparison between the FRCs for the
hyperbolic paraboloid obtained by the full model with 108 dof
and by the reduced-order models via parameterization method
for invariant manifolds. SN, Saddle–Node bifurcations

only linear forcing terms and those including nonlinear
forcing terms.

Once again, some points (a-c) on the FRC inFig. 10b
were selected to evaluate the time responses in modal
coordinates, presented in Figs. 11. There is a signifi-
cant influence of mode 10 on the shell’s response as the
displacements increase, in a 1:2 internal resonance sce-
nario. The accuracy of the reduced-order model results
can also be observed in the time responses in modal
coordinates, where results with E = E1 ⊕ E4 ⊕ E10

andO(p9, ε5) are very close to those of the full model.

4 Conclusion

In this study, the nonlinear vibrations of doubly curved
shells were investigated. Koiter’s nonlinear shell the-
ory was employed to determine the forced resonance
curves of shells with four different geometries: shal-
low cylindrical panel, shallow spherical panel, non-
shallow spherical panel, and hyperbolic paraboloid.
The methodology applied in this study allows for the
analysis of non-shallow shells parameterized by non-
orthogonal curvilinear coordinates. The analysis of
forced vibrations of these structures described by non-
orthogonal curvilinear coordinates represents a novel
contribution to this research field. The Forced Reso-
nance Curves exhibit complex behavior even for mod-
erate displacements, on the same order of magnitude
as the shell thickness. The parameterizationmethod for
invariantmanifolds has proven effective in reducing the
system’s dimension, even for highly complex solutions.
While low-order approximations of non-autonomous
terms can lead to inaccurate results, the methodol-
ogy presented here is easily adaptable and capable of
considering high-order approximations of these non-
autonomous forcing terms. These shells exhibit inter-
nal resonances without the frequencies having integer
ratios. In this context, determining the backbone curves
was a good initial step for determining the master
modes and, consequently, the forced resonance curves.
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Fig. 11 Time responses in modal coordinates for the periodic
orbits of points a-c on the FRC of the hyperbolic paraboloid.

Mode 1; Mode 4; Mode 10. The solid lines rep-

resent the responses of the reduced-order model considering
E = E1 ⊕ E4 ⊕ E10 and O(p9, ε5). The dashed lines repre-
sent the response of the full model with 108 dof
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Appendix A Strain–displacement relations

This appendix presents two approximations of the
strain–displacement relations of the Koiter’s nonlinear
shell theory. In cases where the displacement of the
shell is of the order of magnitude of the shell thickness
or less, the nonlinear terms of the bending tensor can be
neglected. Furthermore, the membrane components of
the displacement are small compared to the transversal
components, and hence the nonlinear terms involving
uα can be removed [14,15]. Combining these simplifi-
cations, the components of the stretching and bending
tensors can be written as:

γαβ = 1

2

(
uα|β + uβ|α + GσλKασ Kβλu

2
3 + u3,αu3,β

)

(A1a)

ραβ = �
γ
αβu3|γ − u3|αβ (A1b)

Additionally, if the shell is geometrically shallow, then
the curvature is small and terms involving the compo-
nents Kαβ can also be neglected [14,15], resulting in:

γαβ = 1

2

(
uα|β + uβ|α + u3,αu3,β

)
(A2a)

ραβ = �
γ
αβu3,γ − u3,αβ (A2b)

where the values of uσ |α , u3|α , uσ |αβ and u3|αβ are
the covariant derivatives of the displacement vector u,
given by:

uσ |α = uσ,α − �τ
σαuτ + Kασu3

u3|α = u3,α − K τ
αuτ

uσ |αβ = (uσ |α),β − �τ
βσuτ |α + Kσβu3|α

u3|αβ = (u3|α),β − K τ
βuτ |α

(A3)

Kαβ and K α
β are, respectively, the covariant and mixed

components of the curvature tensor given by Eq. (A4a)
and Eq. (A4b).

Kαβ = Mα · ∂M3

∂ξβ
= −M3 · ∂Mα

∂ξβ
= −M3 · ∂Mβ

∂ξα

(A4a)

K α
β = Mα · ∂M3

∂ξβ
= −M3 · ∂Mα

∂ξβ
(A4b)

�α
βγ are the Christoffel symbols determined by:

�α
βγ = Mα · ∂Mβ

∂ξγ
(A5)
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The triad of vectors Mi (i = 1, 2, 3) compose the nat-
ural basis of the mid-surface in the reference configu-
ration and are described in Eqs. (A6) as a function of
vector R and the curvilinear coordinates ξ1 and ξ2

M1 = ∂R
∂ξ1

(A6a)

M2 = ∂R
∂ξ2

(A6b)

M3 = M1 × M2√
G

(A6c)

where vectors M1 and M2, defined in Eq. (A6a) and
Eq. (A6b), are tangent to the coordinate lines ξα

(α = 1, 2); M3, defined in Eq. (A6c), is a unit vec-
tor perpendicular to the mid-surface of the shell; and√
G = |M1 × M2|.
The reciprocal basis is composed by vectorsMi (i =

1, 2, 3) and can be determined by

Mi · M j = δ
j
i (A7)

where δ
j
i is the Kronecker’s delta. It can be demon-

strated by Eqs. (A6) and (A7) that M3 = M3.

Appendix B Linear spectral analysis

Consider the autonomous case of Eq. (16) and its sub-
sequent linearization at z = 0:

Bż = Az (B8)

The linear system’s motion can be obtained by the
superposition of the Linear Normal Modes (LNM),
given by the left and right eigenvectors ui and vi , deter-
mined by the following eigenproblem:

Av j = λ jBv j

u∗
jA = λ ju∗

jB
(B9)

where [ ]∗ denotes the conjugate transpose. The eigen-
values λ j and eigenvectors u j and v j can be written in
terms of the natural frequenciesωi and vibrationmodes
yi as

λ2i−1,2i = −α + βω2
i

2

± iωi

√

1 −
(

α

2ωi
+ βωi

2

)2

, i = 1 . . . n

v2i−1 =
[

yi

λ2i−1yi

]
, v2i =

[
yi

λ2iyi

]
, i = 1 . . . n

u2i−1 =
[

yi

λ̄2i−1yi

]
, u2i =

[
yi

λ̄2iyi

]
, i = 1 . . . n

(B10)

where 0 < α � ωi and 0 < β � 1 (lightly damped
assumption); λ2i−1 = λ̄2i and vi = ūi (the bar denotes
the complex conjugate operation). Furthermore, the
eigenvectors are normalized so u∗

i Bv j = δi j .
The LNM are invariant, which means that once a

trajectory initiateswithin the vector space defined by an
LNM, it will perpetually stay within this space. These
trajectories are contained within the eigenspace Ei that
can be expressed as:

Ei = span{v2i−1, v2i } (B11)

Since the eigenspaces are generated by the LNM, they
are also invariant for the linear system (B8), and any
subspace generated by the linear combination of the
eigenspaces is also invariant. The LNM are commonly
used to reduce the dimension of linear systems when
the focus of the analysis is limited to specific frequency
ranges. In these cases, modes whose frequencies are
far from the frequency range of interest contribute very
little to the system response and can be removed from
the analysis. The LNM used in the analysis constitute
the master spectral subspace E ⊂ C

N which contains
all the approximate trajectories of the reduced system,
such that:

E = E j1 ⊕ · · · ⊕ E jm (B12)

wherem � n, dim(E) = d � N and d = 2m, such as
the frequencies ω j1 . . . ω jm are in the range of interest;
⊕ represents the sum of the vector spaces.

The matrices VE , UE and �E respectively contain
the right eigenvectors, the left eigenvectors, and the
eigenvalues of the master spectral subspace E , such
that:

VE = [vE
1 , . . . , vE

d ] = [v2 j1−1, v2 j1 , . . . , v2 jm−1, v2 jm ]
UE = [uE

1 , . . . , uE
d ] = [u2 j1−1, u2 j1 , . . . , u2 jm−1, u2 jm ]

�E = diag
(
λE
1 , . . . , λE

d

)

= diag
(
λ2 j1−1, λ2 j1 , . . . , λ2 jm−1, λ2 jm

)
(B13)

which are also solution to the following eigenproblem:

AVE = BVE�E (B14a)

U∗
EA = �EU∗

EB (B14b)
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Appendix C Solution of invariance equation

This appendix presents a succinct overview of the
methodology behind determining the invariant man-
ifold and their ensuing reduced-order model. For an
in-depth insight, the reader is directed to the detailed
works in the literature [43,44,48,49]. The described
methodology was implemented in the
invariant_manifold_and_rom_forced func-
tion in Matlab, available from the repository [55].

Expanding the Eq. (19), we obtain the following
form in indexed notation:
N∑

j=1

Bi j ż j =
N∑

j=1

Ai j z j +
N∑

j=1

N∑

k=1

F2
i jk z j zk

+
N∑

j=1

N∑

k=1

N∑

l=1

F3
i jkl z j zk zl

+E+
i p̃+ + E−

i p̃− (C15)

In practice, the summations present in the equation are
not computed explicitly. Instead, we use the Tensor
Toolbox for Matlab library [58], which stores matri-
ces and tensors in sparse structures, optimizing com-
putational performance. The parameterization method
proposed by Cabré et al. [27] assumes that the func-
tions W(p) and R(p) are polynomial expansions of the
normal coordinates. Using multi-index notation, these
functions are written as:

z j =
o∑

r=1

Nr∑

i=1

Wr
jm pαr

m ṗa =
o∑

s=1

Ns∑

k=1

Rs
ak p

αs
k(C16)

where Wr ∈ C
N×Nr and Rr ∈ C

M×Nr are matrices
whose elements Wr

jm and Rr
ak contain the coefficients

of the polynomial expansion. The symbol pαs
k is used

to represent the monomials of the expansion in multi-
index notation:

pαr
j =

M∏

a=1

p
αr
ja

a (C17)

Here,αr is amatrixwith elements that are non-negative
integers, given by αr

ja , for a = 1, . . . , M and j =
1, . . . , Nr . The sum of the elements of any row αr

j is
always equal to the degree of the monomial:
M∑

a=1

αr
ja = r (C18)

For each degree r , there are Nr = (r+M−1)!
r !(M−1)! distinct

monomials, which must be stored in a consistent order

indexed by j . The indexing starts with the monomials
where the first variable has the highest exponent and
proceeds methodically, decreasing the exponent of the
first variable while increasing the exponents of sub-
sequent variables. This process continues until the last
monomial, where the last variable has the highest expo-
nent. Equation (C19) can be written in matrix form as

z =
o∑

r=1

Wrpαr

p =
o∑

r=1

Rrpαr

(C19)

where pαr = [pαr
1 , . . . , pαr

Nr ]T is a vector containing
all Nr monomials of order r .

The multiplication of two polynomial expansions
results in a new polynomial expansion that can also be
written in multi-index notation. This process is illus-
trated in the following example:
Nt∑

q=1

Ct
iaq p

αt
q =

∑

j

Nr∑

k=1

Ns∑

l=1

Ar
i jk p

αr
k Bs

jal p
αs
l (C20)

In this example, the coefficients of the polynomials are
stored in tensors Ar and Bs , whose tensor contraction
results in the tensor Ct . The resulting monomials, rep-
resented by pαt

q , have the order t = r + s. The indices
k and l are combined to form the new index q, such that
αr
k +αs

l = αt
q . This approach allows for efficient com-

putation and manipulation of polynomial expansions
in high-dimensional spaces, leveraging the power of
sparse matrix and tensor representations.

Additionally, the derivative of the monomial pαr
j

with respect to the normal coordinate pa can also be
written in multi-index notation, where the resulting
monomial is of order r − 1. The coefficients result-
ing from the derivative can be rearranged in the tensor
Dr−1 ∈ Z

Nr×M×Nr−1 , as shown in the following equa-
tion:

∂pαr
j

∂pa
= αr

ja

M∏

k=1

p
αr
jk−δka

k =
Nr−1∑

l=1

Dr−1
jal pαr−1

l (C21)

The tensorDr−1 can be used as an operator to determine
the components of the gradient dW/dp:

∂z j
∂pa

=
o∑

r=1

Nr∑

m=1

Nr−1∑

l=1

Wr
jmD

r−1
mal p

αr−1
l (C22)

The Matlab class MultiIndexFixedOrder was
developed for the manipulation and algebra of polyno-

123



Nonlinear forced vibration analysis of doubly curved shells

mial expansions using multi-index notation. This class
is also available from the repository [55].

The goal of the parameterization method is to find
the values W p

ji and Rp
ji , starting with the first order

and incrementally determining the values for higher
orders. The solution to the invariance equation is found
by writing it at each order, giving rise to the homolog-
ical equation of order p that can be derived from Eq.
(19) as:
[

B
dW
dp

R(p)

]

p
= [

AW(p) + F(W(p))

+E+ p̃+ + E− p̃−
]
p (C23)

where the operator [ ]p is used to return only themono-
mials of degree p from the invariance equation.

C.1 Order-1 Solution

At first-order order, Eq. (C23) can be simplified to:

BW1R1p = AW1p + E+ p̃+E− p̃− (C24)

Vizzaccaro et al. [49] proposed the following solution
for Eq. (C24):

R1 =
⎡

⎣
�E r+ r−
0 +iω 0
0 0 −iω

⎤

⎦ , W1 = [
VE w+ w−]

(C25)

where the vectors r+, r−, w+, and w− are determined
by solving the following linear system:
⎡

⎣
r iωB − A BvE

Rr 0
[uE

Rr ]∗B 0 0
0 0 I

⎤

⎦

⎡

⎣
wr

rrRr

rr��Rr

⎤

⎦ =
⎡

⎣
Er

0
0

⎤

⎦ (C26)

Here, r can take the values + or − and��Rr denotes the
indices that are not part ofRr . In the normal form style
of parameterization, Rr represents the indices of the
eigenvectors of themaster subspace E that are resonant
with the excitation frequency ω, defined as:

Rr = {i ∈ {1, . . . , d} : λE
i ≈ rω} (C27)

In the graph style of parameterization, the indices Rr

are given by:

Rr = {1, . . . , d} (C28)

C.2 Order-p solution

This section addresses the calculation of terms of order
p > 1, which aremore complex due to the involvement

of nonlinear internal forces. The elements of ż can be
expressed as follows:

ż j = ∂z j
∂pa

ṗa (C29)

By substituting Eqs. (C19) and (C22) into Eq. (C29),
the following expression is obtained:

ż j =
o∑

r=1

Nr∑

i=1

M∑

a=1

Nr−1∑

l=1

o∑

s=1

Ns∑

k=1

Wr
ji D

r−1
ial pαr−1

l Rs
ak p

αs
k

(C30)

Considering only the terms of order p, the result for ż j
can be divided into three parts:
[
ż j

]
p = [

ż j
]1
p + [

ż j
]2
p + [

ż j
]3
p (C31)

The first part,
[
ż j

]1
p, retains only the terms with r = p

and s = 1 in the summations of Eq. (C30), resulting
in:

[
ż j

]1
p =

Np∑

i=1

Np∑

q=1

W p
jiG

p
iq p

α
p
q (C32)

where the matrix Gp is introduced to simplify the
expression and can be determined as:

Np∑

q=1

Gp
iq p

α
p
q =

M∑

a=1

Np−1∑

l=1

N1∑

k=1

Dp−1
ial R1

ak pα
p−1
l pα1

k(C33)

The term
[
ż j

]2
p considers only the terms with r = 1

and s = p in the summations of Eq. (C30), resulting
in:

[
ż j

]2
p =

M∑

a=1

Np∑

k=1

W 1
ja R

p
ak p

α(p,k) (C34)

The remaining terms of order-p in the summation of
Eq. (C30) are given by:

[
ż j

]3
p =

p−1∑

r=2

M∑

a=1

Nr∑

i=1

Nr−1∑

l=1

Np+1−r∑

k=1

Wr
ji D

r−1
ial R p+1−r

ak pαr−1
l pα

p+1−r
k

=
p−1∑

r=2

Np∑

q=1

Hrp
jq p

α
p
q

(C35)

where the components of H are determined as:

Np∑

q=1

Hrp
jq p

α
p
q =

M∑

a=1

Nr∑

i=1

Nr−1∑

l=1

Np+1−r∑

k=1

Wr
ji D

r−1
ial R p+1−r

ak pαr−1
l pα

p+1−r
k

(C36)
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Finally, the nonlinear terms should be formulated in
terms of normal coordinates. By substitutingEq. (C19),
the nonlinear terms in Eq. (C15) are given by:

F2
i jk z j zk = F2

i jk

o∑

r=1

Nr∑

n=1

Wr
jn p

αr
n

o∑

s=1

Ns∑

m=1

Ws
km pαs

m

F3
i jkl z j zk zl = F3

i jkl

o∑

r=1

Nr∑

n=1

Wr
jn p

αr
n

o∑

s=1

Ns∑

m=1

Ws
km pαs

m

o∑

t=1

Nt∑

p=1

Wt
lp p

αt
p

(C37)

Multiplying tensors F2 and F3 by Wr , and contracting
the dummy indices in Eqs. (C37), results in the tensor
F̄. Furthermore, through the combination ofmonomials
from polynomial expansions, the nonlinear terms can
be simplified as follows:

N∑

j=1

N∑

k=1

F2
i jk z j zk =

2o∑

u=1

F̄ (2,u)
iq pαu

q

N∑

j=1

N∑

k=1

N∑

l=1

F3
i jkl z j zk zl =

3o∑

v=1

F̄ (3,v)
iq pαv

q

(C38)

Finally, by substituting (C32), (C34), (C35), and (C38)
into Eq. (C23) and collecting only the monomials of
order p, we obtain:

N∑

j=1

Np∑

q=1

⎡

⎣
Np∑

n=1

Bi jW
p
jnG

p
nq − Ai jW

p
jq

⎤

⎦ pα
p
q

=
N∑

j=1

Np∑

q=1

[
M∑

a=1

−Bi jW
1
ja R

p
aq + C p

iq

]

pα
p
q

(C39)

where the matrix Cp, whose components are given by
C p
iq , represents the components of the Eq. (C39) that

are independent of Wp and Rp:

C p
iq p

α(p,q)

=
Np∑

q=1

⎡

⎣F̄(2,p)
iq + F̄(3,p)

iq −
N∑

j=1

p−1∑

r=2

Bi j H
rp
jq

⎤

⎦ pα(p,q)

(C40)

For a given order p, the matrix Cp can be computed
based only on the results of the previous orders.

FromEq. (C39), the followinghomological equation
in matrix notation is derived:

BWpGp − AWp + BW1Rp = Cp (C41)

Given that the matrix R1 is upper triangular, Gp also
results in an upper triangular matrix. Consequently, the
system (C41) can be solved iteratively for each index
j :

(BGp
j j − A)Wp

· j + BW1Rp
· j = Cp

· j −
j−1∑

k=1

Gp
kjBWp

·k

(C42)

whereWp
· j denotes the j-th columnofWp . To calculate

Wp
· j , one must first determine Wp

·k for all k < j .
Following the solution proposed by Vizzaccaro et

al. [49], the values of Wp
· j and Rp

· j can be computed
iteratively by solving the following linear system:
⎡

⎣
BGp

j j − A BvE
R 0

[uE
R]∗B 0 0
0 0 I

⎤

⎦

⎡

⎢
⎣

Wp
· j

Rp
R, j

Rp

�R, j

⎤

⎥
⎦

=
⎡

⎢
⎣

Cp
· j − ∑ j−1

k=1 G
p
kjBWp

·k
0
0

⎤

⎥
⎦ (C43)

In the normal form style of parameterization,R rep-
resents the indices of the master modes of the subspace
E that are internally resonant:

R = {k ∈ {1, . . . , d} : λE
k ≈ Gp

j j } (C44)

In the graph style of parameterization, the indices R
are given by:

R = {1, . . . , d} (C45)

Appendix D Trigonometric expansions of the
displacement field

This appendix presents the displacement field expan-
sions used in the analysis of the shells studied in this
paper.

Shallow cylindrical panel:

φ1i j = sin

(
iπξ1

a

){
1 + (−1) j

2
sin

(
jπξ2

2b

)

+1 + (−1) j+1

2
cos

(
( j − 1)πξ2

2b

)}

φ2i j = sin

(
iπξ1

a

){
1 + (−1) j

2
sin

(
jπξ2

2b

)

+1 + (−1) j+1

2
cos

(
( j − 1)πξ2

2b

)}
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φ3i j = sin

(
iπξ1

a

) {
1 + (−1) j

2
sin

(
jπξ2

2b

)

+1 + (−1) j+1

2
cos

(
( j − 1)πξ2

2b

)}
(D46)

Shallow spherical panel:

φ1i j =
{
1 + (−1)i

2
sin

(
iπξ1

a

)

+1 + (−1)i+1

2
cos

(
iπξ1

a

)}
sin

(
(2 j − 1)πξ2

b

)

φ2i j = sin

(
(2i − 1)πξ1

a

){
1 + (−1) j

2
sin

(
jπξ2

b

)

+1 + (−1) j+1

2
cos

(
jπξ2

b

)}

φ3i j = sin

(
(2i − 1)πξ1

a

)
sin

(
(2 j − 1)πξ2

b

)

(D47)

Non-shallow spherical panel and hyperbolic paraboloid:

φ1i j = sin

(
(2i)πξ1

a

)
sin

(
(2 j − 1)πξ2

b

)

φ2i j = sin

(
(2i − 1)πξ1

a

)
sin

(
(2 j)πξ2

b

)

φ3i j = sin

(
(2i − 1)πξ1

a

)
sin

(
(2 j − 1)πξ2

b

)

(D48)

Appendix E Vibration modes

This section presents the vibration modes included in
the master subspaces of the ROMs.

Fig. 12 Vibration modes of the shallow cylindrical panel. The functionψk
i represents the i th component of the shape function for mode

k
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Fig. 13 Vibration modes of
the shallow spherical panel.
The function ψk

i represents
the i th component of the
shape function for mode k
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Fig. 14 Vibration modes of the non-shallow spherical panel. The function ψk
i represents the i th component of the shape function for

mode k
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Fig. 15 Vibration modes of the hyperbolic paraboloid. The function ψk
i represents the i th component of the shape function for mode k
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