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Abstract The present paper describes the motion of
an infinitesimal body in the framework of restricted
four-body problem, incorporating perturbations from
photo-gravitational, variable mass, and Stokes drag
effects. Dynamic equations governing a fourth body
with changing mass are obtained using Jeans’ law and
Meshcherskii space-time transformations. The loca-
tions of the Lagrangian points and their evolution under
variations of the aforementioned perturbations have
been numerically studied, revealing the sensitivity of
the locations and quantities of Lagrangian points to
these varying parameters. Furthermore, the stability of
Lagrangian points in the linear sense has been investi-
gated, and it has been found that all Lagrangian points
considered in this study are unstable. The zero-velocity
curves have also been studied as a function of the Jaco-
bian integral constant. As this constant decreases, the
Hill region becomes larger. The Lindstedt–Poincaré
method is applied to calculate the perturbation solu-
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tions near non-collinear Lagrangian points, yielding
second- and third-order periodic solutions. A numeri-
cal work is conducted to track the evolution of periodic
solutions near non-collinear Lagrangian points with
variable mass parameter γ . It demonstrates that a sub-
stantial increase in γ results in a larger area surround-
ing the periodic solutions of the triangular Lagrangian
points, exhibiting a visually regular elliptical shape.
Conversely, a decrease in γ leads to a reduction in the
region of periodic solutions, accompanied by notable
alterations in shape, particularly concerning third-order
periodic solutions.

Keywords R4BP · Lagrangian point · Periodic
solution · Stokes drag · Photo-gravitational

1 Introduction

The three-body problem is a complex dynamic prob-
lem, which refers to the motion of three particles inter-
acting in a particle system first proposed by the French
astronomer Laplace in the 18th century when study-
ing the planetary motion in the solar system. Later,
French mathematician Poincaré conducted extensive
research on this issue. Due to the inability to obtain
analytical solutions for the general three-body prob-
lems, a new branch of the R3BP (abbreviated form of
restricted three-body problem) is obtained by simplify-
ing the problem. The R4BP refers to the motion of an
infinitesimalmass under the gravitational force of three
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large celestial bodies, often called the primaries, and the
tiny body does not affect the primaries’ motion. Fur-
thermore, if the mass of an infinitesimal body changes
over time, the problem becomes a variable-mass R4BP.

The study of Lagrangian points is of great signifi-
cance in the study and application of celestial mechan-
ics, including in variable-mass R4BP. The Lagrangian
point refers to the points in a celestial system where an
object can remain stationary relative to the system ref-
erence frame. Italian mathematician Joseph Lagrange
first studied it, which has great significance and appli-
cations. For example, in a three-body system such as the
Sun, Earth, and Moon, five Lagrangian points can be
used to place space stations, artificial satellites, astro-
nomical telescopes, and so on [1,2], which are very
useful for aerospace dynamics and deep space explo-
ration. In recent years, scientists have conducted many
studies on Lagrangian points and made many of the
latest advances [3].

The numerical methods are used to study how the
oblate primary and prolate primary parameters affect
Lagrangian points’ positions and linear stability [4,5].
The Lagrangian point dynamics of the R3BP with
equallymassed prolate radiating bodies were studied in
[6]. The linear stability and positions of the co-planar
Lagrangian points were determined using numerical
methods. The results showed that these two parame-
ters have a great influence on the system’s Lagrangian
point dynamics. In [7], the authors mainly studied
the linear stability of Lagrangian points in the gener-
alized photo-gravitational Chermnykh-like issue with
the power-law. The positions and velocity sensitivi-
ties under the effect of radiation and oblate primaries
in the R3BP are also studied in [8]. Recently in [9],
the authors considered the elliptical R3BP under radi-
ation pressure and the primaries oblateness perturba-
tion, obtained the location of non-collinear Lagrangian
points and approximate analytical solutions nearby, and
applied them to real astronomical systems. It was found
that the stability and locations of the Lagrangian points
will be significantly affected by changes in disturbance
parameters. While within the framework of quantized
Hill’s three-body problem, the stability of equilibrium
points and their in-plane and out-of-plane motion was
also studied [10].

In the framework of R4BP, the position and exis-
tence of the Lagrangian points are studied under the
effect of non-spherical shapes of the primaries in
[11,12]. The stability of these points is also investi-

gated with photo-gravitational and Stokes drag pertur-
bations, where three primary bodies have radiation, and
the Stokes force is a dissipative force in [13]. Many
studies have addressed on this problem under the effect
of various perturbations. For example, but not limited
to, the existence and position of Lagrangian points in
variable mass, as well as the zero-velocity curve, were
studied in [14], where the position lines of the three pri-
mary bodies form an equilateral triangle and the second
and third bodies have the same mass. It was found that
there are eight Lagrangian points, and the parameter of
variable mass affects the position of the points. While
considerable studies are preformed in [15,16] under the
effect of photo-gravitational and Stokes forces to anal-
ysis these effects on the positions change of Lagrangian
points and the variation of the zero-velocity curves.

The periodic solution of R3BP provides a theoreti-
cally rich and complex system, and the studyof periodic
solutions can be useful for planning space missions.
Some artificial satellites and space probes are placed
on Lagrangian points or other stable periodic solutions
better to observe targets such as the Sun and Earth or to
provide a more stable environment for scientific exper-
iments. These points and related periodic solutions are
evaluated as the optimal positions to transfer the space-
craft to the nominal periodic solution or related sta-
ble manifold. In this context, the heteroclinic connec-
tions between quasi-periodic solutions are calculated
[17]. Also outstanding study are carried out to anal-
ysis the positions of collinear Lagrangian points and
their periodic solutions under the effect of triaxial rigid
bodyparameters in theR3BP, and numerical simulation
results were provided [18]. But the periodic solutions
in the framework of quantized R3BPs are investigated
[19]. The LP and differential corrector methods are
used to find a family of halo solutions at artificial Sun–
Earth L2 points [20]. Furthermore, periodic solutions
and bifurcation analysis of R3BPs under triaxial and
radial perturbations are calculated in [21]. Also, the LP
method is used to calculate the approximate analytical
periodic solutions of R3BP under oblateness, radiation
pressure, and variable mass perturbations [22].

The analysis of periodic solutions is not exclusive
to R3BP but also a great appearance in four-body
problem. In [23], the authors used numerical meth-
ods to study the existence of periodic solutions for
R4BPs with equilateral triangle configurations. While
in [24], the authors used the Fourier series method
to determine the periodic solutions around collinear
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Lagrangian points in the spatial collinear R4BP with
non-spherical primaries. Recently in [25], the authors
studied perturbed two-body solutions andR3BPs orbits
and proved that if the perturbation force is conserved
or the corresponding motion has its extended Jaco-
bian integral, the first and second types of orbits in the
rotating Kepler problem will always exist. In [26], the
authors studied the perturbed relative motion, obtained
the interior loops of the periodic solutions using the
numerical method, and analyzed its stability. In addi-
tion, the Poincaré surface of sections is used to study the
stability of periodic solutions under the parameters of
the eccentricity of the primaries’ trajectory, solar radi-
ation pressure, and the Jacobian constant perturbations
[27]. Some interesting research that enriches readers’
knowledge of space dynamics and celestial mechanics
are addressed in [28–38].

When studying Lagrangian points in R4BPs, exist-
ing literature has predominantly focused on individual
perturbation factors such as photo-gravitational effects,
variable mass, and Stokes drag, with limited atten-
tion given to their combined influence. While schol-
ars have extensively examined periodic solutions in
proximity to collinear Lagrange points, there remains a
notable gap in the exploration of periodic solutions near
non-collinear Lagrangian points. In light of this, our
study aims to analyze Lagrangian points and periodic
solutions near non-collinear points, considering the
combined perturbations of photo-gravitational forces,
variable mass effects, and Stokes drag. We anticipate
that this study will contribute helpful insights to this
domain.

In this paper, Sect. 1 is introduction. Section2
presents the motion equations of the variable-mass
R4BP under photo-gravitational and Stokes force per-
turbations. Section3 calculates the Lagrangian points
and their evolution under the variation of variable
mass, photogravitational, and Stokes force parameters.
Section4 is about the linear stability of Lagrangian
points. Section5 is the zero-velocity curve, and the
Sect. 6 calculates periodic solutions near non-collinear
Lagrangian points. The last Sect. 7 is the conclusion.

2 Equations of motion

Wewill now explore themotion of variablemasswithin
the framework of a R4BP in a Lagrangian configura-
tion. Here, the three primaries involved are radiating

and located at the vertices of an equilateral triangle.
Let mi (i = 1, 2, 3) represent the masses of the three
primaries, assuming that m1 ≥ m2 = m3, and they
are moving along circular orbits around their common
center of masses. We denote the mass of a fourth body
by m, which is negligible compared to the primaries’
masses. In this context, the fourth body ismoving under
the gravitational attraction forces of the three primaries
without affecting their motion.

Furthermore, we have chosen the combined mass
of the primaries and the distance between them as our
units for mass and length and the time unit is selected
to set the gravitational constant to unity. Assuming
m2/(m1 + m2 + m3) = m3/(m1 + m2 + m3) = μ,
m1 + m2 + m3 = 1, then m1 = 1 − 2μ. In syn-
odic coordinates, we impose that also the coordinates
of the infinitesimal body (fourth body) are represented
by (X,Y ), while those of the primaries, denoted as
(Xi ,Yi ), where

(X1,Y1) = (
√
3μ, 0),

(X2,Y2) =
(

−
√
3

2
(1 − 2μ),−1

2

)
,

(X3,Y3) =
(

−
√
3

2
(1 − 2μ),

1

2

)
.

(1)

Thus, the equations of motion of the infinitesimal
mass m under the effects of photo-gravitational and
Stokes drag in a rotating coordinate can be described
in the dimensionless variables as [13,16]

Ẍ − 2Ẏ + ṁ

m
(Ẋ − Y ) = WX + SX ,

Ÿ + 2Ẋ + ṁ

m
(Ẏ + X) = WY + SY ,

(2)

where the function W is defined by

W (X,Y ) = 1

2
(X2 + Y 2) + (1 − 2μ)q1

d1

+μq2
d2

+ μq3
d3

, (3)

here qi ∈ (0, 1] (i = 1, 2, 3) being constant implies the
neglect of fluctuations in radiation beams, the shadow
effect of primaries, and the assumption of purely radial
radiation. The radiation pressure, denoted as Fpi , acting
on a primary can be expressed in terms of the gravita-
tional attraction force, Fgi , as Fpi = Fgi (1−qi ). Here,
Fpi represents the radiation pressure due to the primary,
and Fgi signifies the gravitational force acting on the
primary. The parameter qi = 1 − pi = 1 − Fpi /Fgi ,
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a constant specific to the given primary, serves as a
reduction factor determined by the primary’s radius a,
density δ, and radiation-pressure efficiency factor x in
the cgs system, where qi = 1−5.6×10−3x/(aδ) (See
[39] and the references therein for more details).

By using Eq. (1), the separation distances among
the infinitesimal mass and primaries d1, d2, and d3 are
defined by

d21 =
(
X − √

3μ
)2 + Y 2,

d22 =
[
X +

√
3

2
(1 − 2μ)

]2

+
(
Y + 1

2

)2

,

d23 =
[
X +

√
3

2
(1 − 2μ)

]2

+
(
Y − 1

2

)2

.

(4)

The perturbed acceleration components of the Stokes
drag force in the X and Y directions are given by Mur-
ray [40]

SX = −k
(
Ẋ − Y + σHY

)
= −k

(
Ẋ − Y − 3σY

2d7/2

)
,

SY = −k
(
X + Ẏ − σHX

)
= −k

(
Ẏ + X + 3σ X

2d7/2

)
,

(5)

where H and d are two functions in variables X and Y
and are defined by

H(X,Y ) =
(
X2 + Y 2

)−3/4
,

d(X,Y ) =
√
X2 + Y 2,

(6)

k is the dissipative constant with rang values Beaugé
(1993) (0 < k < 1) [41], σ is the ratio of the gas and
Kepler velocities Murray [40].

The Jeans’ law and Meshcherskii space-time trans-
formations preserve the dimension of space and time.
Now, we impose that the mass of the infinitesimal body
varies with time t according to Jean’s law: dm/dt =
−αmn , whereα is constant and the value n ∈ [0.4, 4.4]
(for the star of the main sequence). For a rocket, n = 1,
and the mass of the rocket varies exponentially as
m = m0e−α t , m0 is the initial mass. The classic law
mainly taken from James Jeans’ monumental work
[42]. Despite its empirical basis, a meticulous exam-
ination of the monograph reveals a minimal deviation
between theoretical calculations and observed data.
This precision underscores its status as a classic law

that continues to be widely utilized. In recent years,
researchers have utilized nonparametric statistical test-
ing methods, rather than empirical approaches, to ana-
lyze and interpret natural satellite data, resulting in the
derivation of alternative variable mass laws with high
credibility. For further details, please refer to [43–47].

Now, the Meshcherskii space-time transformations
are used to simplify the equations: u = Xγ q , v =
Yγ q , dτ = γ k̄dt , di = γ −q Ri , i = 1, 2, 3, where γ

represents the ratio of the primary’s mass at time t to
its initial mass [48].

Let n = 1, k̄ = 0, q = 1/2 in keeping with the work
by Singh and Ishwar [49], the velocity and acceleration
components can be written as

γ 1/2 Ẋ = u′ + 1

2
α u,

γ 1/2Ẏ = v′ + 1

2
α v,

γ 1/2 Ẍ = u′′ + αu′ + 1

4
α2 u,

γ 1/2Ÿ = v′′ + αv′ + 1

4
α2 v,

(7)

where the dot (.) and prime (′) represent the derivative
with respect to t and τ , respectively, after utilizing Eqs.
(2–7), then equations of motion can be rewritten in the
following form

ü − 2v̇ = �u + Su,

v̈ + 2u̇ = �v + Sv,
(8)

where

�(u, v) = 1

2

(
1 + α2

4

) (
u2 + v2

)

+ γ 3/2
[
(1 − 2μ)q1

R1
+ μq2

R2
+ μq3

R3

]
,

(9)

Su = −k

[
u̇ + αu

2
− v

(
1 + 3σγ 7/4

2R7/2
0

)]
,

Sv = −k

[
v̇ + αv

2
+ u

(
1 + 3σγ 7/4

2R7/2
0

)]
,

(10)
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and

R0 =
√
u2 + v2,

R2
1 =

(
u − √

3μ
√

γ
)2 + v2,

R2
2 =

[
u +

√
3

2
(1 − 2μ)

√
γ

]2

+
(

v +
√

γ

2

)2

,

R2
3 =

[
u +

√
3

2
(1 − 2μ)

√
γ

]2

+
(

v −
√

γ

2

)2

.

(11)

System (8) represents a generalized dynamical sys-
tem for themotion of variablemass in the framework of
R4BP under the perturbation effects of Stokes drag and
photo-gravitational forces. Its mass variation is also a
source for motion’s perturbation. This system reduced
to many sub-models or special cases as follows:

• When q1 = q2 = q3 = 1, the equations are conve-
nient with the obtained system in [16].

• When k = 0, the equations are convenient with the
obtained system in [15].

• When α = 0, γ = 1, the equations are convenient
with the obtained system in [13].

• When k = 0, q1 = q2 = q3 = 1, the equations are
convenient with the obtained system in [14].

By multiplying the first and second equations of (8)
by 2u̇ and 2v̇, respectively, and adding them together,
after integration, we obtain a quasi-integral for motion
which is similar to Jacobian integral.

u̇2 + v̇2 = 2(S + �) − C − 2
∫ t

0

∂

∂t
(S + �)dt, (12)

where C denotes the Jacobian integral constant when
the last term in Eq. (12) is either equals zero or can be
calculated.

3 Lagrangian points

Investigating the Lagrangian points and their stability
is very meaningful because many qualitative analyses
of dynamic systems are carried around them, including
the computation of periodic solutions in their vicin-
ity. A Lagrangian point refers to a location where both
velocity and acceleration are zero, i.e. ẋ = ẏ = ẍ = ÿ.
Lagrangian points lie on the u-axis are called the
collinear Lagrangian points, otherwise called the non-
collinear ones. In this section, we will investigate the
Lagrangian points of the infinitesimal mass body with

photo-gravitational, Stokes drag, and variable mass
perturbations

Substituting Eqs. (9–11) into righthand sides of Eq.
(8), we get

�u + Su = Tu1 + Tu2 + Tu3 + Tu4 + Tu5,

�v + Sv = Tv1 + Tv2 + Tv3 + Tv4 + Tv5,
(13)

where

Tu1 =
(

α2

4
+ 1

)
u,

Tu2 = γ 3/2q1(2μ − 1)
(
u − √

3 γμ
)

[(
u − √

3 γμ
)2 + v2

]3/2 ,

Tu3 =
γ 3/2q2 μ

[√
3 γ

2
(2μ − 1) − u

]
[(√

3 γ

2
(1 − 2μ) + u

)2

+
(

v +
√

γ

2

)2
]3/2 ,

Tu4 =
γ 3/2q3 μ

[√
3 γ

2
(2μ − 1) − u

]
[(√

3 γ

2
(1 − 2μ) + u

)2

+
(

v −
√

γ

2

)2
]3/2 ,

Tu5 = k

[
α u

2
− v

(
1 + 3γ 7/4σ

2
(
u2 + v2

)7/4
)]

,

(14)

and

Tv1 =
(

α2

4
+ 1

)
v,

Tv2 = γ 3/2q1(2μ − 1)v[(
u − √

3 γμ
)2 + v2

]3/2 ,

Tv3 =
− γ 3/2q2 μ

(
v +

√
γ

2

)
[(√

3 γ

2
(1 − 2μ) + u

)2

+
(

v +
√

γ

2

)2
]3/2 ,

Tv4 =
− γ 3/2q3 μ

(
v −

√
γ

2

)
[(√

3 γ

2
(1 − 2μ) + u

)2

+
(

v −
√

γ

2

)2
]3/2 ,

Tv5 = − k

[
α v

2
+ u

(
1 + 3γ 7/4σ

2
(
u2 + v2

)7/4
)]

.

(15)

Now, substitute Eqs. (14, 15) into Eq. (13) and let�u +
Su = 0 and �v + Sv = 0. Then, the obtained roots are
the Lagrangian points.
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Fig. 1 The positions of
Lagrangian points with
γ = 0.15, α = 2.2, σ =
0.018, k = 0.000005, q1 =
0.98, q2 = 0.975, q3 =
0.975, and different mass
ratio parameters μ

The parameters’s values are within the range 0 <

μ ≤ 1/3, 0 < γ < 1, 0 < α ≤ 2.2, 0 < σ < 1, 0 <

q1, q2, q3 ≤ 1. Constraining α within this specified
range aims to effectively capture the intricate dynamic
characteristics and evolutionary processes within the
celestial system, thereby ensuring the rationality and
accuracy of the model employed. For further details,
please refer to [14,50,51] and the references therein.

We employed a numerical method to determine the
positions of Lagrangian points within the proposed
system. Typically, there exist eight or ten Lagrangian
points, all of which are non-collinear. The number
of Lagrangian points obtained varies with different
parameter values, as illustrated in Figs. 1, 2, 3, 4 and 5.
In these figures, the blue dots represent the primaries,
while the red dots indicate the Lagrangian points.

In Fig. 1, set γ = 0.15, α = 2.2, σ = 0.018, k =
0.000005, q1 = 0.98, q2 = 0.975, q3 = 0.975. When

μ = 0.015, there are eight non-collinear Lagrangian
points in Fig. 1a and no collinear Lagrangian points.
When μ increased to 0.2 and 0.32, there were still
only eight non-collinear Lagrangian points, as shown in
Fig. 1b, c. However, when μ = 0.33, ten non-collinear
Lagrangian points appeared, adding two more non-
collinear Lagrangian points, L1 and L9, as shown in
Fig. 1d. Figure1a–d shows the process of the number
of Lagrangian points increasing from eight to ten with
increasing μ value.

In Fig. 2, we present the positional evolution of the
Lagrangian points as the parameter q1, given μ =
0.019, σ = 0.05, γ = 0.4, α = 0.6, k = 0.00015,
q2 = q3 = 0.9985. In this case, there are eight
non-collinear points, and all Lagrangian points are
not symmetric about the u-axis. When q1 increases at
(0.6,1), the Lagrangian points L1, L2, L7, and L8 move
away from the bigger primary m1 in Fig. 2a. L3 moves
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Fig. 2 The positions of Lagrangian points for μ = 0.019,
γ = 0.4, α = 0.6, σ = 0.05, k = 0.00015, q2 = q3 = 0.9985,
for different q1 values, q1 = 0.6 (blue, green), q1 = 0.7 (blue,

gray), q1 = 0.8 (blue, orange), q1 = 0.9 (blue, purple), q1 = 1
(blue, pink). (Color figure online)

Fig. 3 The positions of
Lagrangian points for
μ = 0.01, γ = 0.6,
α = 0.4, σ = 0.05,
k = 0.00001, q2 = 0.8,
q3 = 0.6, q1 = 0.6 (blue,
green), q1 = 0.7 (blue,
gray), q1 = 0.8 (blue,
orange), q1 = 0.9 (blue,
purple), q1 = 1 (blue, pink).
(Color figure online)
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Fig. 4 The positions of Lagrangian points for μ = 0.019, γ = 0.1, σ = 0.05, q1 = 0.95, q2 = 0.9, q3 = 0.9, k = 0.00015, α = 0.2
(blue, green), α = 0.6 (blue, gray), α = 1 (blue, orange), α = 1.5 (blue, purple), α = 2.2 (blue, pink). (Color figure online)

towards m3 and L5 moves away from m3 in Fig. 2b.
L4 moves towards m2 and L6 moves away from m2

in Fig. 2c. In addition, we also investigate the case of
primaries m2 and m3 having different radiation effects
(q2 �= q3), and the Lagrangian points under the con-
ditions are shown in Fig. 3. When q1 increases at (0,1)
and fixed parameters of μ = 0.01, γ = 0.6, α = 0.4,
σ = 0.05, k = 0.00001, q2 = 0.8, q3 = 0.6, the
Lagrangian points undergo a similar change in Fig. 3a–
d.

The evolution of Lagrangian points is studied when
μ = 0.019, σ = 0.05, γ = 0.1, q1 = 0.95, q2 = 0.9,
q3 = 0.9, k = 0.00015, and α increases at (0.2,2.2) in
Fig. 4. It can be observed that eight non-collinear points
appear at this parameter value. As the α increases, all
Lagrangian points move towards the origin, and the
point L3 moves toward m3 and L5 moves away from

m3 inFig. 4b. L4 moves towardsm2 and L6 moves away
from m2, as shown in Fig. 4c. The Lagrangian points
L1 and L2 move toward the primary m1 on both sides
of the origin near the u-axis in Fig. 4d–e, respectively.

In Fig. 5, the Lagrangian points are identified under
the effect of k variation, with fixed values for μ =
0.019, σ = 0.05, γ = 0.12, α = 0.19, q1 = 0.99,
q2 = 0.98, q3 = 0.98 and k ∈ (0.05, 0.4), six non-
collinear points were found, and as the value of k
increases, L1 moves away from the primary m3 and
upwards to the left, L3 moves away from primary m3

and upwards to the right. L5 moves towards primary
m3 and downwards to the left. These three Lagrangian
points tend to merge. L2 moves downwards to the pri-
marym2, while L4 and L6 move away fromprimarym2

and upwards to the right and left, respectively. These
three Lagrangian points also tend to merge.
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4 Linear stability analysis of the Lagrangian points

Only the Lagrangian points around which an infinites-
imal body can maintain motion are stable. Otherwise,
it is unstable. Here, we have referred to the literature
in [14]. If the coordinates of the Lagrangian points are
(u0, v0), and (x, y) is the small displacement relative
to the Lagrangian point, then this small displacement
can be written as x = u − u0, y = v − v0. We expand
the right-hand side of Eq. (8) to first-order by Taylor
series, then Eq. (8) can be linearized to the following
system

ẍ − 2 ẏ = (Suu + �uu)0 x + (Suv + �uv)0 y − kẋ,

ÿ + 2ẋ = (Svu + �vu)0 x + (Svv + �vv)0 y − k ẏ,

(16)

where, subscript (0) represents the partial deriva-
tive at the Lagrangian point, let (Suu + �uu)0 =
N1, (Suv + �uv)0 = N2, (Svu + �vu)0 = F1,
(Svv + �vv)0 = F2 in “Appendix I”. For the problem
of variablemass, the location of the primarywill change
over time t , and their distances to the Lagrangian point
(u0, v0) decrease with time t . Therefore, conventional
methods cannot determine linear stability.That is why
we have usedMeshcherskii space time transformations

u = Xγ
1
2 , v = Yγ

1
2 . This fixes the positions of the

primaries and the distance to the Lagrangian point. Let
ẋ = x1, ẏ = y1, Eq. (16) in phase-space as

ẋ1 − 2y1 = (Suu + �uu)0 x + (Suv + �uv)0 y − kx1,

ẏ1 + 2x1 = (Svu + �vu)0 x + (Svv + �vv)0 y − ky1.

(17)

Consider the Meshcherskii inverse transform, and take
X ′ = γ −1/2x,Y ′ = γ −1/2y, x ′ = γ −1/2x1, y′ =
γ −1/2y1. The Eq. (17) can be rewritten as the matrix
form⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dX ′

dt
dY ′

dt
dx ′

dt
dy′

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

α

2
0 1 0

0
α

2
0 1

N1 N2
α

2
− k 2

F1 F2 −2
α

2
− k

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
X ′
Y ′
x ′
y′

⎤
⎥⎥⎦ . (18)

The linear stability of Eqs. (8) and (18) is consis-
tent with each other. We determine the linear stability
of the Lagrangian points by solving the eigenvalues
of the coefficient matrix of Eq. (18) numerically. The

Fig. 5 The positions of Lagrangian points for μ = 0.019, γ =
0.12, α = 0.19, σ = 0.05, q1 = 0.99, q2 = 0.98, q3 = 0.98
when 0.05 ≤ k ≤ 0.4.

characteristic equation of the linearized Eq. (18) corre-
sponding to the equilibrium point is

λ4 + 2(k − α)λ3 +
[
f1 + 1

2
(3α)(α − 2k)

]
λ2

−
[
α f1 + f2 − 1

2

(
3α2

)
(k − α)

]
λ

+ α4

16
− 1

4

(
α3k

)

+ α2 f1
4

+ α f2
2

+ f3 = 0, (19)

where

f1 = −F2 + k2 − N1 + 4,

f2 = k (F2 + N1) + 2F1 − 2N2,

f3 = F2N1 − N2F1.

(20)

If four complex roots of the characteristic Eq. (19) all
have negative real parts or are pure imaginary roots,
then the corresponding Lagrangian point is asymptot-
ically stable or stable. If there are roots with posi-
tive real parts, it is unstable. Under the influence of
photo-gravitational, variable mass, and Stokes drag, all
Lagrangian points are unstable.
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5 Zero-velocity curves

This section studies the zero-velocity curve of the
variable mass R4BP under the perturbation of photo-
gravitational and Stokes drag. The expression for the
possible motion region of the fourth body is

(� + S)(γ ) ≥ C(γ ) for
∂

∂γ
(� + S) � 0,

(� + S)(γ0) ≥ C(γ0) for
∂

∂γ
(� + S) � 0,

(21)

where

C(γ ) = −V 2
0

2
+ S + �(γ, u0, v0) , V 2

0 = u20 + v20

(22)

Using the obtained relation in Eq. (12), these curves
can be identified by

2(S + �) − C − 2
∫ t

0

∂

∂t
(S + �)dt > 0. (23)

InFig. 6,weplot the zero-velocity curve under the Jaco-
bian constant C value variation for fixed parameters
μ = 0.019, α = 0.4, γ = 0.3, k = 0.00015, q1 =
0.9, q2 = q3 = 0.8. The blue and red dots denote
the primaries and Lagrangian points, respectively. The
yellow and white regions represent the Hill and forbid-
den regions, respectively. The Hill region refers to the
regionwhere infinitesimal bodymaymove, and the for-
bidden region is the regionwhere the infinitesimal body
cannot reach. In Fig. 6, there are eight non-collinear
Lagrangian points, all ofwhich are not symmetric about
the u-axis.

In Fig. 6a, the Jacobian integralC=0.456375 and the
Lagrangian points L1, L2, L7, and L8 are all located
in the forbidden region. The infinitesimal body cannot
reach these Lagrangian points, while L3, L4, L5, and
L6 are located in the Hill region. Especially, L3 and
L4 are trapped in the Hill region with the primaries m3

andm2, respectively. Thismeans the infinitesimal body
cannot travel from one primary to another. In Fig. 6b,
the Jacobian integralC decreases to 0.454533. It can be
observed that there is a gap between L3 and L5, L4 and
L6, and the infinitesimal body can reach either L5 or L6

from m3 and m2. In Fig. 6c, the Jacobian integral con-
stantC decreases to 0.442488, and twobranches appear
near the primaries m3 and m2. That infinitesimal body
can freely move between the primaries, but L1, L2, L7,
and L8 are still trapped in the forbidden zone. In Fig. 6d,
C decreases to 0.426496, and all Lagrangian points

are located in the Hill region, but forbidden regions
block L1, L7, and L8. In Fig. 6e, f, Jacobian integral
C decreases to 0.422425 and 0.420288, respectively.
The forbidden regions near L1 disappear first, and then
the forbidden regions around L7 and L8 disappear. All
Lagrangian points are located in the Hill region, mean-
ing the infinitesimal body can shuttle between all pri-
mary bodies and all Lagrangian points.

6 Periodic solutions near the non-collinear points

In the framework of R4BP with variable mass, the
study of motion near the Lagrangian points is signif-
icant. Periodic solutions near unstable non-collinear
Lagrangian points can allow the fourth body to main-
tain longer periods here. TheLPmethod used to remove
secular terms and provides periodic solutions for regu-
lar motion. A brief introduction of this method can be
found in “Appendix II”.

Move the −ku̇ and −kv̇ term in the stokes force on
the right side of Eq. (8) to the left side then this equation
can be rewritten as

ü − 2v̇ + ku̇ = �u + S∗
u ,

v̈ + 2u̇ + kv̇ = �v + S∗
v ,

(24)

where

S∗
u = −k

[
αu

2
− v

(
1 + 3γ 7/4σ

2
(
u2 + v2

)7/4
)]

,

S∗
v = −k

[
αv

2
+ u

(
1 + 3γ 7/4σ

2
(
u2 + v2

)7/4
)]

.

(25)

Introducing transformations u = u0 + x, v = v0 + y,
then Eq. (24) become the following form

ẍ − 2 ẏ + kẋ = �x + S∗
x ,

ÿ + 2ẋ + k ẏ = �y + S∗
y .

(26)

Utilizing Eq. (26) and applying the Taylor series up to
third-order term, we get

ẍ − 2 ẏ + kẋ = U 0
x +U 0

x

(
x

∂

∂x
+ y

∂

∂y

)

+ 1

2!U
0
x

(
x

∂

∂x
+ y

∂

∂y

)2

+U 0
x
1

3!
(
x

∂

∂x
+ y

∂

∂y

)3

+ O(4),

ÿ + 2ẋ + k ẏ = U 0
y +U 0

y

(
x

∂

∂x
+ y

∂

∂y

)
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Fig. 6 The zero-velocity curve in the R4BP with the photo-gravitational, variable mass, and Stokes drag perturbations for μ =
0.019, α = 0.4, k = 0.00015, γ = 0.3, q1 = 0.9, q2 = q3 = 0.8, for different C values

+ 1

2!U
0
y

(
x

∂

∂x
+ y

∂

∂y

)2

+U 0
y
1

3!
(
x

∂

∂x
+ y

∂

∂y

)3

+ O(4),

(27)

where Ux = �x + S∗
x , the superscript (0) repre-

sents the value evaluated at the Lagrangian point, O(4)
represents fourth-order and higher-order terms, which
we ignore here. At the Lagrangian points Li , i =
1, 2, · · · , 10, U 0

x (Li ) = U 0
y (Li ) = 0. Therefore, the

equation can be further expanded and simplified as

ẍ − 2 ẏ + kẋ =U 0
xx x +U 0

xy y + 1

2
U 0
xxx x

2

+U 0
xxyxy + 1

2
U 0
xyy y

2

+ 1

6
U 0
xxxx x

3 + 1

2
U 0
xxxyx

2y

+ 1

2
U 0
xxyyxy

2 + 1

6
U 0
xyyy y

3,

ÿ + 2ẋ + k ẏ =U 0
yx x +U 0

yy y + 1

2
U 0

yxx x
2

+U 0
yxyxy + 1

2
U 0

yyy y
2

+ 1

6
U 0

yxxx x
3 + 1

2
U 0

yxxyx
2y

+ 1

2
U 0

yxyyxy
2 + 1

6
U 0

yyyy y
3, (28)

where U 0
xx = N1, U 0

xy = N2, U 0
xxx = 2N3, U 0

xxy =
N4, U 0

xyy = 2N5, U 0
xxxx = 6N6, U 0

xxxy = 2N7,
U 0
xxyy = 2N8, U 0

xyyy = 6N9, U 0
yx = F1, U 0

yy = F2,
U 0

yxx = 2F3, U 0
yxy = F4, U 0

yyy = 2F5, U 0
yxxx = 6F6,

U 0
yxxy = 2F7, U 0

yxyy = 2F8, U 0
yyyy = 6F9, and

Ni , i = 1, 2, . . . , 9, Fi , i = 1, 2, . . . , 9 in “Appendix
I”.

The coefficients are represented by Ni , Fi , i =
1, 2, . . . , 9, and the Eq. (28) can be rewritten as
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ẍ − 2 ẏ + kẋ = N1x + N2y + N3x
2 + N4xy + N5y

2

+ N6x
3 + N7x

2y + N8xy
2 + N9y

3,

ÿ + 2ẋ + k ẏ = F1x + F2y + F3x
2 + F4xy + F5y

2

+ F6x
3 + F7x

2y + F8xy
2 + F9y

3.

(29)

Supposing that the form of the solution to Eq. (29) is

x = x1ε + x2ε
2 + x3ε

3,

y = y1ε + y2ε
2 + y3ε

3,
(30)

where ε is a small parameter and value range is |ε| 	 1.
SubstitutingEqs. (30) into (29) and comparing the pow-
ers of ε on both sides. Thus, we obtain the following
three linear systems concerning the coefficients of ε,
ε2, and ε3 in the following forms

ẍ1 − 2 ẏ1 + kẋ1 = N1x + N2y1,

ÿ1 + 2ẋ1 + k ẏ1 = F1x1 + F2y1,
(31)

ẍ2 − 2 ẏ2 + kẋ2 = N1x2 + N2y2 + N3x
2
1

+ N4x1y1 + N5y
2
1 ,

ÿ2 + 2ẋ2 + k ẏ2 = F1x2 + F2y2 + F3x
2
1

+ F4x1y1 + F5y
2
1 .

(32)

ẍ3 − 2 ẏ3 + kẋ3 = N1x3 + N2y3 + 2N3x1x2

+ N4x1y2 + N4x2y1 + 2N5y1y2

+ N6x
3
1 + N7x

2
1 y1

+ N8x1y
2
1 + N9y

3
1 ,

ÿ3 + 2ẋ3 + k ẏ3 = F1x3 + F2y3 + 2F3x1x2

+ F4x1y2 + F4x2y1 + 2F5y1y2

+ F6x
3
1 + F7x

2
1 y1

+ F8x1y
2
1 + F9y

3
1 .

(33)

For the Eq. (31), supposing that the form of the solu-
tions are

x1 = G1 cos(ωt) + H1 sin(ωt),

y1 = G2 cos(ωt) + H2 sin(ωt),
(34)

where period T = 2π/ω.
Substituting Eq. (34) into (31) yields

A11 sin (ωt) + B11 cos (ωt) = 0,

A21 sin (ωt) + B21 cos (ωt) = 0,
(35)

where

A11 =
[
2G1ω + G2kω + F1H1 +

(
F2 + ω2

)
H2

]
,

B11 =
[
F1G1 +

(
F2 + ω2

)
G2 − 2H1ω − H2kω

]
,

A21 =
[
G1kω − 2G2ω + H1

(
N1 + ω2

)
+ H2N2

]
,

B21 =
[
G1

(
N1 + ω2

)
+ G2N2 − H1kω + 2H2ω

]
.

(36)

In order to make the homogeneous system of Eq. (35)
have non-zero solutions, the determinant is zero, as fol-
lows∣∣∣∣∣∣∣∣
N1 + ω2 N2 −k ω 2ω

k ω −2ω N1 + ω2 N2

F1 F2 + ω2 −2ω −k ω

2ω k ω F1 F2 + ω2

∣∣∣∣∣∣∣∣
= 0. (37)

Set H2 = 1, obtain G1,G2, H1 in “Appendix III”. So
the solutions of Eq. (31) are

x1 = G1 cos(ωt) + H1 sin(ωt),

y1 = G2 cos(ωt) + sin(ωt).
(38)

Similarly, to solve Eq. (32), let the solutions take the
form of
x2 =G3 cos(ωt) + G4 cos(2ωt)

+ H3 sin(ωt) + H4 sin(2ωt),

y2 =G5 cos(ωt) + G6 cos(2ωt)

+ H5 sin(ωt) + H6 sin(2ωt).

(39)

By using the same method as solving Eq. (31) and sub-
stituting the already obtained (x1, y1) in Eq. (38) into
(32), we obtain G3 = 0, H3 = 0, G5 = 0, H5 = 0,
and G4, G6, H4, H6 in “Appendix III”. Therefore, the
solutions of Eq. (32) are given by

x2 = G4 cos(2ωt) + H4 sin(2ωt),

y2 = G6 cos(2ωt) + H6 sin(2ωt).
(40)

So, the second-order periodic solution is

x = ε [G1 cos(ωt) + H1 sin(ωt)]

+ ε2 [G4 cos(2ωt) + H4 sin(2ωt)] ,

y = ε [G2 cos(ωt) + sin(ωt)]

+ ε2 [G6 cos(2ωt) + H6 sin(2ωt)] .

(41)

Similarly, to solve Eq. (33), let the solutions take the
below forms
x3 =G7 cos(ωt) + G8 cos(2ωt) + G9 cos(3ωt)

+ H7 sin(ωt) + H8 sin(2ωt) + H9 sin(3ωt),

y3 =G10 cos(ωt) + G11 cos(2ωt) + G12 cos(3ωt)

+ H10 sin(ωt) + H11 sin(2ωt) + H12 sin(3ωt).

(42)

123



Periodic solutions of photo-gravitational R4BP with variable mass and Stokes drag

Fig. 7 Second- and
third-order periodic
solutions, for fixed
parameter μ = 0.25,
σ = 0.05, k = 0.00005,
q1 = 0.99, q2 = 0.9985,
q3 = 0.9985, α = 2.2 at
different values for mass
variation parameter. The
second-order periodic
solution is represented by
the red dotted line, while the
third-order periodic solution
is depicted by the thick blue
line. (Color figure online)

By using the same method as above and substituting
the already obtained (x1, y1) and (x2, y2) in Eqs. (38,
40) into Eq. (33), we obtainG8 = 0,G11 = 0, H7 = 0,
H8 = 0, H11 = 0, H12 = 1, and G7, G9, G10, G12,
H9, H12 in “Appendix III”. Therefore, the solutions to
Eq. (33) are

x3 =G7 cos(ωt) + G9 cos(3ωt) + H9 sin(3ωt),

y3 =G10 cos(ωt) + G12 cos(3ωt)

+ H10 sin(ωt) + sin(3ωt).

(43)

So, the third-order periodic solution is

x = ε [G1 cos(ωt) + H1 sin(ωt)]

+ ε2 [G4 cos(2ωt) + H4 sin(2ωt)]

+ ε3 [G7 cos(ωt) + G9 cos(3ωt) + H9 sin(3ωt)] ,

y = ε [G2 cos(ωt) + sin(ωt)]

+ ε2 [G6 cos(2ωt) + H6 sin(2ωt)]

+ ε3 [G10 cos(ωt) + G12 cos(3ωt)

+H10 sin(ωt) + sin(3ωt)] .

(44)

Fixed the parameter μ = 0.25, σ = 0.05, k =
0.00005, q1 = 0.99, q2 = 0.9985, q3 = 0.9985,
α = 2.2, when γ = 0.95, 0.7, 0.5, 0.3, the coordinates
of Lagrangian points L6 = (0.132165,−0.567669),
(0.113444,−0.487284), (0.0958778, −0.41183) and
(0.0742666, −0.319002) are obtained respectively.
The corresponding second- and third-order periodic
solutions are shown in Fig. 7a–d, respectively. When
γ has a larger value of 0.95, it can be observed that
the second- and third-order periodic solutions of the
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non-collinear Lagrangian point L6 are very close, and
in some areas they are close to overlapping. When γ

decreases to 0.7, the difference between the second-
and third-order periodic solutions at point L6 increases.
When γ decreases to 0.5, the difference between the
second- and third-order periodic solutions increases,
and both become somewhat flatter. When γ decreases
to 0.3, in addition to the above changes, the third-order
periodic solution no longer resembles a smooth ellipse
and undergoes significant deformation. Furthermore,
as γ decreases, the coordinates of Lagrangian point L6

approach the origin and the periodic solution shrinks
constantly.

7 Conclusions

The equations of motion were obtained for the R4BP
with variable mass under the perturbations of photo-
gravitational and Stokes forces. The Lagrangian points
were calculated with parameters 0 < μ ≤ 1/3, 0 <

α ≤ 2.2, σ, k, γ ∈ (0, 1), 0 < qi ≤ 1 (i = 1, 2, 3)
and found that under the joint perturbation of photo-
gravitational, Stokes force, and variable mass, there are
six, eight, or ten non-collinear Lagrangian points, and
there are no collinear Lagrangian points.
As the radiation pressure q1 of the primary body m1

increases in (0.6,1), the Lagrangian points are all far
from the origin, while for the primary bodies, the
Lagrangian points are either closer or farther away from
it, regardless ofwhether the radiation of the second- and
third primary bodies are equal. When the dissipative
force constant k ∈ (0.05, 0.4), there are six Lagrangian
points, andwith the increase of k value, these points are
divided into L1, L3, L5, and L2, L4, L6, two groups,
and the points in eachgroup are closer and closer.As the
variable mass parameter varies in (0.2,2.2), the coor-
dinates of the Lagrangian points all move toward the
origin. For different primary bodies, the Lagrangian
points near them tend to move away or close to them.
Through linear stability calculations, it was found that
all Lagrangian points under the parameters considered
in this paper are unstable.

Through the zero-velocity curves plotted for the given
parameters, it is found that when the Jacobian inte-
gral constant changes within the range of (0.456375,
0.420288), the zero-velocity surface also changes, the
Hill region gradually increases, and it is possible to
transition between the primaries. With the help of the
LPmethod, we also present the second- and third-order
analytical periodic solutions around the non-collinear
Lagrangian point. The numerical simulation results
near the point L6 show that a substantial increase in
the mass change parameter γ results in a larger area
surrounding the periodic solution of L6, exhibiting a
visually regular elliptical shape. Conversely, a decrease
in γ leads to a reduction in the region of periodic solu-
tions, accompanied by notable alterations in shape, par-
ticularly concerning third-order periodic solutions.
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Appendix I

N1 =1

4

[
γ 3/2

(
4(2μ − 1)q1(r21 − 3J 21 )

r51
+ 12J 22 μ

(
q2
r52

+ q3
r53

)

−21 4
√

γ kσu0v0

r11/20

− 4μq2
r32

+ 4μq3
r33

)
+ α2 − 2αk + 4

]
,

N2 =3γ 3/2

[
J 22

(
−5J3μq2

r72
− 5J4μq3

r73

)
+ J3μq2

r52
+ J4μq3

r53
− (2μ − 1)q1v0(r21 − 5J 21 )

r71

]

+ 21γ 7/4kσu0(11v20 − 2r20 )

8r15/20
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N3 = 3

16
γ 3/2

[
8

(
5J 32 μ

(
−q2
r72

− q3
r73

)
+ 3J2μ

(
q2
r52

+ q3
r53

)
+ J1(2μ − 1)q1(5J 21 − 3r21 )

r71

)

+7 4
√

γ kσv0(11u20 − 2r20 )

r15/20

]
,

N4 =3γ 3/2

[
J 22

(
−5J3μq2

r72
− 5J4μq3

r73

)
+ J3μq2

r52
+ J4μq3

r53
− (2μ − 1)q1v0(r21 − 5J 21 )

r71
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+ 21γ 7/4kσu0(11v20 − 2r20 )

8r15/20
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)
r72

+ q3
(
r23 − 5J 24
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N6 =1
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γ 3/2
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r71
+ μ
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q2
r92
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r93
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(
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)
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,

N7 = 3

32
γ 3/2

[
80

(
7J4 J 32 μq3

r93
+ J3 J2μq2

(
7J 22 − 3r22
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r92

− 3J4 J2μq3
r73

+ J1(2μ − 1)q1v0
(
3r21 − 7J 21

)
r91

)

− 7 4
√

γ kσ
(−22r20

(
u20 + v20

) + 4r40 + 165u20v
2
0

)
r19/20

]
,

N8 =3

2
γ 3/2

[
μ

(
35J 22 J

2
4 q3

r93
+ q2

(−5
(
J 22 + J 23

)
r22 + 35J 22 J

2
3 + r42

)
r92

− 5
(
J 22 + J 24

)
q3

r73
+ q3

r53

)

+ 5J 21 (2μ − 1)q1
(
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)
r91
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(
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]
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)
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,
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N9 =5

2
γ 3/2

[
J2μ

(
q2

(
7J 33 − 3J3r22

)
r92

+ q3
(
7J 34 − 3J4r23

)
r93

)
+ J1(2μ − 1)q1v0

(
3r21 − 7v20

)
r91

]

− 21γ 7/4kσ
(−44r20v20 + 4r40 + 55v40

)
32r19/20

,

F1 =3γ 3/2

[
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√
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√
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√
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√
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,
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(
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r0 =
√
u20 + v20, r1 =

√(
u0 − √

3
√

γμ
)
2 + v20,

r2 =
√√

1

2

√
3
√

γ (1 − 2μ) + u0 +
(√

γ

2
+ v0

)
2,

r3 =
√√

1

2

√
3
√

γ (1 − 2μ) + u0 +
(

v0 −
√

γ

2

)
2,

J1 = u0 − √
3
√

γμ, J2 = 1

2

√
3
√

γ (1 − 2μ) + u0,

J3 =
√

γ

2
+ v0, J4 = v0 −

√
γ

2
.

Appendix II: A brief introduction of LP method

In nonlinear dynamics, the LP method serves as a
widely recognized perturbation technique employed
for deriving approximate solutions. Thismethodproves
particularly valuable when analyzing systems charac-
terized by small parameters within their nonlinear dif-
ferential equations, where the nonlinear terms are rela-
tively diminutive compared to other components in the
equation. Through the LPmethod, we can approximate
the behavior of such systems by expanding the solution
in a perturbation series.

Here is an in-depth elucidation of the LP method in
nonlinear dynamics:

1. Identification of the perturbation parameter (ε) The
initial step involves identifying a small parameter ε,
typically representing a minute quantity within the
system. This parameter is instrumental in expanding
the nonlinear terms in the equation.

2. Expansion of the solution The system’s solution is
expanded as a perturbation series:

x(t) = x0(t) + εx1(t) + ε2x2(t) + . . .

Here, x(t) denotes the system’s solution, x0(t) rep-
resents the zeroth-order approximation, x1(t) signi-
fies the first-order correction, and so forth.

3. Substitution into theoriginal equation: The expanded
solution is substituted back into the original non-
linear differential equation, with terms organized
according to powers of ε.

4. Iterative approximation By systematically solving
the resulting equations at each order of ε, one can
ascertain the corrections to the solution at each
level of approximation until the desired precision
is achieved.

5. Initial conditions The initial conditions are utilized
to determine the initial values of each correction
term.

6. Computation of the solution The final solution is
derived by aggregating all correction terms.

The LP method furnishes an analytical approximation
to the solution of nonlinear vibrational systems, facil-
itating a deeper understanding of the system’s behav-
ior. However, it is imperative to acknowledge that the
applicability of this method is constrained by the small
parameter ε, and it may not be suitable for highly non-
linear systems where the assumption of a small param-
eter does not hold.
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