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Abstract The aeroelastic responses and nonlinear
behaviors of a two-dimensional panel impinged by an
oscillating Mach stem shock are investigated through
theoretical analysis. Through the nonlinear descrip-
tors, such as Poincaré maps and Largest Lyapunov
exponents, the panel with oscillating shock impinge-
ment is found to exhibit multiple responses, includ-
ing single/multi-periodic limit cycle oscillation, quasi-
periodic motion, and chaotic motion. Without altering
the in-plane force, which is the principal source of
structural nonlinearity, the shock oscillation compli-
cates the nonlinear behaviors of the panel. With shock
oscillation, the original divergence instability is trans-
formed into post-divergence limit cycle oscillation, and
the flutter response exhibits rich nonlinear characteris-
tics. The effect of initial shock impingement location,
shock oscillating amplitude, and shock oscillating fre-
quency are disclosed through the bifurcation diagram,
which significantly influences the nonlinear character-
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istics of the panel response. By reasonably adjusting the
shock oscillating parameters, unpredictable nonlinear
behaviors, especially chaotic motions, can be avoided.
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1 Introduction

Panel aeroelastic instability, leading to undesirable
structural fatigue and damage, is of great concern for
supersonic/hypersonic vehicles, on which enormous
investigations have been conducted [1,2]. Shock waves
are unavoidable when traveling at supersonic speed,
which results in severe aerodynamic and thermal loads,
aggravating the aeroelastic effects. Besides, as a pri-
mary source of aerodynamic nonlinearity, shock waves
might have significant impacts on the nonlinear behav-
iors of panel responses [3]. In recent years, the panel
aeroelasticity in shock-dominated flow, which can also
be referred to as shock-induced panel aeroelasticity has
aroused the interest of researchers [4,5].

In most research on panel aeroelastic performance
in shock-dominated flow, stationary shock impinge-
ment is widely considered. However, for high-speed
vehicles, the aircraft maneuver, control surface oper-
ation, and aeroelastic behavior itself can form oscil-
lating/moving shock waves on the fuselage panel [6].
Similarly, for the hypersonic inlet/isolator for scram-
jets, the shock oscillation is a prominent character-
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istic of the internal flow field [7]. The shock oscil-
lation results in the non-stationary shock strengths
and impingement, dispersing the aerodynamic pres-
sure loads, which might have a significant effect on
the aeroelastic behavior of the panel. Early in 1967,
Croker [8] noticed the panel aeroelastic problem with
oscillating and moving shock impingement and con-
ducted a theoretical analysis. Recently, some research
on panel aeroelasticity has taken the moving/oscillating
shock impingement into consideration [9-12], which
disclosed the unique impacts of shock motions on
the panel aeroelastic response. However, the nonlinear
characteristics of panel response with non-stationary
shock impingement remain unexplored.

Due to the nonlinear elements contained in the panel
aeroelastic system, the panel flutter exhibits complex
dynamic behaviors[13]. Dowell [14,15] revealed the
nonlinear limit cycle oscillations (LCOs) and chaotic
motions of a fluttering panel and summarized the help-
ful nonlinear descriptors, especially phase plane por-
traits and Poincaré maps, when detecting the essential
structure of the panel response. With advanced meth-
ods introduced into the field, such as bifurcation dia-
gram, largest Lyapunov exponent (LLE), and proper
orthogonal decomposition (POD), the relevant research
on the nonlinear behavior of panel response was then
extended to different panels, such as damaged panel
[16], viscoelastic panel [17], and cantilever panel [18],
and different flow conditions, such as both-side flow
[19], turbulent flow [20] and shock-dominated flow
[21]. Usually, the complicated nonlinear behaviors of
panel response are induced by the variation of in-plane
force, which is the principal source of structural non-
linearity.

The existing studies regarding non-stationary shock
have only taken the oblique shock impingement form-
ing regular reflection into consideration. However, the
situation in Mach reflection, as a main category of
shock reflection [22], is worth further investigation.
Compared with the regular reflection, the Mach reflec-
tion contains an additional Mach stem shock close to
the panel, forming both supersonic regions and sub-
sonic regions in the flowfield, which complicates the
panel aeroelastic response and stability. Depending on
the shock impingement location, the panel impinged by
stationary Mach stem shock exhibits multiple aeroelas-
tic instabilities, including divergence, flutter, and post-
divergence flutter [23]. The post-divergence flutter is
a unique instability situation, which indicates that the

@ Springer

panel experiences flutter instability while retaining the
static deflection due to divergence instability. With the
non-stationary shock impingement location, the oscil-
lating Mach stem shock might significantly change the
aeroelastic instability and nonlinear behavior of the
panel.

In this paper, the aeroelastic responses and nonlinear
behaviors of a two-dimensional panel impinged by an
oscillating Mach stem shock are investigated through
theoretical analysis. The paper is organized as follows.
Following the introduction, the aeroelastic theories,
with which the panel aeroelastic model is established,
and nonlinear descriptors are introduced in Sect. 2. The
nonlinear characteristics of panel responses are ana-
lyzed with nonlinear descriptors in Sect.3. In partic-
ular, the complicated nonlinear behaviors induced by
shock oscillation are disclosed in Sect. 3.1. The effects
of initial shock impingement location, shock oscillation
amplitude, and shock oscillation frequency are revealed
respectively in Sect. 3.2, 3.3, and 3.4. The main conclu-
sions drawn from the present investigation are summa-
rized in Sect. 4.

2 Modeling
2.1 Aeroelastic theory

As shown in Fig. 1, a two-dimensional panel with both
ends simply supported impinged by oscillating Mach
stem shock is considered. For concision, the curvature
of shock waves is ignored in the schematic. The three-
shock theory is utilized to describe the flow structure of
Mach reflection, where the Mach stem can be approx-
imated as a normal shock.

Usually, the shock oscillations contain a limited
number of frequencies, which stem from the motion
of the shock generator. In the previous experimental
and numerical research [6,10], the shock generator
experienced sinusoidal oscillations with a single fre-
quency to induce shock oscillation. Thus, the Mach
stem shock is also assumed to oscillate in the form
of simple harmonic motion in the paper. The oscillat-
ing shock impingement location on the panel can be
expressed as

x7(t) = x7.0 + asin(wt) (D)
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Fig.1 Schematic of a two-dimensional panel impinged by oscil-
lating Mach stem shock

where x7 o represents the initial shock impingement
location, which is the central position of the shock oscil-
lation, a and w represents shock oscillating amplitude
and frequency respectively.

Focusing on the nonlinear behavior of the panel
response induced by oscillating shock impingement,
the temperature of the whole panel and its supports are
assumed to be the same, and the static pressure differ-
ential across the panel is ignored. According to the von
Kérman large deflection plate theory, the coupled par-
tial differential governing equation of motion for the
panel is established as

%w 0w ow 0w
— — h =0, (2
oxt a7 aﬂ“’” @
where the in-plane force can be expressed as
Eh Law)?
N, = —/ (—w) dx. 3)
20(1—v2) Jo \ox

The structural damping ¢ is also included here,
which is essential to correctly reflect the divergence
instability [24].

The governing equation for the panel can be nondi-
mensionalized as

I*w PwW W *W
R T T

The shock impingement location in Eq. I can then
be expressed in the nondimensional form:

+4a =0. “4)

Er(t) = &r0 + Asin(at), ()

where the dimensionless parameters are defined in
Appendix A.

2.2 Aerodynamic pressure theory

The impingement of Mach stem shock forms a super-
sonic region and a subsonic region above the panel,
where the unsteady pressure loads are calculated sepa-
rately.

For the supersonic region ahead of the Mach stem
shock, the quasi-steady first-order piston theory is
employed to evaluate the unsteady aerodynamic pres-
sure for its simplicity and accuracy, which can be
expressed as

2 9 M2 -2 19
Goo (w = w) ©)

= A \axr "ML 10 a1

An additional discussion on the impacts of the order
of piston theory is provided in Appendix B.

For the subsonic region behind the Mach stem shock,
where the flow is compressible, the compressibility-
corrected potential theory is applied to evaluate the
unsteady aerodynamic pressure. The compressibility-
corrected potential theory is a modification of classi-
cal potential theory by introducing a Prandtl-Glauert
compressibility correction, which has been verified and
proved to be valid and efficient [23]. The aerodynamic
pressure can be expressed as

1

Qaz—/—l_Mz
[ /a2 2
Poo 0“w 28
— —d 7
[n/o(atz 3t8> ‘ § @
1
Poo ow s 0w
— U—+U
T 0 ( or ) —§ §i|

where the integral symbol § means Cauchy’s principal
value to avoid an improper integral.

2.3 Galerkin approach

To solve the 4th-order partial differential equation, the
Galerkin method is employed to discretize the con-
tinuous system into a multi-degree-of-freedom sys-
tem. Considering the simply supported boundary con-
ditions, the lateral displacement can be expressed as

N
Y i (x)sin (im£) . ®)

i=1

W(E,l’):
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where ¢; (t) are the generalized coordinates.

By substituting the expression into Eq.4 and multi-
plying by another set of the primary spatial function and
integrating from O to 1, the discrete motion equations
are obtained.

GO | 30, [Z ! (rn)}

r=I1

€))

+ 541+ 0+ 5Cdj =0

The equation above is a set of nondimensional ordi-
nary differential equations, where the term Q repre-
sents the aerodynamic pressures terms with details
given in Appendix C. By assuming that g; = g;4+n,
the motion equations are converted into 1st-order ordi-
nary differential equations, which are solved by the
4th-order Runge—Kutta direct numerical integration
method.

2.4 Nonlinear descriptor

Although the observation of time history can pro-
vide intuitive results to identify the periodicity of the
panel response, the potential long-periodic and quasi-
periodic motion will lead to the mistaken identification
of nonlinear behavior. Thus, nonlinear descriptors are
essential to analyze the panel response, identifying the
nonlinear behaviors [25].

In this paper, the bifurcation diagrams, Poincaré
maps, frequency spectra, and largest Lyapunov expo-
nent are calculated and plotted as follows:

(1) Bifurcation diagrams: Usually, for the panel aeroe-
lastic system, the bifurcation diagrams are plot-
ted in terms of dynamic pressure A to observe
the pre/post-chaotic behaviors. Recalling Eq. 5, the
oscillating shock impingement introduces addi-
tional systemic parameters including &7 0, A, and
w, into the aeroelastic system. To investigate the
potential effect of these parameters on the nonlin-
ear behavior, the bifurcation diagrams are plotted
by sweeping these parameters and recording the
local deflection extrema of the panel response.

(2) Poincaré maps: The Poincaré maps reduce the
phase plane portraits into discrete points, which
provide an intuitive way to qualitatively identify
different motions. For the panel aeroelastic model,
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an autonomous system, the plots of Poincaré dia-
grams are based on the occurrence of an event.
In this paper, £ = 0.50 is chosen as the identi-
fying/event point. Considering the potential diver-
gence instability, the event is defined as the deflec-
tion of £ = 0.50 reaching the post-divergence posi-
tion with a positive velocity. The deflection and
velocity of the typical point are recorded when the
event occurs.

(3) Frequency spectra: the Fast Fourier Transform
(FFT) is utilized to obtain the frequency spectra
of the panel response. The frequency spectra are
characterized by sharp peaks for regular motions
but by broadband behavior for chaotic motions.

(4) Largest Lyapunov exponent (LLE): The largest Lya-
punov exponent provides a quantitative measure to
identify the chaotic motion: LLE > 0, chaotic
motion; LLE < 0, regular motion. In this paper,
the largest Lyapunov exponent is calculated accord-
ing to the procedure indicated in [26], for which Xie
etal. [16] provided a concise procedure description.

3 Results and discussions

The flow properties applied in this paper are listed
in Table 1, in which the Mach number behind the
Mach stem and the dynamic pressure ratio are calcu-
lated through normal shock theory. The panel response
at £ = 0.75 as a typical location is analyzed, with
which figures are plotted. Considering the sensitivity of
chaotic motion and divergence instability to the initial
condition, the initial condition of g; = 0.1 is applied.

3.1 Nonlinear response induced by shock oscillation

To investigate the impact of shock oscillation on the
nonlinear characteristics of panel response, the bifurca-
tion diagrams in terms of freestream dynamic pressure
are compared between stationary shock impingement

Table 1 Flow properties

Flow properties Value

Freestream Mach number 3.0000
Mach number behind the Mach stem 0.4752
Dynamic pressure ratio 0.7333
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Fig. 2 Bifurcation diagram in terms of dynamic pressure A with a stationary shock impingement and b oscillating shock impingement
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Fig. 3 Panel responses with different freesteam dynamic pressure A: a A = 345; b A = 370; ¢ A =480;d A = 500
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and oscillating shock impingement as shown in Fig. 2,
in which the freestream dynamic pressure increases
from A = 300 to A = 500 with a step increment of
A) = 1. The shock impingement location is set as
&r,0 = 0.70. For the oscillating shock impingement,
the nondimensional shock oscillating amplitude and
frequency are A = 0.1 and @ = 10 respectively.

For the stationary shock impingement, the Hopf
bifurcation occurs at A = 339, which represents that the
panel experience flutter instability and forms limit cycle
oscillation (LCO). For the oscillating shock impinge-
ment, the bifurcation diagram is relatively complicated.
The onset of flutter instability occurs at A = 343, which
has little change. However, the panel response con-
tains potential quasi-periodic motions, multi-periodic
LCOs, and chaotic motions. The shock oscillation sig-
nificantly enrich the nonlinear characteristics of panel
responses.

To further reveal the nonlinear characteristics of
panel response with oscillating shock impingement,
the time history, phase diagram, Poincaré map and
frequency spectra are plotted for the panel response
at typical dynamic pressure as shown in Fig.3. The
largest Lyapunov exponent is additionally plotted for
the chaotic motion. For A = 345, the Poincaré map dis-
play a trajectory in the form of a torus, which indicates
a quasi-periodic motion. For A = 370 and A = 480,
a periodic-5 LCO and a periodic-6 LCO are observed,
with the Poincaré map consisting of a set of five/six
points. For A = 500, a positive value of LLE = 0.96
is obtained, which demonstrates the panel response
exhibits a chaotic motion. The cloud of unorganized
points in the Poincaré map is consistent with the iden-
tification.

The shock oscillation significantly complicates the
nonlinear behavior of the panel response without alter-
ing the in-plane force. With the introduction of shock
oscillation, the flutter instability displays rich nonlinear
characteristics, including single/multi-periodic LCOs,
quasi-periodic motions, and chaotic motions, instead
of simply single-periodic LCOs.

3.2 Effect of initial shock impingement location
In the previous research on the panel aeroelastic sta-
bility in Mach reflection, the shock impingement loca-

tion is found to determine the panel instability types,
including flutter, divergence, and post-divergence flut-
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ter. Considering the crucial effect of shock impinge-
ment location on the panel aeroelastic instability, the
initial impingement location of oscillating shock is
likely to have a significant impact on the nonlinear
behaviors of the panel.

The bifurcation diagram is plotted in terms of ini-
tial shock impingement location &7 at A = 600 as
shown in Fig. 4, in which the initial shock impingement
location increases from &7 = 0.10 to é7,0 = 0.90
with a step increment of A&7 o = 0.01. The nondi-
mensional shock oscillating amplitude and frequency
are A = 0.1 and o = 10 respectively. With initial
shock impingement location é7¢ = 0.10 ~ 0.48,
the panel response exhibits post-divergence single-
periodic LCO, whose amplitude increases with ini-
tial shock impingement location; With initial shock
impingement location &7 = 0.49 ~ 0.71, the panel
response exhibits periodic LCO and chaotic motion
alternately; With initial shock impingement location
&r.0 = 0.72 ~ 0.90, the panel response only exhibits
quasi-periodic motion. As shown in Fig.5, the largest
Lyapunov exponents are plotted in terms of initial
shock impingement location to show the nonlinear
characteristics of the panel response. It can be seen
the largest Lyapunov exponent is sensitive to the initial
shock impingement location.

For the panel with stationary shock impingement
at its leading portion, the panel exhibits divergence
instability. With the introduction of shock oscillation,
the divergence instability is transformed to the post-
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Fig. 5 Largest Lyapunov diagram in terms of initial shock
impingement location &7 ¢

divergence single-periodic LCO, which is worth fur-
ther discussion. The panel LCO shapes and divergence
shapes with different initial shock impingement loca-
tions are plotted in Fig. 6. Usually, the peak of the LCO
amplitude emerges near the 3/4 chord of the fluttering
panel [27], which is also the situation for the panel with
stationary shock impingement. However, the LCOs
induced by oscillating shock exhibit distinct charac-
teristics with the peak emerging at the leading portion
of the panel, moving backward with the increase of ini-
tial shock impingement location. Similarly, the peak of
divergence amplitude moves backward with increasing
initial shock impingement location. The moving back-
ward of initial shock impingement location results in
the aggravation of oscillation but suppression of diver-
gence.

To investigate the nonlinear behavior of the panel
response, the time history, phase diagram, Poincaré
map and frequency spectra are plotted for the panel
response at typical initial shock impingement loca-
tion as shown in Fig.7. The largest Lyapunov expo-
nent is additionally plotted for the chaotic motion.
Despite multiple local amplitude extrema displayed in
the bifurcation diagram, the panel response exhibits
single-periodic LCO for &7 9 = 0.51 with a single
point displayed in the Poincaré map. The phase dia-
gram shows there exist two twists for the limit cycle,
which accounts for the extra local amplitude extrema.
For &7 = 0.70, a chaotic motion is observed with
a positive value of LLE = 1.18. For éro = 0.40
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Fig. 6 a Panel LCO shapes and b Panel divergence shapes with
different initial shock impingement location

and &7,9 = 0.80, a single-periodic LCO and a quasi-
periodic motion are observed respectively.

In general, the initial shock impingement loca-
tion significantly influences the nonlinear behaviors
of panel responses. With oscillating Mach stem shock
impinging at the leading portion, the panel tends to
exhibit regular motions in the form of post-divergence
LCOs, whose amplitude distribution is different from
the classical fluttering panel. With oscillating Mach
stem shock impinging at the trailing portion, the
panel tends to exhibit complicated nonlinear behaviors,
including chaotic motions and quasi-periodic motions.
By reasonably arranging the initial shock impingement
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location, the complicated chaotic motion of the panel
can be avoided.

3.3 Effect of shock oscillating amplitude

The shock oscillation leads to the change of proportion
of the supersonic region and subsonic region, which
results in the variation in the aerodynamic load dis-
tribution, inducing complicated nonlinear behaviors.
With the enlargement of the shock oscillating ampli-
tude, the change becomes more intense, whose effects
are of interest.

The bifurcation diagram is plotted in terms of nondi-
mensional shock oscillating amplitude A at A = 500
as shown in Fig.8, in which the oscillating ampli-
tude increases from A = 0.0 to A = 0.4 with a
step increment of AA = 0.05. It should be noticed
that A = 0.0 represents the stationary shock impinge-
ment. The initial shock impingement location is at
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é&r.0 = 0.40 and nondimensional shock oscillating
frequency @ = 10. With shock oscillating amplitude
A = 0.000 ~ 0.150, the panel response exhibits
post-divergence single-periodic LCO, whose ampli-
tude increases with the shock oscillating amplitude;
With shock oscillating amplitude A = 0.155 ~ 0.315,
the panel response exhibits chaotic motions, multi-
periodic LCOs, and post-divergence single-periodic
LCOs alternately; With shock oscillating amplitude
A = 0.320 ~ 0.400, the panel response exhibits only
multi-periodic LCOs. As shown in Fig.9, the largest
Lyapunov exponents are plotted in terms of shock oscil-
lating amplitude to show the nonlinear characteris-
tics of the panel response. It can be seen the largest
Lyapunov exponent is sensitive to the shock oscillat-
ing amplitude. The positive L L E representing chaotic
motions are obtained with moderate shock oscillating
amplitude.

Similar to the effect of initial shock impingement
location, the increase of shock oscillating amplitude
results in the increases of LCO amplitude. The panel
LCO shapes and divergence shapes with different
shock oscillating amplitude are plotted in Fig. 10. The
increase of shock oscillating amplitude leads to a larger
LCO amplitude, but its impact on divergence amplitude
is relatively limited, which decreases slightly. How-
ever, the shock oscillating amplitude has few effects on
the distribution of the LCO and divergence amplitude,
whose peaks remain unmoved. It seems that the initial
shock impingement location is the only shock param-
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Fig. 10 a Panel LCO shapes and b Panel divergence shapes with
different shock oscillating amplitude

eter having an obvious impact on the distribution of
divergence and LCO amplitude.

The time history, phase diagram, Poincaré map and
frequency spectra are plotted for the panel response
at typical nondimensional shock oscillating amplitude
as shown in Fig. 11. The largest Lyapunov exponent is
additionally plotted for the chaotic motion. For A =
0.14 and A = 0.27, post-divergence single-periodic
LCOs are observed with one-side twist formed for the
limit cycle in the phase diagram. For A = 0.30, a
chaotic motion is observed with a positive value of
LLE = 1.68. For A = 0.35, a 3-periodic LCO is
observed.
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Fig. 11 Panel responses with different nondimensional shock oscillating amplitude A:a A = 0.14;b A = 0.27; ¢ A = 0.30; d

A =035

Similar to the initial shock impingement location,
the impact of shock oscillating amplitude on the non-
linear behavior of the panel is obvious. With small
shock oscillating amplitude, the panel displays post-
divergence LCOs; with moderate shock oscillating
amplitude, the panel displays chaotic motions and
single-periodic LCOs; with large shock oscillating
amplitude, the panel displays multi-periodic LCOs.

3.4 Effect of shock oscillating frequency

The shock oscillating frequency also influence the
intensity of shock oscillation, whose influence is worth
discussion. Besides, the coupling between the natural
frequency of the panel and the shock oscillating fre-
quency is of interest.

The bifurcation diagram is plotted in terms of nondi-
mensional shock oscillating frequency w at A = 600
as shown in Fig. 12, in which the oscillating frequency

@ Springer

increases from @ = 0 to @ = 80 with a step incre-
ment of A@w = 1. It should be noticed that ® = 0
represents the stationary shock impingement. The ini-
tial shock impingement location is at the midpoint of
the panel £7,o0 = 0.50 and nondimensional shock oscil-
lating amplitude A = 0.1. With shock oscillating fre-
quency @ = 0 ~ 42, the panel response exhibits
post-divergence LCO and chaotic motion alternately,
whose amplitude increases with the shock oscillat-
ing frequency; With shock oscillating frequency @ =
43 ~ 47, the panel response exhibits only periodic
LCO without divergence instability; With shock oscil-
lating frequency @ = 48 ~ 67, the panel response
exhibits chaotic motions; With shock oscillating fre-
quency further increases, the panel response exhibits
post-divergence periodic LCO again. As shown in
Fig. 13, the largest Lyapunov exponents are plotted in
terms of shock oscillating frequency to show the non-
linear characteristics of the panel response. It can be
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seen the largest Lyapunov exponent is sensitive to the
shock oscillating frequency. Compared with the other
two shock oscillating parameters, the L L E distribution
for shock oscillating frequency is more complicated,
with two main regions of chaotic motions.

The shock oscillation introduces an additional fre-
quency content into the aeroelastic system. It is won-
dered whether the relation between shock oscillating
frequency and natural frequencies of the panel will
have impacts on the nonlinear behaviors of the panel
response. For an undamped panel aeroelastic system,
the j-th order nondimensional natural frequency can be
expressed as (j)2. Although a structural damping c is

introduced into the present aeroelastic system to prop-
erly evaluate the divergence instability, the damping is
too tiny to have an essential influence on the natural
frequency.

To investigate the relation between the frequencies,
the bifurcation diagram in terms of freestream dynamic
pressure with shock oscillating frequency @ = 20 is
plotted as shown in Fig. 14, in which the freestream
dynamic pressure increases from A = 300 to A = 500
with a step increment of AA = 1. The initial shock
impingement £ o = 0.7 and shock oscillating ampli-
tude A = 0.1. Comparing Fig. 14 with Fig. 2(b), it can
be seen that the nonlinear behaviors for @ = 20 dis-
play more regular motions than that for @ = 10, which
is quite close to the first-order natural frequency of
the panel. Besides, the chaotic motions display distinct
characteristics for the two shock oscillating frequen-
cies. The local amplitude extrema for chaotic motions
fills the plane of the bifurcation diagram for @ = 20
while forming a gap for @ = 10. Recalling Fig. 3(d) for
@ = 10, the orbits in the phase diagram remain close to
some periodic motion orbit and the frequency spectra
show certain frequency spikes, which can be classified
as limited or narrow-band chaos [25].

The time history, phase diagram, Poincaré map and
frequency spectra are plotted for the panel response
at typical nondimensional shock oscillating frequency
as shown in Fig.15. For o = 17 and o = 45,
a post-divergence single-periodic LCO and a normal
single-periodic LCO are observed. For @ = 30, a
quasi-periodic motion is observed with the Poincaré
map displaying the shape of a torus. For ® = 50, a

Oscillating
shock impingement

Local amplitude extrema W
T
i
i
i
i
f

'2 T T T T 1
300 340 380 420 460 500

Nondimensional dynamic pressure 4

Fig. 14 Bifurcation diagram in term of dynamic pressure A with
shock oscillating frequency @ = 20
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chaotic motion is observed with a positive value of
LLE =3.33.

In the same way, the shock oscillating has an obvi-
ous impact on the nonlinear characteristics of the panel
response. Differently, the relation between shock oscil-
lating frequency and the natural frequency of the panel
also plays an important role. With shock oscillating
frequency close to the natural frequency, the panel is
more likely to exhibit chaotic motions, which shows
the characteristics of limited or narrow-band chaos.

3.5 Effect of multi-frequency shock oscillation

In the above-mentioned discussions, the shock oscilla-
tion is assumed as a simple harmonic motion with a sin-
gle frequency. However, shock oscillation with a lim-
ited number of frequencies is also likely to be encoun-
tered, whose impacts are of concern. Thus, a prelim-
inary exploration is conducted here to investigate the
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influence of an additional frequency. Here, a doubling
frequency is introduced for the multi-frequency shock
oscillation, which can be expressed as

Er = Er.0 + A sin(@t) + As sin(2dt) (10)

where A and A, are the amplitude of the basic and
doubling frequency content.

The bifurcation diagram in terms of freestream
dynamic pressure with multi-frequency oscillating
shock impingement is plotted as shown in Fig. 16. The
freestream dynamic pressure increases from A = 300
to A = 500 with a step increment of AA = 1. The ini-
tial shock impingement £79o = 0.7, shock oscillating
amplitude A; = A> = 0.5A and basic shock oscillat-
ing frequency @ = 20. Comparing Fig. 16 and Fig. 14,
it can be seen that the introduction of an additional
frequency significantly alters the bifurcation charac-
teristics of the panel response. To further illustrate the
impact of an additional frequency, the time history,
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Fig. 15 Panel responses with different nondimensional shock oscillating frequency w:a @ = 17;b® = 30; c w = 45; d w = 50
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phase diagram, Poincaré map, and frequency spectra
of the panel response at A = 380 are plotted for single-
frequency and multi-frequency shock impingement as
shown in Fig. 17. For comparison, the coordinates are
on the same scale. For A = 380, 3-periodic LCOs are
observed for both two cases, exhibiting different char-
acteristics. The additional frequency results in a higher
flutter amplitude and a larger limit cycle in the phase
diagram. Furthermore, from the frequency spectra, the
introduction of a doubling frequency excites the panel
response with more high-frequency contributions.

To further disclose the interplay between frequency
content in the shock and panel dynamics, the effects of
the proportion of frequency content, namely the ampli-
tude of each frequency content, are investigated. The
phase diagrams of the aeroelastic response obtained
with different frequency content proportions are plot-
ted as shown in Fig. 18, in which the Poincéare points
are also labeled. When the doubling frequency domi-
nates the shock oscillation, the panel response exhibits
a quasi-periodic motion. As the portion of basic fre-
quency increases, the panel response transits to a 3-
periodic LCO, whose shape in the phase diagram
remains sensitive to the change in the portion of fre-
quency content.

The nonlinear behaviors of the panel impinged by
multi-frequency oscillating shock represent compli-
cated dynamics, which may provide valuable insights
into the chaotic motions induced by shock/boundary-
layer interactions (SBLIs). In recent research [28,29],
potential chaotic motions were observed in the panel
aeroelastic response induced by SBLIs. The SBLIs are
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Fig.17 Panel responses at & = 380 with a single-frequency and
b multi-frequency shock impingement
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believed to be the source of such complicated nonlinear
behavior since the aperiodic motions do not exist for the
steady inviscid shock impingement case. The sensitiv-
ity of nonlinear characteristics to the shock frequency
content may provide a potential explanation for the
complicated nonlinear behaviors of a panel subjected
to SBLIs, where a wide range of frequencies domi-
nates the spectrum. However, further evidence from
numerical simulations and wind tunnel experiments is
necessary to support the explanation in the future.

4 Conclusion

In this paper, the aeroelastic model of a two-dimensional
simply supported panel impinged by oscillating Mach
stem shock is established. With nonlinear descriptors,
the nonlinear behaviors of the panel are investigated.
The effect of initial shock impingement location, shock
oscillating amplitude, and shock oscillating frequency
are revealed through the bifurcation diagram. The main
conclusions are drawn as follows:

(1) The shock oscillation induces complicated non-
linear behaviors of the panel without altering the
in-plane force of the panel, which is the principal
source of structural nonlinearity. With shock oscilla-
tion, the original divergence instability is transformed
into post-divergence single-periodic LCO, and the orig-
inal flutter instability is enriched with nonlinear char-
acteristics. The panel impinged by oscillating Mach
stem shock exhibits multiple responses, including
(post-divergence) single/multi-periodic LCOs, quasi-
periodic motions, and chaotic motions.

(2) Compared with classical panel flutter instability in
supersonic flow, the LCO induced by oscillating Mach
stem shock exhibits distinct characteristics, whose peak
amplitude emerges at the leading portion of the panel.
Both the initial shock impingement location and shock
oscillating amplitude influence the LCO amplitude and
divergence amplitude. However, only the initial shock
impingement location has a significant impact on the
distribution of LCO amplitude and divergence ampli-
tude.

(3) The nonlinear behaviors of the panel are sensi-
tive to the systemic parameters, including initial shock
impingement location, shock oscillating amplitude,
and shock oscillating frequency. By reasonably arrang-
ing the oscillating shock parameters, the large ampli-

@ Springer

tude chaotic motions and quasi-periodic motions can
be avoided and replaced with post-divergence LCOs.
(4) Depending on the relation between shock oscillat-
ing frequency and the natural frequency of the panel,
it exhibits distinct nonlinear characteristics. With the
shock oscillating frequency close to the natural fre-
quency, the panel response tends to exhibits limited or
narrow-band chaos.
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Appendix A Nondimensional parameters

The nondimensional parameters utilized are listed as
follow:

X w a
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Appendix B Effect of the order of piston theory

To tell the effects of the order of piston theory, we com-
pare the flutter amplitude obtained by the lst-order
and 3rd-order piston theories in the supersonic flow
and steady Mach reflection as shown in Fig.19. For
the supersonic flow case, the adoption of the 3rd-order
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Fig. 19 Comparison in flutter amplitude between 1st-order and
3-order piston theory

piston theory results in a larger flutters amplitude but
does not influence the critical flutter dynamic pres-
sure. However, for the Mach reflection case, the differ-
ence between the 1st-order and 3rd-order piston theory
becomes smaller. This may be because the supersonic
region, where the aerodynamic pressure is evaluated by
the piston theory, is narrowed with the introduction of
Mach reflection.

To reveal the impact of the order of piston theory
on the nonlinear behaviors of the panel, a comparison
is also conducted on the bifurcation diagram obtained
by the two theories. Figure4 is recomputed through
3rd-order piston theory and plotted as shown in Fig. 20.
Although the application of 3rd-order piston theory fur-
ther complicates the bifurcation characteristics of the
panel response, it still exhibits a similar distribution
with the results computed through 1st-order piston the-
ory and does not affect the relevant conclusions. The
Ist-order piston theory is sufficient to provide crucial
qualitative knowledge and insights into the nonlinear
dynamics of the panel aeroelastic system with oscillat-
ing shock impingement. However, the enrichment of
nonlinear characteristics induced by 3rd-order piston
theory is worth further exploration in future work.

Appendix C Aerodynamic terms

The aerodynamic pressure term Q can be expressed as
follows.

0=01+02+03+ 04+ 05+ Q¢+ 07+ O3

Initial shock impingement location &,

Fig. 20 Bifurcation diagram in terms of initial shock impinge-
ment location &7, 0 using 3rd-order piston theory

where Q1 to Q4 correspond to the aerodynamic terms
in the supersonic region evaluated by the quasi-steady
piston theory, and Qs to Qg correspond to the aero-
dynamic terms in the subsonic region evaluated by the
compressibility-corrected potential theory:
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