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Abstract In this work, we first discuss the positive
equilibrium point of the continuous predator–prey sys-
tem and its stability, and we discuss the parameter con-
ditions under which the continuous system undergoes
a cusp bifurcation (Bogdanov–Takens bifurcation) of
codimension two bifurcation at the positive equilib-
rium point. Then, we provide an insightful study of
discrete predator–prey systems by the use of Euler’s
method, which includes square-root function responses
and nonlinear prey harvesting. By synthesizing the
new standard form of differential-algebraic systems,
the central manifold theorem, and the bifurcation the-
ory, we identify the specific conditions under which
the system may undergo flip bifurcation and Neimark–
Sacker bifurcation. In addition, codimension-twobifur-
cations associated with 1:2 strong resonances are ana-
lyzed by using a series of affine transformations and
bifurcation theory. Through numerical simulations, we
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not only verify the validity and correctness of our
findings, but also elucidate the frequency of trajec-
tory bifurcations in the intervals of 2, 4, and 8 and
chaotic phenomena. These findings reveal a richer and
more diverse dynamic behavior of discrete differential-
algebraic bioeconomic systems, which is of great the-
oretical and practical significance to the fields of math-
ematics and biology.
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1 Introduction

The history of predator–prey interactions can be traced
back to the early stages of ecology and biology.
Predator–prey interactions play an important role in
ecosystems and are essential for maintaining bio-
diversity and ecological balance. Researchers [1–5]
have investigated the system stability and bifurca-
tion analysis of continuous predator–prey systems with
different functional response functions. The differ-
ent functional response functions include Beddington-
DeAngelis functional response, constant capture and
prey group defense, among others. Researchers [6–
20] focused on predator–prey systems, considered
the effects of different functional response functions
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and delays on the system dynamics, and revealed
the complex behaviors of the system under differ-
ent delay conditions through in-depth mathematical
analysis. The delays include time delays under dif-
ferent functional response and intraspecific competi-
tion conditions, hybrid delays, and so on. Researchers
[21] proposed the Laplace transform-homolunculus
uptake method for analyzing the dynamic properties
of fractional-order time-diffusion predator–prey mod-
els in ecology, providing a new mathematical tool for
numerical simulation of ecosystems. Researchers [22]
simulated the modeling of the prey refuge effect in the
Leslie-Gower predator–prey system and explored the
dynamics of this effect in predator–prey interactions.
Researchers [23] provided an in-depth analysis of the
pattern dynamics of spatially fractional-order predator–
prey systems with fear factors and refugia, provid-
ing new perspectives for understanding predator–prey
interactions in ecosystems in complex environments.
These studies not only enrich our understanding of the
dynamic complexity of predator–prey systems, but also
provide theoretical and practical support for ecosys-
tem management and species conservation. Through
these studies, the dynamic behavior of predator–prey
interactions under different conditions can be better
understood, providing scientific basis andmanagement
strategies for coping with environmental changes and
ecological disasters. However, all the above systems
are continuous systems, while the life cycles or behav-
iors of some organisms in nature are based on discrete
time units or events, rather than being continuous. For
example, certain insects only appear during seasonal
reproduction and their life cycle is completed in a short
period of time. Therefore, the dynamic behavior of dis-
crete systems is closer to the discrete events and bio-
logical life cycles in actual ecosystems, and its study
not only contributes to an in-depth understanding of
the stability and dynamic properties of ecosystems, but
also provides an important theoretical basis for ecolog-
ical protection and resource management. So, many
researchers began to focus on discrete predator–prey
systems.

In recent years, several important studies involv-
ing discrete-time predator–prey systems have emerged
in academia. Zhang [24] undertook an intrusive study
of discrete-time predator–prey bio-economic systems,
aiming to analyze the occurrence of flip-flop bifur-
cations and Neimark–Sacker bifurcations within the
system. The study used innovative approaches such

as a new normal form for differential-algebraic sys-
tems, the central manifold theorem, and bifurcation
theory. Din [25], on the other hand, explores complex
dynamics and chaotic control mechanisms in discrete-
time predator–prey models. By introducing the Leslie-
Gower predator–prey model and proposing a discrete-
time predator–prey system that partially depends on
the prey, the study investigates the boundedness, exis-
tence and uniqueness of the positive equilibrium points
and analyzes them using the central manifold theo-
rem and bifurcation theory. Uddin [26] provided an
in-depth study of discrete prey-predator models con-
taining predator population capture, applying Caputo
fractional order derivatives. In this paper, we study a
discrete predator–prey system with a square root func-
tional response and nonlinear prey harvesting.

Mortuja [27] examined the dynamic properties of the
system in the presence of nonlinear prey harvesting:

⎧
⎨

⎩

dx(t)
dt = r x

(
1 − x

k

)− γ
√
x y

1+thγ
√
x

− qEx
m1E+m2x

,

dy(t)
dt = −υy + eγ

√
x y

1+thγ
√
x
.

(1)

In the ecological context, the variables are defined as
follows: x represents the population density of prey, y
stands for the population density of predators, r signi-
fies the prey population growth rate, k denotes the envi-
ronmental carrying capacity, th represents the average
handling time of bait post-predation, e is the attrition
rate, γ quantifies the predator’s efficiency in search-
ing for prey, υ represents the natural mortality rate of
predators in the absence of prey, q denotes the coeffi-
cient of harvesting capacity, E stands for the harvesting
effort, while m1 and m2 are intrinsic constants.

Simultaneously, integrating practical implications,
our model also introduces algebraic equations to incor-
porate the economic dimension of capture activities.
This new model comprehensively considers a wide
range of factors related to the profitability of capture
activities, providing a more holistic view of our under-
standingof predator–prey systemdynamics by integrat-
ing ecological and economic factors. According to the
economic theory of Gordon [28]: net economic return
(NER) is calculated as the value obtained by subtract-
ing total costs (TC) from total revenue (TR).

In the framework of the system (1), the expressions
for Total Revenue (TR) and Total Cost (TC) are as fol-
lows:
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T R = qEx

m1E + m2x
p,

TC = qE

m1E + m2x
c,

In the context, p symbolizes the price per unit of
harvested biomass, while c denotes the cost per unit
of harvest. The economic profit, represented as m, is
identical to the Net Economic Revenue (NER). Hence,
this correlation can be articulated by the subsequent
equation:

NER = T R − TC = qE

m1E + m2x
(px − c) = m.

After incorporating the biological-economic alge-
braic equation mentioned earlier, the depiction of sys-
tem (1) can be extended into a comprehensive collec-
tion of differential-algebraic equations:
⎧
⎪⎪⎨

⎪⎪⎩

dx(t)
dt = r x

(
1 − x

k

)− γ
√
x y

1+thγ
√
x

− qEx
m1E+m2x

,

dy(t)
dt = −υy + eγ

√
x y

1+thγ
√
x
,

0 = qE
m1E+m2x

(px − c) − m.

(2)

For the sake of simplicity, we let

F(X) =
[
F1(x, y, E)

F2(x, y, E)

]

=
⎡

⎣
x
[
r
(
1 − x

k

)− γ y√
x(1+thγ

√
x)

− qE
m1E+m2x

]

y
[
−υ + eγ

√
x

1+thγ
√
x

]

⎤

⎦ ,

G(X) = qE

m1E + m2x
(px − c) − m,

X = [x, y, E]T .

The structure of this paper is as follows: In Sect. 2,
we discuss the positive equilibrium point of the contin-
uous system and its stability, we discuss the parameter
conditions under which the continuous system under-
goes a cusp bifurcation (Bogdanov–Takens bifurca-
tion) of codimension two bifurcation at the positive
equilibrium point.In Sect. 3, we provide a thorough
examination of the foundational properties related to
system (20). In Sect. 4, we proceed to analyze the local
stability of fixed points within the system. In Sect. 5, we
utilizes the new normal form of discrete differential-
algebraic systems [29], in conjunction with the cen-
ter manifold theorem and bifurcation theory [30–32],
particularly for specific parameter values, to demon-
strate the occurrence of flip bifurcation and Neimark–
Sacker bifurcation within system (20). In Sect. 6, we
study the codimension-two bifurcations of discreted
system associated with 1:2 strong resonances by using

a series of affine transformations and bifurcation the-
ory. In Sect. 7,we present numerical simulations that
serve to substantiate the validity of our conclusions.
In Sect. 8, we discuss the biological implications and
interpretations of the findings. Finally, the paper con-
cludes by summarizing the key findings.

The innovation points of the study are as follows:

(a) In contrast to the approach taken by Zhang [24], we
incorporate nonlinearity into prey harvesting.

(b) Diverging fromDin [25] andUddin [26], our inves-
tigation involves distinct response functions.

(c) Unlike the study conducted byGuo [33],we discuss
the codimensional-2 bifurcation of continuous sys-
tem and undertake a transformation of the system
from a continuous to a discrete framework.

2 Stability analysis and Bogdanov–Takens
bifurcation of the positive fixed point

In the context of the system (2), the positive equilibrium
point X0 = [x0, y0, E0]T for system (2) is given by the
following equations:
⎧
⎪⎪⎨

⎪⎪⎩

0 = r x
(
1 − x

k

)− γ
√
x y

1+thγ
√
x

− qEx
m1E+m2x

,

0 = −υy + eγ
√
x y

1+thγ
√
x
,

0 = qE
m1E+m2x

(px − c) − m.

The system (2) has the only one positive fixed point
X0 = (x0, y0, E0), where:

x0 =
(

υ

γ (e − thυ)

)2

,

y0 =
√
x0(1 + thγ

√
x0)

γ
(

r − r

k
x0 − qE0

m1E0 + m2x0

)

,

E0 = mm2x0
qpx0 − qc − mm1

.

It’s essential to emphasize that our focus is solely
on the interior equilibrium of system (2). This concen-
tration on the interior equilibrium is warranted by its
biological significance, signifying the coexistence of
prey, predator, and the effort exerted on prey harvest-
ing. Consequently, in this paper, we assume that:

r − r

k
x0 − qE0

m1E0 + m2x0
> 0, qpx0 − qc − mm1 > 0

Following themethodology outlined in the literature
[34,35], we initially consider the local parametrization
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� of the third equation of system (2), defined as fol-
lows:

[x, y, E]T = �(Y ) = XT
0

+U0Y + V0h(Y ), g(�(Y )) = 0,

Here,U0 =
[
I2
0

]

, where I2 =
(
1 0
0 1

)

. Additionally,

V0 = (0, 0, 1)T , Y = (y1, y2)T , and h : R
2 → R is

a smooth mapping. Expanding on the defined � and
referring to [29], we can derive:

D�(Y ) = (Dy1�(Y ),

Dy2�(Y )) =
(
Dg(X)

UT
0

)−1 (
0
I2

)

, (3)

For additional details regarding the local parameter-
ization, refer to [29]. The parametric representation of
system (2) can be expressed as:
{

1ג̇ = f1(m, �(m, ,((ג

2ג̇ = f2(m, �(m, .((ג
(4)

Now, we’re looking for the Jacobian matrix of the
linearization part for the system (2) when evaluated at
the fixed point X0.

To calculate the Jacobian matrix, we would need
the linearization equations that define the system (2).
So we can proceed with the calculation of the Jacobian
matrix evaluated at the fixed point:

QY f (�(0))

= Q f (X0)Q�(0)

=
⎛

⎝

qpx0E0
(px0−c)(m1E0+m2x0)

− r
k x0 + γ y0(1+2thγ

√
x0)

2
√
x0(1+thγ

√
x0)

2 − γ
√
x0

1+thγ
√
x0

eγ y0
2
√
x0(1+thγ

√
x0)

2 0

⎞

⎠

(5)

Theorem 1 Considering thepositive equilibriumpoint
X0 in system (2):

(i) If a21(m) > 4a2(m), the positive equilibrium
point X0 is asymptotically stable for a1(m) > 0 and
unstable for a1(m) < 0.

(ii) If a21(m) < 4a2(m), the positive equilibrium
point X0 acts as a sink for a1(m) > 0 and a source for
a1(m) < 0.

Proof The characteristic equation of matrix Q reveals:

λ2 + a1(m)λ + a2(m) = 0 (6)

where

a1(m) = r

k
x0 − qpx0E0

(px0 − c) (m1E0 + m2x0)

− γ y0(1 + 2thγ
√
x0)

2
√
x0
(
1 + thγ

√
x0
)2

and,

a2(m) = eγ 2y0

2
(
1 + thγ

√
x0
)3

We denote � by

� =
(
r

k
x0 − qpx0E0

(px0 − c) (m1E0 + m2x0)

− γ y0(1 + 2thγ
√
x0)

2
√
x0
(
1 + thγ

√
x0
)2

)2

− eγ 2y0

2
(
1 + thγ

√
x
)3

= a21(m) − 4a2(m)

Clearly, when a21(m) > 4a2(m) and a1(m) > 0, the
roots of the Eq. (2) all have negative real parts. Con-
versely, when a21(m) > 4a2(m) and a1(m) < 0, the
roots of the Eq. (2) all have positive real parts. There-
fore, the first part has been proved, the second part can
likewise be proved. ��

Then, it is proved that the unique positive equilib-
rium point of system is the cusp of codimensional-2.
Then, we discuss Bogdanov-Takens bifurcation (B-T
bifurcation). If f (x, y, E) = 0 and f

′
(x, y, E) = 0

hold simultaneously, then there is a pair of mutu-
ally coupled positive equilibrium points, generating a
degenerate equilibriumpoint, denoted as X0(x0, y0, E0)

If det (Q|X0) = 0and tr(Q|X0) = 0, then the Jaco-
bian matrix at Q has a pair of double roots 0, so X0

will be a sharp point.
To discern the properties of Hopf bifurcation in sys-

tem (2), we follow the approach outlined in [36,37].
It requires transforming system (2) into the following
form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d1ג

dt
= a11ג + b11ג + p1121ג

+p122ג1ג + p2222ג + O(‖ ג ‖3) ,

d2ג

dt
= c11ג + d12ג + q1121ג

+q122ג1ג + q2222ג + O(‖ ג ‖3)

(7)

123



Exploring bifurcations in a differential-algebraic model 20553

where

a1 = qpx0E0

(px0 − c) (m1E0 + m2x0)
− r

k
x0

+ γ y0(1 + 2thγ
√
x0)

2
√
x0
(
1 + thγ

√
x0
)2 ,

b1 = − γ
√
x0

1 + thγ
√
x0

,

c1 = eγ y0

2
√
x0
(
1 + thγ

√
x0
)2 ,

d1 =0,

p11 =γ y0(1 + 3thγ
√
x0)

4x
3
2
0 (1 + thγ

√
x0)3

− 2r

k
+ 2E2

0m1m2q

(m1E0 + m2x0)3

− 2E0q (m1 pE0 + m2c)
(
cm1E0 + m2 p2x0

)

(px0 − c)2 (m1E0 + m2x0)3

p12 = − γ

2
√
x0(1 + thγ

√
x0)

,

p22 =0,

q11 =γ ey0(1 + 3thγ
√
x0)

8x
3
2
0 (1 + thγ

√
x0)3

,

q12 = eγ

2
√
x0(1 + thγ

√
x0)

,

q22 =0.

and

a1 + d1 = 0, a1d1 − b1c1 = 0.

Translating

�1 = 1ג , �2 = a11ג + b12ג

Then system (7) can be reduced to
{

d�1
dt = �2 + a11�21 + a12�1�2 + O(‖ � ‖3) ,
d�2
dt = β11�

2
1 + β12�1�2 + O(‖ � ‖3) ,

(8)

where

a11 = − p12
b1

+ p11 , a12 = p12
b1

,

β11 = b1q11 + a1 ( p11 − q12 ) − a21 p12
b1

,

β12 = a21 p12
b1

+ q12.

There exists a C∞ as follows
⎧
⎨

⎩

ı1 = �1 − 1
2 · p12

b1
�21 ,

ı2 = �2 +
(

p11 − a1 p12
b1

)

�21.

So the system (8) is reduced to

⎧
⎪⎨

⎪⎩

dı1
dt

= ı2 + O(‖ ı ‖3) ,

dı2
dt

= ρ1ı21 + ρ2ı1ı2 + O(‖ ı ‖3) ,

where

ρ1 = β11 , ρ2 = −a1
b1

p12 + 2p11 + q12.

Noticing that ρ1ρ1 	= 0 (non-degenerate condition),
hence the immovable point X0 is a cusp of cosimplicial
dimension-2. Thus, the following theorem is obtained.

Theorem 2 System (2) has a cusp of dimension-2 at
the degenerate equilibrium X0.

Theorem 3 If γ, e is chosen as the bifurcation param-
eter, then the system (2) undergoes a B-T bifurcation in
a small neighborhood of X0.

Proof Considering the disturbed system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = x
[
r
(
1 − x

k

)− (γ+j1)y√
x(1+th (γ+j1)

√
x)

− qE
m1E+m2x

]
,

y = y
[
−υ + (e+j2)(γ+j1)

√
x

1+th (γ+j1)
√
x

]
,

0 = qE
m1E+m2x

(px − c) − m.

(9)

where (j1, j2) is the parameter vector in a small neigh-
borhood of (0, 0). According to the above transforma-
tion, the system becomes:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d1ג
dt = p0(j) + a2(j)1ג + b2(j)2ג + p′

1(j)21ג

+p′
2(j)2ג1ג + p′

2(j)22ג + O(‖ x ‖3) ,
d2ג
dt = q0(j) + c2(j)1ג + d2(j)2ג + q ′

11(j)21ג

+q ′
2(j)2ג1ג + q ′

2(j)22ג + O(‖ x ‖3) ,

123



20554 G. Zhang et al.

where

p0(j) = − j1
√
x0y0,

q0(j) =j2
√
x0y0,

a2(j) = qpx0E0

(px0 − c) (m1E0 + m2x0)
− r

k
x0

+ (γ + j1)y0(1 + 2th(γ + j1)
√
x0)

2
√
x0
(
1 + th(γ + j1)

√
x0
)2 ,

b2(j) = − (γ + j1)
√
x0

1 + th(γ + j1)
√
x0

,

c2(j) = (e + j2)(γ + j1)y0

2
√
x0
(
1 + th(γ + j1)

√
x0
)2 ,

d2(j) =0,

p′
11(j) = (γ + j1)y0(1 + 3th(γ + j1)

√
x0)

4x
3
2
0 (1 + th(γ + j1)

√
x0)3

− 2r

k
+ 2E2

0m1m2q

(m1E0 + m2x0)3

− 2E0q (m1 pE0 + m2c)
(
cm1E0 + m2 p2x0

)

(px0 − c)2 (m1E0 + m2x0)3

p′
12(j) = − (γ + j1)

2
√
x0(1 + th(γ + j1)

√
x0)

,

p′
22(j) =0,

q ′
11(j) = (γ + j1)ey0(1 + 3th(γ + j1)

√
x0)

8x
3
2
0 (1 + th(γ + j1)

√
x0)3

,

q ′
12(j) = (e + j2)(γ + j1)

2
√
x0(1 + th(γ + j1)

√
x0)

,

q ′
22(j) =0.

Translating

�1 = 1ג , �2 = a21ג + b22ג

And we get
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d�1
dt = p0 (j) + �2 + a′

11 (j) �21

+a′
12 (j) �1�2 + O

(‖ � ‖3) ,
d�2
dt = q ′

0 (j) + c3 (j) �1 + d3 (j) �2 + β11 (j) y21
+β12 (j) �1�2 + O

(‖ � ‖3) ,
(10)

where

q ′
0(j) =p0a2 + q0b2,

c3 = b2c2 − a2d2, d3 = a2 + d2,

a
′
11 =p

′
11 − a2 p

′
12

b2
, a

′
12 = p

′
12

b2
,

β
′
12 = a2 p

′
12

b2
+ q

′
12,

β ′
11 =b2q

′
11 + a2(p

′
11 − q ′

12) − a22 p
′
12

b2
.

The functions q ′
0(j), ai , βi are smooth functions on

j . Noting that q ′
0(j

∗) = c3(j∗) = d3(j∗) = 0, consid-
ering the following transformations:

ı1 = �1, ı2 = p0(j) + �2 + α′
11(j)�21

+α′
12(j)�1�2 + O(‖�‖3),

So the system (10) is reduced to
⎧
⎪⎨

⎪⎩

dı1
dt = ı2 ,
dı2
dt = k00(j) + k10(j)ı1 + k01(j)ı2 + k20(j)ı21
+k11(j)ı1ı2 + k02(j)ı22 + O(‖ ı ‖3) .

(11)

And

k00(0) =0, g10(0) = 0, g01(0) = 0,

ı =(ı1, ı2) ,

k00 (j) =q ′
0 (j) − p0 (j) d3 (j) + · · · ,

k10 (j) =c3 (j) + α′
12 (j) q ′

0 (j) − β ′
12 (j) p0 (j) + · · · ,

k01 (j) =d3 (j) − α′
12 (j) p0 (j) ,

k20 (j) =β ′
11 (j) − α′

11 (j) d3 (j) + c3 (j) a′
12 (j) + · · · ,

k11 (j) =β ′
12 (j) + 2α′

11 (j) − α′
12 (j) d3 (j) + · · · ,

k02 (j) =α′
12 (j) + · · · ,

Correspondingly

k00
(
j∗) = 0, k10

(
j∗) = 0,

k01
(
j∗) = 0, k20

(
j∗) = β ′

11

(
j∗) ,

k02
(
j∗) = α′

11

(
j∗) ,

k11
(
j∗) = β ′

12

(
j∗)+ 2α′

11

(
j∗) .

Further system (11) is written in the following form:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dı1
dt = ı2 ,
dı2
dt = (k00(j) + k10(j)ı1 + k20(j)ı21
+O(‖ ı ‖3)) + (k01(j) + (g11(j)ı1 + O(‖ ı ‖2)))ı2
+(k02(j) + O(‖ ı ‖))ı22
= �(ı1, j)+ � (ı1, j)ı2 + ð(ı, j)ı22 ,

(12)

where �, �, ð is a smooth function,and satisfies the fol-
lowing conditions

�(0, j∗) =k00(j
∗) = 0, � (0, j∗) = k01(j

∗) = 0,

∂�

∂ı1

∣
∣
∣
∣
(0,j∗)

=k10
(
j∗) = 0,

∂2�

∂ı21

∣
∣
∣
∣
∣
(0,j∗)

=k20(j
∗) = β ′

11(j
∗) = ρ1 	= 0 ,

∂ �

∂ı1

∣
∣
∣
∣
(0,j∗)

=k11(j
∗) = β

′
11(j

∗) + 2α
′
11(j

∗) = ρ2 	= 0.

Due to

�(0, j∗) = 0 ,
∂ �

∂ı1

∣
∣
∣
∣
(0,j∗)

= ρ2 	= 0 ,
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By the implicit function theorem, there exists a C∞
function ı1 (defined in a small neighborhood of j = j∗)
such that �(j∗) = 0, � (�, j) = 0, for any For any
j ∈ N(j∗), the following polar transformations are
used to eliminate the right-hand side term of the second
equation of system (12).

Let ı1 = �1 + �(j), ı2 = �2, then system (12) can
be transformed into
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d�1
dt = �2 ,
d�2
dt = (h00(j) + h10(j)�1 + h20(j)�2

1

+O(‖ � ‖3)) + (h01(j)

+(h11(j)�1 + O(‖ � ‖2)))�2

+(h02(j) + O(‖ � ‖))u22
= �(�1, j) + �(�1, j)�2 + ð(�, j)�2

2,

(13)

where

h00 = k00 + k10� + · · · , h10 = k10 + 2k20� + · · · ,

h01 = k01 + k11� + · · · , h11 = k11 + · · · ,

h02 = k02 + · · · , h20 = k20 + · · · , � = (�1, �2).

The coefficients of the�, term on the right hand side
of the second equality of Eq. (13) can be determined
by the following equation

h01 = �̄(0, j) = g01 + g11� + O(‖ � ‖2)
= [d2 − a′

12 p0 + · · · ]
+[β ′

12 + 2α′
11 − α′

12d2 + · · · ]�,

Then, we can get

h01(0, j) = k01(j
∗) = 0,

∂h01

∂�
∣
∣
∣
∣
(0,j∗)

= β12(j
∗) + 2α

′
11

(j∗) = ρ2 	= 0,

Let j ∈ N (j∗),�(j) ∈ M, then �(j) ∈ a
neighborhood of M can be approximated as �(j) ≈
−k01(j)/ρ2, so system (13) can be reduced to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d�1

dt
= �2 ,

d�2

dt
= h00(j) + h10(j)�1 + h20(j)�2

1

+h11(j)�1�2 + h02(j)�2
2 + (0(‖ � ‖3) .

(14)

Introducing the new time scalar dt = (1+ ψu1)dτ ,
where ψ = ψ(j) is the smooth function, transforms
equation (14) into
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d�1

dτ
= �2 (1 + ψ�1) ,

d�2

dτ
= h00 + (h10 + h00ψ)�1 + (h20 + h10ψ)�2

1

+h11�1�2 + h02�2
2 + O(‖ � ‖3).

(15)

Assuming �1= �1, �2= �2(1+ψ�1), we have that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d �1

dτ
=�2 ,

d �2

dτ
= l00(j) + l10(j) �1 +l20(j) �

2
1

+l11(j) �1�2 +l02(j) �
2
2 +O(‖�‖3) ,

(16)

where

l00 (j) = h00 , l20 (j)

= h20 + 2h00ψ(j) + h00ψ
2 (j) ,

l11 (j) = h11 , l02 (j)

= h02 + ψ(j) , l10 (j) = h10 + 2h00ψ(j) .

Let ψ(j) = −h02 (j), to eliminate the �
2
2 term, then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d �1

dτ
=�2 ,

d �2

dτ
= β1(j) + β2(j) �1 +η(j) �

2
1

+ζ(j) �1�2 +O(‖�‖3) ,

(17)

where

�= ( �1 , �2 ) , β2(j) = h10(j) − 2h00(j)h02(j) ,

β1(j) = h00(j), ζ(j) = h11(j) 	= 0, h00(j) 	= 0 ,

η(j) = h20(j) − 2h10(j)h02(j) + h202(j).

Introducing the new time variable t =
∣
∣
∣
η(j)
ζ(j)

∣
∣
∣ τ and

the new variables ξ1 = η(j)

ζ 2(j)
�1, ξ2 = η2(j)

ζ 3(j)
�2, then

s = sign
η(j)

ζ(j)
= sign

η∗(j)

ζ ∗(j)

= ρ2

k20(j∗)
= ± 1

Thus Eq. (17) can be changed to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dξ1
dτ

= ξ2 ,

dξ2
dτ

= k1 + k2ξ1 + ξ21 + sξ1ξ2 + O(‖ ξ ‖3) ,

(18)

where

k1(j) = η(j)

ζ 2(j)
β1(j) , k2(j) = η(j)

ζ 2(j)
β2(j) ,

Then Eq. (18) is locally topologically equivalent
(for arbitrarily small ‖k‖) at the origin to the following
equation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dξ1
dτ

= ξ2 ,

dξ2
dτ

= k1 + k2ξ1 + ξ21 + s ξ1ξ2 .

(19)

123



20556 G. Zhang et al.

Then, we get the general paradigm for the B-T bifur-
cation of the system (2),

rank

(
∂ (k1, k2)

∂j

)

= 2, J =

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂�1

∂j2

∂�1

∂j1

∂�2

∂j2

∂�2

∂j1

∣
∣
∣
∣
∣
∣
∣
∣
∣

	= 0.

��
Remark 1 The Bogdanov–Takens Point is character-
ized by the coexistence of a stable limit cycle and a
saddle-focus equilibrium. Near this point, the phase
space exhibits complex dynamics due to the interac-
tion between these two coexisting structures. A homo-
clinic orbit is a periodic orbit that is asymptotic, in
both forward and backward time, to a saddle equilib-
rium point. Near the Bogdanov–Takens Point, a curve
of homoclinic orbits emerges due to the presence of
the saddle-focus equilibrium. These orbits play a cru-
cial role in shaping the global dynamics of the system.

3 Fundamental characteristics of discrete system
(2)

Discretizingpredator–prey systems simplifies themodel
analysis process, enhances the convenience of numer-
ical simulations, and offers strong adaptability and
improved mathematical descriptions. Consequently,
we proceed to discretize the aforementioned sys-
tem.Utilizing the forward Euler method on system
(2), we devise an innovative discrete-time biological-
economic system, characterized by a set of discrete-
time differential-algebraic equations outlined as fol-
lows:
⎧
⎪⎪⎨

⎪⎪⎩

x → x + δx[r (1 − x
k

)− γ y√
x(1+thγ

√
x)

− qE
m1E+m2x

],
y → y + δy[−υ + eγ

√
x

1+thγ
√
x
],

0 = qE
m1E+m2x

(px − c) − m.

(20)

For simplicity, let

f (X) =
[
f1(x, y, E)

f2(x, y, E)

]

=
[
x + δx[r (1 − x

k

)− γ y√
x(1+thγ

√
x)

− qE
m1E+m2x

]
y + δy[−υ + eγ

√
x

1+thγ
√
x
]

]

,

g(X) = qE

m1E + m2x
(px − c) − m,

X = [x, y, E]T .

Given that the set �0 is defined as
{
X = (x, y, E) |

x > 0, y > 0, E > 0
}
, and given its practical appli-

cations in the field of bioeconomics, this paper focuses
mainly on the study of the system (20) within the
domain �0. Our goal is to determine the conditions
under which the solution of the system (20) remains
positive and bounded in this domain.

Lemma 1 Assuming that the condition m > 0 is sat-
isfied, we can say with certainty that for system (20),
every possible solution (x, y, E) with initial values
x1 > 0, y1 > 0, and E1 > 0 is not only positive but
also constrained by the specified domain �0.

Proof The formulation of system (20) can be rephrased
as follows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+1 = xn + δxn[
r
(
1 − xn

k

)− γ yn√
xn(1+thγ

√
xn)

− qEn
m1En+m2xn

]
,

yn+1 = yn + δyn
[
−υ + eγ

√
xn

1+thγ
√
xn

]
,

0 = qEn
m1En+m2xn

(pxn − c) − m,

(21)

that is
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+1 = xn(
1 + δr

(
1 − xn

k

)− δγ yn√
xn(1+thγ

√
xn)

− δqEn
m1En+m2xn

)
,

yn+1 = yn
(
1 − δυ + δeγ

√
xn

1+thγ
√
xn

)
,

0 = qEn
m1En+m2xn

(pxn − c) − m,

(22)

from a biological perspective, let xn , yn , and En repre-
sent prey density, predator density, and harvest effort,
respectively. Considering system (19), we can deduce

that sup∀n∈N xn � k+kδr
δr , sup∀n∈N yn � (1+δr)2(1+thγ )

γ δ2r
,

and sup∀n∈N En � (1+δr)2m2k
(qδ−m1−m1δr)rδ

. In the practical
context of biological economics, it is understood that
prey density xn > 0, predator density yn > 0, and har-
vest effort En > 0 for all n ∈ N, thus completing the
proof. ��

Moving forward, our goal is to determine all possible
fixed points of system (20). The fixed points X0 =
(x0, y0, E0) of the mapping (20) satisfy the following
system of equations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = x + δx
[
r
(
1 − x

k

)− γ y√
x(1+thγ

√
x)

− qE
m1E+m2x

]
,

y = y + δy
[
−υ + eγ

√
x

1+thγ
√
x

]
,

0 = qE
m1E+m2x

(px − c) − m,

(23)

Theorem 4 The system (20) also has the only one pos-
itive fixed point X0 = (x0, y0, E0).
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Remark 2 The proof of Lemma 1 mainly depends on
a biological viewpoint. In fact, referring to [38], it
becomes apparent that Lemma 1 remains valid for sys-
tem (2).

Remark 3 Themaindifferencebetweendiscrete ecosys-
tems and continuous ecosystems lies in the spatial and
temporal structure between their components. Ecosys-
tems are usually extremely complex, involving a large
number of species, interactions, and environmental fac-
tors. Through discretization, complex continuous sys-
tems can be decomposed into discrete units or pro-
cesses, making understanding and modeling of the
system more feasible. This simplification can help
researchers focus on specific ecological units or pro-
cesses and better understand their behavior.

4 Stability analysis of the positive fixed point

In this section, we focus on analyzing the local sta-
bility of the positive fixed point X0 = (x0, y0, E0).
Derived from (20), we obtain Dg(x0, y0, E0) =
(
qE(pm1E+m2c)

(m1E+m2x)2
, 0, (px−c)m2x

(m1E+m2x)2
), and it is observed that

the rank of Dg(x0, y0, E0) is 1.
For any point (x, y, E) in an open neighborhood

B1(x0, y0, E0), the dynamical system (20) can be effec-
tively reduced to the following form:

Y → f (�(Y )), Y = (y1, y2), Y ∈ A ⊂ R
2, (24)

where A is a subset of R
2 defined as A = ψ−1(B1

(x0, y0, E0)) with the property that the point (0, 0) is
an element of A. B1(x0, y0, E0) represents an open
neighborhood of the point (x0, y0, E0) in the three-
dimensional space.

Now, we’re looking for the Jacobian matrix of the
linearization part for the system (8) when evaluated at
the fixed point Y0 = (0, 0).

To calculate the Jacobian matrix, we would need the
linearization equations that define the system (24). So
we can proceed with the calculation of the Jacobian
matrix evaluated at the fixed point:

DY f (�(0))

= Df (X0)D�(0)

=
⎛

⎝
1 + δqpx0E0

(px0−c)(m1E0+m2x0)
− δr

k x0 + δγ y0(1+2thγ
√
x0)

2
√
x0(1+thγ

√
x0)

2 − δγ
√
x0

1+thγ
√
x0

δeγ y0
2
√
x0(1+thγ

√
x0)

2 1

⎞

⎠

(25)

Starting from Eq. (25), it is straightforward to
derive the characteristic equation for the Jacobian
matrix DY f (�(0)). This characteristic equation can
be expressed as follows:

λ2 − (2 + ℵ1δ)λ + (1 + ℵ1δ + ℵ2δ
2) = 0, (26)

where

ℵ1 = qpx0E0

(px0 − c) (m1E0 + m2x0)
− r

k
x0

+ γ y0(1 + 2thγ
√
x0)

2
√
x0
(
1 + thγ

√
x0
)2 ,

ℵ2 = eγ 2y0
2(1 + thγ

√
x0)3

.

Now, consider λ1 and λ2 as two eigenvalues of the
fixed point X0. Let’s explore alternative phrasing and
expand upon the definitions of different topological
types for a fixed point X0: a fixed point X0 is termed
a sink and is locally stable if both eigenvalues λ1 and
λ2 have magnitudes less than 1. Conversely, if both
eigenvalues have magnitudes greater than 1, the fixed
point X0 is termed a source and is locally unstable. If
one eigenvalue has a magnitude greater than 1 while
the other has a magnitude less than 1 (or vice versa),
X0 is referred to as a saddle point. X0 is labeled non-
hyperbolic if either of the eigenvalues has a magnitude
of exactly 1.

Let �(λ) = λ2 − (2 + ℵ1δ)λ + (1 + ℵ1δ + ℵ2δ
2),

then we have

�(1) = ℵ2δ
2, �(−1) = 4 + 2ℵ1δ + ℵ2δ

2. (27)

Using Eq. (27) and referring to Lemma 2 in Liu
[39], we can establish Theorem 5 concerning the local
stability of the positive fixed points in system (20).

Theorem 5 Let X0 be the positive fixed point of (20),
with ℵ2 > 0, then:

(a) X0 behaves as a sink under either of the following
conditions:

(a1) When −2
√ℵ2 � ℵ1 < 0 and 0 < δ < −ℵ1ℵ2

.
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(a2) Whenℵ1 < −2
√ℵ2 and0 < δ <

−ℵ1−
√

ℵ2
1−4ℵ2

ℵ2
.

(b) X0 behaves as a source under either of the fol-
lowing conditions:

(b1) When −2
√ℵ2 � ℵ1 < 0 and δ > −ℵ1ℵ2

.

(b2) When ℵ1 < −2
√ℵ2 and δ >

−ℵ1+
√

ℵ2
1−4ℵ2

ℵ2
or

ℵ1 � 0.
(c) X0 behaves as a saddle if ℵ1 < −2

√ℵ2 and
−ℵ1−

√

ℵ2
1−4ℵ2

�2
< δ <

−ℵ1+
√

ℵ2
1−4ℵ2

ℵ2
.

(d) X0 is non-hyperbolic under either of the follow-
ing conditions:

(d1) When ℵ2
1 ≥ 4ℵ2, δ = −ℵ1±

√

ℵ2
1−4ℵ2

ℵ2
.

(d2) When ℵ2
1 < 4ℵ2 and δ = −ℵ1ℵ2

.

According toTheorem5,when condition (d1) holds,
one of the eigenvalues of the positive fixed point X0

is λ1 = −1, while the other eigenvalue, λ2, does not
equal 1 in magnitude. Conversely, when condition (d2)
of Theorem 3.1 holds, we can deduce that the eigen-
values of the positive fixed point X0 constitute a pair
of conjugate complex numbers with a modulus of 1.

Expanding upon this, in case (d1), one eigenvalue
is real and equals -1, indicating a marginal stability
along that direction, while the other eigenvalue is not
restricted to the unit circle, implying a different behav-
ior along the corresponding eigenvector. In case (d2),
the eigenvalues are purely imaginary, suggesting a peri-
odic or oscillatory behavior around the fixed point.

Now, we let

�1 = {(r, e, γ, υ, th, k, c, p, q,m1,m2,m, δ) :

δ =
−ℵ1 −

√

ℵ2
1 − 4ℵ2

ℵ2
,

ℵ1 < −2
√ℵ2, r, e, γ, υ, th,

k, c, p, q,m1,m2,m, δ > 0}
or

�2 = {(r, e, γ, υ, th, k, c, p, q,m1,m2,m, δ) :

δ =
−ℵ1 +

√

ℵ2
1 − 4ℵ2

ℵ2
,

ℵ1 < −2
√ℵ2, r, e, γ, υ,

th, k, c, p, q,m1,m2,m, δ > 0}
As parameters undergo small variations within a

neighborhood of �1 or �2, system (20) may undergo
flip bifurcation at the fixed point X0. Let �3 =

{
(r, e, γ, υ, th, k, c, p, q,m1,m2,m, δ) : δ = −ℵ1ℵ2

,

−2
√ℵ2 < ℵ1 < 0, r, e, γ, υ, th, k, c, p, q,m1,

m2,m, δ > 0
}
Whenparameters experience small vari-

ations within a neighborhood of �3, the fixed point X0

may undergo Neimark–Sacker bifurcation.

5 Flip bifurcation and Neimark–Sacker
bifurcation

In the field of ecology, both Flip bifurcations and
Neimark–Sacker (N–S) bifurcations in discrete predator–
prey systems play an important role. They reveal the
abrupt changes and dynamic shifts thatmayoccur in the
system under specific conditions. These bifurcations
are crucial to our understanding of ecosystem stability,
resilience and evolution. Flip bifurcations reveal abrupt
state transitions that may occur during predator–prey
interactions, which may lead to ecosystem collapse or
transformation, which in turn affects ecosystem struc-
ture and function. On the other hand, N–S bifurca-
tions indicate stable regions of the system in parameter
space, which is crucial for us to predict and manage
ecosystem responses. Overall, the study of these bifur-
cations helps us to gain a comprehensive understand-
ing of the dynamic behavior of ecosystems and provide
guidance for practice and ecological conservation.

Therefore, in this section, we introduce the parame-
ter δ as a bifurcation parameter to study the Flip bifur-
cation and N–S bifurcation of the positive fixed point
X0 in the discrete-time differential-algebraic bioeco-
nomic system (20). This analysis makes use of the new
normal form of discrete differential-algebraic systems
[29], the central manifold theorem, and bifurcation the-
ory [30–32].

We first check the system (20) at X0 for flip bifurca-
tion when the parameters vary in a small neighborhood
of �1. Similar conclusions can be drawn for the alter-
native case �2.

Under condition (d1), we determine that one eigen-
value of the positive definite immobile point X0 is λ1 =
−1 and the other isλ2 = 3+�1δ1, where |λ2| 	= 1. The
parameters (r, e, γ, υ, th, k, c, p, q,m1,m2,m, δ1) can
be chosen arbitrarily from the set �1, where δ1 =
−ℵ1−

√

ℵ2
1−4ℵ2

ℵ2
. We introduce δ0 as the bifurcation

parameter, which satisfies |δ0| � 1, denoting a smaller
perturbation parameter. In order to analyze the stabil-
ity of the flip bifurcation, we combine the ideas in the
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literature [30–32] with the system (24) and formulate
the system (28) as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x → x + (δ1 + δ0) x[r
(
1 − x

k

)

− γ y√
x(1+thγ

√
x)

− qE
m1E+m2x

]
y → y + (δ1 + δ0) y[−υ + eγ

√
x

1+thγ
√
x
]

0 = qE
m1E+m2x

(px − c) − m.

(28)

Using the identical outcomes as outlined in Sect. 3,
we can simplify system (28) to system (24). To scruti-
nize the stability of the flip bifurcation, we draw upon
references such as [30–32] and, in tandem with (24),
articulate the structure of system (28) as follows:
⎛

⎝
y1
y2
δ0

⎞

⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g(1)
1 y1 + g(1)

2 y2 + g(1)
11 y21 + g(1)

12 y1y2 + g(1)
10 y1δ0

+g(1)
20 y2δ0 + g(1)

110y
2
1δ0 + g(1)

120y1y2δ0 + · · ·
g(2)
1 y1 + g(2)

2 y2 + g(2)
11 y21 + g(2)

12 y1y2 + g(2)
22 y22

+g(2)
111y

3
1 + g(2)

112y
2
1 y2 + g(2)

122y1y
2
2

+g(2)
10 y1δ0 + g(2)

20 y2δ0
+g(2)

110y
2
1δ0 + g(2)

120y1y2δ0 + g(2)
220y

2
2δ0 + g(2)

1110y
3
1δ0

+g(2)
1120y

2
1 y2δ0 + g(2)

1220y1y
2
2δ0 + · · ·

δ0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(29)

The expressions for g(1)
1 , g(1)

2 , . . . , g(2)
1220 can be

obtained from (20) and (24), as presented in the lit-
erature [33]. The detailed process is omitted here:

g(1)
1 = 1 + δ1qpx0E0

(px0 − c) (m1E0 + m2x0)

− δ1r

k
x0 + δ1γ y0(1 + 2thγ

√
x0)

2
√
x0
(
1 + thγ

√
x0
)2 ,

g(1)
10 = qpx0E0

(px0 − c) (m1E0 + m2x0)

− r

k
x0 + γ y0(1 + 2thγ

√
x0)

2
√
x0
(
1 + thγ

√
x0
)2 ,

g(1)
2 = − δ1γ

√
x0

1 + thγ
√
x0

,

g(1)
20 = − γ

√
x0

1 + thγ
√
x0

,

g(2)
1 = δ1eγ y0

2
√
x0
(
1 + thγ

√
x0
)2 ,

g(2)
10 = eγ y0

2
√
x0
(
1 + thγ

√
x0
)2 ,

g(2)
2 = 1, g(2)

20 = 0,

g(1)
11 = δ1γ y0(1 + 3thγ

√
x0)

4x
3
2
0 (1 + thγ

√
x0)3

−2δ1r

k
+ 2δ1E2

0m1m2q

(m1E0 + m2x0)3

−2δ1E0q (m1 pE0 + m2c)
(
cm1E0 + m2 p2x0

)

(px0 − c)2 (m1E0 + m2x0)3
,

(30)

g(1)
110 = γ y0(1 + 3thγ

√
x0)

4x
3
2
0 (1 + thγ

√
x0)3

− 2r

k
+ 2E2

0m1m2q

(m1E0 + m2x0)3

−2E0q (m1 pE0 + m2c)
(
cm1E0 + m2 p2x0

)

(px0 − c)2 (m1E0 + m2x0)3
,

g(1)
12 = − γ δ1

2
√
x0(1 + thγ

√
x0)

,

g(1)
120 = − γ

2
√
x0(1 + thγ

√
x0)

,

g(2)
11 = δ1γ ey0(1 + 3thγ

√
x0)

8x
3
2
0 (1 + thγ

√
x0)3

,

g(2)
110 = γ ey0(1 + 3thγ

√
x0)

8x
3
2
0 (1 + thγ

√
x0)3

,

g(2)
12 = eγ δ1

2
√
x0(1 + thγ

√
x0)

,

g(2)
120 = eγ

2
√
x0(1 + thγ

√
x0)

,

g(2)
22 = 0, g(2)

220 = 0,

g(2)
111 = −γ eδ1y0(4thγ

√
x0 + 5t2hγ 2x0 + 1)

8x
5
2
0 (1 + thγ

√
x0)4

,

g(2)
1110 = −γ ey0(4thγ

√
x0 + 5t2hγ 2x0 + 1)

8x
5
2
0 (1 + thγ

√
x0)4

,

g(2)
112 = −γ eδ1y0(1 + 3thγ

√
x0)

8x
3
2
0 (1 + thγ

√
x0)3

,

g(2)
1120 = −γ ey0(1 + 3thγ

√
x0)

8x
3
2
0 (1 + thγ

√
x0)3

,

g(2)
122 = 0, g(2)

1220 = 0,

g(1)
22 = g(1)

220 = · · · = g(2)
222 = g(2)

2220 = 0.

Now, through the application of the following translation

⎛

⎝
y1
y2
δ0

⎞

⎠ =
⎛

⎜
⎝

g(1)
2 g(1)

2 0
−1 − g(1)

1 λ2 − g(1)
1 0

0 0 1

⎞

⎟
⎠

⎛

⎝
z1
z2
μ0

⎞

⎠ , (31)

Subsequently, the normal form of (29) can be derived as
follows:

⎛

⎝
z1
z2
μ0

⎞

⎠
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→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−z1 + ḡ(1)
11 z

2
1 + ḡ(1)

12 z1z2 + ḡ(1)
10 z1μ0 + ḡ(1)

20 z2μ0

+ḡ(1)
10 z

2
1μ0 + ḡ(1)

120z1z2μ0 + · · ·
λ2z2 + ḡ(2)

11 z
2
1 + ḡ(2)

12 z1z2 + ḡ(2)
22 z

2
2 + ḡ(2)

111z
3
1

+ḡ(2)
112z

2
1z2 + ḡ(2)

122z1z
2
2 + ḡ(2)

10 z1μ0 + ḡ(2)
20 z2μ0

+ḡ(2)
110z

2
1μ0 + ḡ(2)

120z1z2μ0 + ḡ(2)
220z

2
2μ0 + ḡ(2)

1110z
3
1μ0

+ḡ(2)
1120z

2
1z2μ0 + ḡ(2)

1220z1z
2
2μ0 + · · ·

μ0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(32)

where

ḡ(1)
11 = 1

1 + λ2

{(
λ2 − g(1)

1

) [
g(1)
11 g

(1)
2 − g(1)

12

(
1 + g(1)

1

)]

− g(2)
11

(
g(1)
2

)2

+g(2)
12 g

(1)
2

(
1 + g(1)

1

)
− g(2)

22

(
1 + g(1)

1

)2
}

,

ḡ(1)
10 = 1

1 + λ2

{(
λ2 − g(1)

1

) [
g(1)
10 − g(1)

20

(
1 + g(1)

1

)
/g(1)

2

]

−g(2)
10 g

(1)
2 + g(2)

20

(
1 + g(1)

1

)}
,

ḡ(1)
12 = 1

1 + λ2

{(
λ2 − g(1)

1

) [
2g(1)

11 g
(1)
2

+g(1)
12

(
λ2 − 1 − 2g(1)

1

)]
− 2g(2)

11

(
g(1)
2

)2

− g(2)
12 g

(1)
2

(
λ2 − 1 − 2g(1)

1

)

+2g(2)
22

(
1 + g(1)

1

) (
λ2 − g(1)

1

)}
,

ḡ(1)
20 = 1

1 + λ2

{(
λ2 − g(1)

1

) [
g(1)
10 + g(1)

20

(
λ2 − g(1)

1

)
/g(1)

2

]

−g(2)
10 g

(1)
2 − g(2)

20

(
λ2 − g(1)

1

)}
,

ḡ(1)
110 = 1

1 + λ2

{(
λ2 − g(1)

1

) [
g(1)
110g

(1)
2 − g(1)

120

(
1 + g(1)

1

)]

− g(2)
110

(
g(1)
2

)2

+g(2)
120g

(1)
2

(
1 + g(1)

1

)
− g(2)

220

(
1 + g(1)

1

)2
}

,

ḡ(2)
10 = 1

1 + λ2

{(
1 + g(1)

1

) [
g(1)
10 − g(1)

20

(
1 + g(1)

1

)
/g(1)

2

]

+g(2)
10 g

(1)
2 − g(2)

20

(
1 + g(1)

1

)}
,

ḡ(2)
11 = 1

1 + λ2

{(
1 + g(1)

1

) [
g(1)
11 g

(1)
2 − g(1)

12

(
1 + g(1)

1

)]

+ g(2)
11

(
g(1)
2

)2

−g(2)
12 g

(1)
2

(
1 + g(1)

1

)
+ g(2)

22

(
1 + g(1)

1

)2
}

,

. . .

ḡ(2)
22 = . . . = ḡ(2)

222 = 0.

Let’s utilize the center manifold to analyze the dynamics
of (32) around the fixed point (0,0) within a small vicinity of
μ0 = 0. According to the center manifold theorem [31], we

establish that (32) exhibits a center manifold described by:

Wc(0, 0, 0) = {
(z1, z2, μ0) ∈ R3 : z2 = c1z

2
1

+c2z1μ0 + c3μ
2
0 + o

(
(|z1| + |μ0|)3

)}
.

Upon substituting the centermanifold into (32), we deduce:

c1 = ḡ(2)
11

1 − λ2
, c2 = − ḡ(2)

10

1 + λ2
, c3 = 0

Hence, the map (32) restricted to the center manifold
Wc(0, 0, 0) is expressed as:

� : z1 → −z1 + �1z
2
1 + �2z1μ0 + �3z

2
1μ0

+�4z1μ
2
0 + �5z

3
1 + o

(
(|z1| + |μ0|)4

)
. (33)

where

�1 =ḡ(1)
11 , �2 = ḡ(1)

10 ,

�3 = ḡ(1)
20 f̄ (2)

11 (1 + λ2) − ḡ(2)
10 f̄ (1)

12 (1 − λ2)

1 − λ22
+ ḡ(1)

110,

�4 = − ḡ(1)
20 ḡ

(2)
10

1 + λ2
, �5 = ḡ(1)

12 ḡ
(2)
11

1 − λ2
.

For themap (32) to undergo a flip bifurcation, it is necessary
for twodiscriminant quantitiesς1 andς2 to benon-zero,where:

ς1 =
(

∂2�

∂z1∂μ0
+ 1

2

∂�

∂μ0

∂2�

∂z21

)∣
∣
∣
∣
∣
(0,0)

= �2,

ς2 =
⎛

⎝
1

6

∂3�

∂z31
+
(
1

2

∂2�

∂z21

)2
⎞

⎠

∣
∣
∣
∣
∣
∣
(0,0)

= �5 + � 2
1 .

Based on the analysis provided above and the theorem
established in references [30–32], we can infer the following
outcome.

Theorem 6 According to Lemma 1 and condition (d1) of The-
orem5, ifς1ς2 	= 0, then the system (20)will undergoaflipping
bifurcation at the immovable point X0 when the parameter δ

varies in a small neighborhood of δ1. Furthermore, if ς2 > 0,
then the period-2 orbit from X0 is a stable state. Conversely,
if ς2 < 0, then the period-2 orbit from X0 is unstable states.

This theorem clarifies the occurrence of a flip bifurcation
at the fixed point X0 of system (20) under specific conditions,
providing insights into the stability of the resulting period-
2 orbits based on the sign of ς2. In the following segment of
this section, we investigate the stability of the Neimark–Sacker
bifurcation as parameters undergo variations within a narrow
vicinity of �3.

Considering (r, k, th, γ, υ, e, p, q, c,m1,m2,m, δ2) ∈ �3

where δ2 = −ℵ1ℵ2
, let δ̄0 (

∣
∣δ̄0
∣
∣� 1) be selected as the bifurca-

tion parameter. We analyze the perturbation of (20) as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x → x + (δ2 + δ̄0
)
x[r (1 − x

k

)

− γ y√
x(1+thγ

√
x)

− qE
m1E+m2x

]
y → y + (δ2 + δ̄0

)
y[−υ + eγ

√
x

1+thγ
√
x
]

0 = qE
m1E+m2x

(px − c) − m.

(34)
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To evaluate the stability of the N–S bifurcation, we refer to
the established literature [30–32] and, utilizing equations (24)
and (34), describe the configuration of system (34) as follows:

(
y1
y2

)

→
⎛

⎜
⎝

g(1)
1 y1 + g(1)

2 y2 + g(1)
11 y21 + g(1)

12 y1y2 + · · ·
g(2)
1 y1 + g(2)

2 y2 + g(2)
11 y21 + g(2)

12 y1y2 + g(2)
22 y22

+g(2)
111y

3
1 + g(2)

112y
2
1 y2 + g(2)

122y1y
2
2 + · · ·

⎞

⎟
⎠ .

(35)

The coefficients g(1)
1 , g(1)

2 , . . . , g(2)
122 provided in (30) only

require δ1 = δ2. It’s important to emphasize that the charac-
teristic equation derived from the linearization of the map (34)
at Y0 = (0, 0) is formulated as follows:

λ2 − [2 + ℵ1
(
δ2 + δ̄0

)]
λ

+
[
1 + ℵ1

(
δ2 + δ̄0

)+ ℵ2
(
δ2 + δ̄0

)2
]

= 0, (36)

As per the findings in [39] and condition (d2) of Theorem
3.1, it is established that the eigenvalues for (20) at Y0 consist
of a pair of complex conjugate numbers λ and λ̄, each with a
modulus of 1. Additionally,

|λ| =
√[

1 + ℵ1
(
δ2 + δ̄0

)+ ℵ2
(
δ2 + δ̄0

)2
]
,

l = d|λ|
d δ̄0

∣
∣
∣
∣
δ̄0=0

= −ℵ1

2
> 0. (37)

Furthermore, in the case where δ̄0 = 0, we need to ensure
that λi and λ̄i 	= 1 (for i = 1, 2, 3, 4), which is equivalent to
− (2 + ℵ1δ2) 	= −2, 0, 1, 2. Specifically, it suffices to ensure

that − (2 + ℵ1δ2) 	= 0, 1, resulting in
ℵ2
1ℵ2

	= 2, 3. Conse-

quently, the eigenvalues λ and λ̄ of the fixed point Y0 from
(35) do not intersect the unit circle with the coordinate axes
when δ̄0 = 0.

Next, we delve into the analysis of the normal form of the
map (36) at δ̄0 = 0. Setting δ̄0 = 0, μ = 1 + ℵ1δ2

2 , κ =
δ2
2

√

4ℵ2 − ℵ2
1, and then, employing the translation:

(
y1
y2

)

=
(

g(1)
2 0

μ − g(1)
1 −κ

)(
z1
z2

)

, (38)

then, we can get the normal form of (35) as follows:

(
z1
z2

)

→
⎛

⎜
⎝

μz1 − κz2 + ĝ(1)
11 z

2
1 + ĝ(1)

12 z1z2 + · · ·
κz1 + μz2 + ĝ(2)

11 z
2
1 + ĝ(2)

12 z1z2 + ĝ(2)
22 z

2
2

+ĝ(2)
111z

3
1 + ĝ(2)

112z
2
1z2 + ĝ(2)

122z1z
2
2 + · · ·

⎞

⎟
⎠ ,

(39)

where

ĝ(1)
11 =g(1)

2 g(1)
11 + g(1)

12

(
μ − g(1)

1

)
,

ĝ(1)
12 = −κg(1)

12 ,

ĝ(2)
11 = 1

κ

[
g(1)
11 g

(1)
2

(
μ − g(1)

1

)

+
(
g(1)
12 − g(2)

2

) (
μ − g(1)

1

)2

−g(2)
11

(
g(1)
2

)2 − g(2)
12 g

(1)
2

(
μ − g(1)

1

)]

,

ĝ(2)
12 =

(
2g(2)

2 − g(1)
12

) (
μ − g(1)

1

)
+ g(2)

12 g
(1)
2 ,

ĝ(2)
22 = −κg(2)

2 ,

ĝ(2)
111 = − 1

κ

[

g(2)
111

(
g(1)
2

)3 + g(2)
112

(
g(1)
2

)2 (
μ − g(1)

1

)

+g(2)
122

(
g(1)
2

)2 (
μ − g(1)

1

)2
]

,

ĝ(2)
112 =g(2)

112

(
g(1)
2

)2 + 2g(2)
122g

(1)
2

(
μ − g(1)

1

)
,

ĝ(2)
122 = −κg(2)

122g
(1)
2 ,

ĝ(1)
22 = · · · = ĝ(2)

222 = 0, δ1 = δ2.

To trigger the N–S bifurcation in map (20), as the works
of [30–32], it’s essential that the discriminant quantity doesn’t
equal zero. This condition is crucial for inducing the bifurca-
tion phenomenon.

ς0 =
{

−Re

[
(1 − 2λ)λ̄2

1 − λ
ζ11ζ20

]

−1

2
|ζ11|2 − |ζ02|2 + Re(λ̄ζ21)

}∣
∣
∣
∣
δ0=0

, (40)

where

ζ11 =1

4

[
ĝ(1)
11 + ĝ(1)

22 + i
(
ĝ(2)
11 + ĝ(2)

22

)]
,

ζ20 =1

8

[
ĝ(1)
11 − ĝ(1)

22 + 2ĝ(2)
12 + i

(
ĝ(2)
11 − ĝ(2)

22 − 2ĝ(1)
12

)]
,

ζ02 =1

8

[
ĝ(1)
11 − ĝ(1)

22 − 2ĝ(2)
12 + i

(
ĝ(2)
11 − ĝ(2)

22 + 2ĝ(1)
12

)]
,

ζ21 = 1

16

[
ĝ(1)
111 + ĝ(1)

122 + ĝ(2)
112 + ĝ(2)

222

+i
(
ĝ(2)
111 + ĝ(2)

122 − ĝ(1)
112 − ĝ(1)

222

)]
.

Summarizing above results and the theorem in [30–32],
here’s a rephrased and expanded version of the above results
and theorem:

Theorem 7 Under the conditions specified in Theorem 5,
denoted as (d2), and with parameters

(
r, k, th, γ, υ, e, p, q,

c,m1,m2,m, δ2
)
belonging to the set �3, if l = d|λ|

d δ̄0

∣
∣
∣
δ̄0=0

=
−ℵ1

2 > 0, and
ℵ2
1ℵ2

	= 2, 3, while ς0 	= 0, then system (20)
undergoes a Neimark–Sacker bifurcation at the positive fixed
point X0 as the parameter δ varies within a small vicinity of δ2.
Additionally, if ς0 < 0, an attracting invariant closed curve
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Fig. 1 a Bifurcation diagram in the (δ, x) plane visualizes how
the parameter δ influences the variable x . b Bifurcation diagram
in the (δ, y) plane illustrates the relationship between the param-

eter δ and the variable y. c Bifurcation diagram in the (δ, E)

plane shows the dependency between the parameter δ and the
system’s energy E

emerges from the fixed point for δ > δ2, whereas if ς0 > 0, a
repelling invariant closed curve arises from the fixed point for
δ < δ2.

6 Codimension-two bifurcation analysis

To further investigate the dynamic behavior of the system (20),
we investigated its codimension-two bifurcations. Let λ1,2 be
two eigenvalues of Jacobian matrix DY f (�(0)). It follows
that λ1λ2 = 1, and that implies that λ1,2 = e±iθ0 for some
real number θ0. If λk1,2 = 1 for k = 1, 2, 3, 4, system (20) may
exhibit more complicated dvnamical behaviors. namelv. chaos

and codimension-2 bifurcations. As a matter of fact. we can
get the following conditions for the strong resonances. Thus,
we define one bifurcation set

F12 =
{

(r, e, γ, υ, th , k, c, p, q,m1,m2,m, δ) : δ = −4

ℵ1
,

e = 8(1 + thγ
√
x0)3

γ 2y0
,

r, e, γ, υ, th, k, c, p, q,m1,m2,m, δ > 0}
In this section, we will give attention to recapitulate

the codimension-two bifurcation of system (20) around X0.
Parameters δ, e are chosen as the bifurcation parameters.
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By [36], the system (20) can be expressed as
[
y1
y2

]

→
[−1 + a10(δ̄, ē) 1 + a01(δ̄, ē)

b10(δ̄, ē) −1 + b01(δ̄, ē)

] [
y1
y2

]

+
[
f (y1, y2)
g(y1, y2)

]

(41)

a10 = 2 + δ1qpx0E0

(px0 − c) (m1E0 + m2x0)
− δ1r

k
x0

+ δ1γ y0(1 + 2thγ
√
x0)

2
√
x0
(
1 + thγ

√
x0
)2 ,

a01 = −1 − δ1γ
√
x0

1 + thγ
√
x0

,

b10 = δ1eγ y0

2
√
x0
(
1 + thγ

√
x0
)2 ,

b01 = 2,

f (y1, y2) = (
δ1γ y0(1 + 3thγ

√
x0)

4x
3
2
0 (1 + thγ

√
x0)3

− 2δ1r

k

+ 2δ1E2
0m1m2q

(m1E0 + m2x0)3

− 2δ1E0q (m1 pE0 + m2c)
(
cm1E0 + m2 p2x0

)

(px0 − c)2 (m1E0 + m2x0)3
)y21

−
(

− γ δ1

2
√
x0(1 + thγ

√
x0)

)

y1y2

= a20y
2
1 + a11y1y2,

g(y1, y2) =
⎛

⎝
δ1γ ey0(1 + 3thγ

√
x0)

8x
3
2
0 (1 + thγ

√
x0)3

⎞

⎠ y21

+
(

eγ δ1

2
√
x0(1 + thγ

√
x0)

)

y1y2

= b20y
2
1 + b11y1y2

Introduce the non-singular linear coordinate transformation
[
y1
y2

]

→
[
1 + a01(δ̄, ē) 0
−a10(δ̄, ē) 1

] [
y1
y2

]

.

Map (41) can be uniquely represented as
[
y1
y2

]

→
[ −1 1

θ1(δ̄, ē) −1 + θ2(δ̄, ē)

] [
y1
y2

]

+
[
T (y1, y2)
P(y1, y2)

]

,

where

θ1 =b10 + a01b10 − a10b01,

θ2 =a10 + b01,

T (y1, y2) = [a20 (1 + a01) − a10a11] y
2
1

+ a11y1y2 = t20y
2
1 + t11y1y2,

P(y1, y2) = [a20 (1 + a01) a10 − a210a11

+b20 (1 + a01)
2 − a10b11 (1 + a01)

]
y21

+ [a11a10 + b11 (1 + a01)] y1y2

=p20y
2
1 + p11y1y2.

Then we take

y1 = w1 +
∑

2≤ j+k≤3

ϕ jk(λ̄, ē)w j
1w

k
2,

Fig. 2 The maximum Lyapunov exponents corresponding to
Fig. 1a–c

y2 = w2 +
∑

2≤ j+k≤3

ω jk(λ̄, ē)w j
1w

k
2,

with

ϕ20 =1

2
t20 + 1

4
p20,

ϕ11 =1

2
t20 + 1

2
t11 + 1

2
p20 + 1

4
p11,

ϕ02 =1

4
g11 + 1

8
p20 + 1

4
p11,

ω20 =1

2
p20,

ω11 =1

2
p20 + 1

2
p11,

ω02 =1

4
p11.

The normal form for 1:2 resonance can be achieved as fol-
lows
[

w1

w2

]

→
[ −1 1

θ1(δ̄, ē) −1 + θ2(δ̄, ē)

] [
w1

w2

]

+
[

0
C(δ̄, ē)w3

1 + D(δ̄, ē)w2
1w2

]

,

where

C(δ̄, ē) = t20 p20 + 1

2
p220 + 1

2
p20 p11,

D(δ̄, ē) = 1

2
t20 p11 + 5

4
p20 p11 + 5

2
t20 p20

+ 5

2
p20t11 + p220 + 1

2
p211 + 3t220.

Based on the results given in [40–42], We have the follow-
ing theorem which gives parametric conditions at 1: 2 reso-
nance point.

Theorem 8 Assume thatC(δ̄, ē) 	= 0and D(δ̄, ē)+3C(δ̄, ē) 	=
0. Then model (20) undergoes a 1: 2 strong resonance bifur-
cation at X0 when parameters vary in a small neighbourhood
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Fig. 3 Phase portraits for various values of δ corresponding to Fig. 1 are as follows: a δ = 0.48, b δ = 0.52, c δ = 0.553, d δ = 0.568,
e δ = 0.584854
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Fig. 4 a Bifurcation diagram in the (δ, x) plane visualizes how
the parameter δ influences the variable x . b Bifurcation diagram
in the (δ, y) plane illustrates the relationship between the param-

eter δ and the variable y. c Bifurcation diagram in the (δ, E)

plane shows the dependency between the parameter δ and the
system’s energy E

of F12. If we further assume C(δ̄, ē) < 0 (resp., C(δ̄, ē) > 0 ),
then X0 is a saddle (resp., elliptic). D(δ̄, ē) + 3C(δ̄, ē) deter-
mines the bifurcation scenarios near the 1: 2 point. Moreover,
model (1.4) has the following bifurcation behaviors:

(I) There is a pitchfork bifurcation curve LY = {(θ1, θ2
) :

θ1 = 0
}
, and there exists nontrivial fixed point for θ1 < 0;

(II) There is a non-degenerate Neimark–Sacker bifurcation
curve P = {(θ1, θ2) : θ1 = −θ2+O ((|θ1| + |θ2|)2

)
, θ1<0

}
;

(III) There is a heteroclinic bifurcation curve PV ={
(θ1, θ2) : θ1 = − 5

3 θ2 + O
(
(|θ1| + |θ2|)2

)
, θ1 < 0

}
.

7 Numerical simulation

Example 5.1 (Flip bifurcation) For the parameters r =
19
4 , k = 38

35 , th = 1, υ = 1, γ = 1, q = 1, e = 2, c =
1,m1 = 2,m2 = 2,m = 1

4 , p = 3 and δ varying between
0.48 to 0.6 range, the fixed point X0 = (1, 1

2 , 1
3 ) appears to flip

bifurcation at δ1 = 0.5039with eigenvalues ofς1 = 3837∗103
and ς2 = −3.0329∗106. This result confirms the effectiveness
of Theorem 3.

By analyzing Fig. 1a–c, we can clearly observe that the
fixed point X0 = (1, 1

2 , 1
3 ) demonstrates an unstable state at

δ < 0.504 and remains instability at the flip bifurcation param-

123



20566 G. Zhang et al.

0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7

parameter 

2.5

3

3.5

4

4.5

5

5.5

6

x

(a)

0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7

parameter 

3.5

4

4.5

5

5.5

6

6.5

y

(b)

0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7

parameter 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E

(c)

Fig. 5 The local amplification corresponding to Fig. 4a–c for δ in the range of 0.6 to 0.7

eter δ1 = 0.504. This phenomenon is further illustrated by the
corresponding maximum Lyapunov exponent shown in Fig. 3.
In addition, the phase space plots in Fig. 3a–e demonstrate
the dynamics of δ ∈ (0.48, 0.58). Of particular note is the
emergence of a chaotic ensemble at δ = 0.584854, as shown
in Fig. 3e. In Fig. 2, the maximum Lyapunov exponent cor-
responding to δ = 0.584854 exceeds zero, thus verifying the
existence of chaotic behavior. These simulations use the ini-
tial conditions x(0) = 0.95, y(0) = 0.45, and E(0) = 0.3
(Fig. 3).

In this example, we have uncovered the dynamic behav-
iors that may occur in complex systems. The system exhibits
chaotic phenomena and the occurrence of trajectory bifurca-
tions at intervals of 2, 4, and 8. Chaos manifesting as non-
periodicity and high complexity, while the occurrence of tra-

jectory bifurcations at intervals of 2, 4, and 8 indicates distinct
periodic behavior within the system. These phenomena remind
us of the complexity and diversity of ecosystems, emphasizing
the need for a more detailed study of dynamic changes within
ecological systems. For biologists and ecologists, understand-
ing these phenomena can help them better predict the behav-
ior of ecosystems and optimize management and conservation
strategies. Therefore, research on the chaotic behavior and the
occurrence of trajectory bifurcations at intervals of 2, 4, and 8
of flip bifurcations is crucial for our understanding and main-
tenance of the stability and diversity of ecosystems.
Example 5.2 (N–S bifurcation) For the parameters (r =
2, k = 8, th = 1, υ = 2, γ = 1, q = 1, e = 3, c =
1,m1 = 1,m2 = 1,m = 1

4 , p = 1), which cover the
range (r, e, γ, υ, th , k, c, p.q,m1,m2,m) ∈ �3, Lemma 2
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is verified by a simple computation that ensures the exis-
tence of the only positive immovable point of system (20).
We take X0 = (4, 5.5, 0.5) as the initial point. After calcu-
lation, we found that a Neimark–Sacker bifurcation occurs at
the stationary point X0 = (4, 5.5, 0.5), which occurs with a
parameter value of δ2 = 0.4090 and an eigenvalue of λ± =
0.9744375 ± 0.224632i . At δ2 = 0.4090, the modulus of the
eigenvalue |λ±| = 1, l = 1

16 > 0, ς0 = −9.6512 ∗ 107 < 0,

and
ℵ2
1ℵ2

= 0.051136 	= 2, 3, a result that verifies the validity
of Theorem 4.

By observing Fig. 4a–c, we can find that the fixed point
X0 = (4, 5.5, 0.5) of system (20) demonstrates a stable state
at δ < 0.4090, an unstable state at the value of the Neimark–
Sacker bifurcation parameter δ2 = 0.4090, and an unstable
state at the value of the Neimark–Sacker bifurcation parameter
δ2 = 0.4090, and when the δ exceeds 0.4090, an attractive
invariant closed curve appears.

Figure 5 illustrates a localized zoom-in ofFig. 4a–c,where δ

is in the range (0.6,0.7). Figure6 illustrates the maximum Lya-
punov exponent fromFig. 4, covering the range of δ (0.1,0.8). It
is observed that within this range, some Lyapunov exponents
are greater than 0 and some are less than 0, which suggests
the existence of stable immobilized points or stable periodic
windows within the chaotic region. According to the litera-
ture [30–32], positive Lyapunov exponents are considered to
be characteristic of chaos.

Based on the corollary of Theorem 5 and Theorem 7, when
δ = 0.38 < δ2 = 0.4090, the positive fixed point of Eq. (20),
X0 = (4, 5.5, 0.5), exhibits localized asymptotic stability.
And when δ = 0.41 > δ2 = 0.4090, an attraction-invariant
closed curve emerges from X0 = (4, 5.5, 0.5). These infer-
ences are supported by the computer simulations in Figs. 7
and 8, where the initial conditions of the simulations are set to
x(0) = 3.95, y(0) = 5.45, E(0) = 0.45.

8 Biological commentary

In this paper, we focus on stability and bifurcations in the
predator–prey system with nonlinear prey harvesting and the
square root functional response. Stability and bifurcations in
the predator–prey system have important implications for ecol-
ogy and biology, providing insights into understanding about
the dynamics of interacting populations.

Biological significance of stability: In the model of this
paper, according to simulation results and Theorem 5, when
δ = 0.38 < δ2 = 0.4090, the positive fixed point of Eq. (20),
X0 = (4, 5.5, 0.5), exhibits localized asymptotic stability. A
stable predator–prey system helps to maintain ecological bal-
ance and prevent drastic fluctuations in population size, thus
protecting the ecosystem structure and function.

Biological significance of Flip bifurcation: In a predator–
prey system, Flip bifurcation may lead to changes in the
dynamic behavior between the predator and the prey.When the
parameters change, the stable and periodic solutions between
the predator and prey may alternate, thereby affecting the sta-

Fig. 6 The maximum Lyapunov exponents corresponding to
Fig. 4a–c

bility and dynamic balance of the ecosystem.The flip bifurca-
tion has important biological implications in discrete predator–
prey systems because it demonstrates the complex interactions
between predators and prey. When predator populations reach
critical thresholds, the system may undergo sudden state tran-
sitions from one stable state to another, which can lead to
ecosystem collapse or transformation. This bifurcation phe-
nomenon highlights the potential for abrupt change and insta-
bility in ecosystems, emphasizing the importance of predator–
prey interactions for ecosystem structure and stability. There-
fore, in-depth understanding and study of the flipping bifurca-
tion phenomenon can help us better understand the dynamic
properties of ecosystems and provide important insights for
the conservation of biodiversity and effective management
of ecosystems. In this article, we take δ as the bifurcation
parameter. Through simulation, we demonstrate that when δ

is increased to the limit value, the flip bifurcation occurs. We
also elucidated the frequency of trajectory bifurcations in the
intervals of 2, 4, and 8 and chaotic phenomena.

Biological significance of N–S bifurcation:The Neimark–
Sacker phenomenon tells us that system responses to param-
eter changes create stable and unstable regions in parameter
space. Understanding these regions is critical for us to predict
and manage ecosystem responses. By studying the N–S bifur-
cation, biologists and ecologists can figure out the stability
and dynamic behavior of ecosystems under different parame-
ter conditions, which provides us with guidance for conserv-
ing and managing ecosystems. In addition, the N–S bifurca-
tion provides a framework for understanding the interactions
between stability and instability in ecosystems, helping us to
better understand ecosystem stability and resilience. In this
paper, we take δ as the bifurcation parameter. Through sim-
ulation, we demonstrate that when δ is increased to the limit
value, the N–S bifurcation occurs.

Overall, the study of stability and bifurcations in predator–
prey systems provides profound ecological insights into under-
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Fig. 7 When δ = 0.38, which is less than the critical value δ2 = 0.4090, the fixed point (4, 5.5, 0.5) in case (ii) exhibits stability. The
initial values are set at (3.95, 5.45, 0.45)

standing how biological systems adapt and respond to environ-
mental change. The understanding of these concepts has broad
applications for fields such as ecology, conservation biology,
and sustainable resource management.

9 Discussion

In our study, we mainly analyze a novel discrete differential-
algebraic bioeconomic system with flip and Neimark–Sacker
bifurcation. Our study finds that for different step sizes δ, the
fixed point of the system (20) may be destabilized by either
flipping orNeimark–Sacker bifurcation accompanied by a pos-
itive Lyapunov exponent, indicating the presence of chaotic
phenomena.

Our results extend previous studies, especially with respect
to [33], by demonstrating richer andmore intriguing dynamical
behaviors in discrete models.

In addition, this paper introduces a novel and effective
method for analyzing chaos and bifurcation phenomena in
more complex discrete differential-algebraic systems. These
findings set the stage for future research on similar topics.

During the process of writing the paper, we encountered the
following problems and challenges: the simulation model con-
tains many parameters that need to be estimated. Determining
accurate parameter values may require multiple experiments
and adjustments, increasing the complexity and time consump-
tion of the simulation process.

In the future, we can study discrete predator–prey systems
from the following perspectives:
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Fig. 8 When δ = 0.41, surpassing the critical value δ2 = 0.4090, an attracting invariant closed curve emerges from the stable fixed
point (4, 5.5, 0.5) in case (ii). The initial values are specified as (3.95, 5.45, 0.45)

Wecan adoptmore complex and refinedmathematicalmod-
els to more comprehensively reveal the dynamic behavior of
discrete predator–prey systems. These models can consider
more influencing factors, such as environmental changes, com-
petition between predators and prey, population migration and
diffusion, etc. By using these more detailed models, we can
simulate various complex dynamic phenomena in the sys-
tem, such as periodic population fluctuations, spatial distribu-
tion patterns of populations, and interactions between different
populations in the ecosystem.

We can further study the effect of system parameters on
ecosystem stability, such as predator and prey population size
and environmental changes, among other factors. This will
help us to predict the stability of the ecosystem and develop
more effective ecological management strategies.

We can explore coupled systems and multiple population
interactions. Considering the interactions between different
populations in an ecosystem, future studies could couple dis-
crete predator–prey systems with other biological populations
or environmental factors to gain a more comprehensive under-
standing of ecosystem dynamics.

We can conduct field observations and experiments to vali-
date themodels in the future, and use the results of the research
in practical ecosystem management and conservation, which
is crucial for promoting sustainable development and conser-
vation of the ecosystem.

We can model and predict discrete predator–prey systems
in the future by using data and machine learning techniques,
andwe canmore accurately understand ecosystemchanges and
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develop more effective management and conservation strate-
gies.

Finally, we can also use more advanced numerical simu-
lation methods and computational techniques to more accu-
rately analyze and predict the stability and dynamic behavior
of the system. By conducting large-scale parameter scanning
and sensitivity analysis on the model, we can discover the key
parameters in the system and their impact on system behavior.
This will help us better understand the stability mechanism
of the system and provide theoretical support for developing
more effective ecological management strategies.
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