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Abstract The design of cryptographic algorithms
using the chaos theory has become a hotspot in the field
of information security. However, existing chaotic sys-
tems are prone to chaotic degradation, and generally
do not exhibit multi-stability. In view of these issues,
we first propose a non-degenerate multi-stable discrete
chaotic system (NMDCS). After a rigorous theoretical
analysis, it is proved that the NMDCS has an infinite
number of unstable fixed points, and the number of pos-
itive Lyapunov exponents (LE) is equal to the system
dimensions, indicating that the system has an infinite
number of coexisting attractors and is not susceptible
to chaotic degradation. In addition, Simulation exper-
iments demonstrate that the NMDCS displays signif-
icant chaotic behavior and high efficiency. Finally, to
satisfy the confidentiality protection demands for sen-
sitive images, an efficient image encryption algorithm
is designed by combining the NMDCS with an adap-
tive zigzag transformation method. Simulation experi-
ments demonstrate that our image encryption algorithm
has high efficiency in both encryption and decryption
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processes.Moreover, it demonstrates excellent security
properties.
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1 Introduction

Communication over the globe is becoming a basic
need of populaces [1]. However, the inherent open-
ness, dynamism, and complexity of the Internet fre-
quently result in information leakage incidents, which
makes it imperative to enhance the security level of
sensitive information. The most direct method for the
protection of information confidentiality is encryp-
tion, and various classic encryption algorithms, such as
data encryption standard (DES) and advanced encryp-
tion standard (AES), have been proposed successively.
Although these algorithms are easily available, exten-
sively tested, and widely accepted for text data encryp-
tion, their application in image encryption is con-
strained due to the large amount of data, strong cor-
relation between adjacent pixels, and high redundancy
of image data.

Chaos is a central research topic of nonlinear theo-
ries. It exhibits distinctive properties, including initial
state sensitivity, topological transitivity, and periodic
orbit density [2]. These properties establish a natural
connection between chaos and traditional cryptogra-
phy, resulting in wide application in various fields such
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as S-box design [3,4] and information hiding [5,6].
At present, more than 32% of image encryption algo-
rithms are designed based on chaos theory. Chaotic
image encryption algorithms offer confidentiality pro-
tection for sensitive images in a variety of fields, such
as e-medicine, military reconnaissance, remote sensing
mapping, etc., thus avoiding the security risks associ-
ated with leaks of private information and misuse of
data.

The fundamental prerequisite for the design of
chaotic image encryption algorithms is the establish-
ment of chaotic systemswith excellent dynamic behav-
ior. Chaotic systems are classified into two types:
continuous chaotic systems and discrete chaotic sys-
tems. Currently, researchers mainly focus on contin-
uous chaotic systems. For example, Yang et al. [7]
designed a fractional-order hyperchaotic system based
on the Lorenz system and analyzed the dynamical
behavior of this system in detail using the Adomian
decomposition method. Ma et al. [8] presented a multi-
stable chaotic system with coexisting attractors by tun-
ing the offset operation. However, continuous chaotic
systems are inefficient due to the necessity of using
time-consuming numerical analysis methods, like the
Runge–Kutta method or the Adomian decomposition
method, to generate chaotic sequences [9]. Discrete
chaotic systems have proven to be more efficient than
continuous chaotic systems, and a variety of classi-
cal chaotic maps, such as the Logistic map and the
Tent map, have been successively introduced. How-
ever, Hua et al. [10] pointed out that the structure
of these chaotic maps is relatively simple. In gen-
eral, high-dimensional discrete chaotic systems are
more likely to produce hyperchaotic attractors, which
implies better chaotic properties. Choi et al. [11] con-
structed generalized high-dimensional Arnold systems
using the Laplace theorem. Hua et al. [12] constructed
high-dimensional discrete chaotic systems by compos-
ing classical low-dimensional discrete chaotic systems.
Through rigorous theoretical analysis, Liu et al. [13]
demonstrated that the third-order nonlinear filter can
exhibit strong chaotic behavior if its system parame-
ters are chosen appropriately. Unfortunately, the lim-
ited number of positive LE in the mentioned discrete
chaotic systems is significantly lower than their dimen-
sions, making them susceptible to chaotic degradation
during digitization. To tackle this issue, Hua et al.
[14] first discussed the internal relationship between
the number of positive LE and the Arnold parameter

matrix. Then, they presented a high-dimensional dis-
crete chaotic system with an arbitrary number of posi-
tive LE. Wang et al. [15] and Zang et al. [16] designed
non-degenerate discrete chaotic systems by using the
chaotic inverse control method and the strict diagonal
occupation matrix respectively. Liu et al. [17] also pro-
posed a non-degenerate discrete chaotic system with
uniform trajectories using nonlinear filters and the feed-
forward and feed-back structure. Since the above dis-
crete chaotic systems have a much greater number of
positive LE compared to general chaotic systems, they
are capable of displaying complex chaotic behavior.
However, these systems do not exhibit multi-stability,
which means that they are unable to switch freely
between various steady states tomeet diverse demands.
Qin [18] pointed out that chaotic systems with more
equilibrium points may contain more attractors, result-
ing in different coexisting attractors. Due to the inher-
ent nonlinearity and periodicity of trigonometric func-
tions, researchers have recently begun to investigate the
design of multi-stable chaotic systems using them [19].
For example, Ali et al. [20] constructed a novel chaotic
map using two sine functions with irrational frequency
ratios but comparable amplitude and phase, and found
coexisting attractors. Huang et al. [21] proposed a
three-dimensional (3D) multi-stable hyperchaotic map
with a concise symmetric structure. Furthermore,mem-
ristors are employed to enhance the dynamic behavior
of multi-stable chaotic systems due to their distinctive
nonlinear characteristics [22]. Ma et al. [23] designed a
memristive chaotic system that has infinite equilibrium
points and can exhibit seven different types of attrac-
tors. Liu et al. [24] and Marco et al. [25] proposed a
class of discrete multi-stable chaotic systems using dis-
crete memristors, respectively. However, these chaotic
systems do not meet the non-degeneracy requirement
and remain susceptible to chaotic degradation.

Chaos theory offers a plethora of beneficial insights
for the design of image encryption algorithms. In 1989,
Matthews et al. put forward the first chaotic image
encryption algorithm using the Logistic map. Subse-
quently, Li et al. [26] constructed a key stream genera-
tor using the Tent map and applied it to the design of a
stream cipher algorithm that is suitable for image con-
fidentiality protection. Sang et al. [27] generated cipher
images with excellent statistical features by scrambling
plain images using the Logistic map and incorporat-
ing uniform distribution constraints to the training of
deep auto-encoder. However, the above image encryp-
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tion algorithms suffer from potential security risks due
to the simple structure of the chaotic maps they use. In
response to the above problem, Lai et al. [28] designed
a novel neuron model with significant chaotic proper-
ties and applied it to the design of image encryption
algorithms. Wang et al. [29] first designed a hyper-
chaotic system with complex chaotic behavior based
on the Lorenz system and then proposed a color image
encryption algorithm by combining the chaotic system
and deoxyribonucleic acid (DNA) coding. Hua et al.
[30] put forward an image encryption algorithm using
a novel Logistic-Sine-coupling chaotic system. Javeed
et al. [31] put forward an image encryption algorithm
using the Rabinovich-Fabricant chaotic system. The
above research has contributed to the research progress
in the field of chaotic image encryption. However,
none of the above chaotic systems are non-degeneracy,
which may lead to security risks in image encryption
algorithms due to chaotic degradation. To overcome
this drawback,Wen et al. [32] andWang et al. [33] pro-
posed plaintext-related chaotic image encryption algo-
rithms using non-degenerate discrete chaotic systems
and the hash values of plain images, respectively. How-
ever, the derived key in the above algorithm is strongly
linked to the hash values of plain images, making even
a slight alteration in the hash value during transmis-
sion could result in decryption failure. Thus, how to
securely transmit the hash value of a plain image limits
the application of such image encryption algorithms.

Although chaotic cryptography has achieved several
important research results after years of development,
the existing chaotic systems are susceptible to chaotic
degradation andgenerally donot exhibitmulti-stability,
and the current chaotic image encryption algorithms
suffer from low efficiency in encryption and decryp-
tion and inadequate security measures. As such, exist-
ing research faces challenges in meeting the criteria for
safeguarding the confidentiality of sensitive images In
conclusion, there is still considerable research value
in investigating non-degenerate multi-stable discrete
chaotic systems and applying them to the design of
effective image encryption algorithms.

The remainder of this paper is structured as follows.
Section2 presents a non-degenerate multi-stable dis-
crete chaotic system that is analyzed through theoreti-
cal analysis and simulation experiments. In Sect. 3, we
propose an image encryption algorithm based on non-
degenerate multi-stable discrete chaos, and its perfor-
mance is evaluated. Section4 concludes this paper.

2 Non-degenerate multi-stable discrete chaotic
system

In this section, we design a discrete chaotic system
called NMDCS. Rigorous theoretical analyses and
simulation experiments demonstrate that the NMDCS
exhibits multi-stability and is not prone to chaotic
degradation.

2.1 Mathematical expression of our discrete chaotic
system

The mathematical model of N -dimensional NMDCS
is described by Eq. (1), whose block diagram is shown
in Fig. 1.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1,t+1 = sin
(
π · x2,t

)

...

xN−1,t+1 = sin
(
π · xN ,t

)

xN ,t+1 = xN ,t + sin
(
π · x1,t

) − a
π

· sin (π ·xN ,t
a

)

(1)

where a = b
2·c is the system parameter, b, c ∈ Z\ {0}

are coprime, |b| > 6 · |c|, {x1,t , x2,t , · · · , xN−1,t
} ∈ I

and xN ,t ∈ I ∗ are the chaotic state variables at moment
t , I = [−1, 1] and I ∗ = [−1+k · b+ε1, 1+k · b+ε2]
are the chaotic intervals, k ∈ Z, and the absolute values
of ε1 and ε2 are far less than 1.

2.2 Theoretical analysis of our discrete chaotic system

In this section, we prove that the NMDCS system has
unstable fixed points, and is not susceptible to chaotic
degradation.

2.2.1 Fixed points analysis

According to Eq. (1), the fixed point equation of our
NMDCS system can be derived as Eq. (2).
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1.t = sin (π · x2.t )
...

xN−1.t = sin (π · xN .t )

xN .t = xN .t + sin (π · x1.t ) − a
π

· sin (
π ·xN .t

a

)

(2)

Obviously, Eq. (2) has an infinite number of solu-
tions. Therefore, the fixed points of theNMDCSsystem
can be expressed as X = {0, 0, · · · , 0, k · b}.
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Fig. 1 Block diagram of
NMDCS

The Jacobian matrix of Eq. (2) at X is described by
Eq. (3).

Jt =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 π 0 · · · 0
0 0 π · · · 0
...

...
...

. . .
...

0 0 0 · · · π · cos (π · k · b)
π 0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(3)

The characteristic polynomial of Eq. (3) is defined
by Eq. (4).

g (λt ) = λN
t + (−π)N · cos (π · k · b) (4)

According to Eq. (4), we can derive the eigenvalues
as Eq. (5).

λt = −π · e i ·π ·(k·b+1)
N (5)

where i2 = −1.
It is clear that there must be eigenvalues with zero

or positive real parts, which means that the fixed point
X may be critically stable or unstable.

2.2.2 Non-degenerate analysis

In this section, we analyze the trajectories of our
NMDCS system using the following lemmas. After-
wards, we prove that the NMDCS system is a non-
degenerate chaotic system using the above lemmas.

Lemma 1 If xn,0 follows the uniform distribution in
the interval I, the probability density function of xn,1 =
f
(
xn,0

) = sin
(
π · xn,0

)
can be derived as p

(
xn,1

) =⎧
⎨

⎩

1

π

√
1−x2n,1

, i f xn,1 ∈ I

0, others
, where n ∈ {1, 2, . . . , N }.

Proof Since xn,0 follows the uniformdistribution in the
interval I , its probability density function is p

(
xn,0

) =
{ 1

2 , i f xn,0 ∈ I
0, others

. Divide the interval I into a series of

subintervals Il = [ l−1
2 , l

2

)
, where l ∈ {−1, 0, 1, 2}.

Let h
(
xn,1

)
be the inverse function of f

(
xn,0

)
, whose

expression is shown in Eq. (6).

h
(
xn,1

) =

⎧
⎪⎨

⎪⎩

arcsin(xn,1)
π

, i f xn,0 ∈ I0 ∪ I1

− arcsin(xn,1)
π

∓ 1, i f xn,0 ∈ I−1 ∪ I2
0, others

(6)

According to Eq. (6), the probability density func-
tion of xn,1 = f

(
xn,0

)
can be derived as Eq. (7).

p
(
xn,1

) =
{
p

(
h

(
xn,1

)) · ∣
∣h′ (xn,1

)∣
∣ , i f xn,1 ∈ I

0, others

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
l=−1,0

1
2 ·

∣
∣
∣
∣
∣
(−1)l · 1

π

√
1−x2n,1

∣
∣
∣
∣
∣
, i f xn,1 ∈ I−1 ∪ I0

∑
l=1,2

1
2 ·

∣
∣
∣
∣
∣
(−1)l−1 · 1

π

√
1−x2n,1

∣
∣
∣
∣
∣
, i f xn,1 ∈ I1 ∪ I2

0, others

=
⎧
⎨

⎩

1

π

√
1−x2n,1

, i f xn,1 ∈ I

0, others

(7)

Lemma 1 is thus proved. ��

Lemma 2 If xn,0 follows the uniform distribution in
the interval I , the probability density function of xn,2 =
f
(
f
(
xn,0

)) = sin
(
π · sin (

π · xn,0
))

can be derived
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as p
(
xn,2

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

π

√
1−x2n,2

· ∑
i=0,1

1√

π2−(arcsin|xn,2|−i ·π)
2
, i f xn,2 ∈ I

0, others

,

where n ∈ {1, 2, . . . , N }.
Proof Divide the interval I into a series of subintervals
Il = [ l−1

2 , l
2

)
, where l ∈ {−1, 0, 1, 2}. Let h (

xn,2
)
be

the inverse function of f
(
xn,1

)
, whose expression is

listed in Eq. (8).

h
(
xn,2

) =

⎧
⎪⎨

⎪⎩

arcsin(xn,2)
π

, i f xn,1 ∈ I0 ∪ I1

− arcsin(xn,2)
π

∓ 1, i f xn,1 ∈ I−1 ∪ I2
0, others

(8)

From Eq. (8), the probability density function of
xn,2 = f

(
xn,1

)
can be derived as Eq. (9).

p
(
xn,2

) =
{
p

(
h

(
xn,2

)) · ∣
∣h′ (xn,2

)∣
∣ , i f xn,2 ∈ I

0, others

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
l=−1,0

1

π

√
1−x2n,1

·
∣
∣
∣
∣
∣
(−1)l · 1

π

√
1−x2n,2

∣
∣
∣
∣
∣
, i f xn,2 ∈ I−1 ∪ I0

∑
l=1,2

1

π

√
1−x2n,1

·
∣
∣
∣
∣
∣
(−1)l−1 · 1

π

√
1−x2n,2

∣
∣
∣
∣
∣
, i f xn,2 ∈ I1 ∪ I2

0, others

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

π

√
1−x2n,2

· ∑
l=−1,0

1√

π2−(arcsin(xn,2)−l·π)
2
, i f xn,2 ∈ I−1 ∪ I0

1

π

√
1−x2n,2

· ∑
l=1,2

1√

π2−(arcsin(xn,2)−(l−1)·π)
2
, i f xn,2 ∈ I1 ∪ I2

0, others

=
⎧
⎨

⎩

1

π

√
1−x2n,2

· ∑
i=01

1√

π2−(arcsin|xn,2|−i ·π)
2
, i f xn,2 ∈ I

0, others

(9)

Lemma 2 is thus proved. ��
Theorem 1 The NMDCS system is a non-degenerate
discrete chaotic system.

Proof FromEq. (1), the Jacobianmatrix of theNMDCS
system at moment t is shown in Eq. (10).

Jt =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 f ′ (x2,t
)

0 · · · 0
0 0 f ′ (x3,t

) · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · f ′ (xN ,t
)

f ′ (x1,t
)

0 0 · · · 1 − cos
( π ·xN ,t

a

)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(10)

Where f ′ (xn,t
) = π · cos (

π · xn,t
)
and n ∈

{1, 2, . . . , N }. The characteristic polynomial of (10)
can be derived as (11).

g (λt ) = λN−1
t ·

(
λt − 1 + cos

(π · xN ,t

a

))

+(−π)N ·
∏N

n=1
cos

(
π · xn,t

)
(11)

As is shown in Sect. 2.1, it is clear that |a| > 3. Thus,
we can derive Eq. (12) from Eq. (11).

g (λt ) ≈ λN
t + (−π)N ·

∏N

n=1
cos

(
π · xn,t

)
(12)

According to Eq. (12), we can derive the eigenvalues
as Eq. (13).
∣
∣λn,t

∣
∣ = ∣

∣π · cos (
π · xn,t

)∣
∣ (13)

FromEq. (13) andLemma2,we can derive the LEof
our NMDCS system as {LE1, · · · , LEn, · · · , LEN },
where LEn is calculated by Eq. (14).

LEn =
∫ 1

−1
ln

∣
∣λn,t

∣
∣ · p (

xn,t
)
dxn,t

≈
∫ 1

−1
ln

∣
∣λn,2

∣
∣ · p (

xn,2
)
dxn,2

= 0.6672

(14)

In conclusion, the LE of the NMDCS system are all
0.6672, indicating that our NMDCS system is a non-
degenerate discrete chaotic system. ��

2.3 Simulation experiments of our discrete chaotic
system

This section demonstrates that our NMDCS system
shows excellent chaotic behavior from the aspects of
LE, coexisting attractors, Poincaré section, sensitive
dependence on initial conditions, and iterative effi-
ciency. Our experimentswere conducted on aWindows
machine running on an Intel Core i5-6300HQ and 12
GB RAM.

2.3.1 Lyapunov exponent spectrum

LE is always used to measure the rate of convergence
or divergence of adjacent trajectories of a dynamical
system. A positive LE means that the system stays
in a chaotic state. If there are more than two posi-
tive LEs, the chaotic map becomes hyper-chaos and
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Fig. 2 Lyapunov exponent spectrum of our discrete chaotic system

Fig. 3 Coexisting attractors of our discrete chaotic system

exhibits complex chaotic behavior in multiple dimen-
sions. This section conducts simulation experiments to
estimate the LE of the NMDCS, and the experimental
results are shown in Fig. 2.

As is shown in Fig. 2, the number of positive LE of
our NMDCS system is equal to its dimension, regard-
less of the selection of the system parameter a. Addi-
tionally, the LE values are all very close to the theoret-
ical value of 0.6672 derived from Theorem 1. There-
fore, the NMDCS system is a non-degenerate discrete
chaotic system with stronger chaotic behavior than
most of the existing chaotic systems, and is not prone
to chaotic degradation during digitization.

2.3.2 Coexisting attractor analysis

Due to the periodic properties of trigonometric func-
tions, the position of the attractor of the NMDCS sys-
tem depends on the initial state xN ,0, which means

Table 1 Efficiency comparison results

Chaotic system Efficiency (Mbps)

Ours 53.2595

Zang [16] 64.6367

Qin [18] 21.3385

Liu [24] 75.6923

Ye [34] 18.3195

Yang [35] 17.2291

Bold value indicates the optimal performance of the correspond-
ing test items

that our NMDCS system has coexisting attractors. This
behavior is very interesting, and next we will draw the
phase diagrams of theNMDCS systemby selecting dif-
ferent xN ,0 to understand this phenomenon more intu-
itively. The simulation results are listed in Fig. 3.
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From Fig. 3, it is obvious that the coexisting attrac-
tors of the NMDCS system are all square or cube,
regardless of the initial state, which means that these
coexisting attractors are all homogeneous. This is
because although the initial states between different
coexisting attractors are completely different, 2a and
4a are the period of the nonlinear term sin

(π ·xN ,t
a

)
in

Eq. (1) respectively, so there will be no significant dif-
ference in the shape of the coexisting attractors.

2.3.3 Efficiency analysis

Efficiency is a crucial factor in assessing the practical-
ity of chaotic systems. This section examines the effec-
tiveness of chaotic systems through the symbol transfer
rate. During the analysis, each chaotic system gener-
ated 320 Mbit of chaotic sequences. Table 1 shows the
results of the efficiency analysis.

As demonstrated in Table 1, the efficiency of our
NMDCS exceeds that of the chaotic systems in [18,
34,35]. This is because chaotic systems in [18,34,35]
necessitate the utilization of time-consuming numer-
ical analysis techniques, such as the Runge–Kutta

Fig. 4 Poincaré sections of
our chaotic system

123



20444 X. Tong et al.

Fig. 5 Initial state
sensitivity of our chaotic
system

method, throughout the iterative process. Although the
efficiency of the NMDCS may not be on par with the
chaotic systems described in [16,24] due to the use of
slightly time-consuming trigonometric function oper-
ations, it still achieves a symbol transmission rate of
53.2595 Mbps. Therefore, we can conclude that our
NMDCS exhibits a commendable level of efficiency.

2.3.4 Poincaré section analysis

The Poincaré section is always used to analyze the
dynamical behavior of multivariate autonomous sys-
tems. If there are only a few points on the Poincaré
section, the motion is periodic. Otherwise, if there is
a closed curve on the Poincaré section, the motion
is determined to be quasi-periodic. When there are
patches of dense points on the Poincaré section, the
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Fig. 6 Block diagram of IEA-NMDCS

motion is assumed to be chaotic. This section sets vari-
ous system parameters, and the Poincare section of our
NMDCS system is shown in Fig. 4.

As is shown in Fig. 4, it can be seen that although
the system parameters of the NMDCS are different,
there are patches of dense points distributed on each
Poincaré section. The above results further indicate that
our NMDCS is chaotic.

2.3.5 Sensitivity to initial conditions

Initial condition sensitivity is the most essential prop-
erty of chaotic systems, reflecting the inherent random-
ness of chaotic systems. Initial condition sensitivity
refers to the fact that tiny differences between the initial
states of a chaotic system will result in completely dif-
ferent trajectories, indicating that the long-termmotion
state of a chaotic system is unpredictable. In this sec-
tion, different system parameters are selected to test the
initial condition sensitivity of our NMDCS system, and
the results are shown in Fig. 5.

As is shown in Fig. 5, it is obvious that slight changes
between the initial values will cause our chaotic system
to exhibit completely different trajectories. Therefore,
our NMDCS system is highly sensitive to initial con-
ditions and is particularly suitable for the design of
cryptographic algorithms.

3 Image encryption algorithm based on
non-degenerate multi-stable discrete chaos

Since our NMDCS system is not susceptible to chaotic
degradation and has an infinite number of coexisting
attractors, the chaotic system is used to design an effi-
cient and secure image encryption algorithm.

3.1 Overall flow of the algorithm

Our image encryption algorithm based on non-degen-
eratemulti-stable discrete chaos (IEA-NMDCS)mainly
involves four steps of key derivation, pixel confusion,
adaptive zigzag transformation, and cross-plane per-
mutation, and its block diagram is shown in Fig. 6.

3.1.1 Key derivation

Our key derivation algorithm takes the 144-bit mas-
ter key MK = MK1|| MK2||MK3 as input to gener-
ate the derived keys SK1, SK2 for subsequent encryp-
tion and decryption operations, where the lengths of
MK1, MK2, MK3 are all 48-bit, and || represents the
link symbol. The procedure of the algorithm is shown
in Algorithm 1.

(1) It calculates the chaotic initial state I V =
{I Vi }i∈{1,2,3}, where I Vi = MKi

247
− 1.
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(2) It generates a chaotic sequence Q of size R×C×3
by iterating NMDCS according to I V .

(3) It quantifies the chaotic sequenceQ usingEq. (15).

DQ = floor
(
Q × 1015

)
(15)

(4) It computes the confusion key SK1 =
{SK1 (r, c, d)}r∈{1,··· ,R},c∈{1,··· ,C},d∈{1,2,3}, where
SK1 (r, c, d) is computed using Eq. (16).

SK1 (r, c, d) = mod (DQ (r, c, d) , 256) (16)

(5) It computes the cross-plane key SK2 =
{SK2 (r, c, d)}r∈{1,··· ,R},c∈{1,··· ,C},d∈{1,2}, where
SK2 (r, c, d) is computed using Eq. (17).

SK2 (r, c, d)=mod (DQ (r, c, d) , D−d+1)+1

(17)

3.1.2 Pixel confusion

Confusion is a nonlinear transformation that intri-
cately disrupts the correlation between plain images
and cipher images as well as between key and cipher
images by changing pixels. In this section, the S-Box
in [9] is used as the nonlinear confusion component

Algorithm 1 Key derivation
Input: MK
Output: SK1, SK2

1: I V ← Calculate the initial chaotic states using MK
2: Q ← Iterate our NMDCS according to I V
3: DQ ← Quantify Q using Eq. (15)
4: SK1 ← Calculate the confusion key using DQ and Eq. (16)
5: SK2 ←Calculate the cross-plane key using DQ and Eq. (17)
6: Return SK1, SK2

to enhance the probabilistic statistical analysis resis-
tance of our IEA-NMDCS algorithm, and the specific
process is shown in Algorithm 2.

Algorithm 2 Pixel confusion
Input: P , SK1, R, C
Output: Cipher image E
1: for r = 1 : R do
2: for c = 1 : C do
3: for d = 1 : 3 do
4: E (r, c, d) = S-Box (P (r, c, d) ⊕ SK1 (r, c, d))

5: end for
6: end for
7: end for
8: Return E

Fig. 7 Schematic diagram of the adaptive zigzag transformation
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Fig. 8 Schematic diagram of the cross-plane permutation

3.1.3 Adaptive zigzag transformation

The correlation between neighboring pixels of a plain
image can be effectively eliminated using the zigzag
transformation. However, the initial position of the tra-
ditional zigzag transformation remains unaffected by
the plain images, so minor alterations in a plain image
will not transmit to the whole cipher image, resulting
in its limited diffusion capability. To address the above
problem, this section uses the mean value of the pix-
els and our NMDCS system to design a novel adaptive
zigzag transformation that can improve the diffusion
capability of our IEA-NMDCS algorithm while elimi-
nating the correlation of neighboring pixels. The details
are shown in Fig. 7.

(1) It calculates the average value of the pixels in each
plane of the cipher image and records them as
{ed}d∈{1,2,3}.

(2) It calculates the chaotic initial state x0 ={
x0d

}

d∈{1,2,3} by Eq. (18).

x0d = ed
128

− 1 (18)

(3) It generates a chaotic sequence of length T + 2
using the NMDCS system, and records the last

two chaotic states as xT+1 =
{
xT+1
d

}

d∈{1,2,3}, and

xT+2 =
{
xT+2
d

}

d∈{1,2,3}.
(4) It calculates the initial coordinates of the rows and

columns using Eqs. (19) and (20), and records
them as r0 = {

r0d
}

d∈{1,2,3} and c0 = {
c0d

}

d∈{1,2,3}
respectively.

r0d = mod
(
f loor

(
xT+1
d × 1015

)
, R

)
+ 1 (19)

c0d = mod
(
f loor

(
xT+2
d × 1015

)
,C

)
+ 1 (20)

(5) It performs a zigzag transformation on the cipher
image starting at r0 = {

r0d
}

d∈{1,2,3} and c0 =
{
c0d

}

d∈{1,2,3} respectively.
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3.1.4 Cross-plane permutation

Due to color images consisting of three planes of red,
green, and blue, the cross-plane permutation algorithm
must be developed to remove the correlation of pixels
across different planes. Our IEA-NMDCS algorithm
uses the cross-plane permutation key and the shuffling
algorithm to blur the pixels between different planes of
the image. The specific process is shown in Fig. 8 and
Algorithm 3.

Algorithm 3 Cross-plane permutation
Input: E , SK2, R, C
Output: Cipher image E
1: for r = 1 : R do
2: for c = 1 : C do
3: for d = 1 : 2 do
4: swap (E (r, c, 4 − d) , E (r, c, SK2 (r, c, d)))

5: end for
6: end for
7: end for
8: Return E

3.2 Security and efficiency analysis

This section evaluates the performance of our IEA-
NMDCS algorithm from the following aspects. The
test images are all taken from the USC-SIPI database
and the CVG-UGR database.

3.2.1 Key space analysis

Key space is an important indicator reflecting the resis-
tance of encryption algorithms to brute force attacks.
The larger the key space, themore difficult it is to obtain
the correct key through brute forces. Typically, a key
space of at least 2100 possible secret keys is expected
[36]. Since our IEA-NMDCS algorithm uses a 144-bit
master key to generate derived subkeys, its key space
is much larger than 2100. The above results show that
our IEA-NMDCS algorithm is sufficient to withstand
brute force attacks.

3.2.2 NIST randomness test

The National Institute of Standards and Technology
(NIST) provides a series of guidelines for statistical

Table 2 NIST randomness test results

Statistical test P-value Proportion Result

Frequency 0.616305 1 Pass

Block frequency 0.213309 0.98 Pass

Cumulative sums 1 0.514124 1 Pass

Cumulative sums 2 0.181557 1 Pass

Runs 0.366918 0.97 Pass

Longest run 0.867692 0.99 Pass

Rank 0.304126 0.98 Pass

FFT 0.851383 0.99 Pass

Non overlapping template 0.978072 1 Pass

Overlapping template 0.719747 0.98 Pass

Universal 0.657933 0.98 Pass

Approximate entropy 0.045675 1 Pass

Random excursions 0.585209 1 Pass

Random excursions variant 0.848588 1 Pass

Serial 1 0.437274 0.98 Pass

Serial 2 0.026948 0.98 Pass

Linear complexity 0.514124 0.99 Pass

tests known as the NIST Test Suite 800-22. In this
section, the randomness of the cipher images obtained
using the IEA-NMDCS algorithm has been evaluated
through the application of this test suite. The test results
are shown in Table 2.

It can be clearly seen from Table 2 that the P-
value and proportions are all greater than 0.01 and 0.96
respectively. Therefore, the cipher images obtained
using the IEA-NMDCS algorithm exhibit excellent
randomness.

3.2.3 Histogram analysis

The histogram of an image can intuitively reflect the
distribution of image pixels. In general, the histogram
of a plaint image does not follow the uniform distribu-
tion, so it is susceptible to probabilistic statistical anal-
ysis. For an optimal encryption algorithm, the cipher
images encrypted using the algorithmought to conform
to the uniform distribution. Figure 9 displays the his-
togram test results for the plain images and their cipher
images encrypted with the IEA-NMDCS algorithm.

As can be seen from Fig. 9, the histogram of the
plaint image exhibits an uneven distribution, whereas
the histogram of its cipher image is uniformly dis-
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Fig. 9 Histogram test results of the IEA-NMDCS algorithm

tributed, indicating that the cipher image does not leak
any statistical information from the plain image.

To further demonstrate that the IEA-NMDCS algo-
rithm can effectively withstand statistical analysis, we
employ the chi-square test and the variance analysis
to verify the uniformity of the histogram of the cipher

images. The calculationmethods for the chi-square test
and thevariance analysis are shown inEq. (21) and [37],
respectively.

χ2 =
∑256

i=1

(ηi − μ)2

μ
(21)
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Table 3 Histogram analysis results

Size Name χ2 value Variance

512 × 512 Butfish1 278.3431 3340

Butrfly1 250.7715 3009

Cactusfl 233.6686 2804

Clinmill 227.7832 2733

Daisyfle 245.4714 2946

Elephant 276.9434 3323

Frog 279.4447 3353

Goldgate 243.4102 2921

Ivytree 267.2324 3207

Malight 253.0684 3037

256 × 256 4.1.01 251.7344 755

4.1.02 248.6484 746

4.1.03 254.3385 763

4.1.04 281.1536 843

4.1.05 267.9635 804

4.1.06 242.5521 728

4.1.07 290.8464 873

4.1.08 246.8958 741

where ηi andμ represent the number of observations
and the expected number of each pixel in the image,
respectively. We set a significance level α = 0.05,
and determine the following hypotheses using the chi-
square test and the variance analysis. The analysis
results are listed in Table 3.

H0: The cipher images encrypted using the IEA-
NMDCS algorithm are uniformly distributed.

H1: The cipher images encrypted using the IEA-
NMDCS algorithm are not uniformly distributed.

From Table 3, the Chi-square test values for the
cipher images encrypted with the IEA-NMDCS algo-
rithm are all less than χ2

0.05 (255) = 293.2478. In addi-
tion, the histogram variance values of the 512×512×3
and 256 × 256 × 3 cipher images are approximately
3000 and 800, respectively. The above results indicate
that the H0 assumption is correct. In conclusion, the
cipher images generated by the IEA-NMDCS algo-
rithm are uniformly distributed, so they can effectively
resist statistical analysis.

3.2.4 Key sensitivity analysis

Key sensitivity refers to the fact that even minor alter-
ations in the master key will produce an entirely differ-

ent encryption or decryption result. A secure encryp-
tion algorithm must be sensitive to the master key.
To test the key sensitivity of the IEA-NMDCS algo-
rithm, we first randomly chose a master key K1 =
c1e1bda054ebc9f6accfd2f7c5ca97836182 of size 144-
bit, and obtain the keys K2 = c1e1bda054ebc9f6a
ccfd2f7c5ca97836180 and K3 = c1e0bda054ebc9f6acc
fd2f7c5ca97836182 by randomly changing 1-bit of K1.
Then,we encrypted and decrypted the images using K1,
K2, and K3 respectively. The specific results are shown
in Figs. 10 and 11.

Figure 10 demonstrates that although the plain
images have specific statistical features, the cipher
images encrypted with the IEA-NMDCS algorithm are
similar to the random noise, and they are completely
different when using different keys. Therefore, our
IEA-NMDCS algorithm is sensitive to the master key
during the encryption process.

Figure 11 clearly illustrates that only decrypting the
cipher image with the correct key will obtain the corre-
sponding plain image, while the images decrypted by
incorrect keys are similar to random noises. Further-
more, the images decrypted by different wrong keys
are completely different. Therefore, our IEA-NMDCS
algorithm is responsive to the master key utilized in the
decryption procedure.

3.2.5 Sensitivity analysis for plain images

Plaintext sensitivity refers to the capability of algo-
rithms to withstand chosen plaintext attacks and dif-
ferential attacks. Researchers commonly use the pixel
change rate (NPCR) and normalized average change
intensity (UACI) to assess the intensity of plaintext
sensitivity. The calculation methods for these assess-
ments are thoroughly described in [12]. The NPCR and
UACI are anticipated to be 99.6094% and 33.4635%
respectively. In addition, Wu et al. [38] have high-
lighted the necessity for NPCR values to surpass a
defined threshold Nα and for UACI values to fall within
the interval

(
U−

α ,U+
α

)
, where Nα = 99.5693% and(

U−
α ,U+

α

) = (33.2824%, 33.6447%) for an image of
size 256×256, and Nα = 99.5893% and

(
U−

α ,U+
α

) =
(33.3730%, 33.5541%) for an image of size 512×512.
The NPCR and UACI scores for the cipher images
encrypted using the IEA-NMDCS algorithm are dis-
played in Tables 4 and 5 respectively.

As is evidenced by Tables 4 and 5, the NPCR and
UACI scores for the cipher images encrypted using
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Fig. 10 Key sensitivity analysis during encryption

the IEA-NMDCS algorithm are all within the accept-
able intervals, with values very close to 99.6094%
and 33.4636% respectively. To further demonstrate
the excellent plaintext sensitivity of our IEA-NMDCS
algorithm, we use the ‘Lena’ as the plain image, and
encrypt it using different image encryption algorithms.

The NPCR and UACI comparison results can be found
in Tables 6 and 7 respectively.

From Tables 6 and 7, the NPCR and UACI scores
for the cipher images encrypted by different image
algorithms are all within acceptable intervals, and the
difference between them is very small, so they all
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Table 4 NPCR scores of
cipher images

Size Name NPCR (%) Result
Red Green Blue

512 × 512 × 3 Butfish1 99.6078 99.6151 99.6288 Pass

Butrfly1 99.6151 99.6124 99.6140 Pass

Cactusfl 99.6006 99.6033 99.6170 Pass

Clinmill 99.6136 99.6311 99.6078 Pass

Daisyfle 99.6098 99.6140 99.6037 Pass

Elephant 99.6437 99.6204 99.6040 Pass

Frog 99.5991 99.5991 99.6101 Pass

Goldgate 99.5983 99.6010 99.6140 Pass

Ivytree 99.5960 99.6166 99.5930 Pass

Malight 99.6235 99.6128 99.6170 Pass

256 × 256 × 3 4.1.01 99.6048 99.6475 99.6109 Pass

4.1.02 99.6140 99.6155 99.6307 Pass

4.1.03 99.6323 99.6262 99.6292 Pass

4.1.04 99.6109 99.5911 99.5758 Pass

4.1.05 99.6368 99.5850 99.5819 Pass

4.1.06 99.6170 99.6124 99.6353 Pass

4.1.07 99.6033 99.6002 99.6384 Pass

4.1.08 99.6033 99.6078 99.6216 Pass

Table 5 UACI scores of
cipher images

Size Name UACI (%) Result
Red Green Blue

512 × 512 × 3 Butfish1 33.4529 33.3967 33.4260 Pass

Butrfly1 33.3766 33.4334 33.5279 Pass

Cactusfl 33.4937 33.5012 33.5210 Pass

Clinmill 33.5413 33.4123 33.5003 Pass

Daisyfle 33.4475 33.5117 33.4947 Pass

Elephant 33.5385 33.4624 33.4987 Pass

Frog 33.5020 33.4973 33.4018 Pass

Goldgate 33.4002 33.4118 33.5402 Pass

Ivytree 33.3869 33.5012 33.4981 Pass

Malight 33.4213 33.4575 33.4257 Pass

256 × 256 × 3 4.1.01 33.3554 33.3785 33.3215 Pass

4.1.02 33.3493 33.4199 33.4072 Pass

4.1.03 33.4777 33.4334 33.5118 Pass

4.1.04 33.3527 33.4463 33.4615 Pass

4.1.05 33.5573 33.4068 33.5550 Pass

4.1.06 33.4910 33.4287 33.5676 Pass

4.1.07 33.4342 33.5995 33.5064 Pass

4.1.08 33.6426 33.5013 33.5673 Pass
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Fig. 11 Key sensitivity analysis during decryption

achieve excellent plaintext sensitivity. However, the
derived keys of the image encryption algorithms in
[40,41] associated with plain images, and how to
securely transmit the information has become a crit-
ical security bottleneck that constrains the application
of such image encryption algorithms. Therefore, it can
be deduced that our IEA-NMDCS algorithm is capable

of withstanding chosen plaintext attacks and differen-
tial attacks.

3.2.6 Relevance analysis

Generally, the adjacent pixels in a plain image are
highly correlated with each other. An excellent image
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Table 6 Comparison
results of NPCR scores

Algorithm NPCR (%) Result
Red Green Blue

Ours 99.6239 99.6368 99.6071 Pass

Hua [12] 99.6479 99.6597 99.6288 Pass

Wang [39] 99.6016 99.6024 99.6089 Pass

Gao [40] 99.6153 99.6145 99.6147 Pass

Hosny [41] 99.6114 99.6095 99.6097 Pass

Alawida [42] 99.6243 99.6265 99.6109 Pass

Zhou [43] 99.6189 99.6132 99.6227 Pass

Hua [44] 99.6258 99.5991 99.6395 Pass

Table 7 Comparison
results of UACI scores

Algorithm UACI (%) Result
Red Green Blue

Ours 33.4842 33.5122 33.4762 Pass

Hua [12] 33.4390 33.4799 33.4833 Pass

Wang [39] 33.5041 33.4847 33.4423 Pass

Gao [40] 33.4631 33.4643 33.4689 Pass

Hosny [41] 33.4650 33.4812 33.4563 Pass

Alawida [42] 33.4734 33.5119 33.3821 Pass

Zhou [43] 33.3770 33.4473 33.4144 Pass

Hua [44] 33.5024 33.5405 33.4797 Pass

encryption algorithm should eliminate the correlation
between adjacent pixels through substitution and per-
mutation to enhance the pseudo-randomness of the
cipher images. Consequently, the correlation between
adjacent pixels becomes an essential indicator in the
assessment of an algorithm’s security. The correlation
coefficient R is calculated by Eq. (22).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E (X) =
∑n

i=1 xi
n

D (X) =
∑n

i=1 (xi−E(X))2

n

cov (X,Y ) =
∑n

i=1 (xi−E(X))(Yi−E(Y ))

n
R (X,Y ) = cov(X,Y )√

D(X)×D(Y )

(22)

where X denotes the set consisting of image pixels,
Y denotes the set consisting of adjacent pixels of pix-
els in X , and n is the number of pixels. The lower
the correlation coefficient, the lower the correlation
between adjacent pixels. In this section, we randomly
select 12,000 pairs of adjacent pixels to calculate the
correlation coefficients in the horizontal, vertical, and

diagonal directions. The details are displayed in Fig. 12
and Table 8.

As can be seen from Fig. 12 and Table 8, it is clear
that the adjacent pixels of the plain images exhibit a
high level of correlation, whereas the adjacent pixels
of their cipher images display very low correlation. In
addition, the correlation between the adjacent pixels of
the cipher images encrypted using the IEA-NMDCS
algorithm is very close to the ideal value of 0. To fur-
ther prove that our algorithm can withstand statistical
attacks, we performed correlation coefficient compar-
ison tests for different image encryption algorithms.
The comparison results are shown in Table 9.

As illustrated in Table 9, the correlation coeffi-
cients of the cipher image encrypted with our IEA-
NMDCS algorithm are closer to 0 than those of exist-
ing image encryption algorithms. The aforementioned
results demonstrate that our image encryption algo-
rithm is capable of effectively reducing the correlation
among the adjacent pixels of images.
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Fig. 12 Diagram of correlation coefficients

Table 8 Correlation coefficients of images

Size Name Plain image Cipher image
Horizontal Vertical Diagonal Horizontal Vertical Diagonal

512 × 512 Butfish1 0.9472 0.9451 0.9209 0.0073 0.0075 0.0071

Butrfly1 0.9462 0.9532 0.9265 0.0076 0.0072 0.0074

Cactusfl 0.8748 0.8743 0.8604 0.0072 0.0074 0.0075

Clinmill 0.9382 0.9423 0.9095 0.0077 0.0076 0.0070

Daisyfle 0.9772 0.9782 0.9621 0.0079 0.0073 0.0075

Elephant 0.9835 0.9792 0.9706 0.0071 0.0072 0.0080

Frog 0.9422 0.9537 0.9183 0.0070 0.0071 0.0069

Goldgate 0.9526 0.9517 0.9290 0.0069 0.0075 0.0073

Ivytree 0.8861 0.8795 0.8175 0.0069 0.0074 0.0073

Malight 0.9770 0.9845 0.9675 0.0073 0.0078 0.0077

256 × 256 4.1.01 0.9564 0.9675 0.9464 0.0076 0.0082 0.0079

4.1.02 0.9512 0.9328 0.9003 0.0070 0.0087 0.0080

4.1.03 0.9183 0.9759 0.9015 0.0078 0.0078 0.0069

4.1.04 0.9796 0.9655 0.9483 0.0082 0.0075 0.0087

4.1.05 0.9514 0.9761 0.9367 0.0076 0.0080 0.0098

4.1.06 0.9396 0.9631 0.9265 0.0076 0.0073 0.0078

4.1.07 0.9824 0.9796 0.9641 0.0071 0.0077 0.0077

4.1.08 0.9754 0.9732 0.9494 0.0079 0.0081 0.0069
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Table 9 Correlation
coefficient comparison
results

Bold values indicate the
optimal performance of the
corresponding test items

Algorithm Cipher image
Red Green Blue

Ours 0.0069 0.0073 0.0074

Hua [12] 0.0075 0.0074 0.0077

Wang [39] 0.0073 0.0074 0.0074

Gao [40] 0.0079 0.0075 0.0074

Hosny [41] 0.0078 0.0073 0.0077

Alawida [42] 0.0076 0.0073 0.0075

Zhou [43] 0.0081 0.0078 0.0081

Hua [44] 0.0073 0.0074 0.0080

Table 10 Information entropy values of cipher images

Size Name Plain image Cipher image
Red Green Blue Red Green Blue

512 × 512 × 3 Butfish1 4.1269 3.9930 3.7003 7.9993 7.9993 7.9994

Butrfly1 5.1634 5.0618 5.3168 7.9993 7.9993 7.9993

Cactusfl 4.3969 4.2172 3.3881 7.9994 7.9993 7.9993

Clinmill 5.6621 4.9586 5.2497 7.9993 7.9993 7.9994

Daisyfle 4.1707 4.5775 3.0483 7.9993 7.9994 7.9994

Elephant 4.8074 4.7543 4.3844 7.9993 7.9992 7.9994

Frog 3.6277 4.9536 4.4948 7.9992 7.9993 7.9993

Goldgate 3.8638 3.6124 4.2748 7.9992 7.9993 7.9993

Ivytree 4.2258 4.7593 4.1692 7.9993 7.9992 7.9993

Malight 4.9487 4.5272 4.6991 7.9994 7.9994 7.9992

256 × 256 × 3 4.1.01 6.4200 6.4457 6.3807 7.9972 7.9975 7.9973

4.1.02 6.2499 5.9642 5.9309 7.9972 7.9975 7.9973

4.1.03 5.7150 5.3738 5.7117 7.9971 7.9975 7.9972

4.1.04 7.2549 7.2704 6.7825 7.9970 7.9974 7.9972

4.1.05 6.4311 6.5389 6.2320 7.9974 7.9975 7.9968

4.1.06 7.2104 7.4136 6.9207 7.9972 7.9969 7.9972

4.1.07 5.2626 5.6947 6.5464 7.9972 7.9968 7.9970

4.1.08 5.7920 6.2195 6.7986 7.9972 7.9977 7.9973

3.2.7 Information entropy

In this section, we evaluate the pseudo-randomness
of the cipher images using information entropy. Each
pixel of an image contains 8 bits of information, so the
theoretical maximum value of its information entropy
is 8. Table 10 displays the information entropy values
of the plain images and their cipher images encrypted
using the IEA-NMDCS algorithm.

FromTable 10, it can be seen that although the infor-
mation entropy of the plain images is far less than the
ideal value of 8, the information entropy of the cipher
images encrypted with the IEA-NMDCS algorithm
is very close to 8, indicating that the cipher images
are uniformly distributed and have excellent pseudo-
randomness. To further evaluate the encryption effect
of the IEA-NMDCS algorithm, we encrypted the Lena
image using the existing image encryption algorithms
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Table 11 Information entropy comparison results

Algorithm Cipher image
Red Green Blue

Ours 7.9993 7.9994 7.9994

Hua [12] 7.9994 7.9993 7.9994

Wang [39] 7.9993 7.9993 7.9993

Gao [40] 7.9993 7.9993 7.9993

Hosny [41] 7.9993 7.9994 7.9994

Alawida [42] 7.9992 7.9993 7.9993

Zhou [43] 7.9993 7.9993 7.9994

Hua [44] 7.9993 7.9993 7.9994

Bold values indicate the optimal performance of the correspond-
ing test items

as well as our algorithm, and the information entropy
values of the cipher images are listed in Table 11.

From Table 11, the information entropy values of
the cipher image encrypted with our IEA-NMDCS
algorithm are 7.9993, 7.9994, and 7.9994 respectively,
which are better than those of existing image encryp-
tion algorithms except [12,41]. Thus, it can be con-
cluded that our IEA-NMDCS algorithm can generate
the cipher images with a uniform distribution that is
highly resistant to probabilistic statistical analysis.

3.2.8 Efficiency analysis

Efficiency is a crucial factor in evaluating the practical-
ity of image encryption algorithms. Because decryp-
tion is the reverse process of encryption, it has the
same algorithmic efficiency as encryption, this section
only lists the comparison results of the encryption effi-
ciency between the IEA-NMDCS algorithm and exist-
ing image encryption algorithms in Table 12.

From Table 12, it can be seen that the IEA-NMDCS
algorithm is more efficient in encryption than the
existing image encryption algorithms. This is mainly
because our IEA-NMDCS algorithm does not require
time-consuming numerical analysis methods to gen-
erate pseudo-chaotic sequences. Furthermore, it pos-
sesses efficient substitution and permutation opera-
tions.

Table 12 Efficiency comparison results of image encryption
algorithms

Algorithm Time-consuming (s)
256 × 256 × 3 512 × 512 × 3

Ours 0.36 1.33

Hua [12] 1.72 6.52

Wang [39] 0.48 1.86

Gao [40] 1.29 4.92

Hosny [41] 2.67 9.12

Alawida [42] 1.86 7.45

Zhou [43] 1.70 18.98

Hua [44] 2.87 10.71

Bold values indicate the optimal performance of the correspond-
ing test items

4 Conclusion

This paper first designs a non-degenerate multi-stable
discrete chaotic system that can be demonstrated
to exhibit the properties of multi-stability and non-
degeneracy through rigorous theoretical analysis. Sim-
ulation experiments demonstrate that our discrete
chaotic system exhibits strong chaotic behavior and
high efficiency in terms of Lyapunov exponents, coex-
isting attractors, Poincaré sections, sensitivity to ini-
tial conditions, and iterative efficiency. Then, an effi-
cient image encryption algorithm is proposed by com-
bining the aforementioned discrete chaotic system and
an adaptive zigzag transformation method. Simulation
experiments show that our image encryption algorithm
offers superior performance in terms of encryption and
decryption efficiency, as well as impressive security
properties, including histogram, key sensitivity, plain-
text sensitivity, correlation between adjacent pixels,
and information entropy. The proposed image encryp-
tion algorithm provides a robust foundation for the
confidentiality protection of sensitive images in key
industries, including government agencies, healthcare
systems and financial institutions. In the future, we
will design chaotic image compression and encryption
algorithms based on the compressed perception theory,
which can reduce the storage and transmission costs of
sensitive images as well as ensure their confidentiality.
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