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Abstract The computation of contact force between

elastic bodies is the key to analyzing non-stationary

vibrations in mechanical system and warrants further

research. To establish a contact force calculation

approach suitable for elastic bodies under external

forces, the contact state is categorized into three types

by analyzing energy conversion during the elastic

contact process: collision contact without external

forces, collision contact with zero initial relative

velocity, and collision contact considering external

forces. For the first type, a hysteresis damping factor is

derived based on energy restitution coefficients and

numerical analysis. which maintains high accuracy

even with low restitution coefficients. Next, an

iterative calculation approach combining the bisection

and Newton’s methods is developed for the second

type. On this basis, a numerical computation process is

subsequently proposed for the third type. To demon-

strate the utility of the proposed approach, dynamic

characteristics analysis of simultaneous collisions and

multiple continuous collisions are presented as case

studies. The results confirm the effectiveness of this

calculation approach.

Keywords Collision contact � Contact force
calculation � Bisection method � Newton’s method �
Simultaneous collisions

1 Introduction

In stable mechanical systems, elastic bodies subject to

external disturbances often exhibit vibrations or

oscillations. These interactions can exacerbate into

more severe collision phenomena due to clearances

between the bodies. Factors such as damping can

dissipate the energy from these collisions and vibra-

tions, restoring the system to a stable state. However,

collisions and oscillations significantly affect the

contact state between elastic bodies, potentially lead-

ing to noise, fatigue, and wear, thereby endangering

the system’s stability. Consequently, extensive

research [1–6] has been dedicated to addressing

contact issues under such unstable conditions.

As a common contact type in mechanical systems,

collision involves two elastic bodies meeting at a

specific initial relative velocity to undergo compres-

sion and restitution deformation. The force generated

during collision contact is vital for analyzing the

dynamic response of collisions, prompting the devel-

opment of numerous models for simulating collision

dynamics. Among them, models based on spring-

damping element are widely used. A simple one is the

Kelvin-Voigt model which was employed by Khulief
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and Shabana [7] for impact analysis in multibody

system. However, this linear model has short in

representing the overall nonlinear nature of contact.

In contrast, Hunt and Crossley [8] established a

nonlinear contact force model combining Hertzian

contact force and damping force. This had spurred a

series of improved models tailored by researchers for

specific purposes, like the Lee andWangmodel [9], the

Lankarani andNikraveshmodel [10], and othermodels

[11–16] up to the Zhang et al. model [17]. These

models primarily focus on accurately representing

energy loss during collision through damping forces,

typically using Newton’s restitution coefficient to

derive the key parameter of hysteresis damping factor.

However, reference [18] argues that Newton’s restitu-

tion coefficient is not suitable for collision processes

under external forces, and recommending the use of the

energy restitution coefficient [19] to model forces in

such scenarios. Moreover, this reference also believes

that external forces and collision energy loss are the

key factors that cause collision state to end, and applies

the established quantitative judgment to identify two

collision end states—separation and non-separation.

When non-separation occurs, the elastic bodies con-

tinue their compression and restitutiondeformationunder

cyclic external forces. In other words, there exists a

special collision contact state between elastic bodies

when there is no initial relative velocity, termed here as

NIRV-collision contact.Although some studies, like gear

meshing forces [20–22], utilize the Kelvin-Voigt model

for NIRV-collision scenarios, significant simulation

errors are evident when collision models are improperly

applied. For instance, Warzecha [23] used Michalczyk

model [24] and Zhang model [17] to simulate the multi-

zone collisions of a collinear system consisting of six

particles, resulting in frequently changing and incompre-

hensible NIRV-collision contact forces. It should be

noted that it is difficulty to clearly express energy

dissipation for NIRV-collision contact, thus, Carretero-

González et al. [25] have made strides in this area by

using experimental data to establish a dissipation coef-

ficient for NIRV-collision force models in multi-particle

collision systems. Therefore, the contact force model

required for non-stationary dynamic analysis considering

both collision andNIRV-collision needs further research.

The purpose of this article is to establish a contact

force calculation approach applicable to collision and

NIRV-collision dynamic analysis. It begins by elab-

orating the overarching issue of modeling contact

forces under external influences. Then, examines the

collision process with only the initial relative velocity

considered, and establishes a model for collision

contact without external forces. Building on this

foundation, it develops a method for calculating

collision and NIRV-collision contact forces under

varying external conditions and proposes a corre-

sponding numerical process. The effectiveness of this

approach is demonstrated through dynamic analysis of

simultaneous and multiple continuous collisions,

underscoring the model’s practical relevance.

2 General issues of contact force model

The one-dimensional direct central frictionless contact

between two elastic spheres is utilized to analyze the

collision and NIRV-collision, as illustrated in Fig. 1,

where the masses of the two elastic spheres are

represented asmi andmj, respectively.When subjected

to variable external forces Fi(t) and Fj(t), the two

elastic spheres start to contact at velocities _v
�ð Þ
i and

_v
�ð Þ
j , respectively, then deformation takes place in the

local contact area, and this denotes the start of

compression phase. According to Hertz force and

damping force, the contact force between these two

spheres can be expressed

Fn ¼ kd
3
2 þ ld

3
2 _d ð1Þ

where d is the local deformation, k denotes the contact

stiffness, _d represents the deformation velocity, and l
is the hysteresis damping factor which plays a crucial

role in modeling contact force.

At this point, the external forces begin to do work,

and along with the initial relative kinetic energy, are

converted into elastic deformation potential energy,

relative kinetic energy, and work done by the damping

force, as shown

1

2
me

_d �ð Þ
� �2

þ r
d

0

Fe tð Þdd ¼ 2

5
kd

5
2 þ 1

2
me

_d2

þ r
d

0

ld
3
2 _ddd ð2Þ

where Fe(t) = Fi(t) - Fj(t) is the equivalent external

force, r
d

0

Fe tð Þdd denotes the work done by equivalent

external force, _d �ð Þ ¼ _v
�ð Þ
i � _v

�ð Þ
j and me

_d �ð Þ
� �2

=2
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represent the initial relative velocity and the initial

relative kinetic energy, respectively, whereas

2kd5=2=5, me
_d2=2 and r

d

0

ld3=2 _ddd are the elastic

deformation potential energy, the relative kinetic

energy, and the work done by damping force,

respectively.

As the deformation peaks, the deformation velocity

reaches zero, and the accumulated potential and

kinetic energies alongside the work done by the

damping force reach their respective maxima. Thus,

the energy balance at the end of the compression phase

is

1

2
me

_d �ð Þ
� �2

þ r
dm

0

Fe tð Þdd ¼ 2

5
kd

5
2
m þ r

dm

0

ld
3
2 _ddd ð3Þ

where 2kd5=2m =5 is the maximum elastic deformation

potential energy, r
dm

0

ld3=2 _ddd and r
dm

0

Fe tð Þdd denote the

work done by damping force and the work done by

equivalent external force during the compression

phase, respectively.

Subsequently, the deformation begins to diminish,

indicating the start of the restitution phase. The energy

balances during and at the end of this phase can be

respectively expressed as

2

5
kd

5
2
m ¼ 2

5
kd

5
2 þ r

dm

d
ld

3
2 _d
�� ��ddþ r

dm

d
Fe tð Þddþ 1

2
me

_d2

ð4Þ

2

5
kd

5
2
m ¼ r

dm

0

ld
3
2 _d
�� ��ddþ r

dm

0

Fe tð Þddþ 1

2
me

_d þð Þ
� �2

ð5Þ

where _d þð Þ is the separation velocity, me
_d þð Þ

� �2

=2

denotes the relative separation kinetic energy, and

r
dm

0

ld3=2 _d
�� ��dd represents the work done by damping

force in restitution phase.

Substituting Eq. (5) into Eq. (3) yields

1

2
me

_d �ð Þ
� �2

þ r
dm

0

Fe tð Þdd ¼ r
dm

0

Fe tð Þdd

þ 1

2
me

_d þð Þ
� �2

þ
I

ld
3
2 _ddd

ð6Þ

where
H
ld3=2 _ddd is the work done by damping force

throughout the entire contact process, which is also

considered as the energy loss during a compression

and restitution cycle, and how to calculate this energy

loss is important to deriving contact force model.

It is crucial to acknowledge that the energy balance

shown in Eq. (6) can manifest in three distinct

situations:� Ignoring the work done by the equivalent

external force; ` Considering cases where the initial

relative kinetic energy is zero; ´ Accounting these

two energies simultaneously. In the following sec-

tions, the contact forces for these three situations will

be analyzed respectively.

3 Collision contact hysteresis damping factor

without external forces

The collision system that ignores external forces is a

commonly used system for modeling collision force,

as shown in Fig. 2. Based on this system, Flores et al.

[26], Hu and Guo [27] constructed typical collision

contact force models, with key steps including

Fig. 1 Collision process between two elastic spheres under external forces
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derivations of deformation velocity and hysteresis

damping factor.

For the deformation velocity, the energy balance

shown in Eqs. (2) and (3) can be rewritten as

1

2
me

_d �ð Þ
� �2

¼ 2

5
kd

5
2 þ 1

2
me

_d2 þ r
d

0

ld
3
2 _ddd ð7Þ

1

2
me

_d �ð Þ
� �2

¼ 2

5
kd

5
2
m þ r

dm

0

ld
3
2 _ddd ð8Þ

Ignoring the work done by damping force, yields

1

2
me

_d �ð Þ
� �2

¼ 2

5
kd

5
2 þ 1

2
me

_d2 ð9Þ

1

2
me

_d �ð Þ
� �2

¼ 2

5
kd

5
2
m ð10Þ

Multiplying both sides of Eq. (9) by Eq. (10)

results in

_d ¼ _d �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

dm

� �5
2

s
ð11Þ

Substituting Eq. (11) into the damping force work

term of Eq. (8) to obtain

DEc ¼ r
dm

0

l _d �ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d

dm

� �5
2

s
d

3
2dd ð12Þ

where DEc is the work done by damping force during

compression phase.

Setting x = d/dm, then Eq. (12) is transformed into

DEc ¼
2

5
l _d �ð Þd

5
2
m r

1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1� x

5
2

p
dx

5
2 ð13Þ

Calculating the integral term of the above equation

to obtain

DEc ¼
4

15
l _d �ð Þd

5
2
m ð14Þ

In addition, the collision restitution coefficient can

be used to estimate the energy loss of collision, and the

Stronge’s model [19] shown in Eq. (15), which is also

called energy model, is used here.

e2 ¼ �Wr

Wc
ð15Þ

where e denotes the restitution coefficient, Wr and Wc

are the work done by contact force in compression and

restitution phases, respectively, given by

Wr ¼ r
0

dm

Fndd ¼ � 2

5
kd

5
2
m þ r

0

dm

ld
3
2 _ddd ð16Þ

Wc ¼ r
dm

0

Fndd ¼ 2

5
kd

5
2
m þ r

dm

0

ld
3
2 _ddd ð17Þ

Substituting Eqs. (16) and (17) into Eq. (15), yields

e2DEc þ DEr ¼
2

5
1� e2
� 	

kd
5
2
m ð18Þ

where DEr is the work done by damping force in

restitution phase. For DEr, considering the similarity

in deformation velocity between the compression and

restitution phases, and the Newtonian restitution

coefficient, references [26, 27] assume DEr = eDEc

to derive the expression of the hysteresis damping

factor l.
However, the disparities in deformation velocity

between compression and restitution phases is increas-

ing as the reduction of the restitution coefficient, as

Fig. 2 Collision system

without external forces
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shown in Fig. 3. In turn, this difference leads to an

increase in the error of the damping factor model, as

shown in Fig. 4 where post- restitution coefficients are

calculated by these damping factor models shown in

Table 1, including Hunt and Crossley model, Lankar-

ani and Nikravesh model, Flores et al. model, and Hu

and Guo model. It should be noted that the smaller the

error, the better the model accuracy.

To reduce this error, we assume that the relation-

ship between the work done by the damping force

during the restitution and compression phases is

DEr ¼ eaDEc ð19Þ

where a is the constant index of restitution coefficient.
Substituting Eqs. (14) and (19) into Eq. (18) yields

l ¼ a
k

_d �ð Þ ð20Þ

a ¼ 3

2

1� e2ð Þ
e2 þ eað Þ ð21Þ

where a is the hysteresis damping factor coefficient. It

should be noted that Eq. (21) represents the Hu and

Guo model when a is taken as 1, which means that the

hysteresis damping factor l is too high when the

restitution coefficient is small. Since e generally

ranges between 0 and 1, a should be adjusted below

1 to reduce the hysteresis damping factor l.
For a more precise l estimation, Eq. (22) is utilized

to perform iterative calculation with a step size

decrement of 0.01.

me
€dþ 3

2

1� e2ð Þ
e2 þ eað Þ

k

_d �ð Þ d
3
2 _dþ kd

3
2 ¼ 0 ð22Þ

here,me is equal to 0.5 kg and _d �ð Þ is 0.5 m/s, whereas

the value of k is 2.41 9 1010N/m3/2, and the restitution

coefficient e is calculated by Eq. (15). The result

shows that the post-restitution coefficient is nearly

identical to the pre-restitution coefficient at a = 0.87,

as indicated by the dashed line in Fig. 4 where the

discrepancy in the post-restitution coefficient is within

2.9% and 1.1% when the pre-restitution coefficient

ranges from 0.05 to 0.3, with others error being less

than 0.8%. Equation (23) presents the corresponding

hysteresis damping factor, and Fig. 5 illustrates the

comparative curves of the hysteresis damping factor

between the Hu and Guo model and the model

discussed herein.

l ¼ 3

2

1� e2ð Þ
e2 þ e0:87ð Þ

k

_d �ð Þ ð23Þ

Fig. 3 Deformation velocity Fig. 4 Post-restitution versus pre-restitution coefficients

Table 1 Hysteresis damping factor model

Model Factor a

Hunt and Crossley [8] 3 1�eð Þ
2

Lankarani and Nikravesh [10] 3 1�e2ð Þ
4

Flores et al. [26] 8 1�eð Þ
5e

Hu and Guo [27] 3 1�eð Þ
2e
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4 Collision contact hysteresis damping factor

considering only external forces

The collision contact considering only external forces

is a special collision contact, which is described by

Fig. 6. Compared to Fig. 1, the two elastic spheres

start to contact with no initial relative velocity. It

should be noted that there may be initial compression

ds between the two elastic spheres. In addition, the

spheres might not fully separate at the end of a contact

cycle, resulting in an inseparable state, as shown Fig. 6

where do denotes incomplete separation compression.

Combined Eqs. (16) to (17), and Eq. (6) that

ignoring the initial relative velocity, yields

DE ¼ 1� e2
� 	

r
dm

0

Fe tð Þdd ð24Þ

where DE denotes the energy loss of the NIRV-

collision contact.

It can be drawn from above equation that this energy

loss is hard to calculate due to the influence of variable

external forces. Additionally, the relationship between

DEr andDEcdescribed inEq. (19) is difficult to derive, as

is deducing the deformation velocity model. To address

these complexities, we propose a calculation approach

using bisection method to iteratively determine the

hysteresis damping factor. The main mentality is to

apply the energy restitution coefficient shown in Eq. (15)

to construct a function f(l)withhysteresis damping factor

as a variable, as shown in Eq. (25). Next, determine the

value range for the function variable l through Eq. (26),

which is [a, b]. It should be noted thatWcn andWrn in the

function are obtained from simulations of the contact

process with Eqs. (17) and (16). Then, calculate the next

iteration value of l according to Eq. (27).

f lnð Þ ¼ Wrn

Wcn
þ e2 ð25Þ

a ¼ ln f lnð Þ\0

b ¼ ln f lnð Þ[ 0



ð26Þ

lnþ1 ¼
aþ b

2
ð27Þ

The primary challenges in this iterative process

includes setting the initial value of l and the iteration

value before [a, b] is determined. The initial l value

could either be ln-1 from the previous collision or l0
calculated from Eq. (28).

l0 ¼
3

2

1� e2ð Þ
e2 þ e0:87ð Þ k ð28Þ

For the second challenge, Eq. (29) can be employed

for the iteration value, which is obtained according to

the Newton method. However, this method is sensitive

to the selection of initial value and there is a possibility

of too many iterations. In this case, other methods can

be used, such as the approach shown in Eq. (31).

Fig. 5 Factor a versus restitution coefficient

Fig. 6 Elastic contact

process under external force

123

19800 Y. Shen, D. Xiang



lnþ1 ¼ ln �
f lnð Þ
f 0 lnð Þ ð29Þ

where

f 0 lnð Þ ¼ WcnSrn �WrnScn
W2

cn

Scn ¼ r
dm

ds

d
3
2 _ddd

Srn ¼ r
do

dm

d
3
2 _ddd

8>>>>>>>><
>>>>>>>>:

ð30Þ

Equation (31) mainly considers that if the post-

restitution coefficient eoutn calculated by Eq. (15) is

too larger, it indicates that ln is too small, conversely,

ln tends to larger. Therefore, when eoutn is greater than
pre- restitution coefficient ein, then eoutn/ein is greater
than 1. Multiplying it by ln to obtaine the increased

iteration value of ln?1, and on the contrary, decreased

ln?1 can be obtained.

lnþ1 ¼ ln
eoutn
ein

ð31Þ

It’s crucial to highlight that at the end of NIRV-

collision contact, two potential states emerge: separa-

tion and non-separation. The criteria for these states

during the restitution phase are discussed in reference

[18], where it is noted that during the restitution phase,

separation occurs when d = 0 and _d þð Þ C 0, and non-

separation occurs when d[ 0 and _d þð Þ = 0.

5 Calculation process for collision contact forces

under external forces

In the contact system shown in Fig. 1, collisions

undergo several transitions between their initiation

and cessation. Due to energy loss and external forces,

the strength of collision contact may gradually

decrease until NIRV-collision contact occurs, and

the influence of external forces on the contact process

increases accordingly. This means that it is necessary

to separately calculate collision contact force and

NIRV-collision contact force when analyzing the

dynamics of the contact system, and both need to

consider the influence of external forces.

The energy loss of a collision influenced by external

forces, as derived from Eqs. (6), (15) and (17),

indicates multiple contributing factors, complicating

the prediction of collision energy loss.

DE ¼ 1� e2
� 	 1

2
me

_d �ð Þ
� �2

þ r
dm

0

Fe tð Þdd
� �

ð32Þ

Therefore, similar to NIRV-collision contact, the

hysteresis damping factor of this contact is calculated

by Eqs. (25) to (31), then substituting into Eq. (1) to

determine the corresponding contact forces. The

corresponding calculation process for these two con-

tact forces is proposed here, as shown in Fig. 7.

During each compression and restitution cycle, it is

important to note the following points:

1. Collision occurs when the deformation changes

from d B 0 to d[ 0 and the initial relative

Fig. 7 Numerical

calculation process
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velocity _d� is greater than zero, and the initial

value of the collision hysteresis damping factor l0
can be calculated by Eq. (23).

2. NIRV-collision occurs when the deformation

changes from d B 0 to d[ 0 and the initial

relative velocity _d� is zero, and the initial value of

the collision hysteresis damping factor l0 can be

calculated by Eq. (28) or the hysteresis damping

factor from the last collision.

3. During the initialization process, both the values

of a and b are set to zero, and the existing values of

a and b need to be maintained during

reinitialization.

4. The post- restitution coefficient eoutn calculated by
Eq. (15), and ne is the accuracy of eoutn.

5. The formula for calculating the iteration value

ln?1 of the hydrogenation damping factor can be

selected based on the principle of fewer iterations.

6. In the collision restitution phase, when d B 0, or

d[ 0 and _d ¼ 0, the collision is end.

7. The integrations in the dynamic equations can be

performed by the Runge–Kutta method of order 4

with a time step equal 10-6 s.

6 Application to collision under external force

To enhance understanding of the proposed contact

force calculation approach, we explore applications

involving simultaneous collisions and multiple con-

tinuous collisions under externa forces. Here are

examples for application.

6.1 Collinear collision of triple ball chain

The collinear collision system shown in Fig. 8

demonstrates simultaneous collisions. The three balls,

B1, B2 and B3, each have the same mass m = 0.5 kg

and radius R = 0.05 m, and the contact stiffness k

between B1 and B2, as well as between B2 and B3, is

equal to 1 9 108 N/m3/2. The ball B1 impacts B2 along

the collinear direction at an initial velocity of

_x
�ð Þ
1 = 0.2 m/s, while B2 and B3 are in contact before

the initial collision. Using x1, x2 and x3 to represent the

displacements of B1, B2 and B3, with initial values of

0 m, 0.1 m and 0.2 m, respectively.

The dynamic equations of this system can be

written as follows

m€x1 ¼ �Fn1

m€x2 ¼ Fn1 � Fn2

m€x3 ¼ Fn2

8<
: ð33Þ

with

Fn1 ¼ kd
3
2

12 þ l12d
3
2

12
_d12

Fn2 ¼ kd
3
2

23 þ l23d
3
2

23
_d23

d12 ¼ 2R� x2 � x1ð Þ
d23 ¼ 2R� x3 � x2ð Þ
_d12 ¼ _x1 � _x2
_d23 ¼ _x2 � _x3

8>>>>>>><
>>>>>>>:

ð34Þ

where Fn1 and Fn2 represent the contact forces

between B1 and B2, as well as between B2 and B2,

respectively, whereas d12 and d23 are the correspond-

ing deformations, _d12 and _d23 denote the correspond-

ing deformation velocities, l12 and l23 are the

corresponding hysteresis damping factors, and the

pre- restitution coefficients used to calculate the initial

values of l12 and l23 are set to ein12 and ein23,
respectively.

The computation process in Fig. 7 is utilized to

simulate the dynamic responses of the three ball, and

the initial parameters of X0, V0, ein12 and ein23 are [0,
0.1, 0.2]T, [0.2, 0, 0]T, 0.8 and 0.7, respectively. The

initial values of l12 and l23 are calculated by Eq. (23)
with the initial velocity 0.2 m/s, with each factor

requiring independent and simultaneous iteration in

each cycle of calculation. After six cycles, l12 and l23
meet the required precision (ne = 1%). The Hunt and

Crossley model, as well as Flores et al. model are also

applied to simulate the same simultaneous collisions.

In this simulation, l12 and l23 are equal and calculated
based on the initial velocity. Then, we get the

simulation results, as shown in Figs. 9, 10, 11, 12.

Figure 9 represents the velocity developments of

B1, B2 and B3, corresponding to solid, dashed, and

dotted lines, respectively. Under the collision contactFig. 8 Collinear collision system of triple ball chain

123

19802 Y. Shen, D. Xiang



force Fn1 shown in Fig. 10, the velocity of B1

continues to decrease from 0.2 m/s until it separates

from B2, while the velocity of B3 continues to

accelerate from zero until it separates from B2 under

the contact force Fn2. Unlike B1 and B3, B2 is

simultaneously influenced by Fn1 and Fn2. Initially,

Fn1 exceedsFn2, causing B2’s velocity to increase until

it reaches its peak, then it diminishes as Fn1 becomes

less than Fn2, until it separates from B1 and B3.

The velocities shown Fig. 9 are obtained based on the

proposedmethod, and similar results can also be obtained

by applying Hunt and Crossley model, and Flores et al.

model. However, there are differences in the influence of

different contact forcemodels on the dynamic response of

simultaneous collisions, as shown in Figs. 10, 11, 12.

FromFig. 10, it can be observed that the differences in the

collision contact forces Fn1 calculated by the Hunt and

Crossley model, the Flores et al. model, and the proposed

method are relatively small during the compressionphase,

whereas the difference is relatively obvious in the

restitution phase. The reasons are the different effect in

l12 values and the influence of the external force Fn2
during the restitution phase. Compared to Fn1, there is a

significant difference in the NIRV-collision contact force

Fn2, and themain reason is the different values ofl23. The
above differences are also clearly reflected in the

deformation velocity shown in Fig. 11.

Figure 12 shows the hysteresis loops of the colli-

sions between B1 and B2, and between B2 and B3,

respectively, denoted as the hysteresis loops B12 and

B23. This figure reveals that the B12 loops generated by

the Flores et al. model and the proposed method are

relatively similar, indicating minor differences in

energy loss between these two models. Additionally,

the post-restitution coefficients eout12 differ from the

pre-restitution coefficients ein12 by less than 1%, as

illustrated in Table 2. In contrast, the hysteresis loop
Fig. 9 Velocities of the balls

Fig. 10 Collision contact forces of the two collision

Fig. 11 Deformation velocities of the two collision

Fig. 12 Hysteresis loops of the two collisions
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produced by the Hunt and Crossley model shows

marked differences, with a deviation of 5.7% from the

pre-restitution coefficients. For the hysteresis loops of

B23, the discrepancies among the Hunt and Crossley

model, Flores et al. model, and the proposed method

are significant, with errors in the post-and pre-

restitution coefficients of 23.7%, 18.7%, and 0.8%,

respectively.

It is important to note that the number of iterations

required in the calculation process, as demonstrated in

Fig. 7, correlates with the pre-restitution coefficient

and the initial relative velocity, as shown in Table 3

which is calculated with the condition of ein12 = ein23.
When the values of l12 and l23 computed by Eq. (23)

both meet the accuracy requirements, only one cycle

calculation is required, such as ein is 0.85; otherwise,
several cycles of calculation are needed. Due to the

mutual influence of the two collisions, the simultane-

ous iteration of l12 and l23 may result in more cycles

and even inability to converge marked by ‘‘–’’, as

shown in Table 3. In this case, it is necessary to reduce

the accuracy requirements or adopt other methods.

6.2 Elastic ball collision under spring support

and external force

When simulating multiple consecutive collisions

using the computation process shown in Fig. 7,

attention should be paid to initializing parameters for

each collision. The system setup for this simulation

involves a ball supported by a spring and external

forces as depicted in Fig. 13. The ball, with a mass

m of 0.5 kg, a radius R = 0.05 m, and an equivalent

stiffness k equal to 1.8 9 107 N/m3/2, impacts on a

rigid wall under the action of a periodic force F (t) and

spring damping force. When the spring is inactive, the

original coordinate system is centered at the ball, with

a distance b from the ball to the wall set at 0.048 m.

The following is the dynamic equivalent equation

of the contact system shown in Fig. 13.

m€dþ ld
3
2 _dþ kd

3
2 ¼ F tð Þ � kexþ ce _xð Þ ð35Þ

where x denotes the position of the ball and its initial

value x0 is - 0.01 m, d represents the deformation

between the ball and wall and it is evaluated by

Eq. (36), ke = 10.6N/m and ce = 100 N�s/m are the

support spring stiffness and damping, respectively,

and F(t) is the sinusoidal external force shown in

Eq. (37)

d ¼ xþ R� b ð36Þ

F tð Þ ¼ 500þ 250sin 2000tð Þ ð37Þ

Assuming here that the restitution coefficient of

each contact process is 0.9 and setting ne = 0.5%, the

simulation for each collision is initialized as per the

process shown in Fig. 7. For collisions starting with

initial velocity, V0 is determined at the point of

collision occurs, whereas for those without initial

velocity = 0 while X0 is calculated based on the

timing of collision occurrence. Additionally, the

iterative value of ln?1 is calculated by the Newton’s

iterative formula (29), or Eq. (27) based on bisection

method, and the number of iterations for the first 10

collisions is shown in the Table 4. Correspondingly,

the iteration times of the method used in Sect. 6.1 are

listed in the third row of this table. It can be drawn

from the table that in this case, it is more optimal to

apply Newton’s iterative method to calculate ln?1

before the range [a, b] is determined.

Then, we get the simulation results, as shown in

Figs. 14, 15, 16, 17. Figure 14 represents the devel-

opment of the ball position, including solid line

acquired by the described approach, and the straight

line illustrates the position of the ball at the instant of

contact occurs. From this figure, it can be drawn that

after several collisions, the ball adheres closely to the

wall, and its distance from the center to the wall

gradually decreases until it changes in a cycle since the

collision consuming the elastic potential energy at the

initial position. The symbols ‘‘o’’ and ‘‘ 9 ’’ which

denote the start mark and the end mark of contact cycle

have also evolved from separation to overlap.

Figure 15 shows the variation curves of contact

force and equivalent external force, where the solid

line represents the contact force and the dashed line is

Table 2 Pre- and post- restitution coefficients

Model ein12 eout12 ein23 eout23

Hunt and Crossley 0.8 0.8453 0.7 0.8661

Flores et al. 0.8 0.8020 0.7 0.8306

Described method 0.8 0.8067 0.7 0.7059

123

19804 Y. Shen, D. Xiang



the equivalent external force formed by the combina-

tion of spring support force and sinusoidal external

force, respectively. Corresponding to Fig. 14, the

contact force decreases significantly until it undergoes

a constant amplitude cyclic change. It should be noted

that the first 5 cycles are collision contact, and the

following are NIRV-collision contact. Moreover, the

equivalent external force during these collisions and

NIRV-collisions also decreases, and its influence on

the contact process gradually increases until basically

under the influence of the equivalent external force.

Table 3 Number of cycle calculations under different conditions

€x
�ð Þ
12 (m/s) Cycle times

ein = 0.95 ein = 0.9 ein = 0.85 ein = 0.8 ein = 0.75 ein = 0.7 ein = 0.65 ein = 0.6 ein = 0.55 ein = 0.5

0.1 8 1 1 6 7 6 5 5 3 7

0.2 6 1 1 4 7 6 5 4 – –

0.3 27 3 1 4 6 5 6 6 5 7

0.4 8 5 1 5 6 7 5 4 5 5

0.5 16 3 1 6 6 6 5 5 4 -

Fig. 13 Collision system with periodic external force and

spring damping force

Table 4 Comparison of

iteration times
ln?1 Collisions

1th 2th 3th 4th 5th 6th 7th 8th 9th 10th 11th

Equations (27) or (29) 0 0 1 1 5 1 1 1 1 1 0

Equations (27) or (31) 0 0 7 14 22 13 18 15 10 7 4

Fig. 14 Position of the ball Fig. 15 Contact force and equivalent external force
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This figure also shows that hysteresis damping factor

coefficient a for each contact process increases as the

contact strength weakens, until to a constant value. For

this constant value, the constant amplitude and vari-

ation frequency of the contact cycle are the reasons.

The plots of the ball velocity are exhibit the same

trend, as shown in Fig. 16. In addition, due to the

influence of the equivalent external force, the differ-

ence between the initial approach velocity and the

maximum approach velocity during contact process is

increased as the initial approach velocity decreases.

When the initial approach velocity is equal to zero, the

approach velocity changes with the variation of the

equivalent external force.

It can be observed from Figs. 14, 15, 16, 17 that the

area of hysteresis loop is decreased with the reduction

of the distance between the ball and the wall. The

sources of the energy loss represented by the hysteresis

loop of the first 5 collision contact are the initial

relative kinetic energy and the work done by the

equivalent external force, whereas other contact pro-

cesses are only come from the work done by the

equivalent external force. It should be highlight that the

first four collision hysteresis loops are closed curves

that change from the origin to the origin, and the fifth

collision hysteresis loop changes from the origin to a

non-origin, whereas the subsequent hysteresis loops

change from a non-origin to a non-origin.

7 Conclusion

For unstable mechanical systems, the calculation for

collision and NIRV-collision contact forces between

elastic spheres was studied. Initially, brief issues of the

continuous contact force models associated with the

fundamental contact mechanics and energy conver-

sion during contact process were illustrated. Next, the

collision process without external forces was studied,

and a corresponding hysteresis damping factor model

was established combining with energy restitution

coefficient and numerical computation. On these

bases, the bisection method, Newton’s method and

energy restitution coefficient were applied to construct

an iterative formula for the hysteresis damping factor,

and then a collision and NIRV-collision contact force

calculation approach was established, whereas corre-

sponding numerical calculation process was also

proposed. Finally, the proposed approach was applied

to simulate the collision and NIRV-collision contact

dynamics of simultaneous collisions and multiple

continuous collisions, and the characteristics of the

elastic balls in these systems were analyzed, including

displacement, contact force, equivalent external force,

velocity, and hysteresis loop. The results indicate:

(1) The proposed collision hysteresis damping

factor without external forces can achieve high

accuracy even with low recovery coefficients.

(2) The calculation approach established in this

article can be well applied to collision and

NIRV-collision dynamic analysis.

(3) The energy loss law of periodic NIRV-collision

contact can be described by the Strong’s energy

model.

Fig. 16 Velocity of the ball

Fig. 17 Hysteresis loop during contact process
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