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Abstract Chaotic systems are applicable to image
cryptography with their inherent properties. Unfortu-
nately, in numerous existing chaos-based image cryp-
tography, chaotic systems face the problems of uneven
chaotic trajectories and narrow chaotic regions, which
leads to hidden risks in the encryption approach. To
solve these problems, a novel two-dimensional Sine-
Arcsin-Cos-Arcsin (2D-SACA) chaotic mo-del is con-
structed, which can design chaotic systems according
to users’ own needs, and then we propose an image
encryption approach applying the designed chaotic sys-
tems. Compared with the existing chaotic systems in
image cryptography, the designed chaotic systems have
better randomness, sensitivity,wide chaotic regions and
more uniform trajectory distribution. The major contri-
bution of this scheme is to design a 2D-SACA chaotic
model, which can generate different superior chaotic
systems, and propose an image encryption approach
that enables images of different dimensions and cate-
gories to be encrypted. Simulation analysis illustrates
that this approach has superior performance, high effi-
ciency, strong key sensitivity, and wide key space,
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thanks to the sensitivity of designed chaotic systems
and the extensive chaotic region,which can prevent var-
ious attacks. And even with noise interference and data
loss, the original image can be successfully restored.
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1 Introduction

With the popularization and evolution of the Internet
of Things, digital images have developed into the pre-
ferred information carrier in network communication
with their intuitive and vivid characteristics [1]. How-
ever, while enjoying the convenience brought by the
development of science and technology, people also
began to attach importance to the security of images.
The disclosure of image information may lead to leak-
age of personal privacy information, and may also
affect business secrets or national security [2]. Accord-
ingly, image encryption has become an important tech-
nology to protect image information [3,4]. Image cryp-
tography is dissimilar to text cryptography in that there
is great redundancy and high pixel correlation [5–7]. In
image cryptography with enormous data, Data Encryp-
tion Standard (DES) and Advanced Encryption Stan-
dard (AES) are inefficient and have been gradually
replaced bynovel technologies [8,9], such asDNAcod-
ing [10–13], cellular automata [14,15], S-box [16,17],
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compressed sensing [18–20], and chaotic systems [21–
25] have emerged continuously.

Chaotic systems can greatly improve the perfor-
mance of encryption algorithms because of their initial
value sensitivity, aperiodicity and internal randomness,
so they have a good application prospect inmany fields,
such as image cryptography, neural networks, secure
communication, economics,mathematics, physics, and
so on [26–28]. Chaotic systems can be categorized
into one-dimensional (1D) and high-dimensional (HD)
chaotic systems [29]. The 1D chaotic systems are
straightforward frameworks and easy to implement,
but they are easily cracked due to the limited chaotic
region and simple trajectory. The HD chaotic systems
exhibit superior structural complexity and chaotic per-
formance, while the implementation cost is high [30].

The 2D chaotic systems not only have the easy real-
ization of 1D systems but also have the complex chaotic
behavior of HD systems, so they can give considera-
tion to efficiency and performance. Recently, various
2Dchaotic systemshavebeenderived and implemented
in image cryptography. Teng et al. [31] generated a 2D-
Coupled system with good chaotic performance using
the nonlinear function and two 1D maps and presented
an image encryption technique grounded on the 2D-
Coupled map. Hua et al. [32] first constructed a 2D-
LSM chaotic system to overcome the weakness of the
traditional chaotic system. Then, they designed a color
image encryption approach with Latin squares and 2D-
LSM. Teng et al. [33] developed a 2D-CLSS chaotic
system with excellent chaotic properties and applied
the 2D-CLSS system to image cryptography. Qiu et al.
[34] produced a color image encryption method on the
developed 2D-CSCM system, where emulation exper-
iments proved that 2D-CSCM has beneficial chaotic
behavior and this scheme has high security.

The 2D chaotic systems designed above have supe-
rior chaotic performance, but these systems are fixed
and can increase the risk when utilizing identical
chaotic systems in multiple algorithms. Thus, design-
ing a universal chaotic model with superior chaotic
performance has good application value and prospects.
Zhou et al. [35] developed a 2D cross-coupled modular
chaotic model (2D-CMCM) with good chaotic perfor-
mance by using nonlinear function and mod operation,
which can generate different chaotic systems. Then the
chaotic system was introduced to implement permu-
tation and diffusion simultaneously in the encryption
stage. Security evaluation indicated that this scheme

enables several images of various dimensions and types
to be encrypted, and has good anti-attack and encryp-
tion efficiency. Wang et al. [36] designed a 2D cross-
coupled chaoticmodel (2D-CCCM), for producing var-
ious chaotic systems with complicated chaotic behav-
iors and extensive chaotic distribution range. Further-
more, a novel visual color image encryption approach
was suggested, which adopts cyclic shift and scram-
bling technology to acquire a cryptographic image. The
cryptographic image is hidden in the host image with
the 2D discrete cosine transform, further improving the
reliability of this method.

The chaotic system applied in the above-mentioned
schemes has a narrow chaotic region, which leads
to limited key space, weak security, and vulnerabil-
ity to various attacks. To enlarge the chaotic region
and strengthen the confidentiality of the encryption
approach, an image encryption approach that can
encrypt different sizes and types is proposed based on a
novel chaotic model in this paper. Overall, the principal
contributions of this paper are summarized below.

(1) 2D-SACA chaotic model. To solve the prob-
lems of uneven chaotic trajectory and limited
scope in existing chaotic systems, a novel 2D-
SACA chaotic model is designed, which can
design chaotic systems according to their require-
ments. The Logistic-Sine map and Cubic-Fraction
map are combined as seed maps of 2D-SACA
to generate the Sine-Arcsin-Cos-Arcsin-Logistic-
Sine (2D-SACALS) map and Sine-Arcsin-Cos-
Arcsin-Cubic-Fraction (2D-SACACF)map respec-
tively.

(2) Chaotic performance analysis. The performance of
the 2D-SACALS map and 2D-SACACF map is
evaluated by bifurcation diagram, trajectory dia-
gram, Lyapunov exponent (LE), Shannon entropy
(SE), sensitivity analysis, randomness tests, degree
of non-periodicity and statistical complexity mea-
sure, demonstrating they have a widely hyper-
chaotic region, high non-periodic, excellent ran-
domness and sensitivity, and their chaotic perfor-
mance is superior.

(3) Image encryption approach. To strengthen the
capability of image protection, an image encryp-
tion approach is proposed. The image encryption
scheme can encrypt images of different sizes and
categories. SHA-512 generates the keys of the
chaotic systems from the original image so that
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each original image has a unique key. The pro-
posed image encryption algorithm adopts the pro-
posed 2D-SACALS map in both interference and
diffusion stages, and does not use other interfer-
ence and diffusion techniques.

(4) Simulation and security evaluation. Extensive sim-
ulation analysis verifies that this approach has
excellent performance and high efficiency, and can
prevent statistical attacks and differential crypt-
analysis. The key space is> 2912, which can with-
stand brute force attacks. At the same time, it is
extremely sensitive to the key although the key dif-
ference is 10−16, it cannot be decrypted success-
fully. When the cryptographic image is affected by
noise pollution and data loss, most of the data can
still be successfully decrypted.

The rest of the organizations in this article are given
as follows. Section2 constructs a novel 2D chaotic
model. The performance of the designed chaotic sys-
tems is evaluated in Sect. 3. Section4 details the image
cryptosystem with the proposed chaotic systems. Sec-
tion5 gives the simulation and evaluation of the image
encryption approach. Section6 draws a conclusion.

2 Sine-Arcsin-Cos-Arcsin (2D-SACA) chaotic
model

For users who can design chaotic systemswith superior
performance according to their requirements, this paper

designs a 2D-SACA chaotic model. In this chaotic
model, 1Dmaps are utilized to derive 2D chaotic maps.
The 1D seed maps adopted in this paper are specified
as

Logistic: xn+1 = 4axn(1 − xn), a ∈ [0, 1], xn ∈ (0, 1)

(1)
Sine: xn+1 = a sin(πxn), a ∈ [0, 1], xn ∈ [0, 1]

(2)
Cubic: xn+1 = axn(1 − xn

2), a ∈ [0, 3], xn ∈ (0, 1)

(3)
Fraction: xn+1 = 1/

(
xn

2 + 0.1
) − axn,

a ∈ [0, 1], xn ∈ (0, 1) (4)

Table 1 surveys six existing 2D chaotic systems.
Aiming at the shortcoming that some existing chaotic
systems have narrow chaotic intervals, a novel 2D-
SACA chaotic model with superior chaotic behavior
and wide chaotic region is designed based on absolute
value and trigonometric function. The basic framework
of the 2D-SACA chaotic model is shown in Fig. 1.

Here (xn, yn) denotes the input and (xn+1, yn+1)

represents the output. f and g express two existing
1D chaotic systems. H and G are the trigonometric
and absolute value functions, and their mathematical
expressions can be described as follows

H(x) =
∣∣∣∣

100x

arcsin(x/2)

∣∣∣∣

G(x, y) = |sin x − cos y|
(5)

Table 1 Existing 2D chaotic maps

Schemes Year 2D chaotic system name Formula Control parameter

Ref. [31] 2021 2D-Coupled

{
xn+1 = sin (α/ sin yn)

yn+1 = β sin (π(xn + yn))
α �= 0, β ∈ (0, 1]

Ref. [32] 2021 2D-LSM

{
xn+1 = cos (4axn (1 − xn) + b sin (π yn) + 1)

yn+1 = cos (4ayn (1 − yn) + b sin (πxn) + 1)
a, b ∈ [1, 100]

Ref. [33] 2022 2D-CLSS

{
xn+1 = sin (π (pyn (1 − yn)))

yn+1 = sin (π (xn + yn))
p ∈ [0, 4]

Ref. [34] 2022 2D-CSCM

{
xn+1 = cos

(
αcos−1 (sin (xn − yn))

)

yn+1 = β sin (π (xn + yn))
α, β ∈ [2,+∞)

Ref. [35] 2023 2D-SICMM

{
xn+1 = mod (a sin (πxn) + b sin (xn) cos (yn) , 3)

yn+1 = mod
(
b sin (9/xn) + axn yn

2, 3
) a, b ∈ [1, 100]

Ref. [36] 2023 2D-SICM

{
xn+1 = α sin (π (sin yn + cos xn))

yn+1 = sin (β/ (sin xn + cos yn))
α, β ∈ [1,+∞)
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Fig. 1 2D-SACA chaotic model framework

The 2D-SACA chaotic model is expressed by

{
xn+1 = G (H ( f (a, xn)) , H (g (b, yn)))

yn+1 = G (H ( f (a, yn)) , H (g (b, xn)))
(6)

where a and b are chaotic parameters.

(1) Sine-Arcsin-Cos-Arcsin-Logistic-Sine (2D-SACA
LS) chaotic map
To confirm the correctness of the 2D-SACAmodel,
set the f and g of the 2D-SACA model as the
Logistic and Sine maps individually. 2D-SACALS
map is derived by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 =
∣
∣∣∣sin

∣
∣∣∣
100 × 4axn(1 − xn)

arcsin (xn/2)

∣
∣∣∣

− cos

∣∣∣∣
100b sin(π yn)

arcsin (yn/2)

∣∣∣∣

∣∣∣∣

yn+1 =
∣
∣∣∣sin

∣
∣∣∣
100 × 4ayn(1 − yn)

arcsin (yn/2)

∣
∣∣∣

− cos

∣∣∣∣
100b sin(πxn)

arcsin (xn/2)

∣∣∣∣

∣∣∣∣

(7)

When a �= 0, b ∈ (−∞,+∞), the 2D-SACA
LS map is a fully chaotic state in x, y ∈ [0, 2].
When a = 0, b ∈ (−∞,+∞), the 2D-SACALS
map has partial chaotic in x, y ∈ [0, 1]. The details
are illustrated in Fig. 3a.

(2) Sine-Arcsin-Cos-Arcsin-Cubic-Fraction (2D-
SACACF) chaotic map
Similarly, the Cubic map and Fraction map are
selected as f and g of the 2D-SACA model to
generate a 2D-SACACF map. The mathematical
definition of the 2D-SACACF model is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 =
∣∣
∣∣sin

∣∣
∣∣
100axn(1 − xn2)

arcsin (xn/2)

∣∣
∣∣

− cos

∣∣∣∣∣
100

(
1/

(
yn2 + 0.1

) − byn
)

arcsin (yn/2)

∣∣∣∣∣

∣∣∣∣∣

yn+1 =
∣∣∣
∣sin

∣∣∣
∣
100ayn(1 − yn2)

arcsin (yn/2)

∣∣∣
∣

− cos

∣
∣∣∣∣
100

(
1/

(
xn2 + 0.1

) − bxn
)

arcsin (xn/2)

∣
∣∣∣∣

∣
∣∣∣∣

(8)

In the case of a �= 0, b ∈ (−∞,+∞), the 2D-
SACACF map is in a fully chaotic state in x, y ∈
[0, 2]. When a = 0, b ∈ (−∞,+∞), the 2D-
SACACF map is a fully chaotic state in x, y ∈
[0, 1], as depicted in Fig. 3g.

3 Chaotic performance analysis

This section aims to test the performance of the
designed chaotic maps. MATLAB R2020a is used to
simulate the 2D-SACALS map and the 2D-SACACF
map from six aspects: bifurcation diagram, trajectory
diagram, LE, SE, sensitivity, randomness tests, degree
of non-periodicity and statistical complexity measure.

3.1 Bifurcation diagram

The bifurcation diagram refers to the small and contin-
uous transformation of system parameters in a dynamic
system, but it causes a qualitative alteration of the sys-
tem. It can intuitively evaluate the dynamic properties
of the system. A superior dynamical system requires a
pseudo-random distribution of its chaotic series [37].

Figure2 depicts the bifurcation diagrams of the 2D-
SACALS map and the 2D-SACACF map with a, b ∈
[0, 1000] and a, b ∈ [−1000, 0]. In Fig. 2, within the
range of chaotic parameters, no matter how the chaotic
parameters transform, the 2D-SACALS map and the
2D-SACACF map are always in a fully chaotic state,
proving that the 2D-SACA chaotic model has a widely
chaotic region and strong randomness.

3.2 Trajectory diagram

Given the initial conditions, the trajectory diagram of a
2D chaotic system intuitively reflects the motion state
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Fig. 2 Bifurcation diagrams, where red is the variable x and blue is the variable y. 2D-SACALS with a–b a, b ∈ [0, 1000] and c–d
a, b ∈ [−1000, 0]. 2D-SACACF with e–f a, b ∈ [0, 1000] and g–h a, b ∈ [−1000, 0]

of the system with time evolution [38]. Chaotic sys-
tems generally occupy partial phase space to indicate
the uncertainty of the system output. Consequently,
chaotic systems with satisfactory chaotic behavior nor-
mally occupy the trajectory of a wide phase space.

Figure3 depicts the trajectory diagrams of the
chaotic maps. It can be seen that when a = 0, the 2D-
SACALS map is partially chaotic in [0, 1], as given
in Fig. 3a. However, the 2D-SACACF map is com-
pletely chaotic in [0, 1] when a = 0, as shown in
Fig. 3g. When a �= 0, b ∈ (−∞,+∞), the trajecto-
ries generated by different initial values and param-
eters are all uniformly distributed in the [0, 2], as
shown in Fig. 3b–f and h–l. Trajectory diagram results
demonstrate that the 2D-SACALS map and the 2D-
SACACF map are completely chaotic in the chaotic
range a �= 0, b ∈ (−∞,+∞).

3.3 Lyapunov exponent (LE)

The LE is responsible for deciding whether the system
is chaotic. It points out that when LE>0, the chaotic
system is chaotic. Greater LE signifies more compli-
cated chaotic behavior [39].

The LEs of the 2D chaotic system are calculated as
follows

f (x, y) =
{
xi+1 = f1(xi , yi )

yi+1 = f2(xi , yi )
(9)

where f (x, y) represents a 2Dchaotic system. J (xi , yi )
is the Jacobian matrix of the f (x, y) and is calculated
as follows

J (xi , yi ) =
(

∂ f1(x,y)
∂x

∂ f1(x,y)
∂y

∂ f2(x,y)
∂x

∂ f2(x,y)
∂y

)

(10)

Suppose the eigenvalues are λ1 (J ) and λ2 (J ) for the
2D matrix J .

LEi = lim
n→∞

1

n

n−1∑

i=1

ln |λi (J )| (11)

where the maximum number of iterations is n.
The 2D-SACALS and 2D-SACACF maps have

two LEs. With the initial parameters set to (x, y) =
(0.7, 0.8) and control parameters to a, b ∈ [0.1, 1000]
the calculated LEs are depicted in Fig. 4. The LEs of
the 2D-SACALS map concerning parameters a, b ∈
[0.1, 1000] are presented in Fig. 4a and b. Similarly,
LEs analyses of the 2D-SACACF map are graphed in
Fig. 4d and e, separately. The outcomes indicate that
the 2D-SACALS map and the 2D-SACACF map are
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Fig. 3 Trajectory diagrams. 2D-SACALS with a (x0 =
0.2, y0 = 0.3, a = 0, b = 8),b (x0 = 0.4, y0 = 0.5, a = 7, b =
0), c (x0 = 0.5, y0 = 0.6, a = −55, b = 67), d (x0 = 0.7, y0 =
0.8, a = 76, b = 85), e (x0 = 0.43, y0 = 0.72, a = −998, b =
−785) and f (x0 = 0.89, y0 = 0.92, a = 1735, b = 8470).

2D-SACACF with g (x0 = 0.49, y0 = 0.52, a = 0, b = 158),
h (x0 = 0.7, y0 = 0.8, a = −281, b = 0), i (x0 = 0.45, y0 =
0.83, a = −735, b = 467), j (x0 = 0.73, y0 = 0.92, a =
352, b = −568), k (x0 = 0.75, y0 = 0.23, a = −7378, b =
−5786) and l (x0 = 0.32, y0 = 0.21, a = 1789, b = 3852)

positive numbers within the parameter range and have
complex chaotic features.

Since the 2D-CLSS map has only one chaotic
parameter, all other 2D chaotic maps except the 2D-
CLSSmap have two chaotic parameters. For providing
a more intuitive and fair comparison, one parameter is
set as a fixed value in all 2D chaotic maps except the
2D-CLSSmap, and the LEs comparative analyses of all
2D chaotic maps under the other chaotic parameter are
revealed in Fig. 4c and f. The LEs of the 2D-SACALS
and 2D-SACACF maps are the maximum, indicating
that their chaotic complexity is superior to other 2D
chaotic maps.

3.4 Shannon entropy (SE)

The SE reveals the complexity of time sequences [40].
As SE increases, the chaotic behavior is more complex,

and the chaotic sequence is more random. It can be
calculated by

H(s) =
2m−1∑

i=0

p(si )log2
1

p(si )
(12)

where H(s) is the value of SE, s is the information
source and p(si ) is the probability of the occurrence
of the information si . For the random source with m
symbols, the theoretical value of SE is equal to log2(m).

Figure5 illustrates the SE of the 2D-SACALS map
and 2D-SACACF map with respect to parameters a
and b, which reveals that the proposed chaotic maps
have a high SE, indicating that they have a high degree
of chaos and strong randomness. The comparative SEs
of 2D-SACALS, 2D-SACACF, 2D-Coupled, 2D-LSM,
2D-CLSS, 2D-CSCM, 2D-SICMM and 2D-SICM are
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Fig. 4 LE analysis. LE spectrum of 2D-SACALS with a LE1 and b LE2. LE spectrum of 2D-SACACF with d LE1 and e LE2.
Comparative LEs for c LE1, f LE2

Fig. 5 SE analysis. SE spectrum of 2D-SACALS with a SEx and b SEy . SE spectrum of 2D-SACACF with d SEx and e SEy .
Comparative SEs for c SEx , f SEy
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Fig. 6 Sensitivity analysis. Differences with initial conditions (x0, y0, a, b) and (x0∗, y0∗, a, b) in sequences a 2D-SACALS, c 2D-
SACACF. Differences with initial conditions (x0, y0, a, b) and (x0, y0, a∗, b∗) in sequences b 2D-SACALS, d 2D-SACACF

depicted in Fig. 5c and f. According to observation, the
SEs of the 2D-SACALS and 2D-SACACFmaps are the
largest, which indicates that the proposed chaotic maps
have complicated behavior and strong randomness.

3.5 Sensitivity analysis

An excellent chaotic system should produce different
chaotic sequences when the initial values or chaotic
parameters have extremely minimal variation. Using
(x0 = 0.2, y0 = 0.3, a = 3, b = 5) to generate chaotic
sequences (X,Y ), (x0∗ = 0.2 + 10−16, y0∗ = 0.3 +
10−16, a = 3, b = 5) constructs sequences (X1,Y1),

and (x0 = 0.2, y0 = 0.3, a∗ = 3 + 10−15, b∗ =
5+10−15) produces sequences (X2,Y2) to test the sen-
sitivity of the 2D-SACALS map and the 2D-SACACF
map.

Figure6 measures the sensitive analysis of the 2D-
SACALS and 2D-SACACF maps. From Fig. 6a and c,
although the initial values (x0, y0) and (x0∗, y0∗) of the
2D-SACALS and 2D-SACACF maps are only differ-
ent from 10−16, the chaotic curves generated by the two
initial values are totally different. In Fig. 6b and d,when
chaotic parameter values (a, b) and (a∗, b∗) of the 2D-
SACALS and 2D-SACACF maps are only different
from 10−15, the resulting chaotic sequences (X,Y ) and
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Table 2 NIST test results

Sub-tests 2D-SACALS 2D-SACACF Result: Pass (�) / Fail (×)

P-value (x) P-value (y) P-value (x) P-value (y)

Frequency 0.911413 0.911413 0.911413 0.964295 �
Block frequency 0.911413 0.911413 0.834308 0.964295 �
Cumulative sums 0.834308 0.534146 0.437274 0.637119 �
Runs 0.534146 0.437274 0.122325 0.350485 �
Longest run 0.991468 0.437274 0.350485 0.534146 �
Rank 0.739918 0.739918 0.437274 0.275709 �
FFT 0.534146 0.739918 0.437274 0.350485 �
Non-overlapping template 0.991468 0.999438 0.991468 0.991468 �
Overlapping template 0.213309 0.637119 0.739918 0.437274 �
Universal 0.637119 0.350485 0.637119 0.437274 �
Approximate entropy 0.991468 0.350485 0.637119 0.534146 �
Random excursions 0.834308 0.739918 0.911413 0.834308 �
Random excursions variant 0.964295 0.911413 0.991468 0.999438 �
Serial 0.534146 0.534146 0.739918 0.350485 �
Linear complexity 0.964295 0.534146 0.964295 0.834308 �

(X2,Y2) are completely different. Figure6 proves that
minimal modification in the initial conditions of the
chaotic systemswill produce novel sequences. Accord-
ingly, the 2D-SACALS and 2D-SACACF maps are
extremely sensitive to the initial conditions.When they
are used in encryption algorithms, the sensitivity of
algorithms to keys can be enhanced.

3.6 Randomness tests

To further evaluate the uncertainty of the 2D-SACALS
and2D-SACACFchaotic sequences, theNational Insti-
tute of Standards and Technology (NIST) test [41] and
TestU01 [42] are utilized for measuring.

The NIST test involves 15 subtests, and individual
subtests will produce a probability value (P-value) rep-
resenting the consistency of chaotic sequences. Evi-
dence that the evaluation passes when the P-value is
within [0.001,1] and the sequences are random [41].
This paper uses a random number as the initial value
of the 2D-SACALS and 2D-SACACF maps. Then, the
chaotic sequences are divided according to 1000,000 in
the length of an individual group. The NIST test con-
clusions are enumerated in Table 2, highlighting that
the 2D-SACALS and 2D-SACACF maps have strong
randomness, which helps to strengthen the reliability
of image cryptography.

TestU01 is a test suite for evaluating pseudo-
random number generators (PRNG) and random num-
ber sequences, which includes a series of statistical
tests and randomness measurements to evaluate the
quality and performance of randomnumber generators.
TestU01 contains three different kinds of crush batter-
ies, namely SmallCrush, Crush and BigCrush. For each
test, if the P-value is within the range [10−4, 1−10−4],
the associated test is a success [42]. These test results
can help to judge whether the generated random num-
ber sequence has the required randomness characteris-
tics. The test results of TestU01 are given in Table 3.
It can be seen that the x sequences and y sequences of
2D-SACALS and 2D-SACACF maps have passed the
test, which proves that the generated chaotic sequences
have good randomness.

3.7 Degree of non-periodicity

To detect and study the non-periodicity of the 2D-
SACALS and 2DSACACFchaotic sequences, the scale
index analysis is carried out. Since the scale index
indicates a measure of the non-periodicity of the sig-
nal, it can specify which chaotic parameter values are
most suitable for generating pseudo-random number
sequences [43].
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Table 3 TestU01 test results

Battery Parameters Number of statistics Result: Pass (�) / Fail (×)

2D-SACALS 2D-SACACF

x y x y

SmallCrush Standard 15 � � � �
Crush Standard 144 � � � �
BigCrush Standard 160 � � � �

The scale index of a time series f in the scale interval
[s0, s1] is calculated by quotient as follows

iscale := S(smin)

S(smax)
(13)

where smax ∈ [s0, s1] is the maximum scale of s ∈
[s0, s1] so that S(s) ≤ S(smax ), and smin ∈ [smax , 2s1]
is the smallest scale of s ∈ [smax , 2s1] such that
S (smin) ≤ S (s). By its definition, the scale index
iscale ∈ [0, 1] is close to 0 for periodic series and close
to 1 for highly non-periodic series.

In Fig. 7a–d, when b = 5, the scale index analysis of
the 2D-SACALS and 2D-SACACFmaps for parameter
a ∈ (0, 1000] are presented. By definition, for highly
non-periodic signals the scale index will be close to
1. Therefore, from Fig. 7a–d, it can be concluded that
the first best values (iscale = 1) of chaotic parameters
are a = 20 and b = 5 for the x sequence of 2D-
SACALSmap,while thefirst extremepoint (iscale = 1)
of the y sequence of 2D-SACALS map is a = 74.1
and b = 5. For the 2D-SACACF map, the first optimal
chaotic parameters (iscale = 1) of x and y sequences
are a = 548.1, b = 5 and a = 2.1, b = 5, respectively.
Similarly, Fig. 7e–f shows the scale index analysis of
the 2D-SACALS map for parameter b ∈ [0, 1000] are
presented when a = 5, and the first optimal values of
chaotic parameters of the x sequence and y sequence
are a = 5, b = 21.1 and a = 5, b = 91.1 respectively.
While Fig. 7g–h represents the scale index analysis of
the x and y sequences of the 2D-SACACF map, and
the first optimal values of their chaotic parameters are
a = 5, b = 149.1 and a = 5, b = 163.1 respectively.
It is worth noting that in Fig. 7, the average points of
scale index are all around 0.7, which proves that the
2D-SACALS and 2DSACACF maps are highly non-
periodic.

3.8 Statistical complexity measure

Statistical complexity measures (SCM) is a method to
quantify the degree of physical structure of signals. Sta-
tistical complexity can be utilized to research complex
structures hidden in dynamics [44].

For the probability distribution P = {pi , i =
1, 2, . . . , M} of any time series, SCM can be defined
as

C [P] = HS [P] · QJ [P, Pe] (14)

where HS [P] = S[P]/Smax, (0 ≤ HS ≤ 1) represents
the normalized shannon entropy (NSE), with Smax =
S [Pe] = lnM and S [P] = −∑M

i=1 pi ln (pi ). Pe =
{1/M, . . . , 1/M} is the equilibrium distribution. The
disequilibrium QJ is defined in terms of the Jensen-
Shannon divergence and is given by

QJ [P, Pe] = Q0{S[(P + Pe)/2 − S[P]/2] − S[Pe]/2}
(15)

Q0 = −2{(M + 1/M) ln (M + 1) − 2 ln (2M) + lnM}−1

(16)

where Q0 is a normalization constant.
Based on the above calculation, NSE and intensive

statistical complexity as functions of the number of
8-bit and 16-bit words are given in Fig. 8. Figure8a–
b represent the NSE of x sequence and y sequence
by 2D-SACALS map respectively, and Fig. 8c–d indi-
cate the NSE of x and y sequences by 2D-SACACF
map respectively. Similarly, Fig. 8e–h depicts the inten-
sive complexity statistics of x and y sequences of 2D-
SACALS and 2D-SACACFmaps. From Fig. 8, the sta-
tistical complexity and NSE of 2D-SACALS and 2D-
SACACF maps tend to be 0 and 1 respectively, regard-
less of the number of 8-bitwords or 16-bitwords,which
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Fig. 7 The scale index of 2D-SACALS map and 2D-SACACF map. a–d b = 5, a ∈ (0, 1000], e–h a = 5, b ∈ [0, 1000]

Fig. 8 The normalized shannon entropy (NSE) and intensive statistical complexity measure of 2D-SACALS map and 2D-SACACF
map. a–d NSE, e–h intensive statistical complexity measure

concluded that the statistical complexity and NSE suc-
cessfully verify the randomness of the proposed chaotic
maps.

4 Image encryption approach

This section focuses on the preparedness and the pro-
posed encryption scheme. Firstly, this section presents
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the key generation method, then describes the encryp-
tion steps in detail, and finally the decryption stage is
given. The 2D-SACALS map is applied to the image
encryption scheme.

4.1 Generating keys

The 512-bit hash values Hash are calculated by
SHA-512 function, and then the hash values are
divided by 8 bits to obtain 64 hash value groups
h1, h2, . . . , h63, h64. The SHA-512 function can be
used to calculate the keys from the original image, so
that different original images will generate different
sub-keys. The specific operation of the SHA-512 func-
tion can be represented as

Hash = h1, h2, . . . , h63, h64 (17)

Then h1, h2, . . . , h63, h64 are combined to get 16
hash combinations H1,H2, . . . ,H16, which are
described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1 = min (h1, h2, . . . , h15, h16)

H2 = max (h1, h2, . . . , h15, h16)

H3 = h1 + h2 + . . . + h15 + h16

H4 = h1 ⊕ h2 ⊕ . . . ⊕ h15 ⊕ h16

H5 = min (h17, h18, . . . , h31, h32)

H6 = max (h17, h18, . . . , h31, h32)

H7 = h17 + h18 + . . . + h31 + h32

H8 = h17 ⊕ h18 ⊕ . . . ⊕ h31 ⊕ h32

H9 = min (h33, h34, . . . , h47, h48)

H10 = max (h33, h34, . . . , h47, h48)

H11 = h33 + h34 + . . . + h47 + h48

H12 = h33 ⊕ h34 ⊕ . . . ⊕ h47 ⊕ h48

H13 = min (h49, h50, . . . , h63, h64)

H14 = max (h49, h50, . . . , h63, h64)

H15 = h49 + h50 + . . . + h63 + h64

H16 = h49 ⊕ h50 ⊕ . . . ⊕ h63 ⊕ h64

(18)

The intermediate keys K1,K2, . . . ,K8 are cal-
culated by H1,H2, . . . ,H16 and the external keys
t1, t2, . . . , t7, t8(ti ∈ [0, 1]), which are described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 = (t1 × t3 + t7) + 1

2 × 512
× H1

H2

K2 = (t2 + t6 × t7 + t8) + t7 × H4

H3

K3 = (t1 + t3 + t5) × H8

H7

K4 = (t4 × t7) ×
(
H5

H6
− H5

)

K5 = (t1 × t7 + t5) − 1

2 × 512
× H9

H10

K6 = (t2 × t3 + t6) − 1

2 × 512
× H11

H12

K7 = (t1 × t7 + t2) + t4 × H13

H14

K8 = (t2 × t3 + t8) + 1

3 × 512
× H15

H16

(19)

Further generate keys (x0, y0, a, b, n0) and (x0′, y0′,
a′, b′, n1) of the 2D-SACALS chaotic map by the fol-
lowing equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = mod (|K1 + K2| , 1)
y0 = mod (|K3 + K4| , 1)
a = mod

(∣∣∣(K1 × K2 + K5) × 1016
∣∣∣ , 10

)

b = mod
(∣∣
∣(K3 × K4 + K6) × 1016

∣∣
∣ , 10

)

n0 = f i x
(
mod

(∣
∣∣
(
K1 + K2 + K3 + K4

)∣
∣∣

× 1032, 100
)

+ 200
)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0
′ = mod (|K5 + K6| , 1)

y0
′ = mod (|K7 + K8| , 1)

a′ = mod
(∣
∣∣(K5 × K6 + K7) × 1016

∣
∣∣ , 10

)

b′ = mod
(∣∣∣(K7 × K8 + K8) × 1016

∣∣∣ , 10
)

n1 = f i x
(
mod

(∣∣∣
(
K5 + K6 + K7 + K8

)∣∣∣

× 1032, 100
)

+ 200
)

(20)

4.2 Encryption scheme

The detailed encryption steps of this scheme with the
2D-SACALS map are specified as follows.

Step 1. Extract the pre-cryptographic image P with
size N × N , and calculate the keys grounded on the
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Fig. 9 Confusion process of the original 4×4 image matrix

Fig. 10 Diffusion process of the original 4×4 image matrix

original image P with SHA-512 function according to
Sect. 4.1.

Step 2. The chaotic sequences are derived by substi-
tuting the initial conditions of the 2D-SACALS map.
Using (x0, y0, a, b, n0) to generate the 2D-SACALS
chaotic sequences (x1, y1) for chaotic confusion,where
(x0, y0) are the chaotic initial values and (a, b) are
the chaotic parameters. The (x0, y0, a, b, n0) are sub-
stituted into the 2D-SACALS map to iterate N ×
N + n0 times, and the previous n0 sequence values
are deleted to eliminate transient effects. Similarly,
(x0′, y0′, a′, b′, n1) are replaced into 2D-SACALS
chaotic map to iterate N × N + n1 times, and the for-
mer n1 sequence values are dropped to derive chaotic

sequences (x2, y2), which are applied to the diffusion
stage.

Step 3. Confusion process. Chaotic sequences (x1, y1)
are transformed into 2Dmatrices (X1,Y1)with dimen-
sion N × N , and matrix Z = X1 − Y1 is calculated.
The matrix Z is sorted in ascending order to acquire an
index matrix I , and the original image P is interfered
with the index matrix to obtain a confusing image P1.
The process is represented as

P1 = P(I ) (21)

The confusion process of the original 4×4 image
matrix is given in Fig. 9.
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Fig. 11 Encryption flow
chart of the proposed
approach

Step 4. Bidirectional diffusion. Before the diffusion,
chaotic sequences (x2, y2) are quantized into (X2,Y2),
and the confusion image P1 is transformed into a 1D
matrix. The quantization process is performed as

⎧
⎪⎨

⎪⎩

X2 = mod
(
f loor

(
x2 × 1016

)
, 256

)

Y2 = mod
(
f loor

(
y2 × 1016

)
, 256

) (22)

The arbitrary information of the plaintext image
should be hidden in the entire cryptographic image, and
it needs to be circulated twice, that is, forward diffusion
and counter diffusion. The forward diffusion operation
process is described as follows

P2i =

⎧
⎪⎨

⎪⎩

mod (RF + X2i + P1i , 256), i = 1

mod (P2i−1 + X2i + P1i , 256),

i = 2, . . . , N × N

(23)

where RF is a random number. Then counter diffusion
is performed by Eq. (24).

P3i =

⎧
⎪⎨

⎪⎩

mod (RC + Y2i + P2i , 256), i = N × N

mod (P3i+1 + Y2i + P1i , 256),

i = N × N − 1, . . . , 1

(24)

where RC is a random number.

Converting P3 into a 2DmatrixC is a cryptographic
image. The diffusion process is disclosed in Fig. 10.
The encryption procedure is illustrated in Fig. 11. The
pre-cryptographic image is separated into R, G, and B
channels if it is a color image with size N × N × 3,
and the same encryption processing is implemented on
these three channels to acquire a color cryptographic
image.

4.3 Decryption scheme

Decryption procedures are presented below.

Step 1.Receive the cryptographic imageC and the keys
sent by the sender. Substitute keys (x0, y0, a, b, n0)
and (x0′, y0′, a′, b′, n1) into the 2D-SACALS map,
and generate chaotic sequences (x1, y1) and (x2, y2)
respectively.

Step 2. Bidirectional diffusion recovery. The same
quantization operation is performed on the chaotic
sequences (x2, y2) to obtain (X2,Y2), and the crypto-
graphic imageC is arranged in a 1Dmatrix. The recov-
ery process of counter diffusion operation is given by

C1i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mod (256 × 2 + Ci − Y2i − RC, 256),

i = N × N

mod (256 × 2 + Ci − Ci+1 − Y2i , 256),

i = N × N − 1, . . . , 1

(25)
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Then the forward diffusion recovery process is

C2i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mod (256 × 2 + C2i − X2i − RF, 256),

i = 1

mod (256 × 2 + C2i − C2i−1 − X2i , 256),

i = 2, . . . , N × N

(26)

Convert C2 to a 2D matrix, and get the restored image
after bidirectional diffusion.

Step 3. Reverse confusion. The same operation is per-
formed on the chaotic sequences (x1, y1) to obtain
(X1,Y1), and the index matrix I is obtained. The
inverse index matrix I−1 is derived from index matrix
I , and the inverse confusion operation is indicated as

P ′ = C3(I−1) (27)

where P ′ is the decrypted image. Similarly, if a color
cryptographic image is received, it is separated into R,
G, and B channels, and then decryption operations are
implemented.

5 Simulation and evaluation

The secure image encryption scheme of the proposed
maps is simulated and evaluated using MATLAB
R2020a. And select the images of different dimensions
and categories for the encryption test. The external keys
are t1 = 0.9092, t2 = 0.1938, t3 = 0.4480, t4 =
0.6178, t5 = 0.5942, t6 = 0.6659, t7 = 0.2677,
and t8 = 0.4239. The test gray images are Tiffany
(256 × 256), Woman (256 × 256), Lena (512 × 512),
Baboon (512 × 512), Cameraman (1024 × 1024) and
Room (1024 × 1024). The color images are Pep-
pers (256 × 256 × 3), House (256 × 256 × 3), Lena
(512 × 512 × 3), Airplane (512 × 512 × 3), Car
(1024 × 1024 × 3) and Lake (1024 × 1024 × 3).

5.1 Encryption and decryption effect

Figures12 and 13 indicate the simulation effect of this
encryption scheme on gray image encryption and color
image encryption respectively. The arrangement of per

set of images is original image - original image his-
togram - cryptographic image - cryptographic image
histogram - decrypted image. In the third columns of
Figs. 12 and 13, these cryptographic images in this
scheme are comparable to noise images, and any fea-
tures about the original images cannot be obtained.
Even if the attacker obtains cryptographic images, he
cannot receive any referable information, which pro-
tects the information of the image from being leaked.

5.2 Histogram analysis

The histogram enables visually revealing the pixel lay-
out of an image. Typically, the histogram of images
with visual significance is unevenly distributed, while
the histogram of cryptographic images with noise char-
acteristics should be uniformly distributed [4].

Figures12 and13give the histogramanalysis of gray
image encryption and color image encryption by this
encryption scheme respectively. The second columns
of Figs. 12 and 13 are the histograms of these original
images. The pixel layout of these original images is
continuous and concentrated, which reflects the over-
whelming majority of the information in the original
images. The histogram of cryptographic images is rel-
atively uniform and dissimilar to their original images,
as depicted in the fourth columns of Figs. 12 and 13.

This encryption algorithmsuccessfully covers up the
characteristic information of the original images, and
the attacker fails to acquire any available information
from the histogram of cryptographic images, improv-
ing the probability of resistance to statistical attacks.
By using this encryption scheme, original images with
non-uniform pixel distribution become consistent after
encryption, and the feature information of the origi-
nal images is effectively concealed. Consequently, it is
proved that this encryption approach has excellent con-
fidentiality in protecting information and strong anti-
statistical attacks.

5.3 Key space analysis

The key space indicates the sumof all key sets.With the
enlargement of key space, the more selective keys are,
and the enhanced effectiveness of withstanding brute
force attacks. Commonly, the key space requirement is
greater than 2100 [30].
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Fig. 12 Encryption and decryption effect diagrams of gray
images. The arrangement is original image - original image his-
togram - cryptographic image - cryptographic image histogram -

decrypted image. a Tiffany (256× 256), bWoman (256× 256),
c Lena (512 × 512), d Baboon (512 × 512), e Cameraman
(1024 × 1024), f Room (1024 × 1024)
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Fig. 13 Encryption and decryption effect diagrams of color
images. The arrangement is original image - original image
histogram - cryptographic image - cryptographic image his-

togram - decrypted image. a Peppers (256 × 256 × 3), b House
(256×256×3), cLena (512×512×3),dAirplane (512×512×3),
e Car (1024 × 1024 × 3), f Lake (1024 × 1024 × 3)
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Table 4 Key space analysis

Scheme Key space Scheme Key space

Ref.[6] 2209 Ref.[23] 2512

Ref.[10] 1064 Ref.[25] 2186

Ref.[12] 2128 Ref.[29] 2240

Ref.[14] 2260 Proposed > 2912

The keys in this scheme are t1, t2, . . . , t7, t8, and
SHA-512. If the accuracy is taken as 10−16, the key
space of eight external keys is 1016×8 > 103×40 ≈
210×40, and the key space in the key generation stage
using SHA-512 is 2512. Thus the total key space is
> 2912 � 2100, which satisfies the requirements. The
comparative analysis of the key space between this
scheme and previous schemes is indicated in Table
4, from which it concludes that the key space of this
approach is the largest in all the comparative literature,
indicating that it has the strongest immunity to brute
force attacks.

5.4 Correlation analysis

The correlation indicates the association between pix-
els in adjacent positions. The correlation of the orig-
inal image is exceedingly strong and approaches 1.
In contrast, the correlation of the cryptographic image
obtained by the superior security cryptography system
is expected to be close to 0 [29]. The correlation is
computed by

rPC =
1
N

N∑

i=1
(Pi − E(P))(Ci − E(C))

√(
1
N

N∑

i=1
(Pi − E(P))2

) (
1
N

N∑

i=1
(Ci − E(C))2

)

(28)

where E(P) = 1
N

N∑

i=1
Pi and E(C) = 1

N

N∑

i=1
Ci .

Table 5 enumerates the correlation analysis results
of this encryption scheme. By comparing the origi-
nal images, the correlation of cryptographic images
is approaching 0, which verifies that the above secu-
rity theoretical scheme has an excellent encryption
effect. Figure14 illustrates the correlation between the
original images and cryptographic images of Lena

(512×512) in three directions. It is known that all
components of original images have intense correla-
tion, while the components of cryptographic images
are evenly distributed and have low correlation, which
implies that the proposed approach enables invalid sta-
tistical attacks.

5.5 Information entropy analysis

Information entropy provides a criterion for uncertain
features of images. Larger information entropy indi-
cates a higher degree of information uncertainty in digi-
tal images. An effective encryption algorithm demands
that the information entropy of the cryptographic image
is approaching 8 [45]. Information entropy expression
is evaluated as

H = −
N×N∑

i=1

P(mi )log2P(mi ) (29)

where P(mi ) is the probability of pixel mi .
Table 6 tabulates the results of information entropy

analysis. These data conclude that all cryptographic
images in this scheme approach to 8, proving that the
pixel layout of these cryptographic images is more uni-
form and random than that of the original images, and
it is less likely to reveal information during encryption.

5.6 Differential attack analysis

The cryptography system has to be exceedingly sensi-
tive to slight variations in plaintext information towith-
stand differential cryptanalysis. The Number of Pixels
Change Rate (NPCR) and Unified Average Changing
Intensity (UACI) are introduced to assess the sensitiv-
ity of the cryptography system to plaintext information
[46]. Given two plaintext images P1 and P2, which are
only slightly modified, the cryptographic images C1

and C2 are acquired by encrypting the two plaintexts
with the same encryption algorithm. Then NPCR and
UACI are evaluated as

N PCR =
∑

i, j D(i, j)

N × N
× 100% (30)

U AC I = 1

N × N

⎡

⎣
∑

i, j

|C1(i, j) − C2(i, j)|
255

⎤

⎦ × 100%

(31)
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Table 5 Correlation analysis

Images Horizontal (H) Vertical (V) Diagonal (D)

Original images Gray images Tiffany (256×256) 0.9189 0.9558 0.8861

Woman (256×256) 0.9893 0.9887 0.9798

Lena (512×512) 0.9680 0.9841 0.9565

Baboon (512×512) 0.9322 0.9088 0.863

Cameraman (1024×1024) 0.9955 0.9966 0.9919

Room (1024×1024) 0.9856 0.9871 0.9742

Color images Peppers (256×256×3) 0.9713 0.9770 0.9494

House (256×256×3) 0.9756 0.9495 0.9368

Lena (512×512×3) 0.9614 0.9821 0.9452

Airplane (512×512×3) 0.9576 0.9533 0.9203

Car (1024×1024×3) 0.9376 0.9348 0.8849

Lake (1024×1024×3) 0.9556 0.9563 0.9265

Cryptographic images Gray images Tiffany (256×256) −0.0004 0.0010 −0.0005

Woman (256×256) −0.0001 0.0006 0.0003

Lena (512×512) −0.0003 0.0008 0.0009

Baboon (512×512) −0.0004 −0.0009 −0.0008

Cameraman (1024×1024) 0.0006 −0.0007 −0.0001

Room (1024×1024) −0.0001 0.0001 −0.0001

Color images Peppers (256×256×3) 0.0003 −0.0002 −0.0006

House (256×256×3) −0.0003 0.0001 −0.0007

Lena (512×512×3) 0.0000 0.0002 0.0008

Airplane (512×512×3) 0.0006 0.0010 0.0000

Car (1024×1024×3) 0.0002 0.0004 −0.0001

Lake (1024×1024×3) 0.0005 −0.0010 −0.0005

Fig. 14 Correlation analysis. b–d original image, f–h cryptographic image
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Table 6 Information
entropy analysis

Images Original images Cryptographic images

Gray images Tiffany (256×256) 7.1416 7.9973

Woman (256×256) 7.2684 7.9970

Lena (512×512) 7.4451 7.9993

Baboon (512×512) 7.2925 7.9993

Cameraman (1024×1024) 7.0539 7.9998

Room (1024×1024) 7.4314 7.9998

Color images Peppers (256×256×3) 7.7028 7.9991

House (256×256×3) 7.0686 7.9989

Lena (512×512×3) 7.7329 7.9998

Airplane (512×512×3) 6.6787 7.9998

Car (1024×1024×3) 7.4794 7.9999

Lake (1024×1024×3) 7.7391 7.9999

Table 7 NPCR and UACI
analysis

Images NPCR (%) UACI (%)

Gray images Tiffany (256×256) 99.6124 33.4636

Woman (256×256) 99.6109 33.4624

Lena (512×512) 99.6105 33.4642

Baboon (512×512) 99.6098 33.4632

Cameraman (1024×1024) 99.6097 33.4638

Room (1024×1024) 99.6104 33.4638

Color images Peppers (256×256×3) 99.6109 33.4637

House (256×256×3) 99.6109 33.4639

Lena (512×512×3) 99.6098 33.4653

Airplane (512×512×3) 99.6105 33.4632

Car (1024×1024×3) 99.6098 33.4632

Lake (1024×1024×3) 99.6096 33.4639

If C1(i, j) �= C2(i, j), then D(i, j) = 1, otherwise
D(i, j) = 0.

The ideal values of NPCR and UACI are 99.6094%
and 33.4635% individually. The closer to the ideal val-
ues, the more sensitive the encryption algorithm is,
and the stronger the capability to withstand differential
cryptanalysis [47]. The analysis of NPCR and UACI
is disclosed in Table 7. The NPCR and UACI of the
proposed algorithm are approaching perfect values in
Table 7, which is sufficient to effectively avoid differ-
ential cryptanalysis.

5.7 Key sensitivity analysis

An ideal multimedia encryption scheme requirements
are extremely sensitive to key changes, and even if one
bit of the key changes, the encryption or decryption
results should be completely different [48]. We use a
decryption scheme to verify the sensitivity of the key,
that is, the slightmodification in the decryption keywill
make the decryption fail, and the correct original image
cannot be obtained. The key sensitivity of this approach
is verified with Lena (512×512) as the original image.
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Fig. 15 Key sensitivity analysis. Decryption with a Correct key, b T1 = t1 + 10−16, c T2 = t2 + 10−16, d T3 = t3 + 10−16, e
T4 = t4 + 10−16, f T5 = t5 + 10−16, g T6 = t6 + 10−16, h T7 = t7 + 10−16, i T8 = t8 + 10−16 and j Hash + 1

Firstly, the Lena cryptographic image is decrypted
with the correct decryption keys t1, t2, . . . , t7, t8 (ti ∈
[0, 1]), Hash, and the correct decryption image can be
obtained, as depicted in Fig. 15a. Then the decryption
key t1 ismodified to T1 = t1+10−16, and the remaining
decryption keys are consistent with the correct decryp-
tion keys to decrypt the cryptographic image. The
decryption result is Fig. 15b, indicating that even if only
one external key is different from the correct decryption
key, the decryption imagewill be significantly different
from the original image. Similarly, only one external
key is fine-tuned and other decryption keys are kept
unchanged for decryption verification each time, and
the decryption images are still obviously different. The
decryption images are given in Fig. 15c–i. Finally, keep
the external keys t1, t2, . . . , t7, t8, (ti ∈ [0, 1]) consis-
tentwith the correct decryption keys, and change Hash
to Hash + 1 for decryption. The decryption result is
present in Fig. 15j, and the correct original images can-
not be obtained.

In the simulation experiment of Fig. 15, the original
images can be successfully decrypted only by utilizing
the correct decryption keys, but when the decryption
key changes vary extremely slightly, the decryption of
the cryptographic image fails. Through the analysis of
NPCR after minor changes in the decryption keys, as
given in Table 8. It is found that all NPCRs are above

Table 8 NPCR with a slightly changed decryption keys

Decryption keys NPCR (%)

Correct key 0

T1 = t1 + 10−16 99.6342

T2 = t2 + 10−16 99.5972

T3 = t3 + 10−16 99.6078

T4 = t4 + 10−16 99.3580

T5 = t5 + 10−16 99.6140

T6 = t6 + 10−16 99.6078

T7 = t7 + 10−16 99.5975

T8 = t8 + 10−16 99.6014

Hash + 1 99.6239

99%. This means that under the incorrect decryption
key, the decryption image is completely dissimilar to
the original image, revealing that the result of chang-
ing the decryption keys to a small extent has changed
remarkably in the decryption image. Consequently, the
proposed scheme is extremely sensitive to the key.

5.8 Noise attack analysis

During communication, the cryptographic image is
occasionally subject to different types of noise pol-
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Fig. 16 Decryption images under different types and levels of noise attack. a–d SN, e–h GN, i–l SPN

lution. The cryptographic image may not be able to
restore the original image after being polluted by noise.
Therefore, an illustrious encryption solution must be
able to against the attack of noise pollution [49].

Figure16 exhibits the decryption images of this
algorithm under different types and levels of noise
to demonstrate the noise immunity of this proposed
approach. In Fig. 16, when different levels of Speckle
Noise (SN), Gaussian Noise (GN), and Salt and Pepper
Noise (SPN) are applied to the cryptographic image,
the massive features of the initial image are recover-
able, although the cryptographic image is polluted by
noise to different degrees.

5.9 Cropping attack analysis

The transmitted cryptographic imageswill be impacted
by data loss during communication. An effective
encryption algorithm allows for resisting these influ-
ences. The correct original features are reconstructed
even if the cryptographic image is disturbed by these
factors [49].
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Fig. 17 Cropping attacks with different degrees. a–d cryptographic images, e–h decryped images

The anti-cropping performance of the algorithm is
tested for different degrees of cropping attacks. The test
results against cropping attacks are given in Fig. 17,
and the more data is discarded in the cryptographic
image, the more unclear the recovered image becomes.
Though different degrees of cropping, the restored
image is always able to be clearly identified visually
because it preserves themajority of features of the orig-
inal image.

5.10 Time efficiency analysis

A superior image encryption approach requires real-
timecommunicationwhile guaranteeing excellent secu-
rity and efficiency [50]. The time-consuming eval-
uation of this scheme is provided in Table 9. The
time-consuming comparison between the proposed
approach and other encryption schemes for different
sizes and category images is detailed in Table 10. It
can be found that the proposed schemes have spent a

short time in encryption and decryption, indicating the
high efficiency of the scheme.

5.11 Computational complexity analysis

Computational complexity analysis is an essential cri-
terion to estimate the efficiency of the algorithm.
In the proposed encryption scheme, the encrypted
image with N × N size mainly includes two time-
consuming parts: chaotic sequence generation and bidi-
rectional diffusion. In the stage of generating chaotic
sequences, two chaotic sequences are obtained by the
SACALS map, and the maximum iteration length is
max(N × N + n0, N × N + n1), so the complexity of
this stage is O(max(N × N + n0, N × N + n1)). The
bidirectional DNA diffusion stage includes forward
and counter diffusion and its complexity is O(N ×
N ). So the complexity of the proposed scheme is
O(max(N × N + n0, N × N + n1)). In conclusion,
the computational complexity of our scheme depends
on the number of iterations of the chaotic system.
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Table 9 Time efficiency analysis

Images Encryption (s) Decryption (s) Total (s)

Gray images Tiffany (256×256) 0.003341 0.003067 0.006408

Woman (256×256) 0.003359 0.003259 0.006618

Lena (512×512) 0.014390 0.013964 0.028354

Baboon (512×512) 0.014317 0.013785 0.028102

Cameraman (1024×1024) 0.059442 0.059663 0.119105

Room (1024×1024) 0.059394 0.059815 0.119209

Color images Peppers (256×256×3) 0.012002 0.011522 0.023524

House (256×256×3) 0.012032 0.010930 0.022962

Lena (512×512×3) 0.051991 0.049961 0.101952

Airplane (512×512×3) 0.052330 0.047522 0.099852

Car (1024×1024×3) 0.215374 0.203884 0.419258

Lake (1024×1024×3) 0.214917 0.213816 0.428733

Average 256×256 0.003350 0.003163 0.006513

512×512 0.014354 0.013875 0.028228

1024×1024 0.059418 0.059739 0.119157

256×256×3 0.012017 0.011226 0.023243

512×512×3 0.052161 0.048742 0.100902

1024×1024×3 0.215146 0.208850 0.423996

Table 10 Time comparative analysis

Image size Ref.[7] Ref.[21] Ref.[22] Ref.[23] Ref.[36] Ref.[24] Ref.[35] Proposed

256×256 Encryption (s) 0.004500 0.060600 0.077900 – – – – 0.003350

Decryption (s) 0.004400 – – – – – – 0.003163

512×512 Encryption (s) 0.019700 0.251300 0.326100 – – – – 0.014354

Decryption (s) 0.019300 – – – – – – 0.013875

1024×1024 Encryption (s) 0.086800 1.013500 1.314600 – – – – 0.059418

Decryption (s) 0.091700 – – – – – – 0.059739

256×256×3 Encryption (s) – – – 0.385700 0.337324 0.125300 0.062800 0.012017

Decryption (s) – – – 0.244300 0.326756 – – 0.011226

512×512×3 Encryption (s) – – – 1.211400 1.332898 0.510100 0.207800 0.052161

Decryption (s) – – – 0.738700 1.308241 – – 0.048742

1024×1024×3 Encryption (s) – – – – – 2.380200 0.672800 0.215146

Decryption (s) – – – – – – – 0.208850

5.12 Comparative analysis

The performance comparison analysis of the pro-
posed approach and other approaches are summarized
in Tables 11 and 12. Among them, Table 11 com-
pares the performance of the Lena gray cryptographic
image (512×512), and Table 12 presents the compar-

ative analysis of the Lena color cryptographic image
(512×512×3).

In the comparative outcome of information entropy,
the proposed approach is the largest for gray crypto-
graphic images, which is 7.9993. For the R and B com-
ponents of color cryptographic images, the proposed
approach is the largest and approaches the ideal value,
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Table 11 Performance comparison analysis on Lena gray cryptographic image (512×512)

Scheme Information entropy Correlation NPCR (%) UACI (%)

H V D

Ref.[4] 7.9991 0.0018 0.0011 0.0008 99.6813 33.4852

Ref.[5] 7.9965 0.0029 0.0080 −0.0003 99.6170 33.3918

Ref.[7] 7.9993 −0.0014 0.0001 0.0003 99.6056 33.4608

Ref.[12] 7.9988 0.0013 0.0025 0.0011 99.4830 33.4166

Ref.[13] 7.9992 0.0007 0.0017 0.0008 99.6289 33.5420

Ref.[14] 7.9993 0.0065 0.0051 −0.0005 99.6130 33.4540

Ref.[29] 7.9025 −0.0006 0.0010 −0.0012 99.6098 33.4544

Ref.[33] 7.9914 −0.0016 0.0003 0.0006 99.6060 33.4689

Proposed 7.9993 −0.0003 0.0008 0.0009 99.6105 33.4642

Table 12 Performance comparison analysis on Lena color cryptographic image (512×512×3)

Scheme Ref.[6] Ref.[10] Ref.[11] Ref.[23] Ref.[25] Ref.[30] Proposed

Information entropy R 7.9993 7.9980 7.9993 7.9993 7.9917 7.9992 7.9993

G 7.9992 7.9979 7.9994 7.9995 7.9912 7.9999 7.9992

B 7.9993 7.9978 7.9993 7.9993 7.9918 7.9992 7.9993

Correlation H R 0.0011 0.0092 −0.0048 −0.0040 0.0014 −0.0061 −0.0007

G −0.0056 0.0002 0.0016 0.0074 0.0033 −0.0040 −0.0001

B −0.0008 0.0076 0.0022 −0.0002 0.0021 −0.0018 −0.0005

V R 0.0004 0.0203 0.0031 0.0015 0.0048 0.0042 0.0001

G 0.0005 −0.0025 0.0002 0.0016 −0.0006 −0.0003 0.0009

B −0.0047 0.0006 0.0006 −0.0041 0.0002 −0.0013 0.0000

D R 0.0020 −0.0073 −0.0029 0.0025 0.0002 −0.0007 0.0007

G 0.0004 −0.0131 0.0002 −0.0024 0.0048 −0.0045 −0.0003

B 0.0001 0.0111 −0.0039 0.0011 −0.0040 −0.0032 −0.0003

NPCR (%) R 99.6058 99.6531 99.6094 99.6002 99.6243 99.6000 99.6098

G 99.6096 99.6522 99.6055 99.6059 99.6185 99.5900 99.6098

B 99.6105 99.6518 99.6122 99.6121 99.6281 99.6100 99.6098

UACI (%) R 33.4562 33.4572 33.4511 33.4550 33.4224 33.4700 33.4378

G 33.4783 33.4715 33.4850 33.5295 33.4362 33.4200 33.4947

B 33.4560 33.4384 33.5177 33.5006 33.4604 33.4600 33.4634

while the G component is lower than [11,23], and [30],
indicating the high degree of information uncertainty
of cryptographic images in this paper. For correlation
coefficient analysis, compared with other encryption
schemes, the correlation coefficient of our encryption
scheme is approaching 0 whether it is a gray crypto-
graphic image or a color cryptographic image. Like cor-
relation coefficient analysis, by comparing the results
of previous methods for NPCR and UACI analysis,
these data revealed that the NPCR and UACI of the

proposed approach are approaching the perfect values,
which can prevent the attack of differential cryptanaly-
sis more effectively. From Tables 11 and 12, the infor-
mation entropy, correlation analysis, NPCR and UACI
performance of our encryption approach are relatively
superior, and approaching optimal value, no matter the
gray cryptographic image or the color cryptographic
image. These results reveal that the proposed approach
is safe, effective, and universal.
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6 Conclusion

To protect digital images, a novel 2D chaotic model
with excellent chaotic features is designed to develop
new image encryption algorithms. This article first
constructs a 2D chaotic structure model with a uni-
versal and superior chaotic performance to solve the
problems of uneven distribution of chaotic trajecto-
ries and limited chaotic range in existing chaotic maps.
For the existing 2D systems, the derived chaotic sys-
tems have better chaotic performance, more random
chaotic sequences, and extensive chaotic parameter
space. For verifying the effectiveness of the designed
chaotic maps, it is implemented in image cryptogra-
phy. The proposed approach first utilizes the SHA-512
function to calculate the keys according to the original
image and further generates the chaotic sequence for
confusion and diffusion to acquire the cryptographic
image. Simulation evaluation indicated that the pro-
posed encryption approach has illustrious encryption
performance, high decryption quality, wide key space,
extreme sensitivity to the key, and anti-various attacks.
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