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Abstract To improve the accuracy, real-time and
stability of intelligent vehicle path tracking control
algorithms, a variable Step Model Predictive Control
method (VMPC) for path tracking based onModel Pre-
dictiveMethod (MPC) is proposed.Avehicle dynamics
model considering path tracking was constructed, and
a VMPC controller was designed based on the model.
To address cumulative model error, the proposed con-
trol method employs a zero-order holder-based short-
step discretization prediction model in the front part
of the prediction interval and a first-order holder-based
long-step discretization prediction model in the back
part. Carsim/Simulink co-simulations were conducted
to compare the performance of the proposed VMPC
controller with that of a traditional MPC controller
on double-lane roads and highways. The simulation
results indicate that the proposed VMPC controller
exhibits superior control precision, smoothness, real-
time performance, and dynamic stability. The proposed
method decreases 56.6% for the lateral error, 52.4%
for the heading error, 28.5% for the sideslip angle, and
45.7% for the average solution time at most when com-

Q. Meng (B) · K. Chen · R. Liu · Z. Kang
School ofMechanical Engineering,HangzhouDianziUniversity,
Hangzhou, China
e-mail: mengqinghua@hdu.edu.cn

C. Qian
College of Engineering, University of Texas at San Antonio, San
Antonio, TX 78249, USA

Z.-Y. Sun
Institute of Automation, Qufu Normal University, Qufu, China

pared to a standardMPC. Experiments were performed
on a drive-by-wire integrated chassis platform, which
confirmed that the proposedVMPC controller achieves
desired tracking control accuracy for variable curvature
paths in engineering applications.

Keywords Motion control · Path tracking · Variable
step model predictive control · Model predictive
control

1 Introduction

Recent advancements in artificial intelligence and
the automobile industry have facilitated the develop-
ment of intelligent driving technology [5,7,28]. The
intelligent driving system, comprising environmen-
tal perception, high-precision positioning, behavior
decision-making, and planning control, is integral to
autonomous driving. Precise and stable tracking con-
trol of the planned path remains a key research focus
and challenge in the field of intelligent vehicle planning
and control.

To enhance the reliability and safety of intelligent
vehicle path tracking, researchers have proposed var-
ious methods, including pure pursuit tracking control
[31,32], PID control [24], slide mode control (SMC)
[10,13], backstepping control [1], linear quadratic reg-
ulator (LQR) tracking control [34], andoutput feedback
control [27,33], etc. Notably, considering the relation-
shipbetween thevehicle and thepath, the forwardview-
point is heuristically selected to improve the tracking
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accuracy [2]. In [20–23], output feedback controllers
for four in-wheel motors were designed to boost lat-
eral stability and balance of the vehicle when the lane
keeping system is working, but the real-time perfor-
mance of the control is not considered. Although these
methods have achieved significant results in the field of
intelligent driving, they cannot effectively address the
multi-constraint problem of vehicle dynamics.

Model Predictive Control (MPC) is a control strat-
egy that uses amathematicalmodel of the system topre-
dict its future behavior and optimize the control actions
over a finite time horizon. It has been used in vari-
ous fields such as process control, robotics, power sys-
tems, and transportation systems. Themain advantages
of MPC are its ability to handle constraints and opti-
mize the system performance over a finite time hori-
zon. It can account for system nonlinearities and uncer-
tainties, and can handle multiple objectives and con-
straints simultaneously. Additionally, MPC is a closed-
loop controller that can adaptively adjust the control
actions based on the system’s actual performance. In
transportation systems, MPC is used for path planning
and control of autonomous vehicles [11,35]. MPC can
incorporate constraints into the control process, pro-
viding a solution to the multi-constraint problem and
improving vehicle path tracking accuracy [3]. In the
field of autonomous vehicles, these advantages have led
to the widespread adoption ofMPC. Amulti-constraint
MPC has been proposed to calculate the desired front
wheel angle for path tracking, enabling high-speed
path tracking for intelligent vehicles in [8]. In [12],
an implicit linear model predictive control method was
proposed. The controller can deal with the modeling
error by using variable sampling time and variable pre-
diction time domain. In [15], an obstacle avoidance
path planning algorithm based on real-time output con-
straint model predictive control is proposed to alleviate
the problem of drastic change of steering and improve
the tracking accuracy. In [6], the authors proposed a
linear time-varyingmodel predictive controller consid-
ering steering characteristics. It has good adaptability
under complex conditions and improves tracking sta-
bility and driving safety. In [18], an adaptive MPC has
been developed to estimate tire cornering stiffness and
road adhesion coefficient online, enhancing tracking
accuracy and stability. In [9], a MPC lateral controller
with adaptive preview characteristics was proposed.
Cooperative path-planning and tracking controller for
driverless vehicles via a distributedMPCwas discussed

in [14]. In [29], a nonlinear MPC and mixed-integer
quadratic program were developed for the cooperative
trajectory-planning problem for autonomous driving.
A longitudinal vehicle speed auxiliary constraint based
on the maximum ideal lateral acceleration was added
to improve the path tracking performance. The authors
presented a novel integrated path tracking control strat-
egy for self-driving vehicles in [4]. The proposed strat-
egy combines a multi-input multi-output linear model
predictive control and a fuzzy logic switching system
for improved vehicle stability. In [16], a real-time non-
linear model predictive control (NMPC) controller for
all-wheel independent motor-drive electric vehicles.
This controller enhances both vehicle longitudinal and
lateral stability.

MPC control can ensure high tracking accuracy in
intelligent vehicle path tracking [17]. However, the
underlying principle of MPC involves the use of the
current state and future control sequence of the con-
structed model to predict the future output sequence
of the system. This approach involves an optimal solu-
tion process that results in an optimal solution during
each prediction period [30]. Despite its advantages, it
is challenging to ensure that the optimal solution is
achieved within the control period due to the exten-
sive calculation. Therefore, ensuring real-time perfor-
mance is a crucial aspect of MPC control. How to
improve the tracking accuracy of MPC and enhance
its real-time performance remain an important area of
research. Therefore, this paper proposed a novelVMPC
method to improve the accuracy, real-time and stability
for intelligent vehicle path tracking. The main contri-
butions of this paper are as follows.

– Anenhanced three-degree-of-freedomvehiclemodel
that incorporates the lateral error and heading error
associated with vehicle path tracking is built. The
proposed vehicle dynamics reflects themotion state
of the vehicle and effectively capture the impact of
vehicle path tracking.

– A variable step size MPC controller is designed via
the vehicle dynamicsmodel considering path track-
ing. This approach leverages the vehicle dynamics
model and incorporates variable step sizes for both
short and long intervals to achieve prediction accu-
racy and real-time control.

– The effectiveness of the VMPC controller is veri-
fied through practical vehicle testing using a drive-
by-wire integrated chassis experimental platform.
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Fig. 1 Two wheels dynamics model

The rest of the paper is structured as follows: Sec-
tion 2 outlines the construction of the vehicle dynamics
model considering path tracking. Section 3 elucidates
the design of the VMPC. Section 4 presents the sim-
ulation results and analysis. Section 5 introduces the
experiments. And the conclusions are given in Sect. 6.

2 Vehicle dynamics model considering path
tracking

In most literature, a two-DOF models are built con-
sidering lateral forces and moments balance for vehi-
cle dynamics analysis. For example, in [19], a two-
DOF model at high vehicle speed was presented which
includes the heading angle and sideslip angle. These
models mainly focus on the lateral dynamics. A lateral
vehicle dynamics model of two-DOFwhich was repre-
sented by the lateral position and yaw angle at higher
vehicle speed was proposed in [25] which considered
the lanes. A baselinemodel with lateral vehicle dynam-
ics was proposed in [26] for path tracking. Inspired
by these vehicle dynamics models, in this study, we
employ a three-DOF model that accounts for vehicle
velocity, lateral and yaw motion to reduce computa-
tional complexity and enhance lateral control accuracy
during path tracking. This dynamics model combines
the lateral dynamics model with path tracking model.
Figures 1 and 2 depict this three-DOF model.

As shown in Fig. 1, according toNewton’s law, vehi-
cle lateral force balance equation and torque balance
equation are expressed as

m(ÿ + ẋ ϕ̇) = Fy f cos δ f + Fyr

Iz ϕ̈ = l f Fy f cos δ f − lr Fyr ,
(1)

where m is the vehicle mass, Iz is the moment of iner-
tia, δ f is the front wheel angle, ÿ and ẋ are the lateral

Fig. 2 Path tracking model

acceleration and longitudinal velocity of the vehicle
respectively, ϕ̇ and ϕ̈ are the yaw rate and yaw angular
acceleration respectively, Fx f and Fxr are the longitu-
dinal forces of front and rear wheels respectively, Fy f

and Fyr are the lateral forces of front and rear wheels
respectively, l f is the distance from front axle to cen-
troid, and lr is the distance from rear axle to centroid.

Under normal conditions, the tire remains within the
elastic cornering region. Consequently, the tire corner-
ing forces can be approximated as a linear function of
the tire cornering angle.

Fy f = 2Cα f α f

Fyr = 2Cαrαr ,
(2)

where Cα f and Cαr are the cornering stiffnesses of the
front wheel and rear wheel respectively, α f and αr are
the side slip angles of the front wheel and rear wheel
respectively.

For evaluating the path tracking effect, we introduce
two metrics, the lateral error and heading error of vehi-
cle path tracking. A kinematics model considering path
tracking is established and depicted in Fig. 2.

As shown in Fig. 3, the lateral error and heading
error of vehicle path tracking are

ey = −(X − Xre f ) sin ϕre f + (Y − Yre f ) cosϕre f

eϕ = ϕ − ϕre f ,
(3)

where ey and eϕ are the lateral error and heading
error respectively, (X,Y ) is the coordinates of centroid,
(Xref ,Yre f ) is the coordinates of the reference point in
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Fig. 3 Lateral error and heading error of path tracking

the reference path, ϕ is the heading angle of the vehicle,
ϕre f is the heading angle of the reference point.

To establish the three-DOF model considering path
tracking,we combine the lateral error and heading error
of vehicle path tracking with the two wheels dynam-
ics model and calculate the transformation relationship
between them. From the reference point, it is easy to
know the reference lateral acceleration and the refer-
ence yaw rate.

vx = ẋ

ayre f = v2x/R

ϕ̇re f = vx/R,

(4)

where x is the longitudinal displacement, vx is the
longitudinal velocity, ayre f and ϕ̇re f are the reference
lateral acceleration and the reference yaw rate respec-
tively, R is the road radius of curvature.

According to Eqs.(1)–(4), the derivative of the lat-
eral error change rate is

ëy = ay − ayre f = (ÿ + vx ϕ̇) − v2x/R

= ÿ + vx (ϕ̇ − ϕ̇re f ) = ÿ + vx ėϕ.
(5)

The lateral error change rate can be directly obtained
by integrating from Eq.(5) as

ėy = ẏ + vx eϕ. (6)

The heading error change rate is

ėϕ = ϕ̇ − ϕ̇re f = ϕ̇ − vx/R. (7)

The derivative of the heading error change rate can be
obtained directly by differentiating Eq.(7) as

ëϕ = ϕ̈ − ϕ̈re f . (8)

According to Eqs.(5), (6), (7), and (8), one obtains

ÿ = ëy − vx ėϕ

ẏ = ėy − vxeϕ

ϕ̈ = ëϕ + ϕ̈re f

ϕ̇ = ėϕ + ϕ̇re f .

(9)

Via Eqs.(3) and (9), the differential equations ofmotion
for the path tracking dynamic model can be expressed
as

ëy = −2Cα f + 2Cαr

mvx
ėy + 2Cα f + 2Cαr

m
eϕ

+ −2l f Cα f + 2lrCαr

mvx
ėϕ + 2Cα f

m
δ f

+
(−2l f Cα f + 2lrCαr

mvx
− vx

)
ϕ̇re f

ëϕ = −2l f Cα f + 2l f Cαr

Izvx
ėy + 2l f Cα f − 2lrCαr

Iz
eϕ

− 2l2f Cα f + 2l2r Cαr

Izvx
ėϕ + 2l f Cα f

Iz
δ f

− 2l2f Cα f + 2l2r Cαr

Izvx
ϕ̇re f .

(10)

According to the above model, we define the state
variables of the model as x(t) = [ey, ėy, eϕ, ėϕ] and
the control variable as u(t) = δ f (t). The time-varying
vehicle dynamics model considering path tracking is
transformed into a state space equation

ẋ(t) = Ax(t) + Bu(t) + W, (11)

where

A=

⎡
⎢⎢⎢⎢⎣

0 1 0 0

0
−2Cα f −2Cαr

mvx (t)
2Cα f +2Cαr

m
−2l f Cα f +2lrCαr

mvx (t)
0 0 0 1

0
−2l f Cα f +2lrCαr

Izvx (t)
2l f Cα f −2lrCαr

Iz

−2l2f Cα f −2l2r Cαr

Izvx (t)

⎤
⎥⎥⎥⎥⎦,

B =

⎡
⎢⎢⎢⎣

0
2Cα f
m
0

2l f Cα f
Iz

⎤
⎥⎥⎥⎦ ,

W =

⎡
⎢⎢⎢⎢⎣

0
−2l f Cα f +2lrCαr

mvx (t)
− vx (t)

0

− 2l2f Cα f +2l2r Cαr

Izvx (t)

⎤
⎥⎥⎥⎥⎦ ϕ̇re f (t).
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This model can accurately reflect the motion state of
the vehicle and consider the heading error and lateral
error of path tracking, which can directly reflect the
effect of vehicle path tracking.

3 VMPC controller design

3.1 Variable step discrete linear continuous system
model

MPC is characterized by its utilization of a model to
forecast future system states. In order to derive the
state of the future system, the vehicle dynamics model
considering path tracking should be discretized. Equa-
tion (11) is rewritten as

dx(t)

dt
= Ax(t) + f (t)

f (t) = Bu(t) + W

x(t0) = K,

(12)

where K is the initial value of the state at t0.
Denote t ∈ [kT, (k + 1)T ], t0 = kT , T is the sam-

pling period of the system. The solution of the non-
homogeneous state equation is

x((k + 1)T ) = eAT x(kT )

+
∫ (k+1)T

kT
eA[(k+1)T−τ ]u(τ )dτ · B

+
∫ (k+1)T

kT
eA[(k+1)T−τ ]dτ · W. (13)

When employingMPC for tracking control, increas-
ing the prediction time domain can enhance tracking
accuracy. However, this also increases the complex-
ity of MPC solution and negatively impacts real-time
performance. To balance model prediction accuracy
and real-time performance, we optimize the prediction
horizon by dividing it into two parts, short-step and
long-step discretization.

During the discretization process, the control vari-
able u(t) varieswithin the sampling period based on the
selected holder’s control quantities. Commonly used
holders include zero-order holders (ZOH) and first-
order holders (FOH).

The zero-order holder is

ZOH:
{
u(t) = u(kT ) = Const

t ∈ [kT, (k + 1)T ] , (14)

And the first-order holder is

FOH:

⎧⎪⎨
⎪⎩
u(t) = t (kT ) + u̇(kT )(t − kT )

u̇(kT ) = u[(k+1)T ]−u(kT )
T ]

t ∈ [kT, (k + 1)T

. (15)

During the sampling period, the ZOH maintains a
constant control variable, while the FOH allows for
linear changes in the control variable from its initial
value. To ensure accuracy in the discrete model, short-
step discretization based on ZOH is employed in the
initial section of the divided prediction interval. In con-
trast, long-step discretization based on FOH is utilized
in the latter section to provide a reasonable balance
between accuracy and computational efficiency over
an extended prediction time domain.

The solution of the non-homogeneous state equation
obtained by short-step discretization based on ZOH is

x(k + 1) = Asx(k) + Bs1u(k) + Bs2u(k + 1) + Ws,

(16)

where

As = I + ATs + 1

2! A
2T 2

s + · · · + 1

n! A
nT n

s ,

Bs1 = BTs + 1

2! ABT
2
s + · · · + 1

n! A
n−1BT n

s ,

Bs2 = 0,Ws =WTs+ 1

2! AWT 2
s +· · ·+ 1

n! A
n−1WTn

s ,

Ts is the short-step discretization interval.
The solution of the non-homogeneous state equation

obtained by long-step discretization based on FOH is

x(k + 1) = Al x(k) + Bl1u(k) + Bl2u(k + 1) + Wl ,

(17)

where

Al = I + ATl + · · · + 1

n! A
nT n

l ,

Bl1 = 1

2
BTl + · · · + 1

n!(n + 2)
AnBT n+1

l ,

Bl2 = 1

2
BTl + · · · + 1

(n + 1)!(n + 2)
AnBT n+1

l ,

Wl = WTl + · · ·+ 1

n! A
n−1WTn

l ,

Tl is the long-step discretization interval.
To construct a VMPC prediction model, it is imper-

ative to standardize the discretization results. This can
be achieved through the utilization of a unified form
of linear time-varying state space equation based on
variable step discretization.

x(k + 1|t) = A(t)x(k|t) + B1(t)u(k|t)
+B2(t)u(k + 1|t) + W. (18)
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3.2 Construction of prediction model

According to Eq. (18), we select the current state and
the control quantity at the previous moment as the dis-
crete state quantity of the VMPC predictionmodel, and
select the control increment at the current moment and
the next moment as the discrete control quantity of the
VMPC prediction model. The expression is

ξ(k|t) =
[

x(k|t)
u(k − 1|t)

]
,ΔU (k|t) =

[
Δu(k|t)

Δu(k + 1|t)
]

.

(19)

The discrete control quantity is represented as a control
increment to facilitate subsequent constraints on the
control quantity and enhance the smoothness of the
VMPC controller. The discrete state space equation is

ξ(k + 1|t) = Ã(t)ξ(k|t) + B̃(t)ΔU (k|t) + W̃ (t),

(20)

where

Ã(t) =
[

A(t) B1(t) + B2(t)
0Nu×Nx INu

]
,

B̃(t)=
[
B1(t) + B2(t) B2(t)

INu 0Nu×Nu

]
, W̃ (t)=

[
W

0Nu×Nu

]
.

where Nx and Nu are the number of state variables and
control variables respectively.

The output equation is

η(k|t) = Cξ(k|t), (21)

where C is the coefficient matrix,

C =
[
1 0 0 0 0
0 0 1 0 0

]
.

3.3 Prediction equation and output equation

The VMPC controller’s prediction horizon is divided
into Np prediction steps. To enhance prediction accu-
racy, a short-step discretization based on ZOH is uti-
lized for the 1st ∼ Ns prediction steps, while a long-
step discretization based on FOH is employed for the
subsequent Ns+1 ∼ Np steps.

Utilizing Eq. (20), we can derive the state quantity
of the proposed system throughout the prediction inter-
val. Similarly, we can obtain the system’s output within
the same interval by applying Eq. (21). The predicted
output at a future time point is represented as

Y (t) = ψtξ(t) + θtU (t) + γtφ(t), (22)

where

Y (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η(k + 1|t)
.
.
.

η(k + Ns − 1|t)
η(k + Ns |t)

.

.

.

η(k + Np|t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,U (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔU (k|t)
.
.
.

ΔU (k + Ns − 1|t)
ΔU (k + Ns |t)

.

.

.

ΔU (k + Nc − 1|t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

φ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W̃s(t)
.
.
.

W̃s(t)
W̃l (t)

.

.

.

W̃l (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ψt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C Ãs(t)
.
.
.

C ÃNs
s (t)

C Ãl (t) Ã
Ns
s (t)

.

.

.

C Ã
Np−Ns
l (t) ÃNs

s (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

θt =

⎡
⎢⎢⎢⎢⎢⎢⎣

C B̃s(t) 0 · · · 0
C Ãs(t)B̃s(t) C B̃s(t) · · · 0

.

.

.
.
.
.

. . .
.
.
.

C Ã
Np−Ns
l (t)

ÃNs−1
s (t)B̃s(t)

C Ã
Np−Ns
l (t)

ÃNs−2
s (t)B̃s(t)

· · · C Ã
Np−Nc
l (t)

B̃l (t)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

γt =

⎡
⎢⎢⎢⎢⎢⎢⎣

C 0 · · · 0
C Ãs(t) C · · · 0

.

.

.
.
.
.

. . .
.
.
.

C Ã
Np−Ns
l (t)

ÃNs−1
s (t)

C Ã
Np−Ns
l (t)

ÃNs−2
s (t)

· · · C

⎤
⎥⎥⎥⎥⎥⎥⎦

.

3.4 Objective function and constraint conditions

The primary goal of the path tracking control system
is to enable rapid and smooth tracking of the target
path by the vehicle. To achieve this, both the system
state quantity error and the incremental weighting opti-
mization of the system control quantitymust be consid-
ered. Considering the complexity of themulti-objective
optimization problems, there may be no feasible solu-
tion in the calculation process. The possible reasons
for the potential infeasibility in multi-objective opti-
mization problems may include the following aspects.
Firstly, due to the limitation of constraint conditions,
there may be no solution that satisfies all objectives and
constraints simultaneously. Secondly, in some cases,
the optimization algorithm may only find local opti-
mal solutions rather than global optimal solutions.
Thirdly, during the solution process, numerical stabil-
ity issues may arise, causing the algorithm to fail to
converge to an effective solution. Given the complex-
ity of multi-objective optimization problems and the
potential infeasibility during computation, a relaxation
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factor is incorporated into the objective function. The
main roles of the relaxation factor include the follow-
ing aspects. Firstly, when the initial state of the system
is not within the feasible region, or when certain con-
straints cannot be satisfied due to changes in the envi-
ronment or system parameters, the relaxation factor
allows the controller to slightly violate the constraints
at certain moments, thus maintaining the continuity
and stability of the control. This flexibility enables the
algorithm to tolerate certain system uncertainties and
external disturbances to enhance system robustness.
Secondly, for multi-objective optimization problems,
there may be conflicts between performance indicators
and constraints. By adjusting the relaxation factor, a
trade-off can be achieved between performance opti-
mization and constraint satisfaction. When the relax-
ation factor is large, the control system focusesmore on
performance optimization while relaxing the require-
ments for constraints. When the relaxation factor is
small, the control system focusesmore on satisfying the
constraints, potentially sacrificing some performance.
Thus, we define the system’s multi-objective optimiza-
tion function as follows.

J (t) =
Np∑
i=1

‖η(k + i |t) − ηre f (k + i |t)‖2Q

+
Nc−1∑
i=0

‖ΔU (k + i |t)‖2R + ρε2,

(23)

where Q is the state weighting matrix, R is the con-
trol weighting matrix, Nc is the number of sampling
points of the control horizon, Np is the number of sam-
pling points of the prediction horizon, ρ is the weight
coefficient, ε is the relaxation factor.

To meet the performance indicators of vehicle steer-
ing control smoothness and vehicle path tracking accu-
racy, it is necessary to constrain the output, control
increment and control quantity of the path tracking con-
trol system. The constraints are designed as

ΔUmin ≤ ΔU (k + i |t) ≤ ΔUmax

umin ≤ u(k + i |t) ≤ umax

ηmin ≤ η(k + i |t) ≤ ηmax

εmin ≤ ε ≤ εmax.

(24)

The first inequality represents the control increment
constraint with the constraint boundary determined by
the smoothness of vehicle steering control. The sec-
ond inequality denotes the control constraint with the

constraint boundary reflecting the physical limitations
of vehicle steering. The third inequality signifies the
system output constraint with the constraint boundary
determined by the desired path tracking accuracy. The
fourth inequality states that the relaxation factor should
be constrained within a certain range to avoid causing
instability or slow convergence rate in the algorithm.

To solve this multi-objective optimization, it must
be reformulated as a standard quadratic programming.
The VMPC multi-objective optimization can be sum-
marized as

min

(
1

2
ΔU (t)Tε H̃tΔU (t)ε + f̃ Tt ΔU (t)ε

)
{
AqpΔU (t)ε ≤ bqp
lb ≤ ΔU (t)ε ≤ ub

,

(25)

where

H̃t =
[
θTt QQθt + RR 0

0 ρ

]
, f̃t =

[
θTt QQ(Et + Gt )

0

]
,

Aqp =

⎡
⎢⎢⎣

INc 0
−INc 0

θt 0
−θt 0

⎤
⎥⎥⎦, bqp =

⎡
⎢⎢⎣

Umax −U (k − 1|t)
−Umin +U (k − 1|t)

Ymax − ψtξ(t) − γtφ(t)
−Ymin + ψtξ(t) + γtφ(t)

⎤
⎥⎥⎦,

ΔU (t)ε =
[
ΔU (t)

ε

]
, lb =

[
ΔUMin

εmin

]
, ub =

[
ΔUMax

εmax

]
,

where H̃t is the quadratic objective matrix, f̃t is the lin-
ear target vector, Aqp is the linear inequality constraint
matrix, bqp is the linear inequality constraint vector, lb
and ub are the upper bound of optimization objective
and lower bound of optimization objective respectively.

In each cycle, the above constrained multi-objective
function is solved. The output of the VMPC controller
is

u(k|t) = u(k − 1|t) + [1 0]ΔU (k|t). (26)

During the control period, the input at the next sam-
pling time can be recalculated from Eq. (26) by the
rolling optimization characteristics. Through iterative
optimization, the vehicle is able to track the target path.

4 Simulation and analysis

In this section, we conduct a co-simulation with Car-
sim and MATLAB/Simulink to evaluate the accuracy,
stability, and robustness of the VMPC controller in
path tracking control under two conditions, a double-
lane road and a high-speed road with both straight and
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Table 1 The parameters of an used E-Class sedan

Parameter Value Unit

Vehicle mass 1903 kg

Axle base 2700 mm

Wheelbase of front axle 1600 mm

Wheelbase of rear axle 1600 mm

Distance between vehicle
centroid and front axle

1232 mm

Distance between vehicle
centroid and rear axle

1468 mm

Height of centroid 460 mm

Moment of inertia of vehicle yaw 4175 N·m2

Cornering stiffness of front wheel 58228 N/rad

Cornering stiffness of rear wheel 49223 N/rad

Table 2 The parameters of the VMPC

Parameter Value Parameter Value

Np 25 Ns 12

Nx 4 Nu 1

Nc 10 Ts 0.02s

T1 0.1s ε 0.0148

curved sections. Simulation results are compared with
those of the MPC controller to assess the performance
of the VMPC controller. The paramters of an used E-
Class sedan are shown in Table 1 and the parameters
of the VPMC are shown in Table 2.

4.1 Double lane road condition

In the double-lane road simulation experiment, we
tested the performance of the VMPC controller at vehi-
cle velocities of 15km/h, 50km/h, and 70km/h. The
curvature of the used double-lane road is shown in
Fig. 4.

Figure 5 illustrates the vehicle trajectory on the
double-lane road at 15km/h. One finds that the max
trajectory tracking error of the Y axle is about 0.02 m
with the MPC controller, while 0.01m with the VMPC
controller. Figures 6 and 7 compare the lateral and
heading errors with the two controllers. As shown in
these figures, the lateral error with the MPC controller
ranges from −0.052 to 0.048 m, while that with the
VMPC controller is maintained between −0.032 and

Fig. 4 The curvature of the used double lane road in simulation

Fig. 5 The vehicle trajectory on the double lane road at 15km/h

Fig. 6 The lateral error at 15km/h

0.027 m. The heading error with the MPC controller
is maintained between −1.413 and 2.261 deg, while
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Fig. 7 The heading error at 15km/h

Fig. 8 The sideslip angle at 15km/h

that with the VMPC controller is maintained between
−1.234 and 1.897 deg. These results demonstrate that
the VMPC controller exhibits higher trajectory, lateral
and heading tracking accuracy when tracking a double-
lane road at low vehicle velocity.

Figures 8 and 9 compare the sideslip angle and
front wheel angle with the two controllers. The sideslip
angle with the MPC controller exhibits oscillations
with multiple large peaks and a larger angle amplitude.
In contrast, the sideslip anglewith theVMPCcontroller
changes gently and is maintained between −0.27 and
0.90 deg. These results indicate that the VMPC con-
troller provides higher lateral stability and more stable
steering at low vehicle velocity.

Figure 10 presents a comparison of the solution
times between the two controllers. The average solution

Fig. 9 The front wheel angle at 15km/h

Fig. 10 The solution time at 15km/h

time of the VMPC controller is about 4.92 ms, which is
significantly less than 9.46 ms of the MPC controller.
This indicates that the VMPC controller exhibits supe-
rior real-time performance compared to the MPC con-
troller at low vehicle velocity.

Figure 11 illustrates the vehicle trajectory on the
double-lane road at 50km/h. One finds that the max
trajectory tracking error of the Y axle is about 0.05 m
with the MPC controller, while 0.03m with the VMPC
controller. Figures 12 and 13 compare the lateral and
heading errors of the two controllers. As shown in
these figures, the lateral error with the MPC controller
ranges from −0.087 to 0.048 m, while that with the
VMPC controller is maintained between −0.034 and
0.038 m. The heading error with the MPC controller
is maintained between −1.744 and 1.321 deg, while
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Fig. 11 The vehicle trajectory on the double lane road at 50km/h

Fig. 12 The lateral error at 50km/h

Fig. 13 The heading error at 50km/h

that with the VMPC controller is maintained between
−0.747 and 0.934 deg. These results demonstrate that
the VMPC controller exhibits higher trajectory, lateral
and heading tracking accuracy when tracking a double-
lane road at medium vehicle velocity.

Remark 1 In Fig. 13, there are oscillations in areaswith
large curvature because of model approximation error.
As aforementioned, the VMPC controller’s prediction
horizon is divided into Np prediction steps. the short-
step discretization based on ZOH is utilized for the 1st
∼ Ns prediction steps, while the long-step discretiza-
tion based on FOH is employed for the subsequent
Ns+1 ∼ Np steps. When the VMPC uses the long-
step discretization interval to discretize the model to
approximate system behavior, it reduces computational
complexity. However, this approximation method may
introduce errors with large curvature. In areas with
large curvature, this approximate model may not accu-
rately describe the actual dynamics of the system, lead-
ing to oscillations when tracking the reference trajec-
tory by the control system.When the vehicle velocity is
low, Ns should be larger. But for comparison under dif-
ferent vehicle velocities, we set Ns as 12, which leads
to obvious oscillations at 50km/h. If Ns is increased,
the oscillations will be significantly attenuated or even
disappear. If the oscillations are too large, it will cause
passengers to feel the vehicle swaying left and right.
Figure 13 shows that the amplitudes of these oscilla-
tions are small. Therefore, it will not cause passengers
to feel the sway of the vehicle in this case.

Figures 14 and 15 compare the sideslip angle and
front wheel angle of the two controllers. The sideslip
angle of the MPC controller exhibits oscillations with
multiple large peaks and a larger angle amplitude. In
contrast, the sideslip angle of the VMPC controller
changes gently and ismaintained between−0.5 and 0.5
deg with a smaller angle amplitude. These results indi-
cate that the VMPC controller provides higher lateral
stability and more stable steering at medium vehicle
velocity.

Figure 16 presents a comparison of the solution
times between the two controllers. The average solution
time for the VMPC controller is about 5.07 ms, which
is significantly less than 8.38ms of theMPC controller.
This indicates that the VMPC controller exhibits supe-
rior real-time performance compared to the MPC con-
troller at medium vehicle velocity.
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Fig. 14 The sideslip angle at 50km/h

Fig. 15 The front wheel angle at 50km/h

Fig. 16 The solution time at 50km/h

Fig. 17 The vehicle trajectory on the double lane road at 70km/h

Figure 17 depicts the vehicle trajectory on a double-
lane road at 70km/h. One finds that the max trajec-
tory tracking error of the Y axle is about 0.17 m with
the MPC controller, while 0.1 m with the VMPC con-
troller. Figures 18 and 19 provide a comparison of lat-
eral and heading errors between the two controllers. As
shown in the figures, in large curvature curves, the lat-
eral error with the MPC controller ranges from−0.195
to 0.223 m, while its heading error exhibits significant
fluctuations when transitioning from curves to straight
roads, with a maximum heading error of 10.54 deg.
In contrast, the lateral error with the VMPC controller
remains between −0.105 and 0.192 m, and both lateral
and heading errors quickly converge to 0 when tran-
sitioning from curves to straight roads. These results
demonstrate that the VMPC controller provides better
lateral and heading tracking stability at higher speeds
under this condition.

Figures 20 and 21 present a comparison of the
sideslip angle and front wheel angle between the two
controllers. As shown in the diagrams, for the VMPC
controller, the peak and trough values of the sideslip
angle are 3.92 deg and−7.33 deg, respectively. In con-
trast, for the MPC controller, the peak and trough val-
ues of the sideslip angle are 4.72 deg and −11.03 deg,
respectively. The VMPC controller exhibits smaller
oscillation amplitude and shorter convergence time to
0. The front wheel angle output by the MPC controller
ranges from −13.43 to 12.70 deg with slower conver-
gence of frontwheel angle oscillationswhen transition-
ing from curves to straight roads. In contrast, the front
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Fig. 18 The lateral error at 70km/h

Fig. 19 The heading error at 70km/h

wheel angle output by the VMPC controller ranges
from−10.44 to 10.90 deg with smaller oscillations and
faster convergence. These results indicate that VMPC
control provides higher lateral stability andmore stable
steering under this condition.

Figure 22 presents a comparison of solution times
between the two controllers. The average solution time
of the VMPC controller is about 5.71 ms, while that
of the MPC controller is 9.52 ms. This demonstrates
that the VMPC controller exhibits superior real-time
performance compared to the MPC controller under
this condition.

Remark 2 One can find that there are oscillations for
the heading error at 50km/h in Fig. 13, but no oscilla-
tions at 70km/h in Fig. 19. The main reasons are the
settings of the prediction horizon and relaxation fac-

Fig. 20 The sideslip angle at 70km/h

Fig. 21 The front wheel angle at 70km/h

Fig. 22 The solution time at 70km/h
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Fig. 23 The vehicle trajectory on the double lane road at
100km/h

tor. Of course, there are other factors to influence this
phenomenon. In our simulations, we choose the predic-
tion horizon and relaxation factor focusing on the range
of 60–120km/h according to the practice. On the other
hand, there are no oscillations at low vehicle velocity as
shown in Fig. 7. Our simulation results show that the
oscillations become serious just at 50km/h. In order
to fully reflect the performance of the algorithm, we
give the simulation result at 50km/h, not 60km/h, and
explain the reason via Remark 1.

4.2 High-speed road condition

We simulate the vehicle under two high-speed lane
road conditions, 100km/h and 120km/h. Figure 23
depicts the vehicle trajectory on the high-speed road at
100km/h. Figures 24 and 25 provide a comparison of
lateral and heading errors between the two controllers.
The lateral error generated by the MPC controller is
larger than that generated by the VMPC controller.
Notably, in the third turn, the maximum lateral error
with the MPC controller reaches 0.349 m, while that
with the VMPC controller is only 0.2 m. The heading
error with the MPC controller oscillates near 0 when
entering curves, while that with the VMPC controller
remains at approximately ± 0.4 deg. These results
demonstrate that the VMPC controller can maintain
high tracking accuracy when tracking multiple curves
at high vehicle velocity.

Figures 26 and 27 present a comparison of the
sideslip angle and front wheel angle between the two

Fig. 24 The lateral error at 100km/h

Fig. 25 The heading error at 100km/h

controllers at 100km/h. As shown in the figures, the
trends in changes of sideslip angle and front wheel
angle are consistent. The control effects of the MPC
and VMPC controllers for sideslip angle and front
wheel angle are similar. However, the sideslip angle
and frontwheel anglewith theVMPCcontroller exhibit
smoother changes in curves, with significantly smaller
fluctuations compared to those with the MPC con-
troller. the partially enlarged detail of Fig. 26 indicates
that the fluctuation of the sideslip angle with the MPC
controller is about 0.5 deg, while the fluctuation of the
sideslip angle with the VMPC controller is about 0.3
deg. As shown in Fig. 27, the partially enlarged detail
indicates that the fluctuation of the front wheel angle
with the MPC controller is about 0.8 deg, while the
fluctuation of the front wheel angle with the VMPC
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Fig. 26 The sideslip angle at 100km/h

Fig. 27 The front wheel angle at 100km/h

controller is about 0.4 deg. The front wheel angle with
theVMPCcontroller is slightly larger than that with the
MPC controller when transitioning from straight roads
to curves, for example, as shown in Fig. 27, at the 19.9
s, the front wheel steering angle is about 3.5 deg with
MPC controller, while the front wheel steering angle
is about 4.1 deg with VMPC controller.This ensures
tracking accuracy on curves while keeping the riding
stability of the vehicle at high vehicle velocity.

Figure 28 presents a comparison of solution times
between the two controllers. The average solution time
of the VMPC controller is about 5.85 ms, while that of
theMPCcontroller is about 8.64ms. This demonstrates
that the VMPC controller exhibits superior real-time
performance compared to the MPC controller at high
vehicle velocity.

Fig. 28 The solution time at 100km/h

Figure 29 depicts the vehicle trajectory on the high-
speed road at 120km/h.As shown in Fig. 29, theVMPC
controller tracks the reference path more closely on
curves, particularly on the second and third curves.
Figures 30 and 31 provide a comparison of lateral and
heading errors between the two controllers. The lat-
eral error generated by the MPC controller is larger
than that generated by the VMPC controller. Notably,
on the third turn, the maximum lateral error for the
MPC controller reaches 0.349 m, while that for the
VMPC controller is only 0.2 m. The heading error
with theMPCcontroller oscillates near 0when entering
curves, while that with the VMPC controller remains
at approximately± 0.4 deg. These results demonstrate
that the VMPC controller can maintain high tracking
accuracy when tracking multiple curves at high vehicle
velocity.

Figures 32 and 33 present a comparison of the
sideslip angle and front wheel angle between the two
controllers at 120km/h. As shown in the diagrams, the
trends in changes of sideslip angle and front wheel
angle are consistent. The control effects of the MPC
and VMPC controllers for sideslip angle and front
wheel angle are similar. However, the sideslip angle
and frontwheel anglewith theVMPCcontroller exhibit
smoother changes in curves, with significantly smaller
fluctuations compared to those with the MPC con-
troller. the partially enlarged detail of Fig. 32 indicates
that the fluctuation of the sideslip angle with the MPC
controller is about 1.0 deg, while the fluctuation of the
sideslip angle with the VMPC controller is about 0.5
deg. As shown in Fig. 33, the partially enlarged detail
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Fig. 29 The vehicle trajectory on the double lane road at
120km/h

Fig. 30 The lateral error at 120km/h

Fig. 31 The heading error at 120km/h

Fig. 32 The sideslip angle at 120km/h

Fig. 33 The front wheel angle at 120km/h

indicates that the fluctuation of the front wheel angle
with the MPC controller is about 4.1 deg, while the
fluctuation of the front wheel angle with the VMPC
controller is about 1.8 deg. The front wheel angle with
theVMPCcontroller is slightly larger than that with the
MPC controller when transitioning from straight roads
to curves, for example, as shown in Fig. 33, at the 24.5
s, the front wheel steering angle is about 5.9 deg with
MPC controller, while the front wheel steering angle
is about 8.3 deg with VMPC controller. This ensures
tracking accuracy on curves while keeping the riding
stability of the vehicle at high vehicle velocity.

Figure 34 shows a comparison of solution times
between the two controllers. The average solution time
of the VMPC controller is 5.85 ms, while that of the
MPC controller is 8.64 ms. This demonstrates that the
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Fig. 34 The solution time at 120km/h

VMPC controller exhibits superior real-time perfor-
mance compared to the MPC controller at high vehicle
velocity.

In summary, theVMPCpath tracking controller out-
performs the traditional MPC controller in terms of
tracking accuracy, real-time, control stability, and vehi-
cle velocity robustness.

5 Practical vehicle test

To further validate the control performance of the
VMPC controller, a path tracking experiment was con-
ducted on a drive-by-wire integrated chassis platform,
as shown in Fig. 35. The platform comprises a laser
radar, IMU, computing platform, steering motor, drive
motor, USB-CAN, CAN bus, MCU, and remote con-
troller. The length, width and height of the platform are
2340mm, 1320mm and 710mm respectively. The con-
troller was developed based on theROS (RobotOperat-
ing System) and C++ under Ubuntu operating system.

Figure 36 presents a comparison between the actual
driving trajectory and reference trajectory of the plat-
form. To ensure safety, the vehicle velocity was main-
tained at 15km/h and the reference path included both
straight and curve segments. From Fig. 36 one can
obtain that the actual driving trajectory coincides with
the reference trajectory. The tracking accuracy is high
in straight sections and sections with small curvature,
and is slightly worse in sections with large curvature
which is consistent with the simulation results.

Fig. 35 The drive-by-wire integrated chassis experimental plat-
form

Fig. 36 The driving path and the reference path

Figures 37and 38 depict the lateral and heading
errors during the tracking process respectively. As
shown in the figures, the lateral error remains between
−0.2 and 0.2 m and the heading error remains between
−2.7 and 2.9 deg in straight sections and sections with
smaller curvature. In large curvature sections, the lat-
eral error is controlled between−0.4 and 0.6 m, and the
heading error is controlled between−7.8 and 5.2 deg.
The reason for the poor tracking accuracy in the large
curvature sections may be the decrease of lidar posi-
tioning accuracy for the large turning radius and open
space. Comparedwith the simulation results, the exper-
imental results show lower accuracy. The reasons are
complex such as differences between the experimen-
tal and simulation environments, errors in sensors and
actuators, and disparities in vehicle dynamics model.
On thewhole, the experimental results demonstrate that
the control performance of the VMPC path tracking
controller on an actual vehicle agrees with simulation
result, exhibiting good tracking accuracy.
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Fig. 37 the lateral error in the tracking process

Fig. 38 the heading error in the tracking process

6 Conclusions

(1) To enhance the accuracy, real-time performance,
and stability of path tracking, we propose a model
predictive control method based on variable dis-
crete step size.

(2) We adopt a vehicle model that accounts for path
tracking. During model discretization, we optimize
the prediction interval by balancing the model’s
prediction accuracy and real-time performance.
The prediction interval is divided into short-step
and long-step discretization sections. The former
employs ZOH while the latter utilizes FOH.

(3) We conduct Carsim/Simulink co-simulations on
double-lane and high-speed roads. The results
demonstrate that our VMPC controller exhibits

superior tracking accuracy, stability, and real-time
performance. To further validate VMPC’s control
efficacy, we perform a path tracking experiment
on a drive-by-wire integrated chassis platform. The
practical vehicle experimental results confirm that
VMPC’s control effect on the practical vehicle is
consistentwith simulation results and exhibits good
tracking accuracy.

Acknowledgements Theworkwas partially supported byZhe-
jiang Provincial Natural Science Foundation of China under
Grant No. LZ21E050002, National Key R&D Program of China
under Grant No. 2023YFE0125700, and National Natural Sci-
ence Foundation of China under Grant No. 62173208.

Author contributions Qinghua Meng contributed to con-
ceptualization, funding acquisition, investigation, methodol-
ogy, project administration, supervision, writing- original draft,
writing- review & editing. Chunjiang Qian performed concep-
tualization, methodology, writing- review & editing. Kai Chen
performed conceptualization, funding acquisition, methodology,
writing- review & editing. Rong Liu performed investigation,
methodology, writing- review & editing. Zong-Yao Sun per-
formed conceptualization, funding acquisition, writing- review
&editing. ZhibinKang performed data curation, formal analysis,
software, visualization.

Funding This funding was provided by Zhejiang Provincial
Natural Science Foundation of China under Grant
No. LZ21E050002, National Key R&D Program of China under
Grant No. 2023YFE0125700, and National Natural Science
Foundation of China under Grant No. 62173208.

Data availibility Data will be made available on request.

Declarations

Conflict of interest The authors declare no conflict of interest,
including specific financial interests and relationships relevant to
the subject of this paper.

References

1. Ahmadi, S.M., BehnamTaghadosi,M., Haqshenas,M.A.: A
state augmented adaptive backstepping control of wheeled
mobile robots. Trans. Inst.Measure. Control 43(2), 434–450
(2021)

2. Ahn, J., Shin, S., Kim, M., Park, J.: Accurate path tracking
by adjusting look-ahead point in pure pursuit method. Int. J.
Auto. Technol. 22, 119–129 (2021)

3. Alcalá, E., Puig, V., Quevedo, J., Rosolia, U.: Autonomous
racing using linear parameter varying-model predictive con-
trol (lpv-mpc). Control Eng. Practice 95, 104270 (2020)

4. Awad, N., Lasheen, A., Elnaggar, M., Kamel, A.: Model
predictive control with fuzzy logic switching for path track-

123



19240 Q. Meng et al.

ing of autonomous vehicles. ISA Trans. 129(A), 193–205
(2022)

5. Cai, J., Jiang, H., Chen, L., Liu, J., Cai, Y., Wang, J.: Imple-
mentation and development of a trajectory tracking control
system for intelligent vehicle. J. Intell. Robot. Syst. 94, 251–
264 (2019)

6. Cao, J., Song, C., Peng, S., Song, S., Zhang, X., Xiao, F.:
Trajectory tracking control algorithm for autonomous vehi-
cle considering cornering characteristics. IEEE Access 8,
59470–59484 (2020)

7. Cui, Q., Ding, R., Wei, C., Zhou, B.: Path-tracking and lat-
eral stabilisation for autonomous vehicles by using the steer-
ing angle envelope. Vehicle Syst. Dyn. 59(11), 1672–1696
(2021)

8. Cui, Q., Ding, R., Zhou, B., Wu, X.: Path-tracking of an
autonomous vehicle via model predictive control and non-
linear filtering. Proceed. Inst. Mech. Eng. Part D: J. Auto.
Eng. 232(9), 1237–1252 (2018)

9. Dai, C., Zong, C., Chen, G.: Path tracking control based on
model predictive control with adaptive preview characteris-
tics and speed-assisted constraint. IEEE Access 8, 184697–
184709 (2020)

10. Ding, C., Ding, S.,Wei, X.,Mei, K.: Output feedback sliding
mode control for path-tracking of autonomous agricultural
vehicles. Nonlinear Dyn. 110(3), 2429–2445 (2022)

11. Ge, L., Zhao, Y., Zhong, S., Shan, Z., Ma, F., Han, Z., Guo,
K.: Efficient and integration stable nonlinear model predic-
tive controller for autonomous vehicles based on the stabi-
lized explicit integration method. Nonlinear Dyn. 111(5),
4325–4342 (2023)

12. Guo, H., Liu, J., Cao, D., Chen, H., Yu, R., Lv, C.: Dual-
envelop-oriented moving horizon path tracking control for
fully automated vehicles. Mechatronics 50, 422–433 (2018)

13. Ji, X.,Wei,X.,Wang,A., Cui, B., Song,Q.:A novel compos-
ite adaptive terminal sliding mode controller for farm vehi-
cles lateral path tracking control. Nonlinear Dyn. 110(3),
2415–2428 (2022)

14. Kanchwala, H., Bezerra Viana, I., Aouf, N.: Cooperative
path-planning and tracking controller evaluation using vehi-
cle models of varying complexities. Proceed. Inst. Mech.
Eng. Part C: J. Mech. Eng. Sci. 235(16), 2877–2896 (2021)

15. Kim, J.C., Pae, D.S., Lim, M.T.: Obstacle avoidance path
planning based on output constrained model predictive con-
trol. Int. J. Control Auto. Syst. 17(11), 2850–2861 (2019)

16. Li, Z.,Wang, P., Cai, S., Hu, X., Chen, H.: Nmpc-based con-
troller for vehicle longitudinal and lateral stability enhance-
ment under extreme driving conditions. ISA Trans. 135,
509–523 (2023)

17. Liang, Y., Li, Y., Khajepour, A., Zheng, L.: Multi-model
adaptive predictive control for path followingof autonomous
vehicles. IET Intell. Transp. Syst. 14(14), 2092–2101 (2020)

18. Lin, F., Chen, Y., Zhao, Y., Wang, S.: Path tracking of
autonomous vehicle basedon adaptivemodel predictive con-
trol. Int. J. Adv. Robot. Syst. 16(5), 1729881419880089
(2019)

19. Marzbani, H., Khayyam, H., Quoc, D.V., Jazar, R.N.:
Autonomous vehicles: autodriver algorithm and vehicle
dynamics. IEEE Trans. Veh. Technol. 68(4), 3201–3211
(2019)

20. Meng, Q., Qian, C., Wang, P.: Lateral motion stability con-
trol via sampled-data output feedback of a high-speed elec-
tric vehicle driven by four in-wheel motors. J. Dyn. Syst.
Measure. Control 140(1), 011002 (2018)

21. Meng,Q., Sun, Z.Y., Shu,Y., Liu, T.: Lateralmotion stability
control of electric vehicle via sampled-data state feedback
by almost disturbance decoupling. Int. J. Control 92(4), 734–
744 (2019)

22. Meng, Q., Xu, H., Sun, Z.Y.: Nonlinear lateral motion sta-
bility control method for electric vehicle based on the com-
bination of dual extended state observer and domination
approach via sampled-data output feedback. Trans. Inst.
Measure. Control 43(10), 2258–2271 (2021)

23. Meng, Q., Zhao, X., Hu, C., Sun, Z.Y.: High velocity lane
keeping control method based on the non-smooth finite-time
control for electric vehicle driven by four wheels indepen-
dently. Electronics 10(6), 760 (2021)

24. Nie, L., Guan, J., Lu, C., Zheng, H., Yin, Z.: Longitudi-
nal speed control of autonomous vehicle based on a self-
adaptive pid of radial basis function neural network. IET
Intell. Transp. Syst. 12(6), 485–494 (2018)

25. Rajamani, R.: Vehicle dynamics and control. Springer Sci-
ence & Business Media (2006)

26. Ren, L., Xi, Z.: Bias-learning-based model predictive con-
troller design for reliable path tracking of autonomous vehi-
cles under model and environmental uncertainty. J. Mech.
Des. 144(9), 091706 (2022)

27. Sun, Z., Zou, J., He, D., Zhu, W.: Path-tracking control
for autonomous vehicles using double-hidden-layer output
feedback neural network fast nonsingular terminal sliding
mode. Neural Comput. Appl. 34(7), 5135–5150 (2022)

28. Tang, F., Li, C.: Intelligent vehicle lateral tracking control
based onmultiplemodel prediction.AIPAdv. 10(7), 075107
(2020)

29. Viana, I.B., Kanchwala, H., Ahiska, K., Aouf, N.: A compar-
ison of trajectory planning and control frameworks for coop-
erative autonomous driving. J. Dyn. Syst. Measure. Control
143(7), 071002 (2021)

30. Wang, H.,Wang, Q., Chen,W., Zhao, L., Tan, D.: Path track-
ing based on model predictive control with variable predic-
tive horizon. Trans. Inst. Measure. Control 43(12), 2676–
2688 (2021)

31. Wang, L., Chen, Z., Zhu, W.: An improved pure pursuit
path tracking control method based on heading error rate.
Ind. Robot 49(5), 973–980 (2022)

32. Wang, L., Liu,M.: Path tracking control for autonomous har-
vesting robots based on improved double arc path planning
algorithm. J. Intell. Robot. Syst. 100, 899–909 (2020)

123



Variable step MPC trajectory tracking control method for intelligent vehicle 19241

33. Wang, Y., Ding, H., Yuan, J., Chen, H.: Output-feedback
triple-step coordinated control for path following of
autonomous ground vehicles. Mech. Syst. Signal Process.
116, 146–159 (2019)

34. Zhang, X., Zhu, X.: Autonomous path tracking control of
intelligent electric vehicles based on lane detection and opti-
mal preview method. Expert Syst. Appl. 121, 38–48 (2019)

35. Zheng, Y., Tao, J., Sun, Q., Zeng, X., Sun, H., Sun, M.,
Chen, Z.: Ddpg-based active disturbance rejection 3d path-
following control for powered parafoil under wind distur-
bances. Nonlinear Dyn. 111(12), 11205–11221 (2023)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

123


	Variable step MPC trajectory tracking control method  for intelligent vehicle
	Abstract
	1 Introduction
	2 Vehicle dynamics model considering path tracking
	3 VMPC controller design
	3.1 Variable step discrete linear continuous system model
	3.2 Construction of prediction model
	3.3 Prediction equation and output equation
	3.4 Objective function and constraint conditions

	4 Simulation and analysis
	4.1 Double lane road condition
	4.2 High-speed road condition

	5 Practical vehicle test
	6 Conclusions
	Acknowledgements
	References




