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Abstract The goal of cryptography is to provide
algorithms that safeguard sensitive information sent
via unprotected networks. These methods encrypt the
information, making it unintelligible even if adver-
saries manage to get it. The substitution box (S-box)
structure is the most significant and nonlinear com-
ponent of the Advanced Encryption Standard (AES)
algorithm. In the algorithm, the S-box supplies the
confusion or mixing process. A highly non-linearity-
valued S-box significantly boosts defenses against a
range of threats. Unfortunately, the achievable encryp-
tion throughput is constrained by the computationally
costly nature of creating S-boxes. This emphasizes the
necessity of creating new S-box generators with the
best strength and minimum computing requirements
to provide optimal security. We presented an efficient
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approach that uses the composition of Frobenius auto-
morphism and Mobius transformation of GF(28). In
this way, we got two highly nonlinear permutations that
can produce millions of S-boxes with very strong cryp-
tographic strength. The dynamic behavior of the pro-
posed generator is analyzed by clarifying the require-
ments for generating distinct S-boxes and ensuring
that the produced S-boxes have a uniform probability
distribution. Our generator can produce S-boxes with
robust cryptographic features, according to a thorough
security study. Our novel generation method for build-
ing S-boxes efficiently combines the benefits of both
algebraic modeling and chaotic mapping, providing a
solid basis for building robust S-boxes. Our approach
can guarantee that the produced S-boxes have strong
variety and outstanding comprehensive performance
by using the ergodicity of the chaotic system. Addi-
tionally, the experimental findings presented in this
study validate that the dynamic S-boxes generated by
our technique not only satisfy the criteria for creating
encryption methods but also provide enhanced secu-
rity for picture encryption. Furthermore, our approach
generates S-boxes with good efficiency. Our technique
has a wide range of possible applications in cryptog-
raphy, including the creation of dynamic S-boxes for
encryption algorithms and high-performance S-boxes
for image security. In light of current security risks and
computing demands, our theoretical and computational
evaluations indicate that our S-box generator is a good
contender for real-world applications.
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1 Introduction

Thefield of cryptology encompasses the studyof codes,
which is divided into two main branches: Cryptogra-
phy and Cryptanalysis. Cryptography concerns itself
with developing encryption algorithms,whereasCrypt-
analysis focuses on breaking these algorithms. The
two main sub-fields of cryptography are symmetric
and asymmetric cryptography. The former explores
block ciphers and stream ciphers whereas the latter,
also known as public key cryptography, encrypts and
decrypts communications using a pair of mathemati-
cally linked keys, one public and one private, to pro-
vide a secure method of exchanging information over
an insecure network. Block ciphers operate on fixed-
length groups of blocks and transform them into cipher-
text. The size of a block varies according to the spe-
cific cipher being used. Block sizes commonly used
are 64 bits, 128 bits, or 256 bits. A block cipher makes
use of a secret key to encrypt the input. The key is
utilized to generate a sequence of sub-keys that are
applied to the plaintext blocks in a series of iterations
or rounds. Each round involvesmultiple operations that
transform the plaintext block into ciphertext. Nowa-
days, various contemporary cryptosystems are in use,
which are data encryption standard (DES) [1], inter-
national data encryption algorithm (IDEA) [2], and
advanced encryption standard (AES) [3]. One of the
primary advantages of block ciphers is their speed and
efficiency, making them ideal for use in applications
that require fast encryption and decryption of large
amounts of data. Yet, they are vulnerable to specific
assault types, such as well-known plaintext assaults,
which if the attacker has access to both the decrypted
text and the encrypted text, can jeopardize the security
of the cipher. Therefore the development of strong and
secure block ciphers is an ongoing area of research in
the field of cryptology. A Substitution-box is a non-
linear constituent of a block cipher and its effective-
ness determines the overall strength of the cipher. A
well-designed S-box ought to have strong nonlinearity,
resistance to differential and linear cryptanalysis, con-
fusion, diffusion, bijectivity, algebraic complexity, and
the absence of fixed points. As data traffic continues
to grow, secure data transmission is becoming increas-

ingly crucial, which is why the development of a robust
S-box is the top priority of researchers.

1.1 Literature review

A range of methods, including the use of algebraic
structures such as Galois fields, Galois rings, projec-
tive general and special linear groups, elliptic curves,
coset diagrams, and Cayley graphs are being used to
create effective S-boxes. The researchers used only
primitive irreducible polynomials for the generation of
the Galois field and then employed any bijective map
for designing an S-box. The most used polynomial is
p(x) = x8 + x4 + x3 + x2 + 1. There are 16 primitive
and 14 non-primitive irreducible polynomials of degree
8 over Z2 which can be used to design an S-box. [4]
proposed an image encryption scheme using S-boxes
based on Mobius transformation. [5] designed a novel
scheme of image encryption using Mobius transfor-
mation on GF(28) and chaos. [6] used a novel irre-
ducible polynomial to generate a robust S-box and used
it to encrypt medical images. The authors used Mobius
transformation to design a bijective S-box. A new S-
box was proposed by [7] using I-Ching operators and
the findings demonstrate that the S-box is well-suited
for cryptography. A new S-box was proposed by [8]
using cubic fractional transformation of the prime field
to create a strong S-box. They used the composition
of cubic polynomial and affine inversion map of F257.
[9] examined the impact of nonlinearity on their find-
ings by altering the basic irreducible polynomial that
generates elements of the Galois field. They discov-
ered that by selecting a specific irreducible polynomial
could improve the effectiveness of S-boxes, developed
based on the algebraic structure of theGF(pn). Unfor-
tunately, it was determined that their suggested S-box
was non-bijective. A new design was proposed by [10]
by employing a direct product of cyclic groups and the
Galois field to formulate a robust S-box. They used a
highlynonlinear inversionmapof theGalois field rather
than a fractional transformation. [11] designed a novel
S-box using a chaoticmap. They also introduced a tech-
nique that can adaptively enhance the probability of dif-
ferential approximation for the S-box. A new approach
was employed by [12] that uses coset diagrams to show
how PSL(2,Z) acts on the projective lines ofGF(28).
The Fibonacci sequence was additionally used by the
authors to choose the coset diagram’s vertex positions.
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[13] describes a method for creating a useful S-box that
combines the use of a logistic map with bacterial for-
aging optimization. [14] outlines a new algorithm that
includes the composing of an inversion function with
the action of the S8 on theGF(28). Itwas shown that the
resulting S-box is highly nonlinear and bijective. A rel-
atively new approach based on 2-D Arnold’s Cat map
was employed by [15] to generate dynamic S-boxes.
The scheme produced efficient and nonlinear S-boxes
but it does not provide any guarantee of bijectivity for
every S-box. [16] developed a new chaotic system to
formulate S-boxes, but the average nonlinearity of the
proposed schemewas 107. A new chaotic sinemapwas
designed by [17] to generate a highly nonlinear S-box.
The author used an optimization model to enhance the
nonlinearity of the S-box, but still, the average nonlin-
earity of the scheme was 110.25. An optimized S-box
generator was designed by [18] based on elliptic curves
with nonlinearity in the range 95–106. [19] introduced
a new approach to designing robust S-box based on
linear fractional transformation and a multi-layer per-
ceptron architecture. They introduced a novel approach
to enhance the nonlinearity of the initial S-box. A new
approach based on a 2D hyperchaotic map was intro-
duced by [20] to designS-boxes. Theyused affine trans-
formations and boolean functions to design an S-box
and then three possible weaknesses were removed by
cryptanalyzing the dynamic approach. There are also
existing schemes in literature that describe the tech-
niques for safe storage, privacy, and integrity of data in
cloud platforms ([21–27]).

The methods and techniques for building S-boxes
that are described in the literature are either difficult and
repetitive, or they are practical for static S-boxes. Due
to their inherent flaws, static S-boxes may compromise
the security of the cipher. Static S-boxes might aid an
attacker in deciphering the intercepted ciphertext using
cryptanalysis. Furthermore, the algorithms that create
dynamic and key-dependent S-boxes are less effective
and confusing. These methods also do not generate a
large number of S-boxes with nonlinearity 112 and 4
differential uniformity. So, there is a continuous need
for simple, efficient methods that can produce millions
of S-boxes with nonlinearity 112 and differential uni-
formity 4.

1.2 Motivations and contributions

In this study, we have presented an efficient approach to
generate a large number of S-boxes using the compo-
sition of an automorphism of a finite field of order 256
and a linear fractional transformation. The S-box cre-
ated in this way has a high level of security and closely
resembles the ideal values specified by the conventional
S-box. The security strength of the proposed S-box is
thoroughly tested and compared with other S-boxes,
confirming its high level of security. We explore the
complex world of finite fields, investigate the mathe-
matics underlying Mobius transformations, and exam-
ine the characteristics that set apart the S-boxes pro-
duced by various classes of polynomials. The motiva-
tions of the proposed scheme are as follows;

1. Assessing the higher degree polynomials for gen-
eration of S-boxes.

2. Finding new nonlinear bijections of the Galois field
with the lowest possible differential uniformity.

3. Proposing S-box generator scheme that can pro-
duce optimal S-boxes of high nonlinearity.

4. Analyzing the chaotic maps for generation of S-
boxes.

The following are the contributions of said scheme;

1. We introduced another 4 differential uniformity
permutation of GF(28) by composing Frobenius
automorphism and Mobius transformation.

2. Every S-box generated by this scheme has nonlin-
earity 112.

3. This scheme can produce 33553920 S-boxes with
fixed irreducible polynomial and thus 30×33553920
total S-boxes.

4. A robust dynamic S-box generator is designed
by modifying the control parameters in the gen-
eration formula using the chaotic logistic map.
The suggested approach may effectively guarantee
dynamic S-box diversity by exploiting the chaotic
map’s complexity and ergodicity.

5. For a fixed irreducible polynomial and fixed param-
eters of Mobius transformation, we can construct
similar nonlinear permutations that generate opti-
mal S-boxes of the same strength.

1.3 Structure of the article

The rest of the article is divided into seven sections.
Section2 provides an overview of the basic defini-
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tion related to the Galois field and a list of irreducible
polynomials. The algorithm for creating S-boxes is
described in Sect. 3. The proposed S-boxes are ana-
lyzed in Sect. 4 for nonlinearity, strict avalanche cri-
teria (SAC), bit independence criteria (BIC), probabil-
ity of linear approximation (LP), probability of differ-
ential approximation (DP), fixed point analysis, and
algebraic degree and compared to other S-boxes that
are currently in use. Section5 explains the algorithm
of image encryption that employs the proposed S-box
and provides the results of the majority logic crite-
ria (MLC). We compared the results of our scheme in
Sect. 6. Finally, Sect. 7 presents the conclusion of the
study.

2 Preliminaries

In this section, we will present some basic definitions
related to the Galois field and a list of all irreducible
polynomials of degree 8.

2.1 Ideal

A non-empty subset I of a ring R is called an ideal of
R if for every a ∈ R,∀h, k ∈ I, h − k, ah, ha ∈ I .

2.2 Irreducible polynomial

If (F,+, .) is a field then a polynomial p(x) ∈ F[x] is
called irreducible inF[x] ifwhenever p(x) = q(x)r(x)
for some q(x), r(x) ∈ F[x] then either q(x) or r(x) is
a constant polynomial.

2.3 Maximal ideal

Let M be an ideal of R and M �= R then M is called
maximal if no proper ideal of R contains M .

2.4 Galois field

For a prime number p and for an irreducible poly-
nomial f (x) of degree m in Zp[x] the quotient ring
Zp[x]

< f (x) >
= {∑m−1

k=0 aktk |ak ∈ Zp ∀ 0 ≤ k ≤ m−1}
is a finite field of order pm called Galois field and

denoted by GF(pm), where t is a particular root of
f (x).

2.5 Primitive irreducible polynomial

A polynomial f (x) of degree m over Zp[x] is called
primitive if x is the generator of cyclic group (GF(pm))∗
otherwise f (x) is called non-primitive. The following
are primitive irreducible polynomials of degree 8 over
Z2[x];
1. y8 + y4 + y3 + y2 + 1 (285)
2. y8 + y5 + y3 + y + 1 (299)
3. y8 + y5 + y3 + y2 + 1 (301)
4. y8 + y6 + y3 + y2 + 1 (333)
5. y8 + y6 + y4 + y3 + y2 + y + 1 (351)
6. y8 + y6 + y5 + y + 1 (355)
7. y8 + y6 + y5 + y2 + 1 (357)
8. y8 + y6 + y5 + y3 + 1 (361)
9. y8 + y6 + y5 + y4 + 1 (369)

10. y8 + y7 + y2 + y + 1 (391)
11. y8 + y7 + y3 + y2 + 1 (397)
12. y8 + y7 + y5 + y3 + 1 (425)
13. y8 + y7 + y6 + y5 + y2 + y + 1 (487)
14. y8 + y7 + y6 + y3 + y2 + y + 1(463)
15. y8 + y7 + y6 + y5 + y4 + y2 + 1(501)
16. y8 + y7 + y6 + y + 1 (451)

while the non-primitive irreducible polynomials are

1. y8 + y4 + y3 + y + 1 (283)
2. y8 + y7 + y6 + y5 + y4 + y + 1 (499)
3. y8 + y5 + y4 + y3 + 1 (313)
4. y8 + y7 + y5 + y4 + y3 + y2 + 1 (445)
5. y8 + y6 + y5 + y4 + y3 + y + 1 (379)
6. y8 + y7 + y3 + y + 1 (395)
7. y8 + y7 + y6 + y5 + y4 + y3 + 1 (505)
8. y8 + y7 + y6 + y4 + y2 + y + 1 (471)
9. y8 + y7 + y6 + y4 + y3 + y2 + 1 (477)

10. y8 + y7 + y5 + y + 1 (419)
11. y8 + y7 + y5 + y4 + 1 (433)
12. y8 + y6 + y5 + y4 + y2 + y + 1 (375)
13. y8 + y5 + y4 + y3 + y2 + y + 1 (319)
14. y8 + y7 + y4 + y3 + y2 + y + 1 (415)

3 Proposed scheme

In this section, we will formulate the proposed mathe-
matical model for S-box generation.
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Theorem 3.1 The map ψ : GF(28) → GF(28)
defined by

ψ(z) =

⎧
⎪⎨

⎪⎩

az + b

cz + d
: z �= d

c
a

c
: z = d

c

∀a, b, c, d, z ∈ GF(28)with ad−bc �= 0 is a bijection
on GF(28).

Proof In order to prove that ψ is one-one, we suppose
that there are some x, y ∈ GF(28) such that

ψ(x) = ψ(y). (3.1)

Case -I If x = y = d

c
then we are done.

Case - II If x �= d

c
, y �= d

c
then from 3.1, we have

ax + b

cx + d
= ay + b

cy + d
that yields to (ad−bc)(x− y) = 0.

Since GF(28) is an integral domain and ad − bc �= 0,
therefore we must have x = y.

Case III If x �= d

c
, y = d

c
then from 3.1, we have

ax + b

cx + d
= a

c
which leads to the contradiction that

ad − bc = 0. Similarly, we can conclude that it is

not possible that x = d

c
, y �= d

c
.

Since GF(28) is finite, therefore, being the 1 − 1
function, ψ : GF(28) → GF(28) is a bijection.

Theorem 3.2 The Frobenius map F : GF(28) →
GF(28) defined by F(x) = x2; ∀x ∈ GF(28) is
an automorphism.

Proof To show F is an automorphism,we need to show
that F is a bijection and preserves the operations of
GF(28). Firstly, we will show that F is a bijection. Let
x1, x2 ∈ GF(28) such that

F(x1) = F(x2). (3.2)

Case-I If one of x and y is zero. Without loss of gener-
ality, we assume that x = 0 then 3.3 implies that y = 0
and we are done.
Case-II If x �= 0 &y �= 0 then from 3.3 we have
x2 = y2 which implies that x2−y2 = 0 and (x−y)2 =
0 which shows that x = y. As F is one-to-one it is
a bijection being a one-to-one function between two
same finite sets.

Now F(x + y) = (x + y)2 = x2 + y2 + 2xy =
x2+y2 = F(x)+F(y) and F(xy) = (xy)2 = x2y2 =
F(x)F(y)

Theorem 3.3 The functionsψ, ζ : GF(28)→GF(28)

defined by ψ(t) =

⎧
⎪⎨

⎪⎩

ax2 + b

cx2 + d
: x �= (

d

c
)2

−1

a

c
: x = (

d

c
)2

−1
and

ζ(t) =

⎧
⎪⎨

⎪⎩

(
ax + b

cx + d
)2 : x �= (

d

c
)2

−1

(
a

c
)2 : x = (

d

c
)2

−1
are the bijections

on GF(28).

Proof We know that the Mobius transformation f :
GF(28) → GF(28) defined by f (t) =⎧
⎪⎨

⎪⎩

at + b

ct + d
: t �= d

c
a

c
: t = d

c

is a bijection, where a, b, c, d ∈

GF(28) and ad − bc �= 0. As the map F(t) = t2 is
an automorphism of GF(28) so the functions ψ(t) =
( f ◦ F)(t) and ζ(t) = (F ◦ f )(t) are the bijections
being the composition of bijective maps.

NoteWe can again compose the functions ψ, ζ with
Frobenius automorphism to design new bijections.

3.1 Algorithm for construction of S-box

We used the chaotic logistic map as the starter of our
proposed scheme. To choose irreducible polynomials
and parameters of mapsψ and ζ , we iterate the logistic
map. The procedure is described in the following steps;
Step 1: Set initial value x0 ∈ (0, 1) and parameter r =
3.9999 in

x(i + 1) = r x(i)(1 − x(i)). (3.3)

Iterate Eq.3.3 for K + 5 times and discard the first
K values, where K is a positive integer in the range
1000–2000.
Step 2: The index of irreducible polynomial is calcu-
lated using the formula:

Index = mod (	x(K + 1) · 210
, 30) + 1

In this way, we will get the value of the index in the
range 1–30. while the values of parameters a, b, c, d
are selected in the following way,
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Table 1 S-box ψ

187 176 11 151 213 156 113 32 25 122 26 4 212 83 46 43

161 222 245 13 199 96 1 198 190 211 66 184 76 57 38 166

243 91 55 101 178 78 149 239 219 102 2 233 129 131 112 20

103 200 42 34 124 247 153 134 99 209 135 241 185 31 139 104

74 191 6 127 230 142 195 164 125 67 81 137 10 244 73 203

41 216 223 92 12 132 167 193 85 16 160 9 123 70 95 146

183 210 253 208 119 171 254 62 237 64 235 249 224 19 107 143

163 147 228 90 59 170 35 82 33 144 63 22 197 72 246 181

227 217 240 173 255 202 120 157 194 130 29 37 192 225 196 251

98 114 106 68 158 121 238 162 7 116 44 128 179 218 17 49

18 133 65 27 141 108 234 58 48 155 77 86 138 15 80 45

61 36 140 100 60 115 94 8 97 165 111 252 232 172 248 201

207 89 14 56 3 159 174 236 47 231 21 215 105 175 5 152

50 136 84 88 54 93 39 28 169 168 51 145 126 52 79 182

226 53 214 206 69 154 23 150 118 186 180 204 220 188 71 242

24 189 109 221 250 110 177 40 117 229 205 75 0 87 148 30

Table 2 S-box ζ

252 217 8 159 131 207 107 212 11 226 235 215 84 133 66 123

111 151 78 157 146 231 87 138 154 134 240 0 164 3 69 43

46 34 121 2 79 13 118 48 137 99 86 187 33 194 162 139

150 93 192 73 65 50 188 45 28 198 47 179 135 102 24 128

72 129 208 120 156 161 228 206 25 238 140 91 132 39 60 219

165 224 184 74 35 23 40 26 227 196 16 94 97 144 225 210

170 229 176 41 183 203 70 22 160 201 190 9 75 191 247 119

115 211 253 127 52 205 185 145 241 222 32 244 148 248 204 153

220 236 122 202 59 62 53 85 112 20 163 51 114 237 103 125

90 197 136 178 200 169 96 64 216 218 147 171 242 105 250 174

246 100 239 61 55 177 19 124 80 89 130 49 6 155 166 7

221 81 209 230 82 12 126 186 17 167 67 76 180 71 172 68

189 168 54 21 15 195 249 31 199 214 14 234 193 106 251 109

142 10 173 110 141 104 117 38 88 95 233 158 83 4 98 58

254 92 175 1 108 255 181 152 77 37 57 42 101 29 30 116

113 5 243 223 36 63 182 44 18 232 149 56 27 213 245 143

a = mod (	x(K + 2) · 1013
, 255) + 1,

b = mod (	x(K + 3) · 1014
, 255) + 1,

c = mod (	x(K + 4) · 1015
, 255) + 1,

d = mod (	x(K + 5) · 1016
, 255) + 1.

and we get the values a, b, c, d in range 1–255.
Step 3: Choose the degree of the irreducible poly-

nomial and based on the index of the irreducible poly-

nomial, calculate ad − bc in the Galois field generated
by the polynomial. If ad − bc = 0 then go to step 1
otherwise calculate the outputs of ψ and ζ .

Step 4; To generate dynamic S-boxes, include steps
1–3 in a for loop.

Two sample S-boxes are presented in Tables 1 and
2.
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4 Security analysis of S-box

In this segment, we present the analysis of dynamic
S-box generators against the cryptographic attacks. To
ensure strong cryptographic resilience, the S-box needs
to fulfill some prerequisites. The commonly employed
criteria for evaluating the S-box typically include non-
linearity, strict avalanche criteria, bit independence
criteria, linear approximation probability, differential
approximation probability, fixed point analysis, and
algebraic degree. The efficiency of the evaluations was
then assessed by comparing the results to the standard
S-boxes.

4.1 Bijectiveness and balanacedness

An S-box must ensure that each input value has a
unique and exclusive output value, with each output
value deriving from a separate input value, to satisfy
the conditions of bijectivity. The decryption process in
cryptographic algorithms requires the use of the inverse
of the S-box, highlighting the significance of a bijective
S-box in such algorithms.

If the same number of zeros and ones appear in the
truth table of a boolean function then the S-box is con-
sidered to be balanced. An S-box is said to be balanced
if and only if each of its component boolean functions
exhibits equilibrium. If an S-box is unbalanced, favor-
ing particular bit values for some or all of the input
values, the security of cryptographic techniques may
be compromised.

The S-boxes presented in Tables 1 and 2 are bijec-
tive, and satisfy the balance property.

4.2 Nonlinearity (NL)

An important factor in assessing the effectiveness of
the S-box is the measurement of its unpredictability
and nonlinearity (NL) is seen to be a key factor in this
evaluation. The degree towhich an S-box deviates from
connecting its input and output bits in terms of their
magnitudes linearly is referred to as its nonlinearity.
Strong nonlinearity is necessary for an S-box used in
cryptography because it increases system security by
prohibiting attackers from inferring input bits fromout-
put bits.

4.3 Strict avalanche criteria (SAC)

The SAC (Strict Avalanche Criterion) predicts how an
S-box will behave when its input is subjected to slight
alterations, [34]. To pass the security criteria, an S-
boxmust adhere to the strict avalanche criterion, which
mandates that each output bit has an average probability
of 0.5 of changing when a single bit is flipped in the
input. With the use of this feature, attackers will have
a difficult time extracting the original input data from
the generated output.

4.4 Bit independence criteria (BIC)

The set of properties that make up the criterion for
bit independence determines how statistically uncorre-
lated the input and output bits of an S-box are. The cri-
teria specify the requirements that the S-boxmust fulfill
for the output bits to showstatistical independence from
the input bits. We compute the BIC-Nonlinearity and
BIC-SAC to assess the BIC performance of the S-box.

4.5 Linear approximation probability (LAP)

The likelihood that a linear function may resemble an
S-box is measured by the Linear Approximation Prob-
ability (LAP). A measure of the S-box’s fortitude or
resistance to linear assaults is the linear approxima-
tion probability (LAP). The S-box’s security strength
increases as the LAP value decreases.

4.6 Differential approximation probability (DAP)

When all possible input differences are taken into
account, the differential uniformity (DU) of an S-box
is the maximum variation in frequency found between
two distinct input differences that produce a specific
output difference. This metric measures the largest
probability difference between two input variations
leading to a particular output variation. The differential
approximation probability of an S-box is determined by
dividing its differential uniformity by 256.

4.7 Fixed point analysis (FPA)

An S-box’s design objective is to avoid having fixed
points, which implies that no input value will map to
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itself as a result of the S-box transformation. Cryp-
tographers rely on this study to evaluate the strength
and resilience of cryptographic algorithms that use S-
boxes against different types of cryptographic assaults,
which is essential for understanding the security char-
acteristics, weaknesses, and overall efficacy of these
algorithms.

4.8 Algebraic degree (AD)

It is defined as the longest term in the algebraic normal
form of an S-box. A stronger S-box can fend off higher-
order differential attacks, hence higher algebraic degree
is preferable. Based on the coordinate function gi , the
algebraic degree of an S-box S is determined.

AD(S) = max{deg(gi )|i = 1, 2, 3, , , 8}

5 Applications in image encryption

The majority logic criteria (MLC) can be used to eval-
uate the encryption capabilities of S-boxes. MLC con-
sists of several studies, including mean absolute devi-
ation (MAD), contrast, energy, homogeneity, entropy,
and correlation, which are used to determine the ran-
domness in an encrypted image.

The properties of an encrypted image can be ascer-
tained by an examination of homogeneity and energy.
The correlation test looks for similarities or resem-
blances between encrypted images and plain images.
The lower correlation value indicates a higher distor-
tion brought on by encryption. The brightness loss of
the original image is approximated by contrast. Amore
effective encryption method is one with a greater con-
trast score. The difference between the encrypted image
and the original is measured using the MAD analy-
sis. The quality of the S-box is determined by statisti-
cal characteristics, which are based on the distortions
caused by the encryption process. We demonstrate the
use of our dynamic S-boxes by using it in the pro-
posed image encryption scheme presented by authors
in [10]. The proposed scheme uses the CBC mode of
AES for encryption of digital images. We used four-
color images of Baboon, Cornfield, X-ray, and Pepper.
The plain images with separate components are dis-
played in Figs. 1, 2, 3, 4, while the encrypted image
and color components are presented in Figs. 5, 6, 7, 8.

The decryption is just the reverse of these steps of AES
CBC mode operation.

Algorithm 1: Encryption Algorithm for RGB
Image
Input : Original Image
Output: Encrypted Image
Initialization and Setup ;
Load the original image ;
Separate the image into its red, green, and blue channels ;
Generate a 256-bit random key ;
Define a custom S-box and MixColumns matrix ;
Preparation ;
Convert each channel into a 1D array of bytes ;
Pad each channel to make its length a multiple of 16 ;
Split the padded channel data into 128-bit blocks ;
Encryption ;
Initialize the previous block with random data ;
for each block in the channel do

XOR the current block with the previous block (CBC
mode) ;
Add the round key to the block ;
Substitute bytes using the S-box ;
Perform row shifting ;
Mix the columns ;
Update the previous block with the current encrypted
block ;

Post-processing ;
Concatenate the encrypted blocks ;
Reshape the encrypted data into image format for each
channel ;
Combine the encrypted channels to form the final
encrypted image ;
Output ;
Save the encrypted image ;

5.1 Key space analysis

Keyspace analysis establishes the number of distinct
keys thatmay be developed and employed. A larger key
space is preferred since it increases the number of keys
that an attacker must attempt in a brute-force attack to
successfully decrypt data. Brute force attacks consist of
repeatedly trying every key until the right one is discov-
ered. This increases the safety of the encryption tech-
nique since awider key spacemakes brute force attacks
more computationally expensive and time-consuming.
An image encryption scheme can withstand brute force
attacks if its key space is at least 2100. The key space of
our used scheme is 2256 with an extra layer of security
by a 128 bit random vector.
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Table 3 Comparative analysis of sample S-boxes ψ and ζ

S-boxes Mathematical structure Nonlinearity SAC BIC nonlinearity BIC SAC LAP DAP

ψ GF(28) 112 0.5022 112 0.5008 0.0625 0.0156

ζ GF(28) 112 0.5002 112 0.5054 0.0625 0.0156

[10] GF(28) 112 0.5066 112 0.5034 0.0625 0.0156

[6] GF(28) 112 0.4988 112 0.5008 0.0625 0.0156

[15] GF(28) 112 0.5066 111.28 0.5016 0.0703 0.0625

[17] Chaos 110.25 0.5027 102.71 0.4936 0.1250 0.04687

[16] Chaos 107 0.5012 103.07 0.4970 0.1250 0.04687

[20] Chaos 110.60 0.4966 109.67 0.5026 0.0790 0.0214

[28] Chaos 103.75 0.4949 103.5 0.5036 0.0790 0.0391

[29] Chaos 112 0.5829 104 0.5017 0.1406 0.0391

[30] Quantum oscillator 110 0.5000 108.5 0.5001 0.1250 0.04687

[19] Neural network 114.5 0.4975 107 0.5080 0.135 0.0391

[18] ECC 108 0.5068 103.3571 0.5018 0.070 0.015

[31] ECC 112 0.5032 112 0.5059 0.0625 0.0156

[32] ECC 107.75 0.5010 103.9286 0.5038 0.1250 0.0391

[33] Sine cosine optimization 112 0.5056 104 0.4991 0.1250 0.0391

Fig. 1 Plain image of Baboon and histogram of its channels

Fig. 2 Plain image of Cornfield and histogram of its channels
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Fig. 3 Plain image of Pepper and histogram of its channels

Fig. 4 Plain image of X-Ray and histogram of its channels

Fig. 5 Cipher image of Baboon and histogram of its channels

Fig. 6 Cipher image of Cornfield and histogram of its channels
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Fig. 7 Cipher image of Pepper and histogram of its channels

Fig. 8 Cipher image of X-Ray and histogram of its channels

5.2 Key sensitivity analysis

Key sensitivity analysis is a procedure used to assess
how slight changes in the encryption keymay affect the
safety and effectiveness of the algorithm. The encryp-
tion key is subjected to minor modifications or dis-
turbances. Individual bits may be changed, a minor
value may be added or subtracted, or certain key gen-
eration settings may be altered. The same input image
is then subjected to the image encryption process with
the changed encryption keys being used in place of
the original ones. As a result, various encrypted ver-
sions of the same image are produced. Images that were
encrypted using the modified keys and the images that
were encrypted using the original, unmodified key are
contrasted. Considerations like image quality, security,
resilience to attacks, and processing efficiency are eval-
uated during the comparison. Key sensitivity analysis
is used to determine how resilient an image encryption
technique is to changes in the encryption key. We used
a gray image for the encryption process with the orig-
inal key and modified key. The results can be seen in
Figs. 9, 10, 11, and Table 10.

Fig. 9 Encrypted original image

6 Discussion

The following are the main findings of the scheme
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Table 4 Comparison of AD and FP of ψ , and ζ

S-box ψ ζ AES [31] [10] [6] [15] [32]

FP 0 0 0 1 2 1 2 3

AD 7 7 7 7 7 7 7 6

Table 5 Experimental results of entropy

Images Red Green Blue

Baboon 7.9995 7.9995 7.9995

Pepper 7.9995 7.9994 7.9995

Cornfield 7.9976 7.9978 7.9979

Chest X-Ray 7.9977 7.9978 7.9979

Table 6 Experimental results of correlation

Horizontal correlation Red Green Blue

Baboon −0.0011 −0.0004 −0.0032

Pepper −0.0009 −0.0008 −0.0006

Cornfield 0.0023 0.0012 0.0019

Chest X-Ray 0.0010 −0.0002 −0.0053

Vertical correlation Red Green Blue

Baboon −0.0026 −0.0023 −0.0017

Pepper −0.0006 −0.0016 0.0019

Cornfield −0.0013 0.0071 −0.0027

Chest X−Ray 0.0031 0.0060 0.0089

Diagonal correlation Red Green Blue

Baboon −0.0025 −0.0022 −0.0006

Pepper −0.00001 −0.0021 −0.0032

Cornfield 0.0034 0.0063 0.0042

Chest X−Ray −0.0022 0.0042 −0.0003

1. S-box needs a high value of nonlinearity to fend
against linear cryptanalysis. With a nonlinearity
value of 112, our suggested sample S-boxes attain
the optimal value (Table 3). Each S-box in our pro-
posed scheme has nonlinearity 112, which too good
as compared to other existing schemes [5,6,9,10,
12,15,18,31,32,35–40]. The scheme proposed in
[15] has a nonlinearity range in 110–112 with 2584
S-boxes of nonlinearity 110 and 5416 S-boxes with
nonlinearity 112. The scheme in [18] has produced
S-boxes with a nonlinearity range in 95–106. Our

schemeproduces better resultswith average nonlin-
earity 112 as confirmed by 1000 S-boxes in Fig. 12.

2. Regarding the satisfaction avalanche criteria, a
SAC score close to the ideal value (0.50) is deemed
acceptable. The SAC of our sample S-boxes is
0.5022 and 0.5002 which are very close to the
ideal value of 0.5 and better than most of S-boxes
as depicted in Table 3. We computed the average
value of dependency matrices for each of gener-
ated S-box and displayed it in Fig. 13. The depen-
dence matrices’ mean values have upper and lower
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Table 7 Experimental results of energy, contrast, homogeneity, MAD

Contrast Red Green Blue

Baboon 110.5211 10.5148 10.4556

Pepper 10.5246 10.4809 10.4977

Cornfield 10.5014 10.4377 10.5251

Chest X-Ray 10.4947 10.58 10.5326

Energy Red Green Blue

Baboon 0.0156 0.0156 0.0156

Pepper 0.0157 0.0156 0.0156

Cornfield 0.0156 0.157 0.0156

Chest X-Ray 0.0157 0.0156 0.0156

Homogeneity Red Green Blue

Baboon 0.3887 0.3896 0.3894

Pepper 0.3891 0.3894 0.3889

Cornfield 0.3885 0.3883 0.3902

Chest X-Ray 0.3888 0.3881 0.3887

MAD Red Green Blue

Baboon 76.1772 73.2125 80.965

Pepper 73.9228 86.4868 86.1352

Cornfield 72.6606 72.6679 86.9126

Chest X-Ray 92.44 77.8424 77.0528

Fig. 10 Encrypted image with modified key Fig. 11 Difference of images
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Table 8 Experimental
results of differential
analysis

NPCR Red Green Blue

Baboon 99.61 99.60 99.61

Pepper 99.64 99.59 99.59

Cornfield 99.59 99.57 99.59

Chest X-Ray 99.57 99.61 99.61

UACI Red Green Blue

Baboon 33.47 33.49 33.39

Pepper 33.47 33.39 33.46

Cornfield 33.43 33.43 33.53

Chest X-Ray 33.62 33.63 33.51

Table 9 Comparative analysis of proposed image encryption scheme

Image Algorithm Entropy Correlation Contrast NPCR UACI MAD

Baboon Proposed 7.9995 −0.0011 10.5211 99.6050 33.45 76.7849

[31] 7.9994 −0.0079 10.6137 99.5980 33.354 –

[10] 7.9994 −0.0042 10.5556 99.59 33.48 –

[29] 7.7536 −0.0025 75.2002 – – 65.1942

Pepper Proposed 7.9995 −0.0009 10.5246 99.62 33.43 73.9228

[31] 7.9994 −0.0055 10.6004 99.60 33.45 –

[29] 7.7517 −0.0016 75.2042 – – –

Table 10 NPCR and UACI results for key sensitivity analysis

S-box NPCR UACI

Gray image of Seashore

Proposed 99.60 33.46

limits of 0.52 and 0.48, respectively, as can be
seen. Since the majority of the dependence matri-
ces’ mean values are concentrated around 0.50, our
technique produces S-boxes with excellent strin-
gent avalanche criteria. We can confirm the aver-
age deviation of the SAC score of our S-boxes by
Fig. 14, as most of the values are very close to 0.

3. Under the bits independence requirement, the pair-
wise disjoint Boolean functions have shown strong
performance for both SAC and nonlinearity scores.
The results for BIC Nonlinearity are depicted in
Fig. 15 and confirm the efficacy of the proposed
scheme as each S-box has BIC Nonlinearity 112,
which is not found for each in schemes developed

in [6,10,15,18,31,32]. The scores of BIC Nonlin-
earity and BIC SAC for sample S-boxes are pre-
sented in Table 3. In Fig. 16, BIC-SAC values of
1000 S-boxes are clustered in the range 0.48–0.52,
which is quite near to the optimal value of 0.5 and
most values are very close to 0.5.We calculated the
deviation of BICSAC from 0.5, which is shown in
Fig. 17.As a result, our technique produces S-boxes
with excellent BIC-SAC performance. By combin-
ing these two assessment metrics, it is possible to
determine that the S-box produced by our approach
performs well in terms of BIC.

4. A lower DU score is indicative of a secure S-box.
We can see the results of the DAP of our sample
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Algorithm 2: Decryption Algorithm for RGB
Image
Input : Encrypted Image
Output: Decrypted Image
Initialization and Setup ;
Load the encrypted image ;
Separate the image into its red, green, and blue channels ;
Generate the 256-bit key used for encryption ;
Define the custom S-box and MixColumns matrix used for
encryption ;
Preparation ;
Convert each channel into a 1D array of bytes ;
Ensure the length of each channel is a multiple of 16 ;
Split the channel data into 128-bit blocks ;
Decryption ;
Initialize the previous block with the same random data
used during encryption ;
for each block in the channel do

Store the current encrypted block ;
Perform the inverse of MixColumns ;
Perform the inverse of row shifting ;
Substitute bytes using the inverse S-box ;
Subtract the round key from the block ;
XOR the block with the previous block (CBC mode) ;
Update the previous block with the stored encrypted
block ;

Post-processing ;
Concatenate the decrypted blocks ;
Reshape the decrypted data into image format for each
channel ;
Combine the decrypted channels to form the final
decrypted image ;
Output ;
Save the decrypted image ;

S-boxes in Table 3. We compute the DAP values
of resultant S-boxes and display them in Fig. 18
to confirm their resistance to differential assault.
The value of DAP is 0.0156 showing equality to
AESS-box.The experimental findings demonstrate
the remarkable performance of the S-boxes that our
technique dynamically generates in withstanding
differential assaults.

5. The resistance of S-box against linear cryptanaly-
sis is likewise correlated with the likelihood of lin-
ear approximation. An S-box is considered more
resilient against linear cryptanalysis if its LAP
score is lower. Our sample S-boxes have the LAP
value of 0.0625, which is quite low as compared to
a single S-box presented in [31,40]. Figure19 rep-
resents the LAP of 1000 S-boxes and this value
is the same as of AES S-box and better than
[6,10,15,18,31,32]. This suggests that our strategy

produces S-boxes with strong resistance to linear
assaults.

6. Our goal is to design S-boxes without any fixed
points and our proposed S-boxes presented in
Tables 1 and 2 satisfy this criteria as seen in Table
4. Our proposed scheme has the potential to design
S-boxes with no fixed points. The sample S-boxes
do not have fixed points while the 10000 randomly
generated S-boxes have fixed points 0, 1, 2, 3, 4 as
displayed in Figs. 20 and 21. The distribution of
fixed points is displayed in Figs. 22 and 23. Among
1000 S-boxes, 33.1 % with no fixed points, 48.9 %
with 1 fixed points, 17.9 % with 3 fixed points, and
0.1 % with 4 fixed points.

7. A higher value of the algebraic degree is needed
for a strong S-box. For AES S-box, its value is 7.
Our proposed S-boxes have the same value, which
shows the efficiency of the proposed scheme. The
algebraic degree of randomly generated 1000 S-
boxes is calculated and displayed in Fig. 24. The
algebraic degree of each S-box is 7, which is the
same as of AES S-box.

8. Entropy analysis is used to determine the ran-
domness in an encrypted image. We can observe
that the entropy of the proposed cipher image is
better than [6,10,31,41,42]. The contrast in an
image refers to the variation in brightness. The
viewer may discern the underlying information
via contrast analysis by seeing items. The con-
trast of our scheme is better than [5,31,35,40,42,
43]. Correlation is used to determine how simi-
lar pixels are to each other so an encrypted image
must have a low value of correlation. The aver-
age correlation values for the proposed scheme
are −0.0003,−0.0010,−0.0003 and better than
[5,31,35,40,42,43]. We can observe the efficiency
of the encryption scheme by uniform histograms
of each channel and from the results of MLC as
depicted in Tables 5, 6, 8, 7, 9.

9. Single-bit variations in plain text should cause
a strong cryptosystem to become very sensitive.
NPCR and UACI assessments are used to gauge
how sensitive the framework is. When a picture
is encrypted using the recommended method, the
NPCR (Number of Pixel Change Rate) statistic
assesses the impact of a single-pixel change on
the whole image. It calculates how often a pixel
in the encrypted picture changes for every pixel
that changes in the original image. The ideal value
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Fig. 12 Results of
nonlinearity of randomly
generated 1000 S-boxes

Fig. 13 Results of SAC of
1000 S-boxes generated
randomly by proposed
scheme
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Fig. 14 Deviation of SAC from 0.5

Fig. 15 Results of BIC
nonlinearity of 1000
S-boxes generated randomly
by the proposed scheme
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Fig. 16 Results of BIC
SAC of 1000 S-boxes
generated randomly by the
proposed scheme

Fig. 17 Deviation of BIC SAC from 0.5
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Fig. 18 DAP values of
1000S-boxes

Fig. 19 LAP of
1000S-boxes
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Fig. 20 Fixed points of 1000S-boxes generated by function psi

Fig. 21 Fixed points of 1000S-boxes generated by function zeta
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Fig. 22 Distribution of fixed points of S-boxes generated by function Psi

Fig. 23 Distribution of fixed points of S-boxes generated by function Zeta
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Fig. 24 Algebraic degree

of NPCR is 99.61, whereas the values in our pro-
posed scheme are in the range 99.57–99.63 as seen
in Table 7 and show the strong resistance to differ-
ential attacks on the image encryption algorithm.
The UACI value indicates the average magnitude
of the changes made to the pixel intensities during
the encryption process. A lower UACI value indi-
cates a smaller average change, suggesting better
preservation of the original pixel intensities. Con-
versely, a higher UACI value indicates a greater
average change, indicating a more significant alter-
ation of the pixel intensities. The ideal value of
UACI is 33.45 and our scheme shows great resis-
tance to differential attacks with values in the range
of 33.39–33.61 as seen in Table 7.

7 Conclusion

This article introduced a new approach to generating
S-boxes, based on the Frobenius automorphism of the
Galois field and a chaotic logistic map. Our generator
is capable of producing S-boxes that are optimized and
randomized, with strong cryptographic features such
as minimum computing complexity and high nonlin-

earity. Through the demonstration of a prerequisite for
our generator to produce different S-boxes, we were
able to mathematically examine the dynamic behavior
of our generator. We performed several thorough anal-
yses on the performance of the S-boxes created by our
system, looking at both single and batch S-box testing.
Our S-box generation approach can effectively gener-
ate highly secure S-boxes in a short amount of time,
according to the tests we conducted, which makes it a
workable option for a variety of apps that need strong
encryption infrastructure. By substituting our sample
S-box for the scheme designed by [10], we presented
the efficiency of our proposed S-box. The results of
image encryption using the suggested S-box reveal a
high degree of security for the image’s cryptosystem.
The proposed S-box generator shows remarkable effi-
ciency by producing a large number of optimal S-boxes
of nonlinearity 112, but it has just one limitation which
is the term ad − bc in Mobius transformation. Thus
Our scheme shows great promise for creating encryp-
tion algorithms using dynamic S-boxes and providing
various S-boxes for image security.
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