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Abstract This study investigates the qualitative prop-
erties and numerical dynamics of a stochastic epidemi-
ological model incorporating unreported cases with a
general contact susceptible function, shedding light on
the intricate dynamics of infectious diseases such as
COVID-19. In the qualitative analysis, we rigorously
examine the mathematical properties of the model,
including the existence and positivity of solutions,
and identify a critical threshold parameter, Rs , piv-
otal in determining the long-term behavior of the sys-
tem. Notably, our analysis reveals that the stochastic
noise significantly influences the dynamics, leading
to distinct outcomes: if Rs exceeds unity, solutions
converge exponentially to a unique invariant proba-
bility distribution, whereas values below one result in
the extinction of infectious diseases at an exponential
rate. In the numerical study, we delve into comprehen-
sive simulations to validate our theoretical findings and
explore the behavior of the model under various sce-
narios. Synthetic data simulations provide illustrative
examples, showcasing both disease extinction and per-
sistence phenomena. Furthermore, we investigate the
impact of the susceptible contact function, g(S), on
disease dynamics, and propose a selection method for
optimizing this function based on real-world COVID-
19 data from the UK. By integrating rigorous math-
ematical analysis with empirical data-driven insights,
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our study offers valuable contributions to understand-
ing the complex dynamics of infectious diseases.

Keywords Stochastic epidemic model · Population
dynamics · Stochastic stability · COVID-19

1 Introduction

Mathematicalmodels are indispensable tools for under-
standing the dynamics of infectious disease spread and
for informing public health interventions. The inci-
dence rate, an essential characteristic representing the
transmission mechanism, encompasses the frequency
of new infections in a susceptible population over a
given period of time [1]. Stochastic epidemic models,
in particular, are able to capture the randomness and
variability inherent in disease transmission processes,
providing a more realistic representation of epidemi-
ological phenomena [2]. In the field of epidemiology,
the principle of mass action is often applied to infec-
tious disease models, suggesting that infection spreads
via a bilinear incidence function, usually represented
by βSI , where β is the transmission rate, S is the
number of susceptible individuals, and I is the num-
ber of infected individuals. This bilinear form assumes
that each contact between a susceptible and an infected
individual has an equal probability of transmitting the
disease, which implies homogeneous mixing within
the population [3]. However, this assumption has lim-
itations, as it does not account for the heterogeneity
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in contact patterns that can significantly affect dis-
ease transmission dynamics. Real-world interactions
are influenced by various factors such as age, social
behavior, and community structure, which can lead
to different transmission rates among different groups
within the population [4,5]. Moreover, the principle of
mass action does not consider the varying intensity and
duration of contacts, which can also impact the likeli-
hood of transmission [6,7]. The use of a general con-
tact function, denoted as g(S), in stochastic epidemic
models offers several advantages over the simple bilin-
ear form. It allows for the incorporation of more com-
plex and realistic patterns of contact among individuals,
reflecting the heterogeneity and stratification of real-
world populations. For example, g(S) can be tailored
to account for varying susceptibility across different
population segments or changes in contact rates due to
behavioral interventions. This can lead to a more accu-
rate representation of the transmission process, improv-
ing the predictive power of the model and informing
more effective intervention strategies. Additionally, a
general contact function can be tailored to specific dis-
eases and their modes of transmission, whether it be
direct contact, indirect contact, or vector-borne, pro-
viding a flexible framework that can be adapted to var-
ious epidemiological scenarios [6,8–11]. By moving
beyond the limitations of the principle of mass action,
epidemiologists can better understand the nuances of
disease spread and design targeted control measures
that take into account the complex nature of human
interactions and disease ecology.

In this paper, we present an extension of the tradi-
tional SI R model [12–15], which only considers sus-
ceptible, infected, and recovered individuals, by adding
a category for unreported cases of infection. The main
purpose of the SIUR (Susceptible, Infected-reported,
Unreported-infected, and Recovered) model is to gain
a better picture of disease transmission by acknowl-
edging that not all infected individuals are reported or
identified, which could have a significant effect on the
spread and control of an epidemic. The inclusion of an
unreported infected compartment (U ) allows us to cap-
ture the hidden spread of the disease, which is critical
for understanding the full scope of an epidemic. Many
infectious diseases, including COVID-19, exhibit a
substantial number of asymptomatic or mildly symp-
tomatic cases that go undetected but still contribute
to transmission. This model is particularly useful for
understanding the spread of infectious diseases and the

impact of unreported cases on the dynamics of an epi-
demic. In the absence of unreported cases, several stud-
ies have investigated the dynamics of models incorpo-
rating different incidence rate functions. For example,
the bilinear incidence form has been examined in stud-
ies by Lahrouz et al. [16,17] and Tornatore et al. [18].
The saturated functional response has been explored in
works by Lan et al. [19] and Wang et al. [20], focus-
ing on stationary and Turing patterns. Additionally,
the frequency-dependent functional response has been
studied byLi et al. [21],while other functional response
forms such as the Beddington-DeAngelis response,
investigated by Ji et al. [22] and Salman et al. [23],
and the Crowley-Martin response, examined by Jan et
al. [24] in the context of HIV dynamics, have been the
focus of scholarly attention. These investigations have
contributed to a deeper understanding of the dynam-
ics described by stochastic models, shedding light on
their behavior under different incidence rate specifica-
tions and enriching the body of knowledge pertaining
to infectious disease modeling.

Our paper is organized as follows. In Sect. 2, we
describe the proposed epidemic model and explain
its infectious mechanism. We then delve into a thor-
ough examination of the mathematical properties of
our stochastic epidemiological model in Sect. 3. We
explore key aspects such as the existence and positiv-
ity of solutions, as well as the identification of a critical
threshold parameter, Rs , which profoundly influences
the long-term dynamics of the system. This section
offers valuable insights into the fundamental behav-
ior of infectious diseases within our model framework.
Moving on to the Numerical Study Sect. 4, we embark
on a detailed exploration of the dynamics of the model
through numerical simulations. We begin by present-
ing synthetic data simulations that serve to illustrate and
validate our theoretical findings, showcasing phenom-
ena such as disease extinction and persistence. Subse-
quently, we delve deeper into specific aspects, includ-
ing the impact of the susceptible contact function g(S)

and a selection method proposed for optimizing this
function based on real-world scenarios. Additionally,
we calibrate ourmodel with real data detailing the daily
incidence cases and the hospital admissions of COVID-
19 cases in the UK. Finally, we conclude our paper by
discussing potential avenues for future research, offer-
ing insights into the ongoing evolution of epidemiolog-
ical modeling and its applications in addressing emerg-
ing health challenges.
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2 The SIUR epidemic model

TheSIURmodel extends the traditional SIR framework
by incorporating unreported cases of infection, which
are crucial for understanding the full scope of disease
transmission. The infectious mechanism in this model
is described through the interaction between suscepti-
ble, reported infected, and unreported infected popula-
tions. The transmission rate βg(S) (I +U ) /1 + aI p

reflects the likelihood of susceptible individuals con-
tracting the disease based on the combined presence
of reported and unreported infected individuals. This
formulation allows the model to capture the effects
of underreporting on the overall dynamics of disease
spread, highlighting the significant impact of unre-
ported cases on public health strategies. The model
consists of the following set of nonlinear stochastic dif-
ferential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS =
[
μ1 − μ1S − βg(S)

(I+U )
1+aI p + ωR

]
dt

−σg(S)
(I+U )
1+aI p dB(t),

d I =
[
−(μ1 + α + δ)I + νβg(S)

(I+U )
1+aI p

]
dt

+σνg(S)
(I+U )
1+aI p dB(t),

dU =
[
−(μ1 + α + δ)U + (1 − ν)βg(S)

(I+U )
1+aI p

]
dt

+σ(1 − ν)g(S)
(I+U )
1+aI p dB(t),

dR = [−(μ1 + ω)R + δ(I +U )] dt.

(1)

The positive constants μ, α, δ, and ω denote birth
and death rates, disease-induced death, recovery rates
for both reported and unreported infected individu-
als, and the rate of losing immunity, respectively. The
expression βg(S) (I +U ) /1 + aI p signifies the rate
at which susceptible individuals contract the infection,
considering factors like transmission rate (β), general
contact function (g(S)), and the combined impact of
reported (I ) and unreported (U ) infected individuals.
The denominator 1 + aI p adjusts the infection rate
based on reported cases, with a and p being posi-
tive constants that modulate the influence of reported
infections on transmission. The parameter ν indicates
the proportion of new infections that are reported. The
function g is subject to the conditions g(S) ≥ 0 and
being continuously differentiable with g(0) = 0. Addi-
tionally, the Brownian motion is denoted by B(t), and
σ > 0 represents the intensity of environmental noise
affecting the infection coefficient β.

The SDE (1) can alternatively be formulated using
the approach outlined in literature [25]. Given any ini-
tial value z0 := Z(0) = (s, i, u, r) and a sufficiently
small time increment�t ≥ 0, we posit that the solution
Z(t) = (S(t), I (t),U (t), R(t)) forms a Markov pro-
cesswith a conditionalmean and a conditional variance
respectively given by

E[Z(t + �t) − Z(t) | Z = Z(0)]

≈

⎡

⎢
⎢
⎢
⎣

μ1 − μ1S − βg(S)
(I+U )
1+aI p + ωR

−(μ1 + α + δ)I + νβg(S)
(I+U )
1+aI p

−(μ1 + α + δ)U + (1 − ν)βg(S)
(I+U )
1+aI p−(μ1 + ω)R + δ(I +U )

⎤

⎥
⎥
⎥
⎦

�t,

and

Var[Z(t + �t) − Z(t) | Z = Z(0)]

≈

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ 2g(S)2
(

(I+U )
1+aI p

)2

σ 2ν2g(S)2
(

(I+U )
1+aI p

)2

σ 2(1 − ν)2g(S)2
(

(I+U )
1+aI p

)2

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�t.

3 Qualitative properties of the model

In this study, we will begin by assuming the stan-
dard conditions for a probability space S = (	,F ,

{Ft }t≥0,P), incorporating the prerequisites of being
increasing and right-continuous. Furthermore, we will
posit that the filtration {Ft }t≥0 encompasses all P-null
sets in its initial set of events, denoted by F0. We
define R

4+ := [0,∞)4 to represent the non-negative
real space. To delve into the analysis of the model rep-
resented by the system (1), we first delineate the bound-
aries of a set denoted as 
, which can be described as
follows:


 =
{

X ∈ R
4+; μ1

μ1 + α
< X1 + X2 + X3 + X4 < 1

}

.

Next, we present the following theorem.

Theorem 1 The subsequent results are established.

i) For any z0 ∈ 
, there exists a unique global solu-
tion to the SDE (1), such that

P{Z(t) = (S(t), I (t),U (t), R(t)) ∈

 ∀t ≥ 0} = 1, a.s..
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ii) For any θ > 0, there exist two positive constants
C1 and C2 such that the solution Z(t) of the system
(1) satisfies:

E

[
(S(t) + I (t) +U (t) + R(t))θ+1

]

≤
(

(s + i + u + r)θ+1 − C2

C1

)

e−C1t + C2

C1
.

(2)

Proof i) The set 
 is almost surely positively invari-
ant under the dynamics of system (1). This assertion
follows from standard arguments, and a detailed proof
can be found in [14,26].
For i i), we introduce the Lyapunov function

ψ1(S, I,U, R) = (S + I +U + R)θ+1 ,

where the parameter θ > 0 will be determined subse-
quently.Calculating the differential operator associated
with system (1), we obtain

Lψ1 = (θ + 1) (S + I +U + R)θ

(μ1 − μ1 (S + I +U + R) − α (I +U ))

+θ(θ + 1)

2
(S + I +U + R)θ−1 σ 2g(S)2

(
(I +U )

1 + aI p

)2

≤ μ1(θ + 1) (S + I +U + R)θ + (θ + 1)

(S+I+U+R)θ−1
(
−μ1 (S+I+U+R)2

+θ

2
σ 2g(S)2

(
(I +U )

1 + aI p

)2 )
.

Define M = sup
(S,I,U,R)

g(S)2(I+U )2

(1+aI p)2(S+I+U+R)2
, we get:

Lψ1 ≤ μ1(θ + 1) (S + I +U + R)θ + (θ + 1)
(

−μ1 + θ

2
σ 2M

)

ψ1. (3)

Now, choosing θ <
2μ1
σ 2M

, we let C1 := μ1 − θ
2σ 2 M

and

C2 := sup
(S,I,U,R)

{
μ1(θ + 1) (S + I +U + R)θ

−θC1 (S + I +U + R)θ+1
}

.

We deduce from (3) that

Lψ1(S, I,U, R) + C1ψ1(S, I,U, R) ≤ C2 < +∞.

(4)

Define the stopping time τε = inf {t ≥ 0, S(t)
+I (t) +U (t) + R(t) ≥ ε}. Using (4) and the Itô for-
mula, we have

E

[
eC1(t∧τε)ψ1 (S(t ∧ τε), I (t ∧ τε),U (t ∧ τε), R(t ∧ τε))

]

= ψ1(s, i, u, r) + E

[∫ t∧τε

0
eC1v [Lψ1 (S(v), I (v),

U (v), R(v)) + C1ψ1 (S(v), I (v),U (v), R(v))] dv]

≤ ψ1(s, i, u, r) + C2

C1

(
eC1t∧τε − 1

)
.

Letting ε → +∞ and applying the Fatou Lemma we
get

E

[
(S(t) + I (t) +U (t) + R(t))θ+1

]

≤
(

(s + i + u + r)θ+1 − C2

C1

)

e−C1t + C2

C1
.

The proof is now complete. 
�
Next, we aim to analyze the dynamics of the stochastic
system (1). To proceed, we define the following thresh-
old:

Rs = βMs

μ1 + α + δ + 1
2σ

2 M2
s

(1+a)2

,

where Ms = sup
S∈(0,1)

g(S).

Initially, we will demonstrate that if the stochastic
thresholdRs is greater than 1, then for any initial solu-
tion z0 ∈ 
, the probability distribution of the solution
Z(t) converges exponentially to an invariant distribu-
tion π ∈ 
. In other words, the levels of susceptible,
infected, unreported, and recovered individuals reach a
stable positive state eventually. For this purpose, let?s
define ‖ ·, · ‖T V to be the total variation norm on the
space (Rn+,B(Rn+)) as:

‖ φ, ϕ ‖T V= sup
A∈B(Rn+)

|φ(A) − ϕ(A)|,

where B(Rn+) denotes the Borel measurable subsets of
R
n+.

Theorem 2 For all initial values z0 ∈ 
. If Rs > 1
and β > 1

2σ
2Ms, then there exists an invariant proba-

bility measure π on 
 and η > 0 such that

lim
t→∞ eηt ‖P(t, z0, ·) − π(·)‖T V = 0,

where P(t, z0, ·) is the transition probability of Z(t)
starting from z0.
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Proof Consider the Lyapunov function

ψ2(S, I,U, R) = (I +U )k0 .

By the Itô formula, we get

dψ2 = k0 (I +U )k0
(

−(μ1 + α + δ) + β
g(S)

1 + aI p

+1

2
(k0 − 1)σ 2 g2(S)

(1 + aI p)2

)

dt

+k0 (I +U )k0 σ
g(S)

1 + aI p
dBt

≤ k0 (I +U )k0 (−(μ1 + α + δ) + βMs

+1

2
|k0 − 1|σ 2M2

s

)

dt + k0 (I +U )k0 σMsdBt

:= C3ψ2dt + k0σMsψ2dBt , (5)

where C3 = k0
(−(μ1 + α + δ) + βMs + 1

2 |k0 − 1|
σ 2M2

s

)
and in the last inequality we use the fact that

(1 + aI p) ≥ 1.
By integrating Eq.(5), followed by taking the expecta-
tion on both sides and applying the well-known Gron-
wall inequality, we derive the following result:

E (ψ2(S, I,U, R)) ≤ ψ2 (s, i, u, r) eC3t . (6)

On the other hand and through the Itô formula, we have

ln (I (t) +U (t)) = ln (i + u) − G(t), (7)

where

G(t) = −
∫ t

0
L (ln(I (v) +U (v))) dv

−
∫ t

0
σ

g(S)

1 + aI p
dBv,

and L (ln(I +U )) is given by

L (ln(I +U )) = −(μ1 + α + δ) + β
g(S)

1 + aI p

−1

2
σ 2 g2(S)

(1 + aI p)2

= βMs − (μ1 + α + δ) − 1

2

σ 2M2
s

(1 + a)2
+ β

g(S)

1 + aI p

−1

2
σ 2 g2(S)

(1 + aI p)2
− βMs + 1

2

σ 2M2
s

(1 + a)2

= βMs

(

1 − 1

R0

)

+ g(S)

1 + aI p

(

β − 1

2
σ 2 g(S)

1 + aI p

)

+1

2

σ 2

(1 + a)2

(

Ms − (1 + a)2β

σ 2

)2

+ 1

2

(1 + a)2β2

σ 2 .

Since 1 + aI p ≥ 1, g(S) ≤ Ms , and β > 1
2σ

2Ms , we
conclude that

L (ln(I +U )) ≥ βMs

(

1 − 1

R0

)

+ g(S)

1 + aI p
(

β − 1

2
σ 2Ms

)

≥ βMs

(

1 − 1

Rs

)

:= C4 > 0.

Hence, there exists a t0 > 0 such that for any T > t0
we have

E [G(T )] ≤ −C4T . (8)

From Eqs. (6) and (7), we derive

E

[
e2G(T )

]
+ E

[
e−2G(T )

]
= (i + u)2 E

[
(I +U )−2

]

+ (i + u)−2
E

[
(I +U )2

]

≤ 2eC3T .

Using [27, Lemma 3.4], then the log-Laplace transform
lnE

[
eθG(T )

]
satisfies the following equation

lnE
[
eθG(T )

]
≤ θE [G(T )] + θ2C5, θ ∈ [0, 1), (9)

for some C5 < ∞.
By considering θ to be sufficiently small, it can be
inferred from Eqs. (8) and (9) that

E

[
eθG(T )

]
≤ e−θC4T ,

and

E
[
(I (T ) +U (T ))−θ

]

≤ (i + u)−θe−θC4T , θ ∈ [0, 1). (10)

Now, consider the Lyaunouv C2-function

ψ3(S, I,U, R) = ψ1(S, I,U, R) + ψ2(S, I,U, R),

θ ∈ [0, 1).
Then, using (2) and Eq.(10), we can deduce that

E (ψ3 (S(T ), I (T ),U (T ), R(T )))

= E (ψ1 (S(T ), I (T ),U (T ), R(T )))

+E (ψ2 (S(T ), I (T ),U (T ), R(T )))

≤
(

ψ1(s, i, u, r) − C2

C1

)

e−C1T
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+C2

C1
+ ψ2(s, i, u, r)e−θC4T

≤ ξTψ3(s, i, u, r) + C2

C1

(
1 − e−C1T

)
,

where ξT = max{e−C1T , e−θC4T } and limT→∞ ξT =
0.
Given that theMarkov process (S(t), I (t),U (t), R(t))
is irreducible, and the transition probability func-
tion P(t, z0, ·) possesses a smooth density, it can be
deduced from [28,29] that there exist positive constants
η > 0 and C > 0 such that

‖P(t, z0, ·) − π(·)‖T V ≤ Cψ3(s, i, u, r)e−ηt .

Moreover, letting t → ∞, we get

lim
t→∞ ‖P(t, z0, ·) − π(·)‖T V = 0.

Therefore, the proof is completed. 
�
Subsequently, our objective is to establish the stochas-
tic asymptotic stability of the disease-free equilibrium
E0 = (1, 0, 0, 0) of system (1) when the threshold Rs

is less than 1. Additionally, we aim to demonstrate that
under this condition, the population sizes of infected,
unreported, and recovered individuals exponentially
diminish to zero, while the population of susceptible
individuals eventually stabilizes at a positive level.

Theorem 3 Consider the stochastic system (1) with
initial condition in 
. If Rs < 1 and Msσ

2 <

β(1 + a)2, then the following results hold:

i) The disease-free equilibrium E0 of (1) is stochasti-
cally asymptotically stable.

ii) I (t),U (t)and R(t) tend to zeros exponentiallywith
probability 1, i.e.,

lim
t→∞ I (t) = lim

t→∞U (t) = lim
t→∞ R(t) = 0, a.s.,

and

lim
t→∞ S(t) = 1, a.s.

Proof i) Let z0 ∈ 
. Introduce the positive-definite
function

ψ3(S, I,U, R) = 1

2
θ1 (1 − S)2 + 1

k

(I +U )k + 1

2
θ2R

2,

where θ1, θ2 and k are real positive constants to be cho-
sen carefully later on. We have

Lψ3 = −μ1θ1 (1 − S)2 + θ1β
g(S)

1 + aI p

(I +U ) (1 − S) − ωθ1R (1 − S)

+1

2
θ1σ

2 g2(S)

(+aI p)2
(I +U )2

−(μ1 + α + δ) (I +U )k + β
g(S)

1 + aI p
(I +U )k

+1

2
(k − 1)σ 2 g2(S)

(1 + aI p)2
(I +U )k

−θ2 (μ1 + ω) R2 + θ2δ (I +U ) R.

Using g(S) ≤ Ms, 1 ≤ 1+aI p ≤ 1+a, and I +U ≤
1 − S, we estimate

Lψ3 ≤ −μ1θ1 (1 − S)2 + θ1βMs (I +U ) (1 − S)

−ωθ1R (I +U ) + 1

2
θ1σ

2M2
s (I +U )2

−(μ1 + α + δ) (I +U )k + βg(S) (I +U )k

−1

2
σ 2 g2(S)

(1 + a)2
(I +U )k + k

2
σ 2M2

s (I +U )k

−θ2 (μ1 + ω) R2 + θ2δ (I +U ) R.

Selecting k ∈ (0, 2), and employing that

(I +U ) (1 − S) ≤ ε

2
(1 − S)2

+ 1

2ε
(I +U )k , for all ε > 0,

we get

Lψ3 ≤ −θ1

(
μ1 − ε

2
βMs

)
(1 − S)2

+
(

− (μ1 + α + δ) + βg(S)

+ − 1

2
σ 2 g2(S)

(1 + a)2
+ k

2
σ 2M2

s

1

2
θ1

(
βMs

2ε
+ σ 2M2

s

))

(I +U )k

−θ2 (μ1 + ω) R2 + (θ2δ − θ1ω) (I +U ) R

:= −θ1

(
μ1 − ε

2
βMs

)
(1 − S)2

+
(

ϕ(g(S)) + k

2
σ 2M2

s

+1

2
θ1

(
βMs

2ε
+ σ 2M2

s

) )

(I +U )k

−θ2 (μ1 + ω) R2 + (θ2δ − θ1ω) (I +U ) R,
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whereϕ(X) = − 1
2

σ 2

(1+a)2
X2+βX−(μ1+α+δ). From

the assumptionMsσ
2 < β(1+a)2, it’s straightforward

to verify that ϕ(X) is increasing on (0, Ms). Thus,

ϕ(g(S)) ≤ ϕ(Ms) = βMs

(

1 − 1

Rs

)

< 0.

Thereby, we can choose θ1, θ2 and ε such that

μ1 − ε

2
βMs > 0, βMs

(

1 − 1

Rs

)

+ k

2
σ 2M2

s

+1

2
θ1

(
βMs

2ε
+ σ 2M2

s

)

< 0,

and

θ2δ − θ1ω < 0.

Hence,

Lψ3 ≤ 0.

Therefore, the equilibrium state E0 is stochastically
stable for system (1).

i i) By the Itô formula, we derive from the second
and third equations of system (1)

dln (I (t) +U (t)) = L (ln (I (t) +U (t))) dt

+σ
g(S)

1 + aI p
dBt , (11)

where

L (ln(I +U )) = −(μ1 + α + δ) + β
g(S)

1 + aI p

−1

2
σ 2 g2(S)

(1 + aI p)2

≤ −(μ1 + α + δ) + βg(S)

−1

2

σ 2

(1 + a)2
g2(S)

:= ϕ(g(S)).

Since,

ϕ(g(S)) ≤ ϕ(Ms) = βMs

(

1 − 1

Rs

)

.

Consequently,

L (ln(I +U )) ≤ βMs

(

1 − 1

Rs

)

:= C5. (12)

IntegratingEq. (11) from0 to t , considering (12), taking
expectations, and dividing by t on both sides, we obtain

ln (I (t) +U (t))

t
≤ ln (i + u)

t
+ C5

+1

t

∫ t

0
σ

g(S)

1 + aI p
dBv. (13)

Given that g(S) ≤ Ms and 1+aI p ≥ 1, and employing
the law of large numbers for martingales, we deduce

lim sup
t→∞

1

t

∫ t

0
σ

g(S)

1 + aI p
dBv = 0 a.s.

Therefore,

lim sup
t→∞

ln (I (t) +U (t))

t
≤ C5 < 0 a.s.,

which ensures

lim
t→∞ I (t) = lim

t→∞U (t) = 0 a.s. (14)

The remaining steps of the proof follow a similar
approach as used in [14,30,31].
The proof is thus concluded successfully. 
�

4 Numerical study

In this section, we delve into the numerical investiga-
tion of our study, providing a comprehensive analysis
of the dynamics of the proposed model under various
scenarios. We use the Milstein higher-order approach
[32] to implement a numerical sheme of the system.We
examine the impact of crucial parameters, including the
infection force characterized by p, and the choice of the
susceptible contact function g(S), across synthetic and
real datasets. The discretization scheme of the system
(1) takes the following form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk+1 = Sk + (
μ1 − μ1Sk − βg(Sk)

(Ik+Uk )

1+aI pk
+ ωRk

)
h

−σg(Sk)
(Ik+Uk )

1+aI pk
ηk

√
h

−σ 2

2 g(Sk)
(Ik+Uk )

1+aI pk

(
η2k − 1

)
h,

Ik+1 = Ik + ( − (μ1 + α + δ)Ik + νβg(Sk)
(Ik+Uk )

1+aI pk

)
h

+σνg(Sk)
(Ik+Uk )

1+aI pk
ηk

√
h

+σ 2

2 νg(Sk)
(Ik+Uk )

1+aI pk

(
η2k − 1

)
h,

Uk+1 = Uk + ( − (μ1 + α + δ)

Uk + (1 − ν)βg(Sk)
(Ik+Uk )

1+aI pk

)
h

+σ(1 − ν)g(Sk)
(Ik+Uk )

1+aI pk
ηk

√
h

+σ 2

2 (1 − ν)g(Sk)
(Ik+Uk )

1+aI pk

(
η2k − 1

)
h,

Rk+1 = Rk + ( − (μ1 + ω)Rk + δ(Ik +Uk)
)
h.

where ηk are mutually independent N (0, 1) random
variables for k = 1, 2, · · · .
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Fig. 1 The impact of the infection force p on the dynamics of disease transmission Z(t) starting from z0 = (0.8, 0.1, 0.05, 0.05) when
Rs < 1

4.1 Synthetic data

We first conduct some numerical simulations are given
to both illustrate and validate our theoretical findings
with various examples.

4.1.1 Extinction of diseases

We exemplify the conditions for disease extinction
as delineated in Theorem 3 (Fig. 1). By setting the
parameters to specific values: μ1 = 0.1, α = 0.05,
δ = 0.2, ω = 0.02, β = 0.375, ν = 0.7, a = 0.1,
p ∈ {0.5, 1, 2, 3}, σ = 0.3, and considering the func-
tion g(S) = S p, it is evident that Ms = 1. The condi-

tions for extinction, Rs < 1 and Msσ
2 < β(1 + a)2,

are satisfied, signifying the incapacity of the disease
to perpetuate within the populace autonomously. On
average, each infected individual transmits the disease
to fewer than one other individual during their period of
infectivity. Consequently, this trend leads to the grad-
ual decline and ultimate eradication of the disease from
the population. Furthermore, it is pertinent to under-
score that the augmenting power of the infection force,
denoted by parameter p, inversely influences the inci-
dence of the disease and its propagation dynamics. As
the value of p escalates, the disease incidence dimin-
ishes, manifesting in a reduced rate of spread through-
out the population. This observation underscores the

123



Dynamics of a stochastic epidemic model 19549

Fig. 2 The impact of the infection force p on the dynamics of disease transmission Z(t) starting from z0 = (0.8, 0.1, 0.05, 0.05) when
Rs > 1

crucial role of parameter p in modulating the dynamics
of disease transmission and underscores its significance
in epidemiological modeling and control strategies.

4.1.2 Disease persistence

In our subsequent analysis, we deliberately select spe-
cific parameter configurations to delve into the dynam-
ics of the SIURS epidemic model across varying val-
ues of the power parameter, denoted as p. Retaining
the previously chosen parameter settings and function
g(S) from our prior example, we introduce alterations
in certain parameters. Specifically, adjusting β = 0.4,
a = 0.2, and σ = 0.2, we derive the basic repro-
duction number, denoted as Rs , where Rs > 1 and
β > 1

2σ
2Ms . This outcome signifies the sustained

prevalence of the infectious disease within the popu-
lation. Notably, this persistence observation resonates

with the theoretical insights outlined in Theorem 2,
which delineates conditions conducive to the endur-
ing presence of infectious diseases (Fig. 2). Moreover,
the system is positively recurrent, exhibiting a unique
stationary distribution shown in Fig. 3. Furthermore,
consistent with our expectations, as the parameter p
escalates, the incidence of the disease diminishes, lead-
ing to a discernible reduction in its rate of transmission
across the population.

4.1.3 The impact of the susceptible contact function
g(S)

In this section,we explore how the choice of the suscep-
tible contact function g(S) affects the behavior of the
solution to the system (1). We compare the dynamics
resulting from three distinct functions:
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Fig. 3 The density functions corresponding to S(t), I (t),U (t) and R(t) for p = 2 based on 1000 simulations

g1(S) = S2, g2(S) = b − be−S, and

g3(S) = cS

1 + S
,

where b and c represent positive constants. Table 1
presents the modified parameters for each scenario
tested. The remaining parameters are held constant at
μ1 = 0.1, α = 0.05, δ = 0.2, ω = 0.02, ν = 0.7 and
p = 2.

This study investigates the impact of the choice of
the susceptible contact function g(S) on the behavior of
the system described by (1). By comparing the dynam-
ics resulting from different functions, we gain insights
into how the system responds to variations in g(S),
which directly influences the transmission dynamics of
the disease (4). The function g(S) plays a crucial role in
determining the evolution direction of the epidemicRs

and the rate at which susceptible individuals become
infected. For instance, when g1(S) = S2, the trans-
mission rate increases quadratically with the suscep-
tible population S, potentially leading to rapid disease
spread in densely populated regions. On the other hand,

g2(S) = b − be−S introduces a more nuanced trans-
mission pattern, where b controls the initial transmis-
sion rate, and the exponential decay termmodulates the
rate as the susceptible population decreases. This func-
tion may represent scenarios where preventive mea-
sures are implemented gradually or where the effec-
tiveness of interventions diminishes over time. More-
over, g3(S) = cS

1+S exhibits a saturating effect on trans-
mission. Initially, the transmission rate increases lin-
early with S, but it eventually saturates as S approaches
larger values. This function captures scenarios where
the disease transmission reaches a plateau due to fac-
tors such as limited contact opportunities or immu-
nity buildup within the population. By analyzing the
response of the system (1) to these different g(S) func-
tions, we gain insights into the interplay between pop-
ulation dynamics and disease transmission dynamics.
This understanding can inform public health strategies
and interventions aimed at controlling the spread of
infectious diseases in real-world scenarios. The impor-
tance of selecting a susceptible contact function g(S)

that accurately captures the dynamics of disease trans-
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Table 1 List of parameters for different scenario tested

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

β 0.375 0.4 0.4 0.4 0.5 0.5

σ 0.3 0.2 0.3 0.4 0.3 0.3

a 0.1 0.1 0.1 0.2 0.2 0.2

b 1 1 2 2 1.8 1

c 1 1.5 1 2.5 2.5 2.5

Rs,1 0.968 1.091 1.033 0.986 1.311 1.311

Rs,2 0.649 0.709 1.235 1.153 1.457 0.872

Rs,3 0.522 0.835 0.557 1.145 1.567 1.567

mission cannot be overstated. It directly influences the
behavior of the system and the rate at which the dis-
ease spreads within a population. Understanding the
implications of different g(S) functions is essential for
developing effective strategies to control and mitigate
the impact of infectious diseases.

In the next section of this study, wewill delve deeper
into this topic by proposing a selection method for the
function g. Our objective is to identify the most infor-
mative function that provides valuable insights into the
interplay between population susceptibility and disease
transmission dynamics. Through this analysis, we aim
to enhance our understanding of the factors driving dis-
ease spread and contribute to the development of more
accuratemodels for predicting andmanaging infectious
disease outbreaks.

4.1.4 Selection method for the susceptible contact
function g(S)

In real-world scenarios and public health data analy-
sis, it’s common to observe the number of infected and
recovered individuals on a daily orweekly basis. Lever-
aging this insight, we propose a method for selecting
the function g(S)byminimizing theMeanSquareError
(MSE) between the actual observations and the simu-
lated data using multiple candidate functions g. Ulti-
mately, the goal is to identify the function that yields
the lowest error, thereby providing the best fit to the
observed data. Mathematically, we express this as:

MSE(g) = E

[
(Iobs − Isim(g))2

]

+E

[
(Robs − Rsim(g))2

]
, (15)

and

g∗ = argmin
g∈C1((0,1),R+)

MSE(g).

To achieve this, we generate 1000 paths of the Zg(t)
process described by (1) for g(S) = S, starting from
z0, with varying horizon times H using the parameters
from scenario 1 in Table 1. Next, for each candidate
function gi (S), we simulate Zgi and estimate the MSE
εH using the Monte Carlo method for different values
of H . In this example, we consider the following set of
candidate functions:

g1(S) = S1/2, g2(S) = S, g3(S) = S3/2,

g4(S) = S2, g5(S) = 1 − e−S,

and

g6(S) = S

1 + S
.

In summary, the proposed selection method consists of
the following 4 steps:

(i) Simulate the system for g(S) = S and record the
1000 trajectories of the I and R compartments (pre-
sente the real observations in this case).

(ii) For each candidate function gi (S) (i = 1 to 6),
simulate the corresponding system using the same
initial conditions and the same parameter values,
and record the 1000 trajectories of the I and R
compartments.

(iii) Calculate the MSE between simulated and real
observations employing Monte Carlo method for
each function gi (S) for different values of H .

(iv) Repeat steps 2 and 3 for H = 100, 500, 1000,
2000.

As H increases, the Mean Squared Error (MSE)
tends to decrease. This observation is consistent with
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Fig. 4 Evolution of Z(t)
for different susceptible
contact function g(S)
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Fig. 4 continued
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Fig. 4 continued
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Fig. 5 MSE εH for different g(S) functions tested

the notion that as we observe the system over a longer
time horizon, the simulated trajectories tend to con-
verge towards amore accurate representation of the true
dynamics. Additionally, the MSE values indicate that
the method effectively selects the most suitable func-
tion, g2(S), as the one with the lowest error across dif-
ferent horizon values (Fig. 5). This suggests that g2(S)

provides the best fit to the observed data and captures
the underlying dynamics of the systemmost accurately
among the candidate functions tested.

This approach allows us to choose the g(S) function
that most accurately captures the transmission dynam-
ics observed in real-world data. By aligning the sim-
ulated outcomes with empirical observations, we can
enhance the predictive power of our models and bet-
ter understand the underlying mechanisms driving dis-
ease transmission. This selection method facilitates the
development of more reliable and informative models
for studying and managing infectious diseases.

4.2 COVID-19 data in the UK

COVID-19, caused by the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), has emerged
as one of the most significant health crises of the
twenty-first century worldwide [31,33,34]. Originat-
ing in Wuhan, China, in late 2019, the outbreak swiftly
spread across the globe, prompting the World Health
Organization (WHO) to declare it a global pandemic on
March 11, 2020 [35]. In the United Kingdom (UK), the
first cases were identified on January 31, 2020, mark-
ing the onset of a rapid escalation in cases throughout
February and March [36]. By December 2020, the UK

had endured over 50, 000 deaths and 230, 000 hospital
admissions due to COVID-19, despite estimates sug-
gesting that less than 20% of the population had been
exposed to the virus.As ofDecember 31, 2020, the pop-
ulation of the UK stood at 68, 602, 259, serving as the
initial value for the susceptible population in epidemi-
ological modeling [37]. The birth rate was estimated at
2371 per day [37], contributing to the constant influx
of individuals into the susceptible class.

Now, we rigorously calibrated our SIURS model to
capture the temporal dynamics of daily new reported
cases of SARS-CoV-2 and hospital admissions in the
UK, covering the period from January 31, 2020, to
May 20, 2022 [38] (Fig. 5). During this timeframe,
the highest number of reported infections peaked at
226, 524 individuals in March 2022, with an average
of 25, 587.23 daily infections and 10, 053.23 daily hos-
pital admissions in the UK.

One of the central hurdles inmathematicalmodeling
studies is the precise estimation of model parameters.
By scrutinizing available literature, clinical studies and
research investigating the progression of the COVID-
19 pandemic in the UK, we have derived estimates for
specific model parameters. Table 2 provides these esti-
mates along with their respective sources.

To address the remaining parameters, namely a and
the function g, we opt for a systematic approach. We
employ the power function g(S) = S p and explore a
range of values for the exponent p from 0 to 10, and
for the parameter a from 0 to 2. This selection process
aligns with the methodology outlined in Sect. 4.1.4,
where we use a fitting procedure to calibrate the model
against observed daily COVID-19 incidences and hos-
pital cases. The objective is to locally minimize the
Mean Squared Error (MSE), thus refining the accuracy
of the model. The optimal values of p and a that yield
the lowest MSE (15) are found to be p = 1.3 and
a = 0.85.
Upon fitting our stochastic SIURS model to real data
(Fig. 7), we observe that the results accurately capture
the modeled trends, especially in the initial stages of
the pandemic (from January 30, 2020, to mid-2021).
However, significant deviations between the adjusted
data and observations become apparent thereafter. This
phenomenon can be attributed to the emergence of new
variants of SARS-CoV-2. These disparities arise due to
multifaceted intricacies inherent in modeling COVID-
19. These variations stem frommultiple factors, includ-
ing the natural variability in human behavior, the evolv-
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Fig. 6 New daily reported cases and hospital admissions in the UK (31/01/2020–20/05/2022)

Table 2 List of parameters values for the SIURS model (1) of COVID-19 transmission in the UK based on model calibration, relevant
literature and clinical studies

Parameters Interpretation Value (Unit) Likely range Source

μ1 Natural death rate 10.45/1000 8.7/1000–12.2/1000 [39]

β Infectious contact rate 0.5 day−1 0.2–1.5 [40–42]

ω Losing immunity rate 0.002 day−1 0.0008–0.004 [43,44]

α Disease-induced death rate 0.015 day−1 0.001–0.1 [41,45]

δ Recovery rate 0.15 day−1 0.032–0.032 [46–48]

ν Proportion of infections reported 0.7 0.5–1 [36,49]

ing nature of health interventions over time, and the
inherent dynamics of virus transmission. Moreover,
there are latent variables whose effects on the trajectory
of the epidemic are not fully understood, adding further
complexity. Additionally, spatial factors such as popu-
lation density, patterns of inter-regional mobility, and
differences in intervention strategies between regions
contribute additional layers of complexity to the situa-
tion. Furthermore, the stochastic nature of the disease
process, combined with potential flaws or gaps in data
collection, amplifies these discrepancies. Despite these
challenges, our model represents a significant step for-

ward in understanding disease dynamics, offering valu-
able insights for future analyses and the development of
more effective strategies for managing the pandemic.

5 Conclusion and perspectives

In conclusion, our study offers a comprehensive analy-
sis of a stochastic epidemiologicalmodel that integrates
unreported cases and incorporates a general suscepti-
ble contact function. We have highlighted the pivotal
role of the critical threshold parameter in determining
the long-term dynamics of infectious diseases. By con-
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Fig. 7 The model (1) fitted
curve compared to reported
COVID-19 cases in the UK:
January 31, 2020, to May
20, 2022

ducting extensive numerical simulations and calibrat-
ing the model with real-world data from the UK, we
have demonstrated its robustness in accurately captur-
ing phenomena such as disease extinction and persis-
tence. Our findings emphasize the critical influence of
the susceptible contact function g(S) in optimizing the
model’s predictive accuracy for practical applications.

Further research for this work could explore the
effectiveness of various intervention strategies, such
as vaccination campaigns, social distancing measures,
and healthcare capacity improvements. By simulat-
ing the effect of these interventions in the version,
researchers can gain treasured insights into their poten-
tial to mitigate the spread of infectious illnesses and
inform evidence-primarily based choice-making in
public health policy. Moreover, extending the model
to encompass multiple geographic regions or popu-
lations could permit the analysis of local disparities
in disease transmission and intervention effectiveness.
This extension ought to empower policymakers to tailor
interventions to precise neighborhood contexts, allo-
cate resources extra correctly, and deal with the specific
challenges faced via distinctive groups. Additionally,
investigating the long-term dynamics and evolutionary
methods of infectious diseases, such as the emergence
of latest variants, holds significant promise for boosting
our information of epidemic trajectories. By integrating
evolutionary modeling strategies into the framework,
researchers can more accurately predict and respond
to emerging infectious disease threats, in the end con-

tributing to the development of more resilient public
health techniques.
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