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Abstract This paper proposes a nonlinear tuned
inerter absorber to improve the robustness of tuned
mass dampers (TMD) for vibration control and achieve
a more lightweight device. The conditions under which
the system undergoes targeted energy transfer (TET)
are analyzed from the point of view of slow-flow
dynamics and nonlinear normal mode for a system sub-
jected to impact loading. An optimal design method
for the nonlinear stiffness and damping of the device
is proposed, inspired by the existence of an energy
threshold and the tuned linear system. Moreover, con-
sidering the characteristics of inerter as a class of two-
terminal mechanical elements, the performance of the
devicewith andwithout grounded connections is inves-
tigated. It is concluded that the design of the nonlinear
stiffness enables the system to enter the TET stage of
rapid energy transfer and consumption, and the opti-
mization of the damping of the device further improves
the performance of the system after the occurrence of

Z. Yang · S. Xue · L. Xie (B)
Department of DisasterMitigation for Structures, Tongji Univer-
sity, Shanghai 200082, People’s Republic of China
e-mail: liyuxie@tongji.edu.cn

S. Xue
Department of Architecture, Tohoku Institute of Technology,
Sendai, Japan

D. Feng
China Electronics Engineering Design Institute Co., Beijing,
People’s Republic of China

D. Feng · Y. Sasaki
FUJITA CORP., Yokohama, Japan

TET. When controlling multi-degree-of-freedom sys-
tems, the nonlinear absorber performs better than the
corresponding linear absorber when the energy input to
a certain mode of the system exceeds the correspond-
ing energy threshold. Furthermore, in relation to this
device, the nonlinearity of the ungrounded connection
is more easily activated, resulting in a lower energy
threshold and more complex dynamic behaviors com-
pared to the grounded approach.

Keywords Inerter · Nonlinear energy sink · Targeted
energy transfer · Nonlinear normal mode · Connection
schemes

1 Introduction

Vibration control is a crucial issue in engineering and
has attracted the attention of many researchers. In prac-
tice, only a small portion of vibrations can be utilized,
such as for energy harvesting, monitoring or explo-
ration. Most vibrations in engineering are detrimental.
In civil engineering, for example, vibrations induced
by earthquakes or wind can lead to problems in struc-
tural safety and occupants’ comfort. Vibration control
systems for vehicle suspensions are key to improving
driving comfort in the automotive industry. In the fields
of mechanical engineering or aerospace, the working
environment of some precision instruments requires
very strict vibration control. Passive control is more
reliable than active control, which requires an exter-
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nal energy input. A linear spring-mass damping sys-
tem called tuned mass damper (TMD) [1,2] is com-
monly used due to its excellent control performance.
The TMD is designed to dissipate energy efficiently by
tuning its natural frequency equal to the natural fre-
quency of the structure to be controlled. However, a
linear TMD is only effective for a certain frequency
or mode of the structure, as it has only one natural fre-
quency. Furthermore, the effectiveness of TMD control
is directly proportional to its additional mass. In situa-
tions where the structure to be controlled is excessively
heavy, such as a high-rise building, or sensitive to the
added mass, such as a spacecraft, the TMD must make
a trade-off between lightness and performance.

There is already a good alternative to the lightweight
of the TMD - inerter. Inerter is a class of two-terminal
mass elements where the output force is proportional
to the difference in acceleration between the two termi-
nals. Smith [3] first introduced the term to describe the
force-current analogy between mechanics and electri-
cal circuits. Later, scholars introduced it into vibration
control systems to replace conventional additionalmass
blocks. In recent years, inerter-based vibration damp-
ing systems have been increasingly used in various
fields, including automotive suspensions [4,5], build-
ing structures [6,7], bridge cables [8], and spacecraft
[9].The current mechanisms for apparent mass ampli-
fication of inerter are primarily the ball-screw [6,10],
rack-and-pinion [11], fluid [12,13], and electromag-
netic inerter [14,15].Y Sugimura et al. [10] applied
the ball screw type inerter to a real steel building and
obtained an apparent mass of 5600t with a real physical
mass of 560Kg. At this stage of research on the theory,
design and application of inerter system, linear control
system is obviously more mature. But it is still chal-
lenging to overcome the limitations of a single control
band.

In recent years, with the development of nonlin-
ear dynamics theory and numerical methods, nonlin-
ear absorbers have attracted the interest of more and
more researchers. The nonlinear absorber which is
called nonlinear energy sink (NES) have been pro-
posed as a solution to the issue of wideband con-
trol. Through the dynamical analysis of a linear sys-
tem with NES attached, Vakakis et al. [16–20] found
the existence of irreversible energy transfer from the
linear primary system to the NES, which is known
as targeted energy transfer (TET). By applying the
complexification-averagingmethod (CxA) [21] and the

multiscale method, Gendelman et al. [22–25] explored
the rich dynamic behaviors of the cubic stiffness
NES such as bifurcation, quasi-periodic vibration and
strongly modulated response (SMR), which are sig-
nificant in understanding the mechanisms and condi-
tions of TET. Also, researchers have explored various
forms of NESs in addition to cubic stiffness NESs.
Nucera et al. [26] demonstrated that a vibro-impact
NESwith additional piecewise-linear oscillator is capa-
ble of achieving intermodal interactions betweenmulti-
ple modes. Gendelman et al. [27,28] theoretically and
experimentally investigated that a rotating NES with
eccentric mass is also capable of achieving energy
transfer, but its dynamic behaviors is complex and
prone to chaos. Andersen et al. [29] used geometric
nonlinearities to implement a nonlinear damped NES
and demonstrated that the device can achieve resonant
energy capture over a wide frequency band.Wang et al.
[30] proposed a way of using geometrically nonlinear
track to achieve a nonlinear restoring force and vali-
dated that this type of NES has more robustness and a
wider frequency control range than TMD. Lu et al. [31]
confirmed the effectiveness of track NES in vibration
mitigation of a five-story steel frame structure through
shaking table tests.

In the field of nonlinear vibration control, some
scholars have recognized the benefits of using inerter
to achieve mass amplification and are investigating the
effectiveness of vibration control by considering the
existence of nonlinearities in inerter, or the active addi-
tion of nonlinearities. Wang et al. [32] discusses the
nonlinear properties of inerter and their impact on vehi-
cle suspension control. Chen et al. [33,34] proposed a
kind of inerter-based NES and verified the suppression
effect by theoretical and numerical studies. Zhang et al.
[35] proposed a new type of inerter - the crank inerter,
which has a nonlinear negative stiffness. The analysis
showed that the vibration isolator with crank inerter has
better performance in terms of force transmission rate
and frequency band.

However, there are still great exploration prospects
for NES based on lightweighting inerter in terms of
theory, design, and application. For instance, the per-
formance comparison of inerter-based NES and lin-
ear inerter systems in disparate scenarios or the impact
of inerter two-ended connection on the dynamics of
the system remain worthy of further investigation.
In light of the aforementioned research background,
this paper proposes a nonlinear tuned inerter absorber
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which is more lightweight than the conventional NES.
The dynamic characteristics and performance of the
structure equippedwith this nonlinear absorber are also
compared with that of the linear absorber for impact
loading. Based on the conditions under which the sys-
tem enters the TET and the inspiration of the resonance
energy dissipation of the linearly tuned inerter system,
a design method for the nonlinear stiffness and damp-
ing of the device is proposed. The performance differ-
encebetween the grounded andungrounded connection
schemes of the inerter in a multi-degree-of-freedom
structure is also investigated. The paper is structured
as follows: Section 2 presents the mechanical model of
the device; Section 3 analyses the nonlinear stiffness
design method based on energy threshold from the per-
spective of invariant manifold. And the performance of
the system into the TET is further optimized by com-
pared with the linear absorber; Section 4 explains the
existence of the energy threshold from the nonlinear
normal mode point of view and illustrates the reason
for the high efficiency of NES by comparing it with
linear mode; Section 5 explores the effect of different
installation methods for the device of the multi-degree-
of-freedom system. The final section summarizes the
paper’s conclusions.

2 Mechanical model

The nonlinear tuned inerter absorber proposed in this
paper mainly adopts the mechanical topological form
of tuned viscous mass damper (TVMD) proposed by
ikago et al. [6]. The main feature of this form is that
the damping element and the inerter are connected in
parallel, which is conducive to the integration of damp-
ing and inerter in the actual device. For example, the
flywheel of the ball screw type inerter can be made
of conductive material, which can be combined with
the magnetic field generated by the permanent mag-
net to achieve the dual role of inertia amplification and
electromagnetic damping as the flywheel rotates. Fig-
ure1 shows the physical schematic of a nonlinear tuned
inerter absorber. The device employs the ball screw
type inerter to achieve apparent mass amplification by
converting the translational motion of the screw in the
axial direction into the high-speed rotation of the fly-
wheel. A linear spring is introduced in series with the
screw to achieve tuning of the system. In addition, the
introduction of cubic stiffness is achieved by geometric

Fig. 1 Physical diagram of the device

non-linearity using a pair of springs placed perpendic-
ular to the axis of the screw. When the screw moves
in the axial direction, the spring placed perpendicular
to the axis of the screw will have approximately the
intrinsic relationship of cubic stiffness. The mechan-
ical model of the device can be simplified as shown
in Fig. 2. Figure3 depicts a comprehensive illustration
of the self-balanced inerter utilized by the device. The
self-balancingmechanism ensures that the torques gen-
erated by the flywheel’s rotational motion are effec-
tively neutralized by the screw. The screw rod with
right-hand and left-hand threads are the key to achiev-
ing self-balanced inerter. When the screw rod moves in
the axial direction, the symmetrical flywheels in differ-
ent thread directions rotate in opposite directions, bal-
ancing the torque applied to the screw rod. This coun-
terbalance relieves the torque constraints required at the
end of the screw rod [36]. The apparent mass amplifi-
cation equation resulting from the inerter is presented
in Eq. (1).

md = m0

(
r0

2 + rd
2
) (

2π

ld

)2

. (1)

where m0 is the mass of the flywheel, r0 and rd are the
radius of the flywheel and screw rod, respectively, and
ld is the lead of the ball screw. The rational design of r0
and ld enables the amplification of the flywheel’s mass
by a factor of thousands.

The mechanical relationship of the nonlinear tuned
inerter absorber is shown as follows:

kd(u1 − u2) + kn(u1 − u2)
3 = md(ü2 − ü3)

+cd(u̇2 − u̇3). (2)
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Fig. 2 Simplified mechanical model of the device

Fig. 3 Self-balanced inerter

Fig. 4 Schematic diagram of a sdof structure equipped with the
nonlinear vibration absorber

As shown in Fig. 4, since the inerter is a class of
two-terminal mechanical elements, the application of
the device to a single-degree-of-freedom (sdof) struc-
ture requires one end to be grounded and the other end
to be attached to the structure to be controlled. The
equations of motion for such a system can be simpli-
fied as follows:

mü + cu̇ + ku + kd(u − ud) + kn(u − ud)
3 = F

mdüd + cdu̇d + kd(ud − u) + kn(ud − u)3 = 0
(3)

wherem, c and k are the mass, damping coefficient and
stiffness of the primary SDOF system;md, cd, kd and kn
are the apparentmass, damping coefficient, tuning stiff-
ness and nonlinear stiffness coefficient of the absorber;
u and ud represent the main structural displacement
and the displacement of one end of the inerter, respec-
tively, while the other end of the inerter is grounded.
The apparent mass of the ball-screw inerter used in this
device is related to the lead and radius of the screw, as
well as the mass and radius of the flywheel, and can be
amplified by a factor of several thousand compared to
its true physical mass. F is the external force acting on
the primary structure. In this paper, the performance of
this absorber is analyzed for impact loading, whereas
the external load is applied to the main structure in the
form of an initial condition, and therefore F is equal
to zero. After introducing dimensionless time τ = ωst ,
the dimensionless Eq. (3) can be rewritten as follows:

u′′ + 2ελu′ + u + εκ(u − ud)

+ εαn(u − ud)
3 = 0

εud
′′ + 2ελdud

′ + εκ(ud − u)

+ εαn(ud − u)3 = 0

(4)

The parameters that are newly introduced are defined
as follows:

ε = md
m ;ωs

2 = k
m ; λ = c

2mdωs
;

λd = cd
2mdωs

; κ = kd
mdωs2

;αn = kn
mdωs2

(5)

where ′ the derivative with respect to time τ ; ε � 1
stands for the mass ratio of the nonlinear attachment
assumed to be small; ωs refer to the natural frequency
of themain structure; λ andλd are the damping ratios of
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master mass and absorber device, respectively; αn rep-
resents the nonlinear stiffness ratio of the absorber. The
small mass ratio assumption suggests that the vibration
absorber is suitable for the control of large mass struc-
tures, such as high-rise or super high-rise structures,
large machinery, etc. In the case of small mass ratios,
the mass of the damping device remains considerable,
as evidenced by the 1,000-tonne TMD on the Shanghai
Tower. The use of inerter can further reduce the mass
of the damping device, resulting in cost savings.

3 Slow flow dynamic

3.1 Slow invariant manifold

Previous studies [23,37–39] have shown that cubic
stiffness NES with similar mechanical topological
forms have an initial energy threshold at which targeted
energy transfer occurs. This section derives the slow
invariant manifold (SIM) of the system to demonstrate
the transient dynamic behaviors of a nonlinear tuned
inerter absorber. The performance and applications of
the system in energy dissipation under impulse loading
are explored.

To simplify the subsequent algebraic derivation, new
variables are introduced as follows:{
x = u + εud
y = u − ud

(6)

where x represents the displacement of the equivalent
center of mass of the system considering the apparent
mass of the inerter rather than the real physical mass;
y represents the relative displacement. By substituting
the new variables into Eq. (4) and omitting the sec-
ond and higher order terms of the ε, the equation is as
follows:
x ′′ + 2ελx ′ + x + εy′′ + ε(1 + κ)y

+ εαny
3 + O

(
ε2

)
= 0

εy′′ + 2ελdy
′ + εκy + εαny

3 − εx ′′

− 2ελdx
′ + O

(
ε2

)
= 0

(7)

Complex variable averaging method is applied to
analyze the slow dynamical behaviors of the system,
assuming that the system vibrates in a 1:1 resonant
mode. The following two complex variables are intro-
duced:
ϕ0(t)eit = x ′ + i x, ϕ0 ∈ C

ϕ1(t)eit = y′ + iy, ϕ1 ∈ C
(8)

where ϕ0(t) and ϕ1(t) are time-dependent slow modu-
lation functions, representing the slow-varying ampli-
tude and slow-varying phase of the system. The above
complex variables are extended to the series expansion
of ε and the multiscale method is used to separate the
fast and slow time terms in the complex variables as
follows:

ϕi = ϕi,0 + εϕi,1 + O
(
ε2

)
, ∀i = 0..1

τk = εk t,
d

dt
= ∂

∂τ0
+ ε

∂

∂τ1
+ O

(
ε2

)
(9)

Substituting Eqs. (8) and (9) into Eq. (7) and ignor-
ing the secular term and omitting the second and higher
order terms of the ε, the following relationship is sat-
isfied on the τ0 and τ1 time scale:

∂ϕ0,0

∂τ0
= 0 ⇒ ϕ0,0 = ϕ0,0 (τ1, τ2, . . .)

3iαnϕ1,0
2ϕ1,0 − 8λϕ0,0 − 8

∂ϕ0,1

∂τ0

−8
∂ϕ1,0

∂τ0
− 8

∂ϕ0,0

∂τ1
+ 4iκϕ1,0 = 0

8λdϕ0,0 − 8λdϕ1,0 + 4iκϕ1,0

−4iϕ1,0 + 4iϕ0,0 + 3iαnϕ1,0
2ϕ1,0

+8
∂ϕ0,0

∂τ0
− 8

∂ϕ1,0

∂τ0
= 0 (10)

Consider the system that evolves on the τ1 time scale
while reaching a steady state on the τ0 time scale. This
approach has been justified in the literature [23]. Equa-
tion (10) can be expressed as follows:

∂ϕ0,0

∂τ0
= 0 ⇒ ϕ0,0 = ϕ0,0 (τ1, τ2, . . .)

3iαnϕ1,0
2ϕ1,0 − 8ωs

4λϕ0,0

−8
∂ϕ0,0

∂τ1
+ 4iκϕ1,0 = 0

8λdϕ0,0 − 8λdϕ1,0 + 4iκϕ1,0

−4iϕ1,0 + 4iϕ0,0 + 3iαnϕ1,0
2ϕ1,0

= 0 (11)

Rewrite the complex variable in polar form as fol-
lows:

ϕ0,0 = R0 (τ1) e
iθ0(τ1); ϕ1,0 = R1 (τ1) e

iθ1(τ1) (12)

Substituting Eq. (12) into Eq. (11) and separating
the real and imaginary parts yields the following rela-
tionship:

123



17972 Z. Yang et al.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 sin (θ0 − θ1) κ R1 − 8λR0

+ 3 sin (θ0 − θ1) αnR1
3 − 8

∂R0

∂τ1
= 0

4 cos (θ0 − θ1) κ R1 + 3 cos (θ0 − θ1) αnR1
3

− 8R0
∂θ0

∂τ1
= 0

8 cos (θ0 − θ1) λdR0 − 4 sin (θ0 − θ1) R0

− 8λdR1 = 0

8 sin (θ0 − θ1) λdR0 + 4 cos (θ0 − θ1) R0

+ 4(κ − 1)R1 − 3αnR1
3 = 0

(13)

The modulus relation can be obtained by alge-
braically transforming Eq. (13) to eliminate the phase
θ0 and θ1 as follows:

R0
2 =

R1
2
(
(3R1

2αn + 4(κ − 1))
2 + 64λd

2
)

16
(
4λd

2 + 1
)

∂R0

∂τ1
=

− 16(4λd
2 + 1)λR0

2 + λdR1
2(3αnR1

2 + 4κ)
2

16R0
(
4λd

2 + 1
)

(14)

Variable substitution is considered by using energy-
like state variables Ei = R2

i ,∀i = 0, 1.

E0 = E1
(
(3E1αn + 4(κ − 1))2 + 64λd

2
)

16
(
4λd

2 + 1
)

∂E0

∂τ1
=

− 16(4λd
2 + 1)λE0 + λdE1(3αnE1 + 4κ)2

8
(
4λd

2 + 1
)

(15)

E0 and E1 can represent approximately the energy lev-
els of the new variables in Eq. (9) in the multiscale
method analysis. Equation(15) demonstrates the invari-
ant manifold and the evolutionary relationships of the
system on slow time scale τ1. The first equation in
system (15) shows a cubic non-linear relationship that
exists between E0 and E1.The second equation in sys-
tem (15) shows the decay of E0 with time scale τ1
in relation to E0 and E1. A comparison with previous
studies [37–39] revealed that the inerter-basedNES has
a similar SIM structure to the conventional cubic stiff-
ness NES. This finding suggests that the device can be
used as a lightweight alternative to the conventional
cubic stiffness NES.

3.2 Parametric analysis and design

Several works have demonstrated the existence of con-
ditions for cubic stiffness NES with a similar invari-
ant manifold to enter the TET, which can be summa-
rized as the following two main conditions: i, there is
a bifurcation of the invariant manifold of the system,
in particular, for a given state of E0 there are multiple
states of E1 that correspond to it; and ii, for the tran-
sient energy dissipation of the system, the initial energy
of E0 must be greater than a certain energy thresh-
old. This section focuses on the bifurcation conditions
and energy threshold of the proposed nonlinear tuned
inerter absorber device into the TET and is verified by
numerical simulations.

For the invariant manifold in system (15), the rela-
tionship between E0 and E1 is a cubic function. If there
are extreme points (E1 > 0) in this function, a multiple
solution situation exists. This function is now derived
as follows:
∂E0

∂E1
=

(6αnE1 + 4(κ − 1)4)
2 + 64λd

2 − 9αn
2E1

2

16
(
4λd

2 + 1
)

(16)

The conditions for the existence of extreme points
are as follows:

λd <
1 − κ

2
√
3

(17)

The extrema of E0 and E1are:
maximum:

E+
1 = 4(2(1 − κ) −

√
(κ − 1)2 − 12λd2)

9αn

E+
0 =

E+
1

(
(3E+

1 αn + 4(κ − 1))
2 + 64λd

2
)

16
(
4λd

2 + 1
)

(18)

minimum:

E−
1 = 4(2(1 − κ) +

√
(κ − 1)2 − 12λd2)

9αn

E−
0 =

E−
1

(
(3E−

1 αn + 4(κ − 1))
2 + 64λd

2
)

16
(
4λd

2 + 1
)

(19)

Figure5 illustrates two cases of invariant manifolds
in the presence and absence of bifurcation. Previous
studies [37–39] have confirmed that E+

0 is the energy
threshold for transient energy dissipation of the sys-
tem into the TET. Figure6 reveals that two other possi-
ble energy pumping situations occur after ignoring the
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Fig. 5 Schematic of invariant manifold

Fig. 6 Different energy pump situations

unstable energy pumping case, corresponding to the
invariant manifold of the system, where the left corre-
sponds to an initial value of E0(0) lower than E+

0 and
the right corresponds to E0(0) higher than E+

0 . And
case b is the evolutionary trajectory that optimally hap-
pens, because the system enters the TET stage, which is
able to rapidly dissipate the transient energy input into
the main system. The reason for this phenomenon is
revealed by the second equation of system(15). When
situation b occurs, the system is attracted to the right
branch of the invariant manifold. The energy E1 of the
right branch is significantly larger, which favors the
decay of E0.

Figure7 illustrates the relationship of energy trans-
fer for E0 and E1(left) and the decay of E0 over time

Fig. 7 Numerical simulation of energy transfer and dissipation
in different situations. a Less initial energy; b over initial energy

(right) at different initial energy levels where the val-
ues of each parameter for the numerical simulation are
taken as follows: ωs = 1, λ = 0, ε = 0.01, κ =
0.6, λd = 0.08, αn = 0.02. The numerical simula-
tion is carried out with the following initial conditions:
a,u̇ = 1.2; b, u̇ = 0.8. The rest of the state variables
are initially set to 0. It can be observed that the numer-
ical results are in better agreement with the theoretical
results when following the left branch of the invariant
manifold. Whereas when the initial energy exceeds the
energy threshold, the numerical values differmore from
the theoretical results, taking into account the approx-
imate treatment in the derivation process. But there is
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Fig. 8 The effect of parameter variation on invariant manifold. a Tuned stiffness ratio; b damping ratio

also a process of being attracted to the right branch
of the invariant manifold.In this case, the decay of the
main structure energy with time is significantly accel-
erated compared to the low initial energy case.

Figure8 shows the effect on the invariant manifold
of varying the damping ratio and tuned stiffness ratio
of the nonlinear tuned inerter absorber. The reduction
of the tuning stiffness ratio κ effectively decreases the
energy threshold for the occurrence of TET, but also
decreases the energy level E1 of the right branch of
the invariant manifold which has a detrimental effect
on the suppression of the energy of the main structure.
Similarly, the reduction of the damping ratio λd is also
effective in reducing the energy threshold.However, the
second equation of system (15) reveals that reducing
the damping ratio can reduce the coefficient of influ-
ence of E1 on the decay rate of the main structure. And
the variations in κ and λd are limited by Eq. (17).

Substitute the new variables Z0 = αnE0 and Z1 =
αnE1 into Eq. (15) as follows:

Z0 = Z1
(
(3Z1 + 4(κ − 1))2 + 64λd

2
)

16
(
4λd

2 + 1
)

∂Z0

∂τ1
= −16(4λd

2 + 1)λZ0 + λdZ1(3Z1 + 4κ)2

8
(
4λd

2 + 1
)

(20)

The energy threshold corresponding to the new vari-
able Z0 is as follows:

Z+
1 = 4(2(1 − κ) −

√
(κ − 1)2 − 12λd2)

9

Z+
0 =

Z+
1

(
(3Z+

1 + 4(κ − 1))
2 + 64λd

2
)

16
(
4λd

2 + 1
)

(21)

To ensure the occurrence of TET for the transient
energy dissipation of the system, the following equa-
tion must be satisfied:

αnE0(0) > Z+
0 ⇒ αn >

Z+
0

E0(0)
(22)

where

E0(0) ∼= x ′(0)2 + x(0)2 (23)

The values of x ′(0) and x(0) correspond to their
respective initial values. The primary structure decays
fastest when the initial energy E0(0) of the system
is only slightly higher than E+

0 .It can be seen from
Eq. (22) that a reasonable design of non-linear stiff-
ness, which is based on the magnitude of the impact
loads that the primary structure may be subjected to,
will ensure that the TET occurs and thus increase the
rate of its energy dissipation.
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Fig. 9 Schematic diagram of fixed-point theory

3.3 Performance comparison with linear system

This section compares the invariant manifolds of the
nonlinear tuned inerter system with the corresponding
linear systems to optimize the design. There are two
comparisons of the corresponding linear system: one is
the derived systemwhere the nonlinear stiffness is zero
and the rest of the parameters are the same as the non-
linear system, and the other is the linear system tuned
by fixed-point theory method [6,40]. Figure9 shows
the method of fixed-point theory optimization, where
the damping and stiffness ratios of the linear inerter
system are optimally tuned to maximize and equalize
the values of the displacement transfer function of the
main structure at a pair of fixed points. Thismethod can
control the resonance response of the main structure
very well, which makes it more suitable for controlling
impact loads. The values of the damping ratio and the
tuning stiffness ratio of the linear system optimized by
the fixed-point theory are given in the following equa-
tion:{

λ
opt
l = 1

2

√
3ε

(1−ε)(2−ε)

κ
opt
l = 1

1+ε

(24)

where ε, λoptl and κ
opt
l are the mass ratio, damping ratio

and tuning stiffness ratio of the linear system obtained
by fixed-point theory optimization, respectively, with
the same definitions as before.

The parameter valuesωs = 1, λ = 0, ε = 0.01, κ =
0.6, λd = 0.08, αn = 0.02 are used as an example to
obtain the invariant manifolds of the nonlinear tuned
inerter system. At the same time, it is compared with

Fig. 10 Comparison of invariant manifolds for nonlinear and
linear systems

Fig. 11 Comparison of primary structure energy consumption.
(left)less initial energy; (right)over initial energy

the invariant manifolds of the derived system and tuned
linear system, as shown in Fig. 10, where the invariant
manifolds of the linear system are obtained by setting
αn inEq. (15) to 0 as shown inEq. (25).The values of the
tuned linear system parameters are given by Eq. (24).

E0 = (κ − 1)2 + 4λ2d
4λ2d + 1

E1 (25)

Figure10 shows that the invariant manifold of the
linearly derived system is exactly the tangent to the
SIM of the nonlinear system at the origin. This demon-
strates that the nonlinear tuned inerter absorber behaves
linearly when the energy level of the system is not high.
In contrast, the invariant manifold of the optimized lin-
ear system has a much smaller gradient, meaning that
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Fig. 12 Comparison for displacement control of the primary
structure under high initial energy inputs

for the same E0, the corresponding E1 is larger and
more conducive to energy dissipation of the primary
system. Figures11 and 12 illustrates the effect of the
three control systems on the primary structure for the
two initial conditions in the previous section. The tuned
linear system is observed to have the best control effect
on the single degree of freedom structure for different
initial conditions which is consistent with the scenario
envisaged, as the tuned linear control system provides
excellent control of the resonance peaks of the sdof
structure. When the initial energy input is low, the non-
linear system behaves consistently with its derived sys-
tem in terms of energy dissipation. However, when the
initial energy input is high, the nonlinear system under-
goes the TET, which results in a much faster rate of
energy dissipation of the primary structure compared
with the derived system.

3.4 Optimized design of damping coefficients

The above analysis provides the insight to optimize
the non-linear tuned inerter system, which means that
when the energy level of the input system is not high,
its characteristics can be approached towards the opti-
mized linear system. However, it is found that Eqs. (17)
and (24) cannot be satisfied simultaneously,which indi-
cates that linear resonant energy dissipation at low ini-
tial energy input and TET at high initial energy input
cannot occur simultaneously. Consequently, the design
is optimized using a compromise approach. The other
tangent equation to calculate the non-linear systemSIM

Fig. 13 Comparison of invariant manifolds for nonlinear and
linear systems (optimized nonlinear damping)

through the origin is given in the following equation:

E0 = 4λ2d
4λ2d + 1

E1 (26)

The previous analysis indicates that a moderate
value of the damping ratio λd is favorable for the decay
of the primary structure energy. Equation (26) demon-
strates that the other tangent equation of SIM over the
origin is solely dependent on the damping ratio of the
nonlinear tuned inerter absorber, and its slope increases
with the damping ratio. The trade-off here is to make
the tangent equation expressed in Eq. (26) the same as
the equation expressed in Eqs. (24) and (25) for tuned
linearity to obtain a value for the damping ratio of the
non-linear system. The optimized values of damping
ratio λ

opt
d is taken as follows:

λ
opt
d =

√(
2ε3 − 5ε2 + ε + 2

)
ε

(
ε3 + 8ε + 3

)

2(2ε3 − 5ε2 + ε + 2)
(27)

Figure13 illustrates the invariant manifolds of var-
ious systems. It can be observed that the tuned lin-
ear system is in tangential contact with the SIM of the
nonlinear system, which aligns with the a priori objec-
tive. Figures14 and 15 demonstrate the effect of the
energy dissipation of the primary structure. The nonlin-
ear tuned inerter absorber exhibits an enhanced perfor-
mance, which is equivalent to the tuned linear system
in terms of its behavior at high initial energy inputs.
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Fig. 14 Comparison of primary structure energy consump-
tion (optimized nonlinear damping). (left)less initial energy;
(right)over initial energy

Fig. 15 Comparison for displacement control of the primary
structure under high initial energy inputs (optimized nonlinear
damping)

4 Comparison of nonlinear normal mode and
linear mode

This section focuses on nonlinear normalmode (NNM)
to explain the reason for the large difference in the
performance of the nonlinear tuned inerter absorber
due to the different initial conditions in Sec. 3 There
are two main definitions of nonlinear modes: i Rosen-
berg’s definition [41,42]; ii Shaw and Pierre’s defini-
tion [43,44]. Shaw and Pierre extended Rosenberg’s
definition by the invariant manifold method to make it
suitable for non-conservative systems. The NNM of a
systemcanbe approximated to characterize its transient

Fig. 16 Schematic for the FEP of the system

damped dynamical behaviors [45] which allows the
behaviors of the system to be explained and predicted
to some extent. Due to the frequency-energy depen-
dence of the NNM, the frequency-energy plot (FEP) is
a convenient description method [18]. In this paper, the
FEP of the system is obtained using the harmonic bal-
ance method and the parametric continuation scheme
[46–48]. In this section, the harmonic balance method
(HBM) uses 7th order harmonics to approximate the
motion of the system. And alternating frequency-time
technique is used to simplify the calculation of nonlin-
ear force Fourier coefficients. The system parameters
are determined according to the optimization method
described in the preceding sections as ωs = 1, λ =
0, ε = 0.01, κ = 0.6, λd = 0.0619, αn = 0.02. The
FEP of the system is shown in Fig. 16.

The fundamental FEP backbone curves S11+ and
S11− are shown in Fig. 16. For Snm±, S denotes
symmetry and nm denotes the resonance frequency
ratio (n:m) between the primary structure and the NES,
where the plus sign (+) indicates in phase and theminus
sign (−) indicates anti-phase motions. Figure17 illus-
trates the periodicmotion of some representative points
on the FEP and the corresponding configuration dia-
grams. The vibrational energy is mainly concentrated
on the NES on some branches which favor the energy
dissipation of the main system.A time-frequency anal-
ysis method (continuous wavelet transform) is used to
calculate the instantaneous spectra for the two differ-
ent initial conditions in Sec. 3, and the instantaneous
spectra are mapped onto the frequency-energy plot by
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Fig. 17 Schematic periodic motion and configuration diagram
of NNM corresponding to frequency

means of the correspondence between the total energy
of the system and time. For comparison, the same anal-
ysis is carried out for the linearly derived system.

Figures18 and 19 show the results of the analyses
for the two initial conditions, respectively. Figures18b
and 19b show that for the derived system, its FEP is two
straight lines, corresponding to the two modes of the
linear system, and its spectrum does not change with
the variation of the initial conditions. Figures18a and
19a show the spectral analysis of the non-linear system.
When the initial energy input is low, its instantaneous
spectrum is basically the same as that of its derived sys-
tem. When the initial energy input is high, the instan-
taneous spectrum varies and concentrates more on the

Fig. 18 Time-frequency analysis at low initial energy
input:ud = 0.8m/s. a Nonlinear systems; b derived systems

S11+ branch. It can be seen that the energy extremum
on the S11− branch corresponds to the energy thresh-
old of the SIM, and when the initial energy exceeds
this extremum, the systems are attracted to the S11+
branch.In the configuration diagram shown in Fig. 17,
the amplitude of the S11+ NES is much larger than
that of the primary structure, thus favoring the energy
dissipation of the main system. In contrast to a linear
system, the introduction of non-linearities can lead to
localization phenomena in the system, which means
that the energy is mainly concentrated locally in the
system. In this case, the energy is concentrated in the
NES, thus favoring the control of the dynamic response
of the main structure.
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Fig. 19 Time-frequency analysis at high initial energy
input:ud = 1.2m/s. a nonlinear systems; b derived systems

5 Multi-modal energy consumption analysis

5.1 Ground connection scheme

This section explores the performance of a non-linearly
tuned inerter absorber applied to a multi-degree-of-
freedom (MDOF) system. As shown in Fig. 20, a three-
degree-of-freedom system is used as an illustration in
this paper,with one end of the absorber connected to the
top degree of freedom and the other end grounded.The
equations of motion of the system are as Eq. (28).

Fig. 20 Schematic diagram of a multi-degree-of-freedom sys-
tem

Mü + Cu̇ + Ku + fn(u, ud)h = 0

fn(u, ud) = kd(hTu − ud) + kn(hTu − ud)
3

= mdüd + cdu̇d

(28)

whereM,C andK are the mass, damping and stiffness
matrices of the MDOF system, respectively; u is the
displacement vector of the system; fn(u, ud) is the non-
linear force of the absorber; and h is the displacement
transformation vector with respect to the installation
position of the absorber in the system, where h takes
[0, 0, 1] for the installation method shown in Fig. 20.

Toanalyze the effect of non-linear vibration absorbers
on a MDOF system subjected to an impact load, the
harmonic balance method and the parametric contin-
uation scheme are used to calculate the NNM of the
system shown in Eq. (28). In this case, the mass of
the non-linear absorber is chosen to be 1% of the total
mass of the structure to be controlled. And the rest of
the parameters are obtained by using the optimal design
methodology in the previous sections, after simplifying
this multi-degree-of-freedom structure into an equiv-
alent single-degree-of-freedom system corresponding
to the first mode. The values of the parameters for the
numerical simulation of system (28) are given in the
Table 1.

The damping matric of the example structure are
taken as follows:

C = α1M + α2K (29)
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Table 1 Numerical values for MDOF and absorber system

mi ki md cd kd kn
(kg) (N/m) (kg) (Ns/m) (N/m) (N/m3)

1 1 0.03 0.0017 0.0036 0.006

Fig. 21 TheFEP formulti-degree-of-freedom systems equipped
with grounded vibration absorbers

In Eq. (29), the Rayleigh damping assumption is
employed,where the first and thirdmodes of the system
are assumed to have a damping ratio of 0.05 to obtain
α1 and α2.

Figure21 shows thebackbone curves of the frequency-
energy plot obtained by the calculation. It can be seen
that the structure of the curve is similar at the corre-
sponding linear natural frequency of the derived sys-
tem: it starts with a straight line and then the total
energy decreases, the vibration frequency increases and
then the self-oscillation frequency increases with the
increase in total energy. Figure22 shows the periodic
motion and configuration diagrams of the NNM at spe-
cific frequencies. The vibration absorber’s amplitude
corresponding to the straight section on the FEP is
mostly smaller, indicating that the NES dissipates less
energy. The amplitude of the vibration absorber at the
curved section of the FEP is larger, which is more ben-
eficial for the energy transfer and dissipation of the
primary structure.

In order to better demonstrate the effect of non-
linear tuned inerter absorbers on the control of the
multi-degree-of-freedom structure subjected to impact
loading, two metrics, the main structure energy con-

sumption ratio γE and the absorber energy ratio γd, are
defined as follows:

E =1

2
uTKu + 1

2
u̇TMu̇

Ed =1

2
kd(u3 − ud)

2 + 1

2
mdu̇

2
d + 1

4
kn(u3 − ud)

4

γE = E

E(0)
, γd = Ed

E + Ed

(30)

where E is the energy of the primary structure; E(0)
is the energy of the primary structure at the initial
moment; Ed is the energy of the absorber.

Numerical simulations are then performed under
different initial conditions to verify the energy dissi-
pation of the system’s transient motion in each part of
the frequency-energy plot.

Figure23 (left) shows four representative energy
dissipation scenarios for different initial conditions. It
can be seen that the results of the time-frequency analy-
sis basically agree with the curve part of the frequency-
energy diagram. Figure23 (right) also shows the rela-
tionship between γE and γd over time. For situation
1, the nonlinear absorber has slightly worse control of
the primary structure energy than the corresponding
linear absorber. For situation 2 and 3, the nonlinear
absorber has a better performance compared to the lin-
ear absorber in the early phase. For situation 4, despite
the high energy contribution of the nonlinear absorber,
the energy oscillation phenomenon occurs, resulting
in large oscillations in the primary structure energy,
which is detrimental to the dissipation of the primary
structure energy. The combination of the four scenarios
reveals that the energy dissipation of the system is con-
sistently faster for higher-order modes than for lower-
order modes. This trend is ordered along the backbone
curves of the frequency-energy plot, with the frequency
decreasing as the energy of the system decreases. This
is consistent with previous studies of the resonance
capture cascade phenomenon [39] occurring in the
equippedNESmulti-degree-of-freedom system,which
have demonstrated that the initial energy correspond-
ing to the lower-order modes tends to exceed the corre-
sponding energy thresholds more easily and thus dissi-
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pates for a longer period of time. Also, it is evident that
scenario 1 exhibits energy depletion behavior that is
not reflected in the backbone curves of the frequency-
energy plot. This indicates that in addition to the pri-
mary resonance behavior of the 1:1:1:1 frequency ratio,
there is also the phenomenon of internal resonance of
non-equal frequency ratio, which is specific to the sys-
tem after the introduction of the nonlinearity.

In addition, to verify whether there is also an energy
threshold for the multi-degree-of-freedom system, a
certain mode of the structure is excited at different
energy levels to observe and compare the energy dissi-
pation of the system. Figures24 and 25 show the results
between the nonlinear systemand its derived system for
low and high energy excitation of the third mode.

Comparing Figs. 24 and 25, it can be noticed that
when the third mode of the system is excited in the
low energy state, the nonlinear and linear absorbers
behave almost the same way and at this time the energy
proportion of the absorber is at a low level. When the
third mode of the system is excited at high energy, the
time-frequency analysis of the linear system remains
constant, with the third mode vibration dominating the
energy dissipation. In contrast, the system with the
additional non-linear absorber exhibits modal interac-
tions and dissipates energy along the backbone of the
FEP. In this case, the energy proportion of the nonlin-
ear vibration absorber is significantly increased and the
energy dissipation of the primary structure is acceler-
ated. Therefore, based on the above analysis, it can

be concluded that there is an energy threshold for the
nonlinear system and when the modal energy exceeds
the threshold, intermodal interactions are triggered in
favor of the energy dissipation of the primary structure
compared with the linear absorber.

5.2 Unground connection scheme

Inerter is a type of two-ended mechanical element, so
if conditions prevent one end from being grounded,
both ends can be connected to the structure as an alter-
native. Figure26 illustrates a non-linearly tuned inerter
absorber installed between the second and third degrees
of freedom of the structure. In this case, the equations
of motion of the system are as Eq. (31).

Mü + Cu̇ + Ku + fn(u, ud)h = 0

fn(u, ud) = kd(u3 − ud) + kn(u3 − ud)
3

= md(üd − ü2) + cd(u̇d − u̇2)

h = [0,−1, 1]T
(31)

Figure27a shows the main backbone curves of the
frequency-energy plot of the system (31). The over-
all shape of the backbone curves is basically the same
as the ungrounded system, but the energy values cor-
responding to the critical points of the transition from
straight to curved segments are significantly lower. This
illustrates that the nonlinearity of the ungrounded con-
nection is more easily excited. The backbone curves

Fig. 22 Schematic periodic motion and configuration diagram of NNM corresponding to frequency
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Fig. 23 Four representative energy dissipation situations (left); Corresponding γE and γd variations (right)

123



Comparative analysis of nonlinear tuned 17983

Fig. 24 Comparison of energy consumption of non-linear and
linear vibration absorbers at low energy input aNon-linear time-
frequency analysis b Linear time-frequency analysis c Energy
consumption metrics

Fig. 25 Comparison of energy consumption of non-linear and
linear vibration absorbers at high energy input aNon-linear time-
frequency analysis b Linear time-frequency analysis c Energy
consumption metrics
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Fig. 26 Schematic diagram of a MDOF system equipped with
ungrounded absorber

Fig. 27 The NNM of the system 30 a Backbone curves of FEP;
b periodic motion and configuration diagram on the particular
branch

Fig. 28 Comparison of energy consumption of ungrounded
vibration absorbers at high energy input a Non-linear time-
frequency analysis b Linear time-frequency analysis c Energy
consumption metrics
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of the 1:1:1:1 resonance traces the branches of differ-
ent vibration modes. Figure27b shows that the vibra-
tion frequency of the NES is either 1/2 or 1/3 of that
of the primary structure on the particular branch. This
indicates that the ungrounded connection may be more
susceptible to internal resonance. The performance of
the nonlinear absorber is also confirmed by exciting the
third mode of the system with high energy input. Fig-
ure28 displays the results of the time-frequency anal-
ysis and performance metrics. It is evident that the
nonlinear absorber still performs better than the lin-
ear absorber when the initial energy input exceeds the
energy threshold.

6 Conclusion

This paper explores the performance comparison bet-
ween a nonlinear tuned inerter absorber and the corre-
sponding linear inerter absorber for impact load con-
trol. The energy evolution of single andmulti-degree of
freedom systems equipped with nonlinear absorbers is
analyzed and explained in view of slow invariant mani-
fold and nonlinear normalmode. Themain conclusions
are as follows:

(1) The slow-flowdynamic analysis of a single-degree-
of-freedom system with a nonlinear absorber atta-
ched verifies the condition for entering the TET
which favors the dissipation of energy from the
primary structure: i, The tuned stiffness ratio and
damping ratio of the non-linear absorber must sat-
isfy specific conditions to ensure the existence of an
invariant manifold bifurcation; ii, the energy input
to the system by the impact load must exceed the
energy threshold.

(2) Inspired by the existence of the energy threshold
and the high performance of linear tuned absorbers,
an optimal designmethod for the nonlinear stiffness
and damping of the nonlinear inerter absorber is
proposed. This design method can ensure that TET
occurs and effectively improve the performance
of nonlinear systems into TET. This enhancement
ensures that the nonlinear absorber controls the
dynamic response of the primary structure more
effectively than the corresponding linearly derived
system, and is closer to a tuned linear system under
high external initial energy input.

(3) The existence of the energy threshold is also
explained from the NNM point of view using

the time-frequency analysis technique. The criti-
cal point on the frequency-energy plot where the
vibration frequency begins to increase as the vibra-
tion energy increases corresponds to the energy
threshold.Compared to linearmode, the vibrational
energy on certain branches of nonlinear normal
mode is concentrated on the NES, which reveals
the reason for the high efficiency of the NES. This
localization phenomenon elucidates the rationale
behind the enhanced efficiency of non-linear tuned
inerter absorber in comparison to linear inerter
absorber.

(4) The transient energy dissipation characteristics of
the grounded and ungrounded absorber in a multi-
degree-of-freedom system are studied and the exis-
tence of an energy threshold for the occurrence
of mode interactions is verified. The study found
that nonlinearities in the ungrounded connection
are more easily activated than in the grounded con-
nection, which results in a lower energy thresh-
old and may be more susceptible to internal res-
onance. In a few cases, non-linear absorbers may
exhibit energyoscillationswhere the control perfor-
mance will deteriorate compared to a linear inerter
absorber. Nevertheless, in the majority of cases,
when the initial energy of the system exceeds the
energy threshold corresponding to a specific mode,
the efficiency of the nonlinear absorber is found
to be higher than that of the corresponding linear
system.
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