
Nonlinear Dyn (2024) 112:17291–17302
https://doi.org/10.1007/s11071-024-09954-5

RESEARCH

Global adaptive stabilization for a class of uncertain
multivariable systems with nonlinear parametrization

Shaohua Yang · Xiaoxi Cao · Zong-Yao Sun ·
Xia Li

Received: 30 April 2024 / Accepted: 1 July 2024 / Published online: 17 July 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract This paper proposes an adaptive stabi-
lization control scheme for a class of multivari-
able interconnected nonlinear systems with nonlinear
parametrization. It is a systematic result in a sense that
the proposed control scheme is a general one that also
applies to systems with linear parametrization, with-
out changing the controller structure. A novel inte-
grated framework is built by means of a functional
bounding technique for handling nonlinear param-
eter/structure uncertainties, a modified backstepping
method for designing continuous state-feedback con-
trollers, and Lyapunov stability analysis for stabilizing
interconnected system states and parameter estimates.
A commonly physical simulation and a representative
numerical simulation are presented, and their results
demonstrate the effectiveness of the proposed control
scheme.
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1 Introduction

In the real world, many nonlinear engineering systems
have complex multivariable properties and uncertain-
ties, such as aircraft [1], robotic arms [2], and chemical
processes [3]. To effectively control these systems and
improve their control performance, researchers have
been exploring various control strategies [4–14]. In
many practical applications, control systems of some
physical models have uncertain dynamics with non-
linear parametrization, which may affect the control
performance of systems and even cause safety issues.
For example, an aircraft control system may have sys-
tem uncertainties to lead to an imprecise result under
unknownflight conditions [6]. Therefore, to solve these
problems, it is essential to put forward a controlmethod
for a class of uncertain multivariate systems with non-
linearly parametrized dynamics, so the designed adap-
tive controller can achieve the desired control perfor-
mance.

Based on the available literature [7–13], globally
asymptotic stability is difficult to achieve for nonlin-
early parametrized multivariable systems with struc-
ture and parameter uncertainties. In [12], the designed
controller can achieve a globally asymptotically stable
performance, but it only takes into account SISO sys-
tems. When the multivariable characteristics of con-
trol systems are considered, some literature neglects
the existence of nonlinearly parametrized dynamics
[14,15]. Indeed, there is also some literature consider-
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ing both nonlinearly parametrized dynamics and mul-
tiple variables: one solution is to propose an adaptive
fuzzy control strategy, such as [4,7], and the other
solution is to propose a neural network-based control
strategy, such as [5,11]. However, these approximation
methods only ensure semi-global stability of nonlin-
early parametrized multivariate systems, and they have
a common limitation that asymptotical performance
fails to be achieved.

Although some attempts have been made in this
field, there are still some challenges and problems to
be solved. Therefore, our objective is to propose a new
adaptive control scheme to ensure the closed-loop sig-
nals global boundedness and achieve asymptotic con-
vergence for a class of uncertain multivariable systems
with nonlinear parametrization.

With the aim of achieving the objective, before
designing adaptive controllers, nonlinearly parametrized
dynamics in each subsystem are handled with the help
of a function bounding technique, which can be esti-
mated as a known function signal multiplied by an
unknown parameter signal. Then an adaptive backstep-
ping control method is applied to uncertain multivari-
able systems to design state-feedback controllers and
adaptive laws, which achieves a globally asymptotic
convergence of system state variables to origin. The fol-
lowing two aspects are the contributions of this paper:

(i) With the help of a function bounding technique,
the parametrized upper-bound growth of nonlinearly
parametrized dynamics are obtained in order to satisfy
amatching conditionwhich is used for adaptive control
schemes. Therefore, the original system is controlled
by processing a parametrized upper bound, instead
of directly dealing with the nonlinearly parametrized
dynamics.

(ii) Comparedwith fuzzy and neural network control
strategies, this paper proposes a new adaptive control
scheme for handling nonlinearly parametried dynam-
ics and stabilizing interconnected system states, which
ensures all the state variables globally asymptotic con-
vergence to origin.

The remainder of this paper is structured. Section2
gives uncertain nonlinearly parametrized multivariable
systems, some lemmas, and propositions used in the
adaptive controller design process. Section3 details the
design process of the adaptive controller and the sta-
bility analysis. Section4 verifies the feasibility of the
designed controller by physical simulation and numer-

ical simulation, respectively. Section5 summarizes the
conclusion.

2 Preliminaries and problem formulation

2.1 Problem Formulation
This paper considers the following nonlinearly para-

metrized multivariable interconnected systems with
str-ucture and parameter uncertainties
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

żr, j = gr, j (z̄1, j+1, . . . , z̄r−1, j+1, z̄r, j , z̄r+1, j , . . . ,

z̄l, j )zr, j+1 + fr, j (z̄1, j+1, . . . , z̄r−1, j+1,

z̄r, j , z̄r+1, j , . . . , z̄l, j ), j = 1, . . . , nr − 1,

żr,nr = gr,nr (z̄1,nr , . . . , z̄l,nr )ur
+ fr,nr (z̄1,nr , . . . , z̄l,nr ), r = 1, . . . , l,

(1)

where z̄r,q = [zr,1, zr,2, . . . , zr,q ]T ∈ R
q , zr,q is

the q-th state variable of the r -th subsystem, and ur
is a control input for the r -th subsystem. For r =
1, . . . , l, q = 1, . . . , nr , gr,q(·) = k∗

r,qϕr,q(·) �= 0 is an
unknown control coefficient, where parameter k∗

r,q > 0
is unknown, functionϕr,q(·) is known, and fr,q(·) ∈ C

1

is a nonlinearly parametrized function with fr,q(0) =
0. nr is a system order of the r -th subsystem. In this
paper, it is assumed that all state variables can be mea-
sured, and make nr = n, r = 1, 2, . . . , l, without loss
of generality. Without confusion, sometimes the inde-
pendent variables of the function are omitted, such as
demitting f (z) as f (·) or f .
Control objective.Using a function bounding technique
and an adaptive backstepping design method, a state
feedback control scheme is developed for a class of
uncertain multivariable interconnected systems with
nonlinearly parametrized dynamics, so that all states
are globally bounded and asymptotically converge to
the origin.

Remark 1 Many real-world systems conform to the
characteristics of the system (1), such as aircraft [1],
robotic arms [2], and UAVs [16]. They all play an
important role in promoting economic growth, pro-
moting scientific and technological innovation, and
improving the quality of life, so the system we study is
meaningful.

Remark 2 Considering the parameter uncertainties, th-
ere are two commonly used approaches for the design
of an adaptive controller: a direct approach and an indi-
rect approach. If a direct adaptive control approach
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is applied to the system (1) to estimate the controller
parameter directly, the estimated error is not obtained
from the nominal controller. If an indirect adaptive con-
trol approach is applied to the system (1), matching
parameters calculated from a design equation using
an online estimate cannot be obtained. Therefore, a
novel adaptive control method needs to be proposed
to overcome the nonlinearly parametrized dynamics of
the system (1).

2.2 Preliminaries
This subsection lists some lemmas and propositions
used in control design and their proofs can refer to
relevant references [17–19].

Lemma 1 [17] For arbitrarily real-valued continuous
function h(u, v), where u ∈ R

n, v ∈ R
m, there is a

scalar smooth function a(u) ≥ 0, b(v) ≥ 0, c(u) ≥ 1,
d(v) ≥ 1 satisfying

h(u, v) ≤ a(u) + b(v), h(u, v) ≤ c(u)d(v). (2)

Lemma 2 [18] Let y : Rn → R be continuously dif-
ferentiable at every point u within an open set S ⊂ R

n.
For ∀u, v ∈ S, there is a point w ∈ S such that

y(v) − y(u) = ∂y

∂u
|u=w(v − u). (3)

Lemma 3 [19] Given a pair of constants m ≥ 1 and
n ≥ 1 to satisfy the relation 1

m + 1
n = 1, for any a ∈ R,

b ∈ R and all ε > 0 satisfy

ab ≤ εm

m
|a|m + 1

nεn
|b|n . (4)

Before designing state-feedback controllers and
adaptive laws, we give a property of nonlinearly
parametrized function fr,q(·) which is concluded as
the following proposition.

Proposition 1 For continuously differentiable func-
tions fr, j (·) and fr,n(·), r = 1, . . . , l, j = 1, . . . , n−1
in the system (1), for the following equalities hold

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fr, j (·) ≤
(
r−1∑

p=1

j+1∑

q=1
|z p,q | +

l∑

p=r

j∑

q=1
|z p,q |

)

γr, j (z̄1, j+1,

. . . , z̄r−1, j+1, z̄r, j , z̄r+1, j , . . . , z̄l, j )θ∗
r, j ,

fr,n(·) ≤
(

l∑

p=1

n∑

q=1
|z p,q |

)

· γr,n(z̄1,n, . . . , z̄l,n)θ∗
r,n .

(5)

where smooth functions γr, j (·) and γr,n(·) are known,
and constants θ∗

r, j and θ∗
r,n are unknown.

Proof According to fr, j (0) = 0 and Lemma 2, we
have

fr, j (z̄1, j+1, . . . , z̄r−1, j+1, z̄r, j , z̄r+1, j , . . . , z̄l, j )

= fr, j (z̄1, j+1, . . . , z̄r−1, j+1, z̄r, j , z̄r+1, j , . . . , z̄l, j )− fr, j (0)

≤ | fr, j (z̄1, j+1, . . . , z̄r−1, j+1, z̄r, j , z̄r+1, j , . . . , z̄l, j )

− fr, j (z̄1, j+1, . . . , z̄r−1, j+1, 0, z̄r+1, j , . . . , z̄l, j )|
+| fr, j (z̄1, j+1, . . . , z̄r−1, j+1, 0, z̄r+1, j , . . . , z̄l, j )

− fr, j (0, . . . , z̄r−1, j+1, 0, z̄r+1, j , . . . , z̄l, j )|
+ · · · + | fr, j (0, 0, . . . , 0, z̄l, j ) − fr, j (0)|

≤
⎛

⎝
r−1∑

p=1

j+1∑

q=1

|z p,q | +
l∑

p=r

j∑

q=1

|z p,q |
⎞

⎠ · br, j (z̄1, j+1, . . . ,

z̄r−1, j+1, z̄r, j , z̄r+1, j , . . . , z̄l, j ). (6)

where br, j (·) is a continuous function. It follows from
Lemma 1 that there are a known function γr, j (·) and
an unknown parameter θ∗

r, j such that

br, j (z̄1, j+1, . . . , z̄r−1, j+1, z̄r, j , z̄r+1, j , . . . , z̄l, j )

≤ γr, j (z̄1, j+1, . . . , z̄r−1, j+1, z̄r, j , z̄r+1, j , . . . , z̄l, j )θ
∗
r, j . (7)

Substituting (7) into (6) yields the bounds of functions
fr, j (·) and fr,n(·) in the form below:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fr, j (·) ≤
(
r−1∑

p=1

j+1∑

q=1
|z p,q | +

l∑

p=r

j∑

q=1
|z p,q |

)

γr, j (z̄1, j+1,

. . . , z̄r−1, j+1, z̄r, j , z̄r+1, j , . . . , z̄l, j )θ∗
r, j ,

fr,n(·) ≤
(

l∑

p=1

n∑

q=1
|z p,q |

)

· γr,n(z̄1,n, . . . , z̄l,n)θ∗
r,n .

(8)

At this point, the proposition is proved. 
�
Remark 3 For the choice of γi j , we give some guide-
lines. Due to space limit, we only choose γ11 of the
two subsystems as an example. Since f11(x11, x21) is
a continuously differentiable function, it follows from
Lemma 1 that there exist σ11, σ21 ∈ [0, 1] such that

f11(x11, x21) − f11(0, 0)

≤ | f11(x11, x21) − f11(0, x21)| + | f11(0, x21)
− f11(0, 0)|

≤
∣
∣
∣
∣
∣
x11

∫ 1

0

∂ f11(τ, x21)

∂τ

∣
∣
∣
∣
τ=σ11x11

dσ11

∣
∣
∣
∣

+
∣
∣
∣
∣x21

∫ 1

0

∂ f11(0, τ )

∂τ

∣
∣
∣
∣
τ=σ21x21

dσ21

∣
∣
∣
∣
∣

≤ A(x11, x21)(|x11| + |x21|). (9)

where A(x11, x21) is a continuous function. With
Lemma 1, we obtain A(x11, x21) ≤ γ11(x11, x21)θ∗

11,
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where γ11(x11, x21) is a smooth function and θ∗
11 is an

unknownparameter. Therefore, from f11(0, 0) = 0 and
(9)wehave f11(x11, x21) ≤ (|x11|+|x21|)γ11(x11, x21)
θ∗
11.

3 Adaptive control design

3.1 Redefinition of unknown parameters
For the convenience of control design, a new

unknownparameters	∗
r, j , r = 1, . . . , l, j = 1, . . . , n,

are redefined as

	∗
r, j = max

⎧
⎨

⎩
max
1≤p≤r
1≤q≤ j

{θ∗2
p,q

k∗2
r, j

}
, max
r+1≤p≤l
1≤q≤ j−1

{θ∗2
p,q

k∗2
r, j

}
,

1

k∗2
r, j

,

max
1≤p≤r−1
1≤q≤ j

{k∗2
p,q

k∗2
r, j

}
, max

r≤p≤l
1≤q≤ j−1

{k∗2
p,q

k∗2
r, j

}
⎫
⎬

⎭
, (10)

where θ∗
r, j is given in (5) and k∗

r, j is an unknown
parameter defined in the control coefficient gr, j (·).
From (10), it can be seen that the redefined parame-
ters 	∗

r, j , r = 1, . . . , l, j = 1, . . . , n, include all of
the unknown system parameters. Compared with [20],
this paper possesses an advantage, that is, there is no
need for prior knowledge of the bounds of the redefined
parameters, thereby making the system more reason-
able.
3.2 Coordinate transformations

Coordinate transformations need to be performed
on the original system. For the r -th subsystem (r =
1, . . . , l), virtual control signals αr,0, αr,1, . . . , αr,s−1,
s = 2, 3, . . . , n, and state errors ξr,1, ξr,2, . . . , ξr,s
are defined as (12)–(14), where functions ψr,s−1(·)
are known, whose forms will be given later. There

is a parameter estimate vector defined by ¯̂
	r,s =

[	̂r,1, . . . , 	̂r,s]T , where 	̂r,s is an estimate of 	∗
r,s ,

whose derivation will be determined later.

ξr,1 = zr,1 − αr,0, αr,0 = 0, (11)

ξr,2 = zr,2 − αr,1, αr,1 = −ξr,1ψr,1(z̄1,2, . . . , z̄r−1,2,

z̄r,1, . . . , z̄l,1,
¯̂
	1,1, . . . ,

¯̂
	r,1),

· · · (12)

ξr,s−1 = zr,s−1 − αr,s−2, αr,s−2 = −ξr,s−2ψr,s−2

(z̄1,s−1, . . . , z̄r−1,s−1, z̄r,s−2, . . . , z̄l,s−2,

¯̂
	1,s−2, . . . , (13)

¯̂
	r,s−2,

¯̂
	r+1,s−3, . . . ,

¯̂
	l,s−3),

ξr,s = zr,s − αr,s−1, αr,s−1 = −ξr,s−1ψr,s−1

(z̄1,s , . . . , z̄r−1,s , z̄r,s−1, . . . , z̄l,s−1,

¯̂
	1,s−1, . . . ,

¯̂
	r,s−1,

¯̂
	r+1,s−2, . . . ,

¯̂
	l,s−2), (14)

3.3 Adaptive control design
The adaptive control design process is carried out

with the help of a backstepping method.
Step 1: Select the following candidate Lyapunov func-
tion

Vr,1 = 1

2k∗
r,1

ξ2r,1 + 1

2
	̃2

r,1, (15)

where constant k∗
r,1 is unknown in the control coeffi-

cient gr,1(·), and 	̃r,1 = 	∗
r,1 − 	̂r,1 is a parameter

estimate error with 	̂r,1 being an estimate of unknown
constant 	∗

r,1 defined in (10). According to (1) and
coordinate transformations, the time derivative of Vr,1
is

V̇r,1 = ξr,1ϕr,1ξr,2 + ξr,1ϕr,1αr,1 + 1

k∗
r,1

ξr,1 fr,1

−	̃r,1
˙̂
	r,1. (16)

According to (1), (5), (10), coordinate transforma-
tions and Lemma 3, we have

1

k∗
r,1

ξr,1 fr,1 ≤ 1

4

(
l∑

i=1

ξ2i,1 +
r−1∑

i=1

ξ2i,2 +
r−1∑

i=1

ξ2i,1

)

+
(

l + r − 1 +
r−1∑

i=1

ψ2
i,1

)

ξ2r,1γ
2
r,1	

∗
r,1. (17)

Substituting (17) into (16), we have

V̇r,1 ≤ −pr,1ξ
2
r,1 + ξr,1ϕr,1ξr,2 + ξr,1

(
ϕr,1αr,1 + pr,1ξr,1

+(l + r − 1 +
r−1∑

i=1

ψ2
i,1)ξr,1γ

2
r,1	̂r,1

)

+	̃r,1

⎛

⎝

(

l + r − 1 +
r−1∑

i=1

ψ2
i,1

)

ξ2r,1γ
2
r,1 − ˙̂

	r,1

⎞

⎠

+1

4

⎛

⎝
l∑

i=1

ξ2i,1 +
r−1∑

i=1

ξ2i,2 +
r−1∑

i=1

ξ2i,1

⎞

⎠

� −pr,1ξ
2
r,1 + ξr,1ϕr,1ξr,2 + ξr,1(ϕr,1αr,1 + pr,1ξr,1

+ξr,1ηr,1	̂r,1) + 	̃r,1(ξ
2
r,1ηr,1 − ˙̂

	r,1)

+1

4
cr,1

l∑

i=1

2∑

j=1

ξ2i, j , (18)

where pr,1 is a positive design parameter, cr,1 = 2 is a
constant, and ηr,1(·) = (l + r − 1 + ∑r−1

i=1 ψ2
i,1)γ

2
r,1 is

a known function.
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Choosing the following virtual control signal αr,1

and adaptive law ˙̂
	r,1

αr,1 = − 1

ξr,1ϕr,1

(
pr,1ξr,1 + ξr,1ηr,1	̂r,1

)
ξr,1

� −ξr,1ψr,1, (19)
˙̂
	r,1 = ξ2r,1ηr,1, (20)

where ψr,1(·) = 1
ξr,1ϕr,1

(
pr,1ξr,1 + ξr,1ηr,1	̂r,1

)
, we

have

V̇r,1 ≤ −pr,1ξ
2
r,1 + ξr,1ϕr,1ξr,2 + 1

4
cr,1

l∑

i=1

2∑

j=1

ξ2i, j .

(21)

Step 2: Select the following candidate Lyapunov func-
tion

Vr,2 = Vr,1 + 1

2k∗
r,2

ξ2r,2 + 1

2
	̃2

r,2, (22)

where constant k∗
r,2 is unknown in the control coeffi-

cient gr,2(·), 	̃r,2 = 	∗
r,2−	̂r,2 is a parameter estimate

error with 	̂r,2 being an estimate of unknown constant
	∗

r,2 defined in (10). According to (1) and coordinate
transformations, the time derivative of Vr,2 is

V̇r,2 = V̇r,1 + ξr,2ϕr,2ξr,3 + ξr,2ϕr,2αr,2 + 1

k∗
r,2

ξr,2 fr,2

− 1

k∗
r,2

ξr,2α̇r,1 − 	̃r,2
˙̂
	r,2. (23)

According to (1), (5), (10), coordinate transforma-
tions and Lemma 3, we have

1

k∗
r,2

ξr,2 fr,2 ≤ 1

4
(

r−1∑

i=1

3∑

j=1

ξ2i, j +
r−1∑

i=1

3∑

j=1

ξ2i, j−1

+
l∑

i=r

2∑

j=1

ξ2i, j +
l∑

i=r

2∑

j=1

ξ2i, j−1)

+ξ2r,2

( r−1∑

i=1

3∑

j=1

(1 + ψ2
i, j−1)γ

2
r,2

+
l∑

i=l

2∑

j=1

(1 + ψ2
i, j−1)γ

2
r,2

)
	∗

r,2, (24)

− 1

k∗
r,2

ξr,2α̇r,1 ≤ 1

4

r−1∑

i=1

2∑

j=1

ζi, j + 1

4

l∑

i=r

1∑

j=1

ζi, j + 1

4
ξ2r,1

+ξ2r,2

⎛

⎝
r−1∑

i=1

2∑

j=1

ω̄
(r,2)
i, j λi, j +

l∑

i=l

1∑

j=1

ω̄
(l,2)
i, j

λi, j +
l∑

i=1

1∑

j=1

(
∂ψr,1

∂	̂i, j

)2
˙̂
	2

i, j

⎞

⎠	∗
r,2, (25)

where ω̄
(r,2)
i, j = ( ∂αr,1

∂zi, j

)2, i = 1, . . . , l, j = 1, 2, are

known functions, ζi, j = ξ2i, j+1 + ξ2i, j + ∑i−1
v=1

∑ j+1
w=1

(ξ2v,w + ξ2v,w−1) +∑l
v=i

∑ j
w=1(ξ

2
v,w + ξ2v,w−1) and

λi, j = (1+ψ2
i, j )ϕ

2
i, j+

∑i−1
v=1

∑ j+1
w=1(1+ψ2

v,w−1)γ
2
i, j+

∑l
v=i

∑ j
w=1(1 + ψ2

v,w−1) γ 2
i, j .

Substituting (24), (25) into (23), we have

V̇r,2 ≤ −pr,1ξ
2
r,1 − pr,2ξ

2
r,2 + ξr,2ϕr,2ξr,3 + ξr,2

(
ϕr,2αr,2

+pr,2ξr,2+ξr,1ϕr,1+ξr,2

( r−1∑

i=1

3∑

j=1

(1+ψ2
i, j−1)γ

2
r,2

+
l∑

i=r

2∑

j=1

(1 + ψ2
i, j−1)γ

2
r,2+

r∑

i=1

1∑

j=1

(
∂ψr,1

∂	̂i, j

)2
˙̂
	2
i, j

+
r−1∑

i=1

2∑

j=1

ω̄
(r,2)
i, j λi, j +

l∑

i=r

1∑

j=1

ω̄
(r,2)
i, j λi, j

)
⎞

⎠ 	̂r,2

+	̃r,2

(

ξ2r,2

( r−1∑

i=1

3∑

j=1

(1 + ψ2
i, j−1)γ

2
r,2 +

l∑

i=r

2∑

j=1

(1 + ψ2
i, j−1)γ

2
r,2 +

r∑

i=1

1∑

j=1

(
∂ψr,1

∂	̂i, j

)2
˙̂
	2
i, j

+
r−1∑

i=1

2∑

j=1

ω̄
(r,2)
i, j λi, j +

l∑

i=r

1∑

j=1

ω̄
(r,2)
i, j λi, j

)
− ˙̂

	r,2

)

+1

4
ξ2r,1 + 1

4
cr,1

l∑

i=1

2∑

j=1

ξ2i, j + 1

4

⎛

⎝
r−1∑

i=1

3∑

j=1

ξ2i, j

+
r−1∑

i=1

3∑

j=1

ξ2i, j−1 +
l∑

i=r

2∑

j=1

ξ2i, j +
l∑

i=r

2∑

j=1

ξ2i, j−1

⎞

⎠

+1

4

r−1∑

i=1

2∑

j=1

ζi, j + 1

4

l∑

i=r

1∑

j=1

ζi, j

� −pr,1ξ
2
r,1 − pr,2ξ

2
r,2 + ξr,2ϕr,2ξr,3 + ξr,2(ϕr,2αr,2

+pr,2ξr,2 + ξr,1ϕr,1 + ξr,2ηr,2	̂r,2) + 	̃r,2(ξ
2
r,2ηr,2

− ˙̂
	r,2) + 1

4
cr,2

l∑

i=1

3∑

j=1

ξ2i, j . (26)

where pr,2 is a positive design parameter, cr,2 = 2(l +
r) + 2 is a constant, and ηr,2(·) is the following known
function,

ηr,2(·) =
r−1∑

i=1

3∑

j=1

(1+ψ2
i, j−1)γ

2
r,2+

l∑

i=r

2∑

j=1

(1+ψ2
i, j−1)γ

2
r,2

+
r∑

i=1

1∑

j=1

(
∂ψr,1

∂	̂i, j

)2
˙̂
	2
i, j +

r−1∑

i=1

2∑

j=1

ω̄
(r,2)
i, j λi, j
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+
l∑

i=r

1∑

j=1

ω̄
(r,2)
i, j λi, j . (27)

Virtual control signal αr,2 and adaptive law
˙̂
	r,2 are

chosen as follows

αr,2 = − 1

ξr,2ϕr,2

(
ξr,1ϕr,1 + pr,2ξr,2 + ξr,2ηr,2	̂r,2

)
ξr,2

� −ξr,2ψr,2, (28)
˙̂
	r,2 = ξ2r,2ηr,2, (29)

whereψr,2(·) = 1
ξr,2ϕr,2

(
ξr,1ϕr,1+pr,2ξr,2+ξr,2ηr,2	̂r,2

)
,

we have

V̇r,2 ≤ −pr,1ξ
2
r,1 − pr,2ξ

2
r,2 + ξr,2ϕr,2ξr,3

+1

4
cr,2

l∑

i=1

3∑

j=1

ξ2i, j . (30)

Step s-1 (s=3,…,n-1): Assuming that there exist a vir-

tual control signal αr,s−1 and a adaptive law ˙̂
	r,s−1

making the candidate Lyapunov function

Vr,s−1 = Vr,s−2 + 1

2k∗
r,s−1

ξ2r,s−1 + 1

2
	̃2

r,s−1 (31)

satisfy the following inequality

V̇r,s−1 ≤ −
s−1∑

j=1

pr, jξ
2
r, j + ξr,s−1ϕr,s−1ξr,s

+1

4
cr,s−1

l∑

i=1

s∑

j=1

ξ2i, j , (32)

where constant k∗
r,s−1 is unknown in the control coef-

ficient gr,s−1(·), cr,s−1 = (s2−s−2)(l+r)+4
2 is a con-

stant, pr, j is a positive design parameter, and 	̃r,s−1 =
	∗

r,s−1 − 	̂r,s−1 is a parameter estimate error with

	̂r,s−1 being an estimate of 	∗
r,s−1 defined in (10).

Then we will prove the inequality (32) still holds in
Step s.
Step s: Select the following candidate Lyapunov func-
tion

Vr,s = Vr,s−1 + 1

2k∗
r,s

ξ2r,s + 1

2
	̃2

r,s, (33)

where constant k∗
r,s is unknown in the control coeffi-

cient gr,s(·), 	̃r,s = 	∗
r,s −	̂r,s is a parameter estimate

error with 	̂r,s being an estimate of unknown constant
	∗

r,s defined in (10). According to (1) and coordinate
transformations, the time derivative of Vr,s is

V̇r,s = V̇r,s−1 + ξr,sϕr,sξr,s+1 + ξr,sϕr,sαr,s

+ 1

k∗
r,s

ξr,s fr,s − 1

k∗
r,s

ξr,s α̇r,s−1 − 	̃r,s
˙̂
	r,s .

(34)

According to (1),(5),(10), coordinate transforma-
tions and Lemma 3, we have

1

k∗
r,s

ξr,s fr,s ≤ 1

4

( r−1∑

i=1

s+1∑

j=1

ξ2i, j +
r−1∑

i=1

s+1∑

j=1

ξ2i, j−1

+
l∑

i=r

s∑

j=1

ξ2i, j +
l∑

i=r

s∑

j=1

ξ2i, j−1

)

+ξ2r,s

( r−1∑

i=1

s+1∑

j=1

(1 + ψ2
i, j−1)γ

2
r,s

+
l∑

i=r

s∑

j=1

(1 + ψ2
i, j−1)γ

2
r,s

)
	∗

r,s , (35)

− 1

k∗
r,s

ξr,s α̇r,s−1 ≤ 1

4

r−1∑

i=1

s∑

j=1

ζi, j + 1

4

l∑

i=r

s−1∑

j=1

ζi, j + 1

2
ξ2r,s−1

+ξ2r,s

( r−1∑

i=1

s∑

j=1

ω̄
(r,s)
i, j λi, j +

l∑

i=r

s−1∑

j=1

ω̄
(r,s)
i, j

λi, j +
r∑

i=1

s−1∑

j=1

(
∂ψr,s−1

∂	̂i, j

)2
˙̂
	2

i, j +

l∑

i=r+1

s−2∑

j=1

(
∂ψr,s−1

∂	̂i, j

)2
˙̂
	2

i, j

)

	∗
r,s , (36)

where ω̄
(r,s)
i, j = ( ∂αr,s−1

∂zi, j

)2, i = 1, . . . , l, j = 1, . . . , s,
are known functions, ζi, j and λi, j are given in (25).
Substituting (35), (36), into (34), we have

V̇r,s ≤ −
s∑

j=1

pr, j ξ
2
r, j +ξr,sϕr,sξr,s+1+ξr,s

(

ϕr,sαr,s+ pr,sξr,s

+ξr,s−1ϕr,s−1 + ξr,s

( r−1∑

i=1

s+1∑

j=1

(1 + ψ2
i, j−1)γ

2
r,s

+
l∑

i=r

s∑

j=1

(1 + ψ2
i, j−1)γ

2
r,s +

r∑

i=1

s−1∑

j=1

(
∂ψr,s−1

∂	̂i, j

)2
˙̂
	2

i, j

+
l∑

i=r+1

s−2∑

j=1

(
∂ψr,s−1

∂	̂i, j
)2

˙̂
	2

i, j +
r−1∑

i=1

s∑

j=1

ω̄
(r,s)
i, j λi, j

+
l∑

i=r

s−1∑

j=1

ω̄
(r,s)
i, j λi, j

)

	̂r,s + 	̃r,s

(

ξ2r,s

( r−1∑

i=1

s+1∑

j=1

(1 + ψ2
i, j−1)γ

2
r,s +

l∑

i=r

s∑

j=1

(1 + ψ2
i, j−1)γ

2
r,s +

r−1∑

i=1

s∑

j=1

ω̄
(r,s)
i, j λi, j +

l∑

i=r

s−1∑

j=1

ω̄
(r,s)
i, j λi, j +

r∑

i=1

s−1∑

j=1
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(
∂ψr,s−1

∂	̂i, j

)2
˙̂
	2

i, j +
l∑

i=r+1

s−2∑

j=1

(
∂ψr,s−2

∂	̂i, j

)2
˙̂
	2

i, j

)

− ˙̂
	r,s

)

+ 1

4
cr,s−1

l∑

i=1

s∑

j=1

ξ2i, j + 1

4

( r−1∑

i=1

s+1∑

j=1

ξ2i, j

+
r−1∑

i=1

s+1∑

j=1

ξ2i, j−1 +
l∑

i=r

s∑

j=1

ξ2i, j +
l∑

i=r

s∑

j=1

ξ2i, j−1

)

+1

4

r−1∑

i=1

s∑

j=1

ζi, j + 1

4

l∑

i=r

s−1∑

j=1

ζi, j + 1

2
ξ2r,s−1

� −
s∑

j=1

pr, j ξ
2
r, j +ξr,sϕr,sξr,s+1 +ξr,s

(
ϕr,sαr,s+ pr,sξr,s

+ξr,s−1ϕr,s−1+ξr,sηr,s	̂r,s
) + 	̃r,s

(
ξ2r,sηr,s − ˙̂

	r,s
)

+1

4
cr,s

l∑

i=1

s+1∑

j=1

ξ2i, j , (37)

where pr,s is a positive design parameter, cr,s =
1
2 [(s2 + s − 2)(l + r) + 4] is a constant, and ηr,s(·)
is the following known function

ηr,s(·) =
r−1∑

i=1

s+1∑

j=1

(1+ ψ2
i, j−1)γ

2
r,s

+
l∑

i=r

s∑

j=1

(1+ ψ2
i, j−1)γ

2
r,s

+
r∑

i=1

s−1∑

j=1

(
∂ψr,s−1

∂	̂i, j

)2
˙̂
	2

i, j

+
l∑

i=r+1

s−2∑

j=1

(
∂ψr,s−2

∂	̂i, j

)2
˙̂
	2

i, j

+
r−1∑

i=1

s∑

j=1

ω̄
(r,s)
i, j λi, j +

l∑

i=r

s−1∑

j=1

ω̄
(r,s)
i, j λi, j .

(38)

Choosing the following virtual control signal αr,s
and adaptive law 	̂r,s

αr,s = − (ξr,s−1ϕr,s−1 + pr,sξr,s + ξr,sηr,s	̂r,s)ξr,s

ξr,sϕr,s

� −ξr,sψr,s, (39)
˙̂
	r,s = ξ2r,sηr,s, (40)

where ψr,s(·)= 1
ξr,sϕr,s

(
ξr,s−1ϕr,s−1+ pr,sξr,s+ξr,sηr,s

	̂r,s
)
, we have

V̇r,s ≤−
s∑

j=1

pr, jξ
2
r, j +ξr,sϕr,sξr,s+1+ 1

4
cr,s

l∑

i=1

s+1∑

j=1

ξ2i, j .

(41)

So far, we have proved that the inequality (32) still
holds in Step s.
Step n: For the n-th differential equation of the r -th
subsystem, select the following candidate Lyapunov
function

Vr,n = Vr,n−1 + 1

2k∗
r,n

ξ2r,n + 1

2
	̃2

r,n, (42)

Design actual adaptive control signals

ur = −ξr,nψr,n, (43)
˙̂
	r,n = ξ2r,nηr,n, (44)

to ensure

V̇r,n ≤
n∑

j=1

pr, jξ
2
r, j + 1

4
cr,n

l∑

i=1

n∑

j=1

ξ2i, j , (45)

where cr,n = (n2+n−2)(l+r)+4
2 is a constant, pr,n is a

positive design parameter,ηr,n(·) andψr,n(·) are known
functions as follows

ηr,n(·) =
l∑

i=r

n∑

j=1

(1+ψ2
i, j−1)γ

2
r,n

+
r∑

i=1

n−1∑

j=1

(
∂ψr,n−1

∂	̂i, j

)2
˙̂
	2

i, j

+
l∑

i=r+1

n−2∑

j=1

(
∂ψr,n−1

∂	̂i, j

)2
˙̂
	2

i, j

+
r−1∑

i=1

n∑

j=1

ω̄
(r,n)
i, j λi, j

+
l∑

i=r

n−1∑

j=1

ω̄
(r,n)
i, j λi, j , (46)

ψr,n(·)= ξr,n−1ϕr,n−1+ pr,nξr,n+ξr,nηr,n	̂r,n

ξr,nϕr,n
. (47)

Remark 4 During the control design procedure of the
r -th subsystem, r = 1, . . . , l, the virtual control signals
αr,1, . . . , αr,n−1 will be designed in in the first n − 1
steps, and the actual control signal ur will be designed
in Step n. First, at the first step designing α1,1 for the
first subsystem, then designing α2,1 for the second sub-
system, and then designing αr,1 for the r -th subsystem
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Fig. 1 The design order of adaptive control scheme

in turn. After the first step of all the subsystems have
been designed, the second step is carried out for the
first subsystem, and then the second step is carried out
for the second subsystem, and so on in turn. Finally, the
actual controller u1 is designed at the n-th step for the
first subsystem, and the actual controller ur at the n-th
step for the r -th subsystem subsystem. A step-by-step
algorithm during the control design is shown in Fig. 1.

Remark 5 In the design process, the difference with
SISO systems is that there will be some state variables
in the other subsystems, which will be scaled up using
Young’s inequality, and finally dealt with in the last
step.

Remark 6 There are a lot of design parameters used in
the design process, and these design parameters can be
conveniently used to adjust the control speed accord-
ing to practical situation. For example, if follows from
(45) that the larger the design parameter pr, j , the faster
the convergence speed, which will be verified in the
simulation section.

3.4 Stability analysis
The following theorem gives a globally bounded

result of closed-loop signals and parameter estimations
and an asymptotic convergence property of system state
variables.

Theorem 1 For the nonlinearly parametrized mul-
tivariable system (1), the state-feedback controller
ur , r = 1, . . . , l, defined in (43) and the adaptive law
˙̂
	r, j , r = 1, . . . , l, j = 1, . . . , n, defined in (20), (29),
(40), (44), ensures that all closed-loop signals are glob-
ally bounded and system state variables asymptotically
converge to origin.

Proof : Globally bounded result. For the multivariable
system (1) with nonlinear parametrization, the Lya-
punov function is chosen as

V =
l∑

r=1

Vr,n =
l∑

r=1

n∑

j=1

(
1

2k∗
r, j

ξ2r, j + 1

2
	̃2

r, j

)

, (48)

then according to the control design procedure,we have

V̇ =
l∑

r=1

V̇r,n ≤ −
l∑

r=1

n∑

j=1

pr, jξ
2
r, j

+1

4

l∑

r=1

cr,n

l∑

i=1

n∑

j=1

ξ2i, j

≤ −
l∑

r=1

n∑

j=1

(

pr, j − 1

4

l∑

r=1

cr,n

)

ξ2r, j ,

(49)

where cr,n is a known constant, and pr, j is a design
parameter satisfying pr, j > 1

4

∑l
r=1 cr,n .

We choose a new design parameter pr, j such that

pr, j = 1

4

l∑

r=1

cr,n + C >
1

4

l∑

r=1

cr,n, (50)

where C is a positive constant. Thus, inequality (49)
can be written as

V̇ ≤ −C
l∑

r=1

n∑

j=1

ξ2r, j ≤ 0. (51)

Because V ≥ 0 and V̇ ≤ 0, and V (t) is a nonin-
creasing function of t , we have

l∑

r=1

n∑

j=1

(
1

2k∗
r, j

ξ2r, j (t) + 1

2
	̃2

r, j (t)

)

= V (t) < V (0)

=
l∑

r=1

n∑

j=1

(
1

2k∗
r, j

ξ2r, j (0) + 1

2
	̃2

r, j (0)

)

< ∞, (52)

where ξr, j (0) and 	̃r, j (0) are bounded, so we can
conclude closed-loop signals ξr, j (t) and 	̃r, j (t) are
bounded. According to 	̃r, j (t) = 	∗

r, j (t) − 	̂r, j (t)

and boundness of 	̃r, j (t), we have 	̂r, j (t) is bounded.
Therefore, the closed-loop system signals and param-
eter estimations are globally bounded.

Asymptotical convergence result.According to coordi-
nate transformations, the smoothness of the state error
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Fig. 2 Two inverted pendulums on carts

ξr, j and the virtual control signal αr, j−1 ensure the
global boundedness of the state variable zr, j . More-
over, the boundedness of zr, j and 	̂r, j implies bound-

edness of their derivatives żr, j and
˙̂
	r, j , where r =

1, . . . , l, j = 1, . . . , n, so that ξ̇r, j is also bounded
according to coordinate transformations. Due to (51)
and (52), we have
∫ ∞

0
ξ2r, j (t)dt ≤−

∫ ∞

0
V̇ (t)dt

=V (0)− lim
t→∞V (t)< ∞. (52)

According to Barbalat’s Lemma, we obtain limt→∞
ξr, j (t) = 0, thereby we have limt→∞ zr, j (t) = 0 from
coordinate transformations. Therefore, the state vari-
ables of the system asymptotically converge to the ori-
gin. 
�

4 Simulation study

In this section, we respectively give a physical simula-
tion and a numerical simulation to verify the rationality
of the designed adaptive control scheme.
4.1 A physical simulation

A system constructed by two inverted pendulums
and two carts is considered [21]. The configuration is
shown in Fig. 2.
Plant model. The dynamical equation of the inverted
pendulum can be described as:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̈1 = g
cl θ1 + 1

cml2
u1 + k[a(t)−cl]

cml2
[−a(t)θ1 + a(t)θ2

− χ1 + χ2] − m
M θ̇21 sin(θ1),

θ̈2 = g
cl θ2 + 1

cml2
u2 + k[a(t)−cl]

cml2
[−a(t)θ2 + a(t)θ1

+ χ1 − χ2] − m
M θ̇22 sin(θ2),

(53)

where θ1 and θ2 represent the angles of pendulums, θ̇1
and θ̇2 separately denote the angular velocities of the
two pendulums. u1 and u2 denote the control torque
imposed to the pendulums, k and g denote the spring
andgravity constants, respectively. Thependulummass
is denoted by m, and the car mass is denoted by M .
χ1 and χ2 represent the trajectories of two carts, and
c = m

M+m is an intermediate constant. a(t) is a function
with t as an independent variable and a(t) ∈ [0, l]. Due
to external environment, sensor aging and poor sensor
contact, the sensors may fail during the measurement
[22]. Therefore, the state variables θ1 and θ2 can be
diagnosed by the following formulas β1 = k1θ1 and
β2 = k2θ2, where k1 ∈ (0, 1] and k2 ∈ (0, 1] are
unknown parameters.
Simulation system. Define x11 = β1, x12 = β̇1,
x21 = β2, x22 = β̇2, then the dynamic equation can
be represented by the following equations
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ11 = b11x12,

ẋ12 = b12u1 + f12,

ẋ21 = b21x22,

ẋ22 = b22u2 + f22,

(54)

where b11 = 1, b12 = k1
cml2

, b21 = 1, b22 =
k2

cml2
, f12 = g

cl x11 − m
Mk1

x212sin
(

1
k1
x11

)
+ k1k[a(t)−cl]

cml2[−a(t)
k1

x11 + a(t)
k2

x21 − χ1 + χ2

]
, f22 = g

cl x21 − m
Mk2

x222sin
(

1
k2
x21

)
+ k2k[a(t)−cl]

cml2

[−a(t)
k2

x21+ a(t)
k1

x11+χ1−
χ2

]
. Because k1 ∈ (0, 1] and k2 ∈ (0, 1] are unknown

parameters, f12 and f22 are nonlinearly parametrized
dynamics. Together with the form of control coeffi-
cients b12 and b22, the system (54) satisfies character-
istics of the system (1) studied above.
Simulation results. Define the following coordinate
transformation

ξ11 = x11, ξ12 = x12 − α11,

ξ21 = x21, ξ22 = x22 − α21. (55)

From the above adaptive control design procedure,
virtual controllers are designed as α11 = −ξ11ψ11,
α21 = −ξ21ψ21, and the actual controllers and the
adaptive laws are designed as

u1 = − 1

b12
(ξ11b11 + p12ξ12 + ξ12η12	̂12), (56)

u2 = − 1

b22
(ξ21b21 + p22ξ22 + ξ22η22	̂22), (57)

˙̂
	12 = ξ212η12, (58)
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Fig. 3 The trajectories of state variables x11, x12, x21, x22

Fig. 4 The trajectories of parameter estimates 	̂12 and 	̂22

˙̂
	22 = ξ222η22, (59)

where ψ11 = 1
b11

p11, ψ21 = 1
b21

p21, η12 = ψ2
11(1 +

ψ2
11)b

2
11+γ 2

12,η22 = ψ2
21(1+ψ2

21)b
2
21+γ 2

22,γ12 = g
cl +

m
M x212 + k(1−cl)(3+L)

cml2
, γ22 = g

cl + m
M x222 + k(1−cl)(3+L)

cml2
are known parameters.

For simulation, the values of system parameters are
M = 10kg, m = 10 kg, k = 1N/m, l = 1m,
g = 1N , c = 1

2 , a(t) = sin(5t), χ1 = sin(2t),
χ2 = sin(3t) + 2. The initial condition is cho-
sen as x11(0) = 5, x12(0) = 4, x21(0) = 2,
x22(0) = 6, 	̂12(0) = 2, 	̂22(0) = 5. Choose three
sets of controller parameters [p11, p12, p21, p22]T as
[ 74 , 5

4 ,
7
4 ,

5
4 ]T , [3, 5, 5, 3]T , [10, 8, 10, 6]T . Select dif-

ferent parameters and comparing the simulation results
in the figure below to verify the description of Remark
6. In the case of three different controller param-
eters, the simulation results of the state variables
x11, x12, x21, x22 are shown in Fig. 3, the trajectories of
the parameter estimates 	12,	22 are shown in Fig. 4
and the trajectories of the system inputs u1, u2 are
shown in Fig. 5.

All simulation results verify the desired control per-
formance: the state variables of the system are globally
bounded and asymptotically converge to the origin and
the convergence rate is affected by design parameters.
To better demonstrate the effectiveness of the control
scheme for such systems, the following numerical sim-
ulation is considered.

Fig. 5 The trajectories of control inputs u1 and u2

4.2 A numerical simulation
The nonlinearly parametrized system with two sub-

systems is considered
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ11 = g11x12 + 3sin(θ11x11),

ẋ12 = g12u1 + 2θ12x211x21,

ẋ21 = g21x22 + 4sin(θ21x11x21),

ẋ22 = g22u2 + 2x21sin(θ22x22) + λx21e−θ22x22 ,

(60)

where g11 = a(2 + x211), g12 = b(2 + x211x
2
21),

g21 = c(1 + 2x221), g22 = d(1 + 4x212x
2
22), a,

b, c, d, λ, θ11, θ12, θ21, θ22 are unknown parame-
ters, and f11 = 3sin(θ11x11), f12 = 2θ12x211x21,
f21 = 4sin(θ21x11x21), f22 = 2x21sin

(θ22x22) + λx21e−θ22x22 , [ f11(0), f12(0), f21(0),
f22(0)] = [0, 0, 0, 0]. Coordinate transformations are
defined as

ξ11 = x11, ξ12 = x12 − α11,

ξ21 = x21, ξ22 = x22 − α21. (61)

According to the above controller design process,
control inputs and adaptive laws are designed as

u1 = − 1

ϕ12
(ξ11ϕ11 + p12ξ12 + ξ12η12	̂12), (62)

u2 = − 1

ϕ22
(ξ21ϕ21 + p22ξ22 + ξ22η22	̂22), (63)

˙̂
	11 = ξ211γ

2
11, (64)

˙̂
	12 = ξ212η12, (65)
˙̂
	21 = ξ221γ

2
21, (66)

˙̂
	22 = ξ222η22, (67)

where virtual controllers α11 = −ξ11ψ11,α21 =
−ξ21ψ21,ψ11 = 1

ϕ11
(p11 +γ 2

11	̂11),ψ21 = 1
ϕ21

(p21 +
γ 2
21	̂21), ϕ11 = 2 + x211, ϕ12 = 2 + x211x

2
21, ϕ21 =

1+2x221, ϕ22 = 1+4x212x
2
22, γ11 = 3, γ12 = 2x211 +1,
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Fig. 6 The trajectories of state variables with two methods

γ21 = 4
√

x221 + 1, γ22 = 2
√

x222 + 1+ 0.01(1+ ex
2
22),

η12 = γ 2
12+

(
∂α11
∂x11

)2(
(1+ψ2

11)ϕ
2
11+γ 2

11

)+
(

∂ψ11

∂	̂11

˙̂
	11

)2
,

and η22 = γ 2
22 + (

∂α21
∂x21

)2(
(1 + ψ2

21)ϕ
2
21 + γ 2

21

) +
(

∂ψ21

∂	̂21

˙̂
	21

)2
.

We set initial conditions x11 = 6, x12 = 3, x21 =
0.1, x22 = 0.1, 	̂11 = 2, 	̂12 = 1, 	̂21 = 1, 	̂22 = 3,
choose system parameters a = 2, b = 2, c = 3, d = 1,
λ = 0.01, θ11 = 1.5, θ12 = 3, θ21 = 2, θ22 = 2,
and design parameters p11 = 5

2 , p12 = 5
4 , p21 = 2,

p22 = 5
4 . The simulation results are shown in the red

solid line in Fig. 6, 7 and 8, it is obvious that all the
states are asymptotically converging to origin.

Under the same initial conditions, using a neural
network control method, the controllers are designed
as u1c = − 1

g12
(ξ11g11 + 	̂12cφ12 − α̇11), u2c =

− 1
g22

(ξ21g21 + 	̂22cφ22 − α̇21), and the adaptive laws

are designed as ˙̂
	11c = ξ11φ11 − σ11	̂11c,

˙̂
	12c =

ξ12φ12 − σ12	̂12c,
˙̂
	21c = ξ21φ21 − σ21	̂21c,

˙̂
	22c =

ξ22φ22 − σ22	̂22c, where φ11, φ12, φ21, φ22 are chosen
as the commonly usedGaussian functions, andσ11,σ12,
σ21, σ22 are positive design parameters. The simulation
results are shown in the blue dashed line in Fig. 6, 7.
8. We can clearly see from the figures that the control
method of this paper can make state variables globally
asymptotic converge to the origin, while the method of
the neural network can only converge to an interval, so
the control method of this paper is better.

5 Conclusion

A new adaptive method is used to effectively solve a
class of uncertain multivariate systems with nonlinear
parametrization in this paper. Adaptive controllers are

Fig. 7 The trajectories of parameter estimates with twomethods

Fig. 8 The trajectories of control inputs with two methods

designed so that all state variables of a closed-loop sys-
tem are globally bounded and asymptotic convergence
to the origin. The results show that by adjusting design
parameters appropriately, the degree of convergence of
the system can be improved. The simulation result ver-
ifies the rationality of the proposed control method on
the system. In future work, we will solve a class of
adaptive control problems for the same system when
system state variables are unmeasurable.
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