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Abstract In the era of sleek, super slender sus-
pension bridges, facing the issue of stability against
dynamic wind actions represents an increasingly com-
plex challenge. Despite the significant progress over
the last decades, the impact of atmospheric turbulence
on bridge stability remains partially not understood,
evoking the need for innovative research approaches.
This study aims to address a gap in current research
by investigating the random flutter stability associated
with variations in the angle of attack due to turbulence,
which has not formally been addressed yet. The present
investigation employs the 2D rational function approx-
imation model to express self-excited forces in a tur-
bulent flow. The application of this type of models to
bridge dynamics yields a viscoelastic coupled dynamic
system characterized by memory effects and driven by
broad-band long-time-scale noise, described here by a
linear homogeneous time-variant differential equation,
which shows apparent nonlinear features, and which
has rarely been matter of research. Utilizing a Monte
Carlomethodology, this work innovates in applying the
largest Lyapunov exponent (LE) and the moment Lya-
punov exponents (MLE) to study bridge random flutter
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stability. The calculation of LE andMLE under diverse
turbulent wind conditions uncovers lower flutter sta-
bility than without turbulence effects. In most cases,
sample and low-order p-thmoment stability thresholds
closely align with the bridge dynamic response pattern;
therefore, the flutter critical wind speed is unequivo-
cal. However, under certain turbulence scenarios, it is
necessary to resort to MLE for a complete description
of stability, evoking some additional consideration of
which statistical moments should be considered for the
engineering assessment of the flutter limit. Finally, this
work provides a qualitative insight into the instability
mechanisms by approximating the random paramet-
ric excitation with a sinusoidal gust and evaluating the
time-periodic system stability via Floquet theory.

Keywords Lyapunov exponents · Moment Lyapunov
exponents · Turbulence · Random flutter · Parametric
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1 Introduction

The quest to span ever greater distances through the
construction of super-long suspension bridges has led
civil engineering into previously uncharted territories.
Notably, the evolution from the Storebælt Bridge (Den-
mark), once representing a benchmark for aerodynam-
ically streamlined long-span bridges, to the recently
completed Çanakkale Bridge (Turkey) illustrates a sig-
nificant progression in engineering ambition and capa-
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bility [1]. The Çanakkale Bridge, with its main span
exceeding that of Storebælt by about 25%, set a new
standard for what is achievable with a new concept of
streamlined bridge cross sections. However, the pro-
posed spans for projects like the Sulafjørden Bridge
(Norway; for information about the Coastal Highway
Route E39 project, see [2]) and Messina Strait Bridge
(Italy; see, e.g., [3]), potentially surpassing 3000m, are
poised to redefine even further these standards. This
jump (Messina Bridge would be 63% longer than the
Çanakkale Bridge) signifies a previously unimaginable
change of perspective concerning the complex chal-
lenges ofwind-structure interaction. Indeed, as the span
lengths of bridges venture into new magnitudes, the
implications of nonlinear aeroelastic effects may inten-
sify, transitioning from mere considerations to poten-
tially dominant factors that govern structural behav-
ior, evoking a deeper understanding and innovative
approaches to ensure their safe design.

Particular attention is given to wind-induced catas-
trophic instabilities, such as classical flutter for long-
span suspension bridges equipped with modern aero-
dynamic deck cross sections. Determining the flutter
stability threshold is often crucial before evaluating
the dynamic response to turbulent wind (buffeting)
of long-span suspension bridges. Indeed, it stands as
a primary concern for designers, who need to make
decisions regarding the aerodynamic feasibility of the
bridge. Moreover, the importance of an accurate esti-
mate of flutter critical wind velocity is underscored by
codes and design specifications, which establish differ-
ent return periods to check bridge buffeting response
and flutter stability (see, e.g., [4,5]).

Traditionally, the analysis of bridge structures
exposed to turbulent wind has been hinged on the lin-
earization of self-excited forces (i.e., motion-induced
aerodynamic forces), assuming small oscillations of the
bridge around a steady state, and often disregarding the
effects of turbulence on the bridge aeroelastic behavior.
These forcemodels canbe either steadyor unsteady and
are responsible for aeroelastic instabilities, in particu-
lar flutter. From a mathematical point of view, flutter is
a Hopf bifurcation, marked by a pair of complex conju-
gate eigenvalues, the real part of which becomes pos-
itive when reaching the critical wind velocity. Based
on the linear assumption, past research has primar-
ily concentrated on incipient and deterministic flut-
ter of bridges ([6–10] among others), in the wake of
the pioneering works in aeronautics, where this prob-

lem has become well-known for airplane wings since
the 1920s [11,12].However, experimental observations
have shown that the post-critical flutter response tends
to evolve towards limit cycles, after either subcritical
(see, e.g., [13,14] for a flat plate and a bridge, respec-
tively) or supercritical bifurcations (see, e.g., [15,16]
for some bridges). Furthermore, the onset of flutter
instability is often significantly influenced by fluctu-
ations in wind velocity due to turbulence, as observed
by Diana [17]. These insights have led to the emer-
gence of two distinct branches of aerodynamic force
models that aim at including such nonlinearities. This
work specifically focuses on the nonlinearity resulting
from turbulence.

Synoptic turbulent wind is typically represented
as a superposition of a mean velocity and fluctuat-
ing components across three directions, often mod-
eled as broad-band multivariate ergodic random pro-
cesses. Nakamura and Ozono [18] made a distinction
between the effects of small-scale turbulence, whose
size is comparable to the thickness of the shear layers,
and large-scale turbulence, whose size is larger than
the body dimensions. Small scales may have an impact
on the general bridge section aerodynamics, affect-
ing shear layer separation (see also [19,20]), while
large scales can be seen by the body as an instanta-
neous change in kinetic pressure and wind slope. The
latter may produce a random variation over time in
the fluid–structure interaction parameters, particularly
when self-excited forces exhibit a strong sensitivity to
the mean angle of attack (e.g., [21–24]), resulting in
time-varying dynamic systems, which can be suscepti-
ble to instabilities such as randomflutter (e.g., [25,26]).

Since the early 1980s, there has been a focused
investigation into the parametric effects caused by
kinetic pressure variations due to longitudinal turbu-
lence, starting with the seminal work of Lin and Ari-
aratnam in 1980 [27]. Their work delved into stabil-
ity against torsional random flutter of bridges, leading
to the assessment of statistical moment boundaries. In
their model, turbulence was represented as a white-
noise randomness in wind velocity magnitude, assum-
ing the bridge response as a Markov vector. This sim-
plification aids in the stability analysis of a diffusion
process described by an Itô stochastic differential equa-
tion (through Stratonovich or Wong and Zakai con-
version rules [28]). Later, expanding the analysis to
aerodynamically coupled two-degree-of-freedom sys-
tems (including vertical bending and torsion) andmod-
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eling the turbulence-induced noise as an Ornstein–
Uhlenbeck process, moment stability was extensively
studied. In particular, Bucher and Lin [29,30] and Lin
and Li [31] highlighted the energy transfer between
modes due to noise in the self-excited forces, which,
in the considered cases, was beneficial for system sta-
bility. However, these studies also demonstrated that
turbulence can both stabilize and destabilize structural
modes, depending on the aerodynamics of the bridge
section (see also [32]). In the early 2000s, Poirel and
Price [25,33] assessed the random flutter stability of
a two-degree-of-freedom airfoil by numerically cal-
culating the largest Lyapunov exponent, which is a
measure of sample stability. Later, they explored how
stochastic stability, in terms of phenomenological Hopf
bifurcation (P-bifurcation, [34,35]), is affected by tur-
bulence characteristics such as intensity and integral
length scale, along with structural parameters and an
additional stiffness nonlinearity. They found that an
increase in turbulence noise in the self-excited forces
tends to bring forward the onset of sample stability and
modify the shape of the joint probability density func-
tion (PDF) of the airfoil pitching response at the limit
cycle oscillation.

Subsequent research has emphasized the crucial
role of the time-varying angle of attack induced by
atmospheric turbulence. Indeed, large-scale turbulence
can slowly (relatively to the structural time scale)
alter the wind incidence, thereby affecting the aero-
dynamics of the bridge section and, consequently,
the self-excited forces. Examples of studies explor-
ing such nonlinear effects are the works by Diana
et al. [21], Chen and Kareem [36], and Barni et al.
[22,37]. These studies differ in the model used to trans-
late the slowly-varying turbulence-induced modula-
tion of unsteady self-excited forces from the frequency
domain, where experimental aerodynamic derivatives
are usually available, to the time domain. Specifically,
rheological models are employed in [21,23,38] and
rational functions in [22,36,37]. Notably, the model
presented and experimentally validated by Barni et
al. [22,37] relies on a linear time-variant framework.
Indeed, it accounts for the variation in the angle of
attack due to turbulence through the coefficients of
the rational approximation of the self-excited force
transfer function. In this case, the angle of attack also
alters the terms related to fluid memory in the con-
volution integrals, introducing an additional layer of
complexity compared to the aerodynamic force model

used by Poirel and Price in their studies on airfoils
[25,33–35]. Building on thismodel, Barni andMannini
[39] provided additional insight into the stabilizing and
destabilizing roles of large-scale turbulence, compre-
hensively addressing the parametric excitation related
to time-variations in kinetic pressure, angle of attack
and reduced velocity. They found that the turbulence-
induced stabilizing or destabilizing effects primarily
arise from the so-called average parametric effect asso-
ciated with the variations in the angle of attack. This
effect introduces time-invariant aerodynamic damping
and stiffness, which are not affected by the spatial cor-
relation of turbulence. The study also discusses the
role played by parametric resonances in the first tor-
sional mode and by resonances of combination type
between vertical bending and torsional modes, which
are however generally minor in most turbulence sce-
narios, especially up to a certain value of turbulence
intensity. Finally, this analysis clearly highlights how
such time-variant linear systemsmarkedly exhibit some
classical features typical of nonlinear systems.

Despite the availability for over 20years of mod-
els that account for the effects of turbulence-induced
angle of attack on bridge aeroelasticity, methods to for-
mally evaluate random flutter stability have not been
explored in this context yet. This gap likely arises from
the additional complexity in self-excited force mod-
els introduced by a time-variant angle of attack, which
makes the determination of statistical moment stability
an intricate task, in contrast to the relatively straight-
forward cases involving only the variations in the wind
kinetic pressure. This work, building upon the self-
excited forcemodel set up inBarni et al. [22,37] and the
physical understanding of the aeroelastic behaviour of
bridges in turbulent flow gained in Barni and Mannini
[39], adresses for the first time the problem of stabil-
ity in a rigorous formal way. Indeed, it represents a
first endeavor of an extensive Lyapunov stability anal-
ysis, incorporating both the largest Lyapunov exponent
(LE) andmomentLyapunovexponents (MLE), through
Monte Carlo methods for a suspension bridge exhibit-
ing a nonlinear aeroelastic behavior due to changes in
the angle of attack induced by turbulence. MLE com-
prehensively characterize the stability of a noisy sys-
tem, as they can detect situations where, though almost
surely stable, an unacceptable transient response can
occur due to the asymptotic divergence of some sta-
tistical moments. In different contexts, these mathe-
matical tools have already been applied to study the
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Fig. 1 Sketch of the
Hardanger Bridge section
with the reference system
for displacements, forces
and wind velocities

stability of coupled viscoelastic systems under para-
metric noise excitation, but examples of such MLE
applications remain scarce in the literature. Among
these, remarkable contributions are those by Doyle and
Sri Namachchivaya [40] and Sri Namachchivaya et al.
[41], who examined the p-th moment stability through
moment Lyapunov exponents (MLE) in a two-degree-
of-freedom system with stiffness coupling, parametri-
cally excited by a small noise characterized by a real-
istic spectrum. Liu et al. [42] employed MLE to study
the stochastic stability of coupled elastic systems with
non-viscous damping, driven by a white noise. Addi-
tionally,MLEwere calculated byLi andLiu [43] for the
airfoil model previously considered in [34]. However,
the stochastic stability of coupled viscoelastic systems
with time-variant memory, such as a suspension bridge
under turbulentwind, has never been rigorously studied
with these methods.

In this work, a simplified equivalent 2D model of
the Hardanger Bridge, in Norway, considering its three
sectional degrees of freedom (lateral and vertical dis-
placements, and torsional rotation), is assumed as case
study. Time-variations in reduced velocity and kinetic
pressure due to turbulence are neglected, as they have a
minimal impact on theHardanger Bridge stability com-
pared to time-variations in the angle of attack. Sample
and p-th moment stability are discussed under various
turbulent wind scenarios, modeling the flow velocity
fluctuations as Ornstein–Uhlenbeck processes. Finally,
for the sake of physical understanding of stochastic sta-
bility results, an analysis of Floquet exponents is con-
ducted, focusing on a simplified model of turbulence
parametric excitation.

2 Background: stochastic state-space model

The self-excited forces acting on a bridge deck are typ-
ically expressed using the mixed time-frequency for-

mulation, which employs aerodynamic derivatives as
suggested by Scanlan in [6]. This linearized model is
valid for small-amplitude harmonic motion and incor-
porates the unsteadiness resulting from fluid memory.
Therefore, by referencing the force system illustrated
in Fig. 1, the self-excited force vector can be expressed
as follows:

qse(K , t) = 1

2
ρV 2

mB

[
Cae

ṙ
Vm

+ Kaer
]

(1)

where

qse = [
qy qz qθ

]T
, r = [

y z θ
]T

Cae =
⎡
⎣ K P∗

1 K P∗
5 BK P∗

2
K H∗

5 K H∗
1 BK H∗

2
BK A∗

5 BK A∗
1 B2K A∗

2

⎤
⎦ ,

Kae =
⎡
⎣ K 2P∗

4 K 2P∗
6 BK 2P∗

3
K 2H∗

6 K 2H∗
4 BK 2H∗

3
BK 2A∗

6 BK 2A∗
4 B2K 2A∗

3

⎤
⎦

Here Vm is the mean wind velocity, ρ is the air den-
sity, B is the bridge cross-section width, and r rep-
resents the vector of deck displacements (see Fig. 1).
Pj , Hj and A j with j ∈ {1, 2, . . . , 6} are the dimen-
sionless aerodynamic derivatives, which depend on the
reduced frequency of oscillation K = ωB/Vm , where
ω is the circular frequency of oscillation, and on the
mean angle of attack. These coefficients are usually
measured through wind tunnel tests. qy , qz and qθ are
the self-excited drag, lift and moment. Alternatively,
for any motion, Eq. (1) can be transferred in the fre-
quency domain and expressed solely as a function of
K (e.g., [44]).

Aiming at a time-domain formulation of self-excited
forces that accounts for the effect of large-scale turbu-
lence, the 2D rational function approximation (RFA)
model, proposed by Barni et al. [22], postulates that
the transfer function between self-excited forces and
bridge motion is modulated over time in a quasi-steady

123



Lyapunov stability of suspension... 16715

fashion by the angle of attack resulting from low-
frequency wind velocity fluctuations. Although these
forces are assumed to be linear with respect to the
bridge motion, time-varying parameters are introduced
as a function of the angle of attack. This marks a signif-
icant shift from conventional models and implies non-
linear features in the bridge dynamic behavior and sta-
bility, as will be highlighted later in this work. It is
important to note that the turbulent wind field exhibits
not only temporal but also spatial variability (multivari-
ate process), leading to randomfluctuations of the angle
of attack along the length of the bridge girder. This spa-
tial variation is not accounted for in the simplified 2D
bridge model considered here (refer to Fig. 1); thus,
compared to [37], the degrees of freedom in modeling
both the structural behavior and the self-excited forces
are significantly reduced, along with the computational
effort of the analysis. However, this choice is justified
by the findings in [39], which demonstrate that the par-
tial correlation of turbulent fluctuations has a negligible
impact on self-excited forces and bridge stability. Con-
versely, the assumed perfect correlation of the buffeting
load (external forces) leads to a strong overestimation
of the dynamic response to turbulent wind. However,
as will be discussed later, this does not pose any issues
in terms of stability.

According to the 2D RFA model, the time-domain
self-excited forces read:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qse (α, t)

= 1
2ρV 2

m

[
A1(α)r + A2(α)ṙ + ∑N−2

l=1 Al+2(α)�l

]

�̇l = −dl(α) VmB �l + ṙ

(2)

where

Al =
⎡
⎢⎣

aζ
l,Dy(α) aζ

l,Dz(α) Baζ
l,Dθ (α)

aζ
l,Ly(α) aζ

l,Lz(α) Baζ
l,Lθ (α)

Baζ
l,My(α) Baζ

l,Mz(α) B2aζ
l,Mθ (α)

⎤
⎥⎦ , dl = d ι

l (α)

Here Al , l ∈ {1, 2, . . . , N }, where N − 2 is the
number of additional aeroelastic states, and dl , l ∈
{1, 2, . . . , N −2}, represent the rational function coef-
ficients, which are polynomials (ζ and ι are the poly-
nomial degrees) of the time-variant angle of attack
α = α(t). �l ∈ R

3, l ∈ {1, 2, . . . , N − 2}, repre-
sent the additional aeroelastic states used to account
for fluid memory effects, which are defined through a
time-varying convolution:

�l =
∫ t

−∞
exp

[
−dl(α)

Vm
B

(t − τ)

]
ṙ dτ (3)

In this model, the angle of attack is exclusively asso-
ciated with turbulence, and therefore given by α(t) =
arctan [w(t)/(Vm + u(t))], where u(t) and w(t) are
the longitudinal and vertical turbulent wind velocity
components, respectively. In contrast, the contributions
from bridge torsional motion are considered negligible
under stable conditions [36,37,45].

For a three-degree-of-freedom dynamic system, the
equations of motion can be written in a matrix form as
follows:

r̈ = −M−1
{[

C + Ĉae(α)
]
ṙ +

[
K + K̂ae(α)

]
r

−1

2
ρV 2

m

N−2∑
l=1

Al+2(α)�l − qb

}
(4)

where

Ĉae(α) = −1

2
ρV 2

mA2(α) ; K̂ae(α) = −1

2
ρV 2

mA1(α)

M, C, and K denote the structural mass, damping,
and stiffness matrices, respectively (see Sect. 4.1). In
contrast, Ĉae and K̂ae represent the memoryless com-
ponents of aerodynamic damping and stiffness that
directly stem from the RFA approximation. qb is an
external load vector. Therefore, applying the state-
space transformation γ 1 = r, γ 2 = ṙ and γ ad =
�l , l ∈ {1, 2, . . . , N − 2} to Eqs. (3) and (4), the fol-
lowing system is obtained:
⎡
⎣ γ̇ 1

γ̇ 2
γ̇ ad

⎤
⎦

=
⎡
⎣ 0 I 0

−M−1(K + K̂ae) −M−1(C + Ĉae) −M−1Qad

0 I Dad

⎤
⎦

⎡
⎣ γ 1

γ 2
γ ad

⎤
⎦ +

⎡
⎣ 0
M−1qb

0

⎤
⎦ (5)

where

Qad(α) = 1

2
ρV 2

m

[
A3(α) · · · Al+2(α)

] ∈ R
3×3(N−2)

Dad(α) = −Vm
B

dl I ∈ R
3(N−2)×3(N−2)

I ∈ R
3×3 is the identity matrix. Equation (5) can be

expressed in compact form as follows:

γ̇ (t) = �(α)γ (t) + Bqb(t) (6)

where γ ∈ R
3[2+(N−2)] represents the state vector,

�(α) ∈ R
3[2+(N−2)]×3[2+(N−2)] is the time-variant
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state matrix of the system, and B = [
0 M−1 0

]T ∈
R
3[2+(N−2)]×3 the input matrix. The system described

by Eq. (6) is linear time-variant, parametrically excited
by an ergodic process; therefore, according to themulti-
plicative ergodic theorem (see [46]), the stability of the
bridge does not depend on initial conditions. Clearly,
external forces (namely buffeting forces qb) do not
affect stability either. Consequently, the mean wind
velocity and the parametric effect of turbulence associ-
ated with the angle of attack emerges as the sole exter-
nal factor impacting system stability. Notably, as state
at the beginning of this section, this aspect is tradition-
ally viewed as a nonlinear feature, despite the system
linearity in terms of state variables.

Finally, it is worth noting that time-variations in
wind velocity magnitude could easily be incorporated
in the model, as shown in [39]. Nevertheless, as pre-
viously mentioned, this slight complication is disre-
garded here as it was found that such a parametric effect
is negligible for the dynamic response and stability of
theHardanger Bridge [39]. This canmainly be ascribed
to the nearly linear local pattern of bridge aerodynamic
derivatives associated with turbulence-induced varia-
tions in the reduced velocity, which produces a mini-
mal average parametric effect. However, for particular
trends of the aerodynamic derivatives or for very large,
often unrealistic, turbulence intensities, this effect, as
well as that of time-varying kinetic pressure, might
become significant, also due to the contribution of para-
metric resonances. A negligible impact of fluctuations
in the wind velocity magnitude has also been under-
scored byNovak andDavenport [47] for the transversal
stability of a square cylinder.

3 Stochastic stability

3.1 Lyapunov exponents

The flutter stability threshold of a time-invariant sys-
tem can be determined by the sign of the real part of
the eigenvalues of the state matrix. Nevertheless, for a
time-variant stochastic system like the one of Eq. (6),
these eigenvalues fluctuate over time, requiring more
complex stability considerations, such as sample or p-
th moment stability (see [48]). Pivotal in the analysis
of sample stability of stochastic systems perturbed by
ergodic processes is the concept of Lyapunov expo-
nents, which serve as a measure of the system response

sensitivity to a perturbation. Indeed, the Multiplica-
tive Ergodic Theorem [46] establishes the existence
of the Lyapunov exponents, which are deterministic
numbers even if the system is stochastic. For an n-
dimensional system, there exist n Lyapunov exponents,
represented as λ1, . . . , λn ∈ R, which delineate the
average exponential rates at which the n random sub-
spaces asymptotically either expand or contract. It is
a well-established fact that after a long-enough time
almost all sample trajectories will expand or contract
in the direction indicated by the largest LE, the sign
of which determines the sample or almost sure stabil-
ity of the system. The largest LE associated with the
homogeneous part of Eq. (6) is defines as:

λγ = lim
t→∞

1

t
log‖γ (t)‖ (7)

Anegative largest Lyapunov exponent indicates that the
system is stable with probability one, while a positive
exponentmeans that sooner or later the system response
will diverge.

LE can be derived using analytical methods, such as
the well-known Khasminskii procedure [49], applica-
ble to simple dynamic systems described by linear Itô
stochastic differential equations. However, the prob-
lem specified in Eq. (6) presents considerable com-
plexity for analytical approaches, involving multiple
degrees of freedom, aerodynamic coupling, and a com-
plex nonlinear relationship between the state matrix
and the stochastic angle of attack.Consequently, awell-
established numerical method is employed to calculate
the largest LE, following the algorithm described in
[50]. In this case, the numerical estimator for the largest
LE is defined as:

λ̂γ = 1

K
t
E

[
K∑

k=1

log‖xk‖
]

(8)

where E[·] denotes the expected value, K
t = T is the
observation time, which can be extended as necessary
to ensure the convergence of the estimator. The term
xk denotes the solution at the k-th timestep, normalized
with its Euclidean norm, so that xk resides on the unit
sphere S3[2+(N−2)]−1. Equation (8) is based on the fact
that the norm of the state vector at the K -th step is
calculated as the product of the norms of all preceding
steps:
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Fig. 2 Torsional dynamic bridge response due to unit-sphere initial conditions. The response refers to a turbulent characterized by
Iw = 12.5% and a non-dimensional frequency G̃θ

w,1 = 1.28

‖γ K ‖ = ‖xK ‖ · ‖xK−1‖ · . . . · ‖x1‖ =
K∏

k=1

‖xk‖

log‖γ K ‖ = log

[
K∏

k=1

‖xk‖
]

=
K∑

k=1

log‖xk‖

Such a normalization is instrumental to avoid data over-
flow or underflowwhen the system is strongly unstable
or stable, respectively.

3.2 Moment Lyapunov exponents

Even if the solution of Eq. (6) is almost surely stable
when λγ < 0, i.e., ‖γ (t)‖ → 0 as t → ∞ with proba-
bility one at the exponential rate λγ , it is still possible
for the system to exhibit other kinds of instabilities,
such as those related to the statistical moments of the
state vector norm. To visualize this behavior, Fig. 2
provides a preview of a case study that will be elab-
orated upon in Sect. 5. Figure 2a shows the torsional
response of the bridge that decays from unit-sphere
initial conditions with λγ < 0 for Vm = 52m/s and
grows with λγ > 0 for 64m/s (λγ = 0 for Vm =
61m/s). In contrast, Fig. 2b reports three samples of
the bridge response, all of which decay to zero as t
approaches infinity, but two of them exhibit a large
transient response. Therefore, since almost-sure con-
vergence does not necessarily imply moment conver-
gence, moment Lyapunov exponents (MLE) are essen-

tial for a comprehensive description of the stability of
the stochastic system in Eq. (6). These exponents are
defined as follows:

�γ (p) = lim
t→∞

1

t
log E

[‖γ (t)‖p] (9)

It is demonstrated in [51] that the slope of the MLE
function�γ (p) at p = 0,�′

γ (0), is equal to the largest
LE λγ .

To the best of the authors’ knowledge, there are
only two numerical methods for the evaluation of the
MLE using a Monte Carlo approach, both proposed
by Xie [52,53]. Although some studies in the literature
have applied the first method [52] to determineMLE in
the stability analysis of nonlinear aeroelastic systems
described by stochastic differential equations (see, e.g.,
[54,55]), Xie himself in [53] pointed out some issues
in estimating MLE with this approach. First, estimat-
ing the p-th statistical moment of the norm of the state
vector as a sample mean, the variance of the MLE esti-
mator is equal to the variance of the population divided
by the sample size. Consequently, when the abovemen-
tioned statistical moments are unstable, the variance of
‖γ ‖p significantly increases with time, and an accept-
able reduction of the variance of the MLE estimates
may require an unreasonably large number of samples.
Moreover, due to the finite length of floating-point rep-
resentation of numbers in computers, once the solution
of the equations attains very large values, the contribu-
tion of all other samples disappears. Therefore, a cor-
rect estimation ofMLEbecomes impossiblewhen there
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is a tendency to rare, extremely large, system response
(i.e., when the statistical moments of the norm of the
state vector tend to get unstable). These issues can-
not partially be circumvented by reducing the observa-
tion time (like, for instance, the example in Fig. 2 of
[53]) because atmospheric turbulence noise presents
time scales much longer than those characterizing the
associated dynamic system.

To circumvent these issues, this study utilizes the
method proposed by Xie and Huang [53] for numer-
ically estimating the MLE in linear homogeneous
stochastic systems. Since the abovementioned prob-
lems arise from large values of ‖γ ‖p, the statistics of
log‖γ ‖ are leveraged to estimate the MLE. If log‖γ ‖
is normally distributed for t → ∞, a good estimate
of the MLE can then be determined from the relation
below:

�̂γ (p) = 1

K
t

[
p μ̂T + 1

2
p2σ̂ 2

T

]
(10)

where

μ̂T = E
[
log‖γ̂ (T )‖] σ̂ 2

T = var
[
log‖γ̂ (T )‖]

Here, once again T = K
t is the observation time. For
a linear homogeneous system parametrically excited
by stationary ergodic diffusion processes, the normal
distribution of log‖γ ‖ and the validity of Eq. (10) is
guaranteed by some conditions, but these are difficult
to verify for a complex problem such as that governed
byEq. (6). However, as noted byArnold [48], such con-
ditions are commonly satisfied in engineering systems,
and Xie and Huang [53] suggest that the asymptotic
normality of logarithm of norm can also numerically
verified a posteriori (this will be done for our system
in Sect. 5.2).

The solution γ̂ (T ) of Eq. (6) is determined through
the normalization procedure outlined in [53] (Sect. 4,
Step 3) to prevent numerical underflowor overflow.The
MATLAB® codes employed for calculating both LE
and MLE for a linear stochastic differential equation
subject to random ergodic noise can be found in File
Exchange of MathWorks [56].

4 Case study

4.1 Hardanger Bridge

The previously outlined model is applied to evaluate
the aeroelastic stability of the Hardanger Bridge, sub-

Table 1 2D bridge model mechanical properties

Equivalent masses Value Frequencies Value (Hz)

my,eq 12,000kg/m fy 0.05

mz,eq 12,932kg/m fz 0.14

Iθ,eq 480,370kgm2/m fθ 0.36

jected to turbulent wind. This suspension bridge, cross-
ing theNorwegianHardanger Fjord, is characterized by
a main span of 1310m and towers reaching a height of
186m, establishing it asNorway’s longest andEurope’s
third-longest bridge. It also features a fairly streamlined
single-box steel deckwith a height of 3.2m and awidth
of 18.3 m.

The finite element model of the bridge, reported in
[37], was used to perform a modal analysis after the
application of dead loads to include the nonlinear stiff-
ness effect of the cables. Such a linearization is gen-
erally accepted for pre-critical analysis of suspension
bridges, as the increase in main cable stress, and con-
sequently in stiffness, due to wind is generally small
compared to the dead load stress conditions. More-
over, the relaxation of this simplified assumptionwould
strongly boost the computational cost of random flut-
ter assessment, possibly making Monte Carlo analy-
sis unfeasible. To further reduce the burden of the cal-
culations, the bridge is also modeled as an equivalent
two-dimensional dynamic systemwith three degrees of
freedom. ThemassmatrixM is composed by the equiv-
alentmasses, obtained by dividing themodalmasses by
the integral of the squared modal displacements along
the bridge deck. The three components of the vector
r signify the mode contributions to the deck response
at the points of maximum modal displacement. The
modes selected for this analysis are the first lateral, ver-
tical and torsional symmetricmodes (modes 1, 4 and 15
reported in [37]). The stiffness and damping matrices
K and C in Eq. (5) are deduced from the bridge modal
properties. A structural modal damping ratio of 0.5%
is assumed for all modes (Table 1).

M =
⎡
⎣my,eq 0 0

0 mz,eq 0
0 0 mθ,eq

⎤
⎦

The aerodynamic derivatives are necessary to iden-
tify the 2D RFA model. As detailed in [22], these
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Fig. 3 Lift and moment
aerodynamic derivatives
associated with the torsional
motion for the Hardanger
Bridge (see also [22]).
Results of wind tunnel
measurements are reported
as a function of the reduced
wind velocity Vr for various
mean angles of attack. 2D
RFA approximations are
also shown with dashed
lines

aerodynamic coefficients were measured in the wind
tunnel through forced-vibration tests for 11 different
mean angles of attack, ranging from −8◦ to +8◦,
and for reduced velocities (Vr = Vm/( f B), where f
denotes the vibration frequency) up to 55. The rational
functions associated with the self-excited force model
include N = 4 terms, which comprise two additional
aeroelastic states, and adopt 5th-order polynomials for
all Ai (i = 1, . . . , N ) and dl (l = 1, . . . , N − 2)
parameters appearing in Eq. (2). Consequently, a total
of 228 coefficients are determined, ensuring a high-
fidelity fit to the experimental data, as exemplified in
Fig. 3. If the angle of attack exceeds the available exper-
imental interval [−8, +8], the 2D RFA coefficients are
assumed to remain constant, equal to the values at either
−8◦ or +8◦.

Two critical observations emerge from Fig. 3.
Firstly, the aerodynamic coefficients exhibit a pro-
nounced dependence on the mean angle of attack, indi-
cating the potential for a significant time-variant behav-
ior of the dynamic system. Secondly, the crucial coef-
ficient A∗

2, intimately connected to the aerodynamic
damping in torsion, registers positive values (indica-
tive of negative aerodynamic damping contributions)
for mean angles of attack approximately exceeding 5◦.
This fact underscores the importance of incorporating
such nonlinearity in the self-excited force model.

4.2 Turbulent wind model

The characteristics ofwind turbulence at theHardanger
Bridge site and deck level are provided in terms of
Kaimal spectra:

f Si
σ 2
i

= δi f̂i

(1 + 1.56 f̂i )
5
3

f̂i = f Li

Vm
, i = u, w (11)

where f̂i = f Li
Vm

, i = u, w is the nondimensional
frequency, based on the mean wind velocity Vm , the
integral length scale of turbulence Li and the generic
frequency f (in Hz). σ 2

i is the variance of the associ-
ated process, in wind engineering often expressed in
terms of turbulence intensity Ii = σi/Vm . δu = 6.8
and δw = 9.4 are the spectral parameters suggested
for the specific bridge site [57]. Longitudinal and ver-
tical wind velocity fluctuations, u and w, respectively,
are assumed as statistically independent. To examine
the bridge stability behavior under different turbulent
wind conditions, a range of turbulence intensities and
integral length scales are considered. Specifically, the
longitudinal turbulence intensity Iu and integral length
scale Lu are let vary between 10% and 25%, and
between 100m and 300m, respectively. These intervals
reflect the common atmospheric turbulence parameters
for long-span suspension bridges like the Hardanger
Bridge. The vertical turbulence intensity and integral
length scale are set to be half and 10% of the longitudi-
nal values, respectively [57]. Finally, according to the
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wind fieldmeasurements in [57], an upwardmeanwind
velocity inclination of 2–2.5◦ relative to the horizon-
tal plane is typically observed at the Hardanger Bridge
site. Therefore, αm = 2.5◦ is assumed as the mean
value of α(t).

In the present work, in order to be in the conditions
to calculate theMLE according to Eq. (10), the longitu-
dinal and vertical turbulent wind velocity components,
which define the angle of attack α(t), are modeled as
Ornstein–Uhlenbeck (OU) processes. Then, the time
evolution of the turbulent velocity components is gov-
erned by the following equations:

du = −Gu,1u dt + Gu,2 dWu (12)

dw = −Gw,1w dt + Gw,2 dWw (13)

Wu and Ww represent two scalar Wiener noises with
unit variance. Gi,1 ≥ 0 (inverse of a time-scale) and
Gi,2 ≥ 0 (diffusion), where i ∈ {u, w}, are the coeffi-
cients of the linear filter. When the processes get sta-
tionary (theoretically for t → ∞, in fact Gi,1t 
 1 is
enough), the associated one-sided power spectral den-
sities read:

f Si
σ 2
i

=
2 f
Gi,1

1 +
(
2π f

Gi,1

)2 i = u, w (14)

where σ 2
i = G2

i,2/(2Gi,1) is again the process variance
(for t → ∞).

The coefficients Gi,1 and Gi,2 are determined by
pursuing a match between the OU spectra and the
given Kaimal spectra. First, the same total variance
σ 2
i is imposed by setting G2

i,2 = 2 Gi,1 σ 2
i . Then, the

parametersGi,1 are obtained through a nonlinear least-
squares fitting procedure, as in several previous works
(see, e.g., [32,58,59]). It is worth noting that the spec-
trum of an OU process mainly differs from the Kaimal
spectrum in the fact that the latter decays for high fre-
quencies with a power of −5/3 while the former with
a power of −2, thus introducing non-negligible differ-
ences in the energy distribution among the frequen-
cies, as shown in Fig. 4a. Nevertheless, this still rep-
resents a reasonable model of atmospheric turbulence
(see Dryden turbulence model [60]). In this context,
however, a characteristic nondimensional frequency,
G̃θ

w,1 = Gw,1/ (2π fθ ), is preferred to the integral
length scale to characterize the various turbulent wind
scenarios. This nondimensional frequency gives amea-
sure of the energy distribution of the noise across the
frequencies in relation to the torsional mode frequency

fθ , which is a pivotal parameter for system stability,
as will be shown later. On the other hand, the vertical
turbulence intensity Iw is a key indicator of the total
variance of noise fluctuations (considering that gener-
ally α � w/Vm).

Turbulent wind velocity time histories are generated
by numerically integrating the stochastic differential
equations, Eqs. (12) and (13), using the Euler scheme
and a time step of 0.001s. Figure 4b showcases the
simulated power spectral densities of the vertical wind
velocity component compared to the corresponding tar-
getOUspectra.Clearly, decreasing the nondimensional
frequency G̃θ

w,1 (associated with longitudinal integral
length scales Lu of 100m, 200m and 300m) shifts the
energy towards lower frequencies.

Finally, onemay remark that, without any additional
low-pass filter, the angle of attack partially contravenes
the slowly-varying assumption of the model leading to
Eq. (2) [22]. Indeed, the 2D RFA model has experi-
mentally been validated for variations in the angle of
attack up to a frequency equal to two-thirds of the
bridge motion frequency (in the experiments, a limi-
tation arose because the setup did not allow the inves-
tigation of higher ratios; see [61]). Nonetheless, this
work assumes that the model validity can be extended
to higher ratios, considering that the majority of turbu-
lence energy is at low frequency, where the assumption
of slow variation in the angle of attack holds. Indeed,
the contribution of turbulent fluctuations at frequencies
higher than the first bridgemode frequencieswas found
not to significantly influence the flutter stability and the
dynamic response of the Hardanger Bridge [39].

5 Results

Prior to examining the system stability using Lya-
punov exponents and moment Lyapunov exponents,
the bridge dynamic response to the external buffet-
ing load vector qb is calculated for various turbulent
wind scenarios according to the buffeting load model
in [37]. Figure 5 presents the results in terms of root
mean square (RMS). For the sake of brevity, only the
torsional response is reported here, as it is generally
the most representative for flutter analyses (e.g., for
the Hardanger Bridge, see [37]). This figure aims to
provide immediate and practical insight into the corre-
lation between the subsequent stability analyses and the
actual dynamic response of the system under external
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Fig. 4 Nondimensional power spectral density of turbulent ver-
tical wind velocity fluctuations. aReference turbulence spectrum
(thick gray line) compared with the OU spectrum (blu line). b
Simulated spectra (colored lines), averagedover 5000 time series,

compared with the corresponding target OU spectra (thick gray
lines) for various nondimensional frequencies G̃θ

w,1. fy , fz and
fθ indicate the lateral, vertical and torsional frequencies of bridge
vibration modes

load excitation. RMS values are obtained averaging the
results for 20 one-hour-long time histories calculated at
a sampling rate of 12 Hz. Each frame of Fig. 5 includes
the bridge dynamic response calculated according to
Eq. (6) and the associated non-parametrically excited
case (linear time-invariant, LTI), where the angle of
attack due to turbulence is considered constant at 2.5◦
(as per Eq. (2) with α ≡ 2.5◦). In the LTI scenario,
the deterministic flutter bifurcation occurs at a critical
wind velocity V LTI

cr = 71.2 m/s, and the corresponding
vibration frequency is fcr = 0.289 Hz. It is important
to remark once again that these RMS values are some-
what exaggerated and not realistic due to the perfect
correlation of the external load, a limitation inherent to
the simplification of a 2D bridge model. Nevertheless,
they are valuable for visualizing the instability onset.

Figure 5 clearly shows that the flutter stability of the
Hardanger Bridge is reduced due to the random para-
metric effects of turbulence. The destabilizing impact
increases with the energy of the parametric excita-
tion, namely the turbulence intensity. Additionally, an
effect of the energy distribution across the frequencies
is observable, particularly passing from G̃θ

w,1 = 1.28

to G̃θ
w,1 = 0.64. Barni and Mannini [39] showed that

this destabilizing effect of turbulence ismostly ascribed
to the so-called “average parametric effect”, with para-
metric resonances playing only a secondary role. This

effect arises from the fact that the aerodynamic deriva-
tives averaged over the time history of the angle of
attack α(t) typically differ from those corresponding to
the mean angle of attack αm . This discrepancy results
in average aerodynamic stiffness and damping that sig-
nificantly diverge from the values used in the classical
time-invariant approach. This phenomenon becomes
pronounced if the aerodynamic derivatives exhibit sub-
stantial nonlinear and non-symmetric variations around
αm , and it intensifies for increasing turbulence inten-
sity. However, this effect is independent of the spec-
tral distribution of parametric excitation energy. In this
regard, the blue triangular markers in Fig. 5 indicate
the deterministic flutter stability threshold when using
averaged aerodynamic derivatives (LTIeq approach, see
[39]), as opposed to the values at αm = 2.5◦ (LTI case).
The remarkable contribution of the average parametric
effect in varying bridge stability is apparent. The gap
between the LTIeq thresholds and the vertical asymp-
totes of the nonlinear buffeting response (red crosses)
hints at additional effects, likely driven by parametric
resonances. Their impact can be twofold; indeed, they
can both stabilize the bridge, as noted for G̃θ

w,1 = 1.28
(turbulent energy at higher frequencies), and destabi-
lize it, as for G̃θ

w,1 = 0.43 (turbulent energy at lower
frequencies).
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Fig. 5 RMSof the buffeting torsional response of the Hardanger
Bridge, obtained using either an LTI approach (gray circles) or
the formulation of Eq. (2) for the self-excited forces (red crosses).

The solid and dash-dot red lines represent the sample and 2nd-
moment stability thresholds, respectively. Finally, the blue trian-
gles indicate the LTIeq stability thresholds [39]

5.1 Sample stability

The largest Lyapunov exponents, as well as the MLE
in the next section, are determined for a system under-
going free-decay vibrations, starting from unit-norm
initial conditions (‖γ ‖= 1). To ascertain the sample or
almost sure stability threshold of the bridge in turbu-
lent flow, the LE is calculated using Eq. (8). Figure 6
shows the convergence of the numerical estimator as
a function of the observation time T . For the sake of
conciseness, the figure is based on a representative set
of turbulence parameters and mean wind velocity, but
similar trends were observed in other cases. Given that
the LE is a numerical estimator and infinite time his-
tories are impractical as per the LE definition, we con-
sider 1000 samples of the LE and examine the esti-

mated PDF every T Gw,1/(2π) = 500. As the sys-
tem behaves linearly with respect to the state variables
and α is an ergodic process [46], the choice of the ini-
tial conditions does not impact the stability of the sys-
tem. Figure 6 illustrates how the dispersion of the esti-
mator decreases with the extension of the observation
time and the mean becomes stable after approximately
T Gw,1/(2π) = 4500.Consequently, a timewindowof
about 21,600s corresponding to T Gw,1/(2π) = 5000
is selected as the standard for subsequent LE calcula-
tions.

Figure 7 shows how the largest LE varies with mean
wind velocity under various turbulent wind conditions.
Additionally, the figure considers the associated LTI
system, which is useful for interpreting the results. In
this case, the Lyapunov exponents coincide with the

123



Lyapunov stability of suspension... 16723

Fig. 6 PDF of the LE
estimator, calculated for
1000 samples and reported
for various nondimensional
observation times spaced
T Gw,1/(2π) = 500 apart.
The turbulence parameters
are Iw = 7.5% and
G̃θ

w,1 = 0.64, and the mean
wind velocity is 54m/s. μ
and σ denote the mean and
the standard deviation of the
estimator

real part of the eigenvalues of the state matrix and,
up to a certain wind velocity, the largest LE is that
associated with the horizontal mode, which exhibits
lower damping. However, for high wind velocity, due
to aerodynamic interaction with the vertical mode, the
damping in the torsional mode progressively reduces,
so that the associated LE becomes dominant at around
63m/s and flutter instability occurs at 71.2 m/s.

The average parametric effect on the Lyapunov
exponents is isolated in the figure reporting the pat-
tern of the real part of the state-matrix eigenvalues
associated with lateral and torsional modes, calculated
according to the LTIeq approach [39].While the impact
on the lateral mode branch is negligible (due to the
essential insensitivity of the aerodynamic derivative
P∗
1 to the average parametric effect), the torsional LE

branch rises up at significantly lower wind velocity
compared to the classical LTI system, leading to an ear-
lier bridge instability. This can mainly be ascribed to
the increase in turbulent flow in the important aerody-
namic derivative A∗

2, which can even become positive
(which means a negative aerodynamic damping con-
tribution in torsion) for high turbulence intensity (see
Fig. 10 in [39]).

When the parametric excitation induced by the fluc-
tuating angle of attack α(t) is fully accounted for in
the calculation of the largest LE (Eq. (8)), the largest
LE pattern exhibits a significantly lower gradient with
the mean wind velocity and a smoother transition from
the horizontal branch to the torsional branch. Impor-

tantly, the results demonstrate a sensitivity to the nondi-
mensional characteristic frequency of turbulence, espe-
cially between G̃θ

w,1 = 1.28 and G̃θ
w,1 = 0.64, which

cannot be appreciated by considering the average para-
metric effect only (the latter is clearly independent of
the frequency distribution of turbulent fluctuations).
Such phenomenon, likely related to parametric res-
onances (Sect. 5.3 will further elucidate this aspect),
postpones the change of sign of the largest LE, thereby
enhancing bridge stability for G̃θ

w,1 = 1.28. In this
case, although not as crucial for bridge stability, a
damping reduction in the lateral mode is also promoted
by turbulence (upward shift of the largest LE pattern for
Vm � 40 m/s). As will be better explained in Sect. 5.3,
this is attributed to the energy transferred from the tor-
sional mode to the lateral mode promoted by the para-
metric excitation induced by α(t) [30,39].

The sample stability thresholds are thenmarkedwith
vertical red solid lines in Fig. 5. These thresholds com-
ply with the pattern of the torsional dynamic response
of the bridge, representing the ideal vertical asymp-
totes of the curves. However, in some turbulence sce-
narios, particularly for G̃θ

w,1 = 1.28 and Iw > 7.5%,
the increase in the RMS of the torsional response is
less sudden, and very large values of the response are
attained before the sample stability threshold. In such
cases, the latter does not seem conservative for design
purposes.
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Fig. 7 Largest LE as a function of the mean wind velocity Vm
for various turbulent wind conditions (colored thick lines with
markers). The Lyapunov exponents associated with the LTI sys-
tem are also displayed (thick gray line) together with those cal-
culated for the system using average aerodynamic derivatives
(LTIeq approach; dashed lines for the largest LE, dotted lines
for the other Lyapunov exponents; the colors indicate again the
associated turbulent wind scenario)

5.2 p-th moment stability

As explained in Sect. 3.2, the algorithm proposed by
Xie and Huang [53] is utilized in this study for the cal-
culation of MLE. This method requires that log‖γ ‖ is
normally distributed, a condition that is satisfied for the
current problem, as exemplified by the histograms in
Fig. 8a and b. Moreover, Fig. 9 shows the results of a
study to establish the number of samples and the obser-
vation time T (simulation length) needed for reaching

convergence in the calculation of MLE. 5000 samples
and a time T = 7200 s were judged a conservative
choice and used in all of the following analyses.

For a specific turbulence scenario and two wind
velocities, Fig. 8 compares the MLE curves obtained
with the two algorithms discussed in Sect. 3.2 and here
denoted as Xie [52] and Xie [53]. While in both cases
the slope in the origin of the MLE curve, �′

γ (0), coin-
cides with the values of LE reported in Fig. 7, the
two MLE estimators already diverge for small values
of p. Notably, the pattern obtained with Xie (2005)
algorithm is qualitatively very similar to the example
reported in [53] for a completely different problem and
large values of T (Sect. 2, Fig. 2 thereinto). The rea-
sons for this discrepancy and the clearly wrong pat-
tern obtained with Xie (2005) algorithm have already
been explained in Sect. 3.2 and, as expected, the more
unstable is the system and the higher is the order p
of the statistical moment considered, the larger is the
difference between the two results. It is worth adding
here that no improvement is obtained by significantly
increasing the number of samples; moreover, unlike
different physical systems, here the long time scale of
the noise does not allow fixing the problem by reduc-
ing the observation time T (see Fig. 9), thereby making
absolutely necessary the use of Xie (2009) algorithm.

Figure 10 illustrates the patterns of MLE for all
the previously considered turbulent wind scenarios and
mean wind velocities close to, and slightly below,
the sample stability threshold. p-values in the range
−2 ≤ p ≤ 5 are considered. MLE exhibit fast varia-
tions with the mean wind velocity under most turbulent
conditions, making low-order p-th moments unstable
for just a slight decrease in the mean wind velocity
with respect to the critical sample value. To visualize
the 2-nd moment stability with respect to the dynamic
response curves reported in Fig. 5, a vertical dash-
dotted line is added at themeanwind velocity forwhich
the associated MLE becomes positive. This threshold
refers to the asymptotic unbounded growth of the norm
of the state vector, which, in the case of bridge flutter, is
clearly tightly connected to the variance of vertical and
above all torsional response of the bridge. It is apparent
that 2-nd moment stability complies with the evolution
of the RMS of the bridge torsional response better than
sample stability in those cases in which in the bridge
dynamic response increases in a smoother way at high
wind velocity.
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Fig. 8 Comparison between the MLE estimators according to
the two algorithm described in [52] (black line) and [53] (red
line) for 5000 samples and an observation time T = 7200 s.

The turbulence scenario considered is that with Iw = 7.5% and
G̃θ

w,1 = 0.64. The PDF of log‖γ (T )‖ is also reported with its
fitted normal distribution

Fig. 9 Numerical convergence ofMLEwith respect to the obser-
vation time T and number of samples S. The MLE in a refers to
5000 samples, while b considers a simulation length of 7200s.

In both cases turbulence is characterized by Iw = 7.5% and
G̃θ

w,1 = 0.64

The calculated MLE are also employed to deter-
mine the stability index, which corresponds to the non-
trivial zero of the MLE curve and which is shown in
Fig. 11 as a function of the mean wind velocity. This
index serves as an indicator of the transition of sta-
bility across the statistical moments when the wind
speed increases, bearing in mind that the intercept with
the abscissa axis denotes the sample stability thresh-

old; in particular, a vertical pattern of the index would
mean that the p-th moment stability coincides with
the sample stability. In the context of bridge stabil-
ity in turbulent flow, a steep pattern of the stability
index with Vm indicates that more or less rare, very
large transient responses only occur when the mean
wind velocity closely approaches the sample stability
threshold. In this case, sample stability represents a
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Fig. 10 MLE patterns close to the sample stability threshold for various turbulent wind conditions. The labels next to the curves
represent the mean wind velocity Vm (in m/s)

Fig. 11 Stability index as a function of the mean wind velocity in the proximity of the sample stability threshold, for various turbulent
wind conditions
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viable metric for the practical engineering definition of
bridge critical wind velocity in turbulent flow. For the
Hardanger Bridge, such a behavior is observed in the
majority of the turbulence scenarios considered, except
for high turbulence nondimensional characteristic fre-
quency (G̃θ

w,1 = 1.28) and high turbulence intensity
(Iw � 10%). Interestingly, by inspecting Figs. 5 and 7
one can notice that for G̃θ

w,1 = 0.43 and 0.64 either the
average parametric effect fully accounts for the destabi-
lizing effect of turbulent noise or parametric resonances
concurrently contribute to reduce the bridge sample sta-
bility. Conversely, for high-frequency parametric exci-
tation (G̃θ

w,1 = 1.28), parametric resonances play a
significant stabilizing role, and the slope of the stabil-
ity index decreases, spreading the stability threshold
of statistical moments across a broader range of wind
velocities, even relatively distant from the sample sta-
bility limit. In such cases, prior to reaching the sample
instability, the bridge may experience a very large tran-
sient response. Consequently, relying solely on sample
stability may not be a conservative approach for bridge
flutter assessment in turbulent flow.

5.3 Further insight via Floquet exponents

Previous analysis underscored specific results that can-
not fully be explained by the average parametric effect
and that, in fact, depend on the frequency distribution
of noise variance. To shed some light on these paramet-
ric effects, a simplified system parametrically excited
by a sinusoidal gust is studied through Floquet theory,
in a similar way to [39]. Specifically, a sinusoidal vari-
ation in the angle of attack α(t) is assumed in Eq. (6),
parametrized by frequency f ∗ (the so-called pumping
frequency), amplitude α0, and mean value αm = 2.5◦.
The resulting system is then time-periodic. Obviously,
the impact on bridge stability of broad-band turbulence
parametric excitation cannot be simply analyzed as a
superposition of effects of individual harmonics com-
posing the random process, akin to Fourier analysis.
In fact, the effects of these harmonics combine in a
nonlinear manner when forming the eigenvalues of the
system transition matrix (see, e.g., [62]). However, the
simplified time-periodic system is expected to provide
some qualitative insight into the behavior of its noisy
counterpart.

Floquet approach requires the analysis of one period
of bridge response, 1/ f ∗ (for more details, see, e.g.,

[62]). The asymptotic behavior of the system is ruled
by Floquet multipliers ζ j (for j = 1, . . . , n, being
n = 3[2 + (N − 2)] the size of the state vector γ ),
and stability is guaranteed when all |ζ j | ≤ 1. The real
part of Floquet exponents, Re

[
υ j

] = Re
[
f ∗ log(ζ j )

]
represent the Lyapunov exponents for a time-periodic
system.

Figure 12 maps the maximum real part of Flo-
quet exponents, namely the LE, against nondimen-
sional pumping frequency ( f̄ ∗ = f ∗/ fθ from 0.01
to 2) and angle of attack oscillation amplitude (α0

from 0 to 10◦), for various mean wind velocities. In
these charts, red areas denote a positive LE, reveal-
ing flutter instability. The LE is normalized here with
the absolute value of its constant LTI counterpart to
emphasize parametric effects. The stability boundary
is marked by a gray dotted line, while the blue tri-
angle next to a dashed line marks the amplitude of
oscillation of α for which the LTIeq system (associ-
ated with averaged aerodynamic derivatives) becomes
unstable for the specific mean wind velocity consid-
ered in the map. For Vm � 55 m/s, average paramet-
ric damping essentially governs the stability boundary,
which follows a sub-horizontal pattern almost coinci-
dent with the LTIeq boundary. In contrast, far away
from the LTI flutter critical wind velocity, stability is
also influenced by parametric resonances, and specific
frequencies associated with the torsional mode fre-
quency show pronounced destabilizing effects. In par-
ticular, the parametric resonance at 2 f̄θ is visible for all
mean wind velocities. The influence of torsional aero-
dynamic stiffness is also apparent, since the torsional
frequency progressively decreases as the mean wind
velocity increases. Parametric resonances, both of addi-
tive and subtractive type, between lateral and torsional
modes ( f̄θ ± f̄ y) have a stabilizing effect, though very
localized. In contrast, parametric resonances between
vertical and torsionalmodes ( f̄θ± f̄z) aremuchbroader,
due to the strong aerodynamic coupling between these
modes. This phenomenon, called parametric coupling
resonance by Barni and Mannini [39], is responsible
for the bowl-shaped unstable regions, which expands
with an increase in mean wind velocity.

At high mean wind velocity, the stability maps in
Fig. 12 are significantly influenced by the average para-
metric effect, making it challenging to extract insight
into the contribution of parametric resonances. For this
reason, Fig. 13 presents stability maps for the same
bridge structure but excluding the average parametric
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Fig. 12 Stability chart of the bridge dynamic system (normal-
ized largest LE) for different amplitudes and nondimensional
frequencies f̄ ∗ = f ∗/ fθ of the sinusoidal variation in the angle

of attack modulating the self-excited forces. The gray line high-
lights the stability boundary, while V LTI

cr represents the time-
invariant flutter threshold

Fig. 13 Stability chart of the bridge dynamic system (normal-
ized largest LE) for different amplitudes and nondimensional fre-
quencies f̄ ∗ = f ∗/ fθ of the sinusoidal variation in the angle of
attack modulating the self-excited forces. In this analysis, the 2D

RFA is assumed to linearly approximate the aerodynamic deriva-
tives with respect to the angle of attack. The gray line highlights
the stability boundary, while V LTI

cr represents the time-invariant
flutter threshold

effect on self-excited forces. This is done by linearly
approximatingwith the 2DRFA the experimental aero-
dynamic derivatives with respect to the angle of attack.
This new rational approximation also slightly alters the
system behavior at the mean angle of attack αm = 2.5◦
and consequently the system LTI stability threshold

(V LTI
cr = 66.8 m/s instead of 71.2 m/s). However,

due to the nonlinearity of the problem, it is important
to note that a rigorous distinction between parametric
resonances and average parametric effect is impracti-
cal with numerical approaches. Indeed, this analysis
only seeks to provide a qualitative understanding of
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Fig. 14 Power spectral density of the vertical wind velocity
for different nondimensional characteristic frequencies of tur-
bulence, G̃θ

w,1 (Iw = 7.5% and Vm = 60 m/s). The abscissa is

the normalized frequency f̄ = f/ fθ .

the transition in the LE pattern from that dominated
by average aerodynamic derivatives, as per the LTIeq
approach, to that only ruled by parametric resonances.
In this case, the parametric resonance of difference type
associated with the nondimensional frequency f̄θ − f̄z
becomes the most significant one for system destabi-
lization, growing wider and the attendant LE getting
larger when the mean wind velocity increases. How-
ever, for wind speeds exceeding approximately 55m/s,
a broad and stabilizing parametric resonance, centered
around the sum f̄θ + f̄z , also starts to be visible. It
can be recognized in the map as a dark blue region,
which becomes a real stability island once the mean
wind velocity exceeds the LTI flutter stability thresh-
old (V LTI

cr = 66.8 m/s). This result also represents a
clear evidence of the marked nonlinear behavior of the
system, as the same range of pumping frequencies has
a destabilizing impact in presence of the average para-
metric effect (see the panel for Vm = 50m/s in Fig. 12).

These stability maps enable us to speculate about
some unexplained features of the noisy system. To aid
this analysis, Fig. 14 presents the dimensional spectra
for the vertical turbulent wind velocity, which is use-
ful for localizing the energy of the parametric excita-
tion across the nondimensional frequencies f̄ = f/ fθ .
For a mean wind velocity of 60m/s, about one third
of the total turbulent energy is found at f̄ < 1 for
G̃θ

w,1 = 1.28, compared to slightly less and more that

two thirds for G̃θ
w,1 = 0.64 and 0.43, respectively.

The energy distribution slightly changes with the mean
wind velocity, but this does not significantly alter the
substance of the discussion for Vm in the range 40–

75m/s. Referring to the map presented in Fig. 13 and
trying to qualitatively extend the results to broad-band
turbulence, one may observe that for a nondimensional
characteristic spectral frequency G̃θ

w,1 = 1.28, average
parametric effect aside (which is independent of the
spectral distribution of fluctuation energy), the para-
metric excitation mainly contributes to stabilization. In
contrast, for G̃θ

w,1 = 0.64 and 0.43, a significant por-
tion of the energy is located in the zone of the destabi-
lizing parametric resonance f̄θ − f̄z . Although this is
only a conjecture, it qualitatively explains the behav-
ior of the dynamic response in Fig. 5 and that of the
largest Lyapunov exponent in Fig. 7, which show that
the system parametrically excited by broad-band ran-
dom noise is generally more stable for G̃θ

w,1 = 1.28

than for G̃θ
w,1 = 0.64 and 0.43.

6 Conclusions

This work represents the first application of largest
Lyapunov exponents andmoment Lyapunov exponents
to assess the random flutter stability of a suspension
bridge subjected to the parametric excitation due to
turbulence-induced angle of attack. The followingmain
conclusions can be highlighted.

• For the Hardanger Bridge, the turbulence-induced
parametric excitation anticipates flutter instability
compared to the time-invariant condition, confirm-
ing previous findings for this case study.

• The random flutter critical velocity determined by
LE closely alignswith the bridge dynamic response
pattern and with low-order p-th moment stability
thresholds for most turbulent wind conditions con-
sidered. In these cases, the flutter stability threshold
is unequivocal.However, certain turbulence scenar-
ios reveal that sample stability is not conservative,
and it is necessary to resort to MLE for a complete
description of stability. In these circumstances, the
stability index shows a reduced slopewith themean
wind velocity, evoking some additional considera-
tion of which statistical moments should be consid-
ered for the engineering assessment of flutter sta-
bility.

• Bridge random flutter stability is often predomi-
nantly influenced by the average parametric effect
(always destabilizing for the current case study),
but additive and subtractive parametric resonances
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between torsional and vertical modes can also play
an important role for some turbulent wind condi-
tions.

• Floquet analysis, though it is not able to fully
address the problem of random flutter induced by
parametric variations in the angle of attack, aids in
providing a qualitative understanding of the para-
metric effects governing the stability of the bridge
system. The behavior of LE andMLE in relation to
the frequency-distribution of parametric excitation
energy is consistent with the findings of Floquet
stability maps, which revealed the contribution of
additive and subtractive parametric resonances to
system stabilization or destabilization.

• The behavior of Floquet exponents also under-
scores the complexity of the dynamic system con-
sidered. Specifically, the nature of the parametric
resonance of additive kind between torsional and
vertical modes hinges on system average damping,
exhibiting a destabilizing role in the presence of
an average parametric effect and a stabilizing role
when it is absent.

This work shows a viable strategy to determine
the flutter stability threshold for long-span suspen-
sion bridges, considering turbulence-induced paramet-
ric excitation. This approach could also be applied to
other time-varying self-excited force formulations, as
long as the dynamic system without external loads
can be modeled as linear. Furthermore, the nonlinear
features exhibited by these time-variant systems are
intriguing, and their parametric resonance mechanisms
deserve further investigation in the future, possibly
employing simplified analytical methods to enhance
understanding of such complex behaviors.
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