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Abstract Flexible and lightweight cables are exten-

sively used in engineering structures, which are prone

to produce nonlinear deformation and nonlinear

vibrations under random excitations. Usually, dam-

pers are installed at certain positions of the cables to

reduce the vibration response. The present paper

investigates the stochastic responses of the nonlinear

inclined cables with an attached damper under Gaus-

sian white noise and wide-band noise excitations.

First, the dynamical model of an inclined cable is

established and the differential equations for each

mode of vibration are derived by using Galerkin’s

discretization method. Then, the stochastic lineariza-

tion method is applied to derive the stochastic

responses of the generalized displacements. The

effectiveness of the truncated order, the effects of

the excitation amplitude, damper installation position

and damping coefficient are studied by investigating

the stochastic responses. Since stochastic linearization

is not applicable to systems with strong nonlinearity,

stochastic averaging of energy envelope and quasi-

Hamiltonian systems are adopted to study the main

modal vibration of the inclined cables. The probability

density functions of energy and generalized displace-

ment are calculated. The comparisons between the

results derived from the theoretical method and those

derived from the numerical simulation showed the

accuracy of the analytical results.

Keywords Stochastic vibration � Stochastic

linearization � Stochastic averaging � Inclined cable �
Nonlinear system

1 Introductions

Due to the lightweight and flexibility of cables, they

are extensively used in many areas such as cable-

stayed bridges [1], spacecraft [2] and soft robots [3].

The statics and linear dynamics of the inclined cable

have been well studied in the past. Recently, the

nonlinear vibrations and control of the inclined cables

under external perturbations have caused many schol-

ars’ attention. Due to the large length and the complex

excitations of the cables, they are prone to nonlinear

deformation under external excitations. The theoret-

ical methods used in the analysis of the nonlinear

dynamics of the inclined cables are the multi-scale

method [4], equivalent linearization [5], harmonic

balance method [6], etc. The stochastic linearization

method was first proposed by Booton and used in
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electric systems [7]. Then, it is developed by many

scholars and has been widely used [8, 9]. The

exponential-polynomial-closure (EPC) method is

another generally used approximate method for

stochastically excited nonlinear systems [10–12],

which assumes the probabilistic density function is

an exponential polynomial function of state variables,

and the coefficients of the polynomial are determined

by minimizing the statistic errors. The state-space-

split (SSS) method combining the EPC method was

proposed for the probabilistic solutions of multi-

degree-of-freedom nonlinear stochastic systems [13],

which was further extended in [14].

Due to the nonlinearity, the nonlinear phenomena

such as the vibration migration and bifurcations can

exhibit. The nonlinear dynamics of an inclined cable

were studied in [15] by using the multi-scale method

and experimental verification, where the in-plane and

out-plane displacements of the inclined cables were

analyzed. The dynamics of a suspended cable with

geometric nonlinearities were studied by adopting

homotopy analysis in [16], and the influence of the

initial conditions on the nonlinear responses are

investigated. The responses of a suspended cable with

time-delayed control force were calculated numeri-

cally in [17] to derive the optimal control gain and the

value of time delay. To suppress the vibration of the

cable, the damper is usually installed perpendicular to

the cable and the dynamical analysis of damped cables

has been studied and summarized in the literature

[18–20]. The inclined cables are easy to produce

random vibrations under the action of random exci-

tations such as winds, rain [21, 22] and earthquake

excitations [23], which can cause fatigue damage of

the structures and hidden danger. The nonlinearity can

bring great difficulties to the theoretical analysis of the

dynamics of the inclined cables under random pertur-

bations. The stochastic linearization method is a

generally used method, which has been applied to

various nonlinear systems under random excitations

[24–26]. The nonlinear dynamics of a cable-mass-

spring system were studied in [27] by using the

equivalent linearization method and the stochastic

responses of the state variables were derived and

verified by the numerical simulation. By combining

the SSS method and EPC method, Er et al. [28] studied

the nonlinear random vibration of the inclined cables

excited by uniformaly distributed Gaussian white

noises. Baghaei et al. [29] combined stochastic

linearization and sliding mode control methods to

reduce the dynamical responses of nonlinear systems

under nonstationary random excitations. It is found

that the stochastic linearization method gives reliable

results and agrees well with the results obtained by

numerical simulation and experimental tests. The

stochastic linearization method is applicable to sys-

tems with small nonlinearity.

The stochastic averaging method is another pow-

erful tool in the analysis of nonlinear systems subject

to random excitations [30–32]. Which is widely used

in the stochastic analysis of nonlinearly mechanical

and structural systems. Different from the stochastic

linearization method, the stochastic averaging method

divides the variables into fast-varying variables and

slowly-varying variables, and the averaged diffusion

equations for the slowly-varying variables are derived

by using the deterministic and stochastic averaging

process. The nonlinear vibrations of an axially moving

laminated beam with shape memory alloy (SMA)

under random loads were studied by using the

stochastic averaging method in [33], and the proba-

bility density functions of the responses are derived

with good agreement with the simulation results. To

derive the responses of strongly nonlinear systems, the

stochastic averaging method of envelope has been

proposed [34] and used in various stochastic systems

[35, 36]. Zhao and Zhu proposed an optimal control

strategy for inclined cables based on controlling the

axial support motion and the stochastic averaging

method for nonintegrable Hamiltonian systems [37].

By adopting the stochastic averaging method. The

dimensions of the nonlinear systems are reduced and

the steady-state probability densities and response

statistics are easier to solve.

The nonlinear dynamics of stochastically excited

inclined cables with an attached damper are studied in

the present paper. First, the nonlinear vibration model

of the inclined cable is established by taking the

nonlinear deformation into consideration, Then, the

partial differential equation of the inclined cable is

discretized by using Galerkin’s method, and the

ordinary differential equations for each vibration

mode are established. The derived equations for the

generalized displacements are stochastically excited

nonlinear equations. Then, the stochastic linearization

method is adopted to derive the stochastic responses

for the first Nth vibration modes. Finally, the stochas-

tic averaging method is developed to analyze the main
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vibration modes and the probabilistic density func-

tions for the energy and generalized displacement are

derived. The analytical results are compared to the

results obtained from the Monte-Carlo simulation to

show the effectiveness of the developed methods.

2 Modeling and simplification

The diagrammatic sketch of the inclined cable with an

attached damper is shown in Fig. 1. The inclined cable

has an inclined angle h. The cable length is l and the

sag at the middle is d. The static axial tension is

denoted by T0. The mass per unit length is m and the

damping coefficient is c. The attached damper is

installed perpendicular to the transverse direction at

x ¼ xd with a damping coefficient cd.

The static configuration can be obtained with the

form of a parabolic function as

y0ðxÞ ¼ �4d x=l� ðx=lÞ2
h i

ð1Þ

where d ¼ mgl2 cos h=8T0. The nonlinear strain is

e ¼ ds0 � ds

ds
¼ ou

ox
þ dy0

dx

ov

ox
þ 1

2

ov

ox

� �2

ð2Þ

The stress in the x direction can be obtained with

s ¼ EAe, which represents the increased axial tension

of the inclined cable. The dynamical equation can be

established by using Newton’s second law for each

micro element [38, 39] as follows

m
o2u

ot2
¼ o

ox
EA

ou

ox
þ dy0

dx

ov

ox
þ 1

2

ov

ox

� �2
" #)(

m
o2v

ot2
¼ o

ox
T0

ov

ox
þ EA

dy0

dx
þ ov

ox

� ��

� ou

ox
þ dy0

dx

ov

ox
þ 1

2

ov

ox

� �2
" #)

�c
ov

ot
� FdðtÞdðx� xdÞ þ f ðx; tÞ

ð3Þ

where u is the longitudinal displacement and v is the

transverse displacement. FdðtÞ is the damping force

produced by the installed damper at x ¼ xd. f ðx; tÞ is

the random excitation, which generally has a separable

form with

f ðx; tÞ ¼ aðxÞwðtÞ ð4Þ

where wðtÞ is the Gaussian white noise. The inclined

cable is simply supported with the following boundary

conditions

uð0; tÞ ¼ uðl; tÞ ¼ 0; vð0; tÞ ¼ vðl; tÞ ¼ 0 ð5Þ

The inertia force in the longitudinal direction is

small, which is usually neglected. Thus, the following

equation is derived by using the first equation in

Eq. (3)

hðtÞ ¼ ou

ox
þ dy0

dx

ov

ox
þ 1

2

ov

ox

� �2

ð6Þ

which means the tension is the same along the cable.

Thus, h ¼ hðtÞ is only a function of time. Carrying out

the integral within the interval ½0; l� and adopting the

boundary conditions, the following equation is derived

hðtÞ ¼ 1

l

Z x

0

dy0

dx

ov

ox
þ 1

2

ov

ox

� �2
" #

dx

)(
ð7Þ

The equation for the transverse equations vðx; tÞ can

be derived by submitting Eqs. (6) and (7) into the

second equation of (3)

Fig. 1 Configurations of the inclined cable
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m
o2v

ot2
¼ o

ox
T0

ov

ox
þ EA

dy0

dx
þ ov

ox

� ��

� 1

l

Z l

0

dy0

dx

ov

ox
þ 1

2

ov

ox

� �2
" #

dx

)( )

�FdðtÞdðx� xdÞ � c
ov

ot
þ f ðx; tÞ

ð8Þ

which is a partial integro-differential equation. The

parameters can be normalized by using the following

transformation

l ¼ EA=T0; ~f ¼ f � l=p2T0; ~Fd ¼ Fd � l=p2T0;

~t ¼ x0t;x
2
0 ¼ p2T0=ml

2;

~c ¼ c=mx0; ~x ¼ x=l; ~y ¼ y=l; ~v ¼ v=l; ~d ¼ d=l:

ð9Þ

Then, Eq. (8) can be rewritten with the following

simplified form

o2v

ot2
¼ 1

p2

o

ox

ov

ox
þ l

dy0

dx
þ ov

ox

� ��

�
Z 1

0

dy0

dx

ov

ox
þ 1

2

ov

ox

� �2
" #

dx

)( )

�FdðtÞdðx� xdÞ � c
ov

ot
þ f ðx; tÞ

ð10Þ

where the linear damping force Fd ¼ cd _vd is adopted

with cd ¼ cd=mx0 and the tilde is omitted in further

analysis. The solution of Eq. (10) is expressed by the

following series in order to use Galerkin’s discretiza-

tion method

vðx; tÞ ¼
X1
n¼1

qnðtÞ/nðxÞ ð11Þ

where /nðxÞ ¼
ffiffiffi
2

p
sinðnpxÞ are the modal functions of

the corresponding undamped linear equation and qnðtÞ
are the corresponding generalized displacements.

Multiplying Eq. (10) with /nðxÞ and carrying out the

integral within ½0; 1�½0; 1�, Eq. (10) can be transformed

into a series of second-order ordinary differential

equations in the following form

€qn þ x2
nqn ¼ �2ln _qn �

X1
i¼1

cni _qi �
X1
i¼1

X1
j¼1

Cnijqiqj

�
X1
i¼1

X1
j¼1

X1
h¼1

Knijhqiqjqh þ fnWðtÞ

n ¼ 1; 2; :::

ð12Þ

where the expressions for the coefficients in Eq. (12)

can be derived as follows

cni ¼ cdunðxdÞuiðxdÞ; ln ¼
1

2

Z 1

0

cu2
nðxÞdx;

fn ¼
Z 1

0

aðxÞunðxÞdx;

x2
n ¼ n2 þ l

p2

Z 1

0

y000ðxÞ
Z 1

0

y0jðxÞ/
0
nðxÞdx

� �
/nðxÞdx;

Knijh ¼ � 1

2

l
p2

Z 1

0

u00
j ðxÞ

Z 1

0

u0
iðxÞu0

hðxÞdx
� �

unðxÞdx;

Cnij ¼ � l
p2

Z 1

0

u00
j ðxÞ

Z 1

0

y00ðxÞu0
iðxÞdx

� �
unðxÞdx

� 1

2

l
p2

Z 1

0

y000ðxÞ
Z 1

0

u0
jðxÞu0

iðxÞdx
� �

unðxÞdx

ð13Þ

Usually, Eq. (12) is truncated to the Nth order. For

the convenience of the following analysis, Eq. (12)

can be written in vector form by defining a new vector

x ¼ q1; � � � ; qN½ �T . Then Eq. (12) can be rewritten in

the following standard form

€xþ C _xþ Kxþ FðxÞ ¼ f ðtÞ ð14Þ

where C is the damping matrix, K is the linear stiffness

matrix, FðxÞ is the nonlinear force, fðtÞ ¼ fwðtÞ is the

stochastic excitation force with f ¼ ½f1; :::; fN �T .

3 Stochastic linearization for stochastically excited

MDOF nonlinear vibrations

3.1 Brief description of the stochastic

linearization method

Equation (14) are stochastically excited nonlinear

differential equations with multiple degrees of free-

dom (MDOF). The existing analytical methods are

difficult to solve these problems. Thus, some
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approximate methods should be adopted to derive the

dynamical responses. When the excitation amplitude

is relatively small, the nonlinear forces in the vibration

equation will be small. An equivalent linear system

can be used to approximate the original nonlinear

system. Therefore, the stochastic linearization method

is adopted here to derive the stochastic responses of

(14). The damping and stiffness matrix of the equiv-

alent system can be determined by minimizing the

residual error of the system.

Supposing the equivalent linear system is of the

following form

€Xþ ðCþ C0Þ _Xþ ðKþK0ÞX ¼ fðtÞ ð15Þ

where C0, K0 are the equivalent damping coefficient

matrix and the equivalent stiffness coefficient matrix,

respectively. By comparing the original equation and

the equivalent equation described in (15) and sub-

tracting these two equations, the difference between

the two equations is derived with the following

expression

e ¼ FðXÞ � C0 _XþK0X ð16Þ

As the original system is under random excitations,

the error described in (16) should be measured in the

sense of expected mean squares. The generally

adopted residual error adopted is E eTeð Þ. Then, C0

and K0 are selected to minimize E eTeð Þ with E �ð Þ
denoting the mathematical expectation. With several

deductions, the expressions of C0 and K0 meet the

following equations [40, 41]

C0
ij ¼ Eðogi=o _XjÞ

K0
ij ¼ Eðogi=oXjÞ

ð17Þ

As the nonlinear part in (14) only consists of X,

C0¼0 can be derived.

3.1.1 Responses under Gaussian white noise

excitation

When the random excitation wðtÞ is modelled by

standard Gaussian white noise, the equations in (15)

can be rewritten in the form of first-order differential

equations by letting ZðtÞ ¼ ½qðtÞ; _qðtÞ�T

_ZðtÞ ¼ AZþ FðtÞwðtÞ ð18Þ

where

A ¼ 0n�n In�n

�K�K0 �C

� �
;FðtÞ ¼ 0n�1

f

� �

Then, the statistical response of system (18) can be

derived by the following differential Lyapunov

equation

_PðtÞ ¼ APðtÞ þ PðtÞAT þ FFT ð19Þ

where

PðtÞ ¼ EðqqTÞ Eðq_qTÞ
Eð _qqTÞ Eð_q_qTÞ

� �

Omitting the differential terms on the left side of

Eq. (19), the steady responses can be derived by the

following algebraic Lyapunov equation

APðtÞ þ PðtÞAT þ FFT ¼ 0 ð20Þ

As the matrix K0 in A is related to the response

matrix P, Eq. (20) is a nonlinear algebraic equation,

which needs to be solved iteratively. The mean square

of the transverse displacement of the inclined cable at

any position can be derived by using its expressions

described in Eq. (11)

E v2ðx; tÞ
� 	

¼ E
XN
n¼1

qnðtÞ/nðxÞ
 !2
2
4

3
5 ¼ /TEðqqTÞ/

where / ¼ /1ðxÞ; � � � ;/NðxÞ½ �T .

The root mean square (RMS) of the transverse

displacement can be derived

RMSðvðx; tÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E v2ðx; tÞ½ �

p
ð21Þ

3.1.2 Responses under wide-band noise excitation

Here, the wide-band noise excitation is also consid-

ered. The spectral density of the wide-band noise

excitation wðtÞ is of the following form

SðxÞ ¼ D

pðr2 þ x2Þ ð22Þ

where r is a constant characterizing the bandwidth of

the excitation. The time histories of the noise excita-

tion can be obtained by the following filtrated

differential equation

_wðtÞ þ rwðtÞ ¼ nðtÞ ð23Þ

where nðtÞ is a Gaussian white noise with intensities
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2D. By letting ZðtÞ ¼ ½qðtÞ; _qðtÞ;wðtÞ�T , the above

equation can be combined with Eq. (15) to yield the

state equations with the following form

_ZðtÞ ¼ AZþ FðtÞnðtÞ ð24Þ

where

A ¼
0n�n In�n 0

�K�K0 �C f
0 �r 1

2
4

3
5; FðtÞ ¼

0n�1

0n�1

1

2
4

3
5

Then, the statistical response of system (24) can be

derived by the following differential Lyapunov

equation

_PðtÞ ¼ APðtÞ þ PðtÞAT þ D ð25Þ

where

PðtÞ ¼
EðqqTÞ Eðq_qTÞ EðqwðtÞÞ
Eð _qqTÞ Eð_q_qTÞ Eð _qwðtÞÞ

EðwðtÞqTÞ EðwðtÞ _qTÞ EðwðtÞwðtÞÞ

2
64

3
75;

D ¼
0n�n 0n�n 0n�1

0n�n 0n�n 0n�1

01�n 01�n D

2
64

3
75:

The steady responses can be derived by the

following algebraic Lyapunov equation

APðtÞ þ PðtÞAT þ D ¼ 0 ð26Þ

Then the statistics can be also calculated through

Eq. (21).

3.2 Numerical results for Gaussian white noise

excitation with constant amplitude

By solving the equations derived in the above

subsection, the statistics of the vibration responses

can be derived. First, the nonlinear vibrations of the

inclined cable under stochastic excitations with con-

stant amplitude are considered by adopting aðxÞ ¼ f0.

Through calculation, the excitation amplitude applied

to the kth mode is

fk ¼ �
ffiffiffi
2

p
f0 cos kp� 1ð Þ=kp: ð27Þ

The parameters of the inclined cable are selected

with

A ¼ 0:25mm2;l ¼ 1m,E ¼ 4000Mpa;T0 ¼ 10N;-

. Thus, the values of sag and the initial strain can be

calculated with d ¼ 0:001; l ¼ 100. The other param-

eters adopted in the calculations are:

c ¼ 0:02;cd ¼ 0:08;xd ¼ 0:5; f0 ¼ 0:002, otherwise

mentioned. The number of the mode is selected with

N ¼ 6. For comparison, the Monte-Carlo simulation

(MCS) results derived by using the stochastic Runge–

Kutta method are also shown in the figures. The time

step in simulation is Dt ¼ 0:0001s, and the ending

time is 4000 s. The program is running on a Lenovo

PC with i5-6200 CPU at 2.30 GHz. The compution

time for a cycle of samples is about 12 min.

Figure 2 shows the changes in the RMS values of

qkðtÞ under different values of excitation amplitudes. It

is seen that the results obtained by stochastic lin-

earization method are in good agreement with the

results obtained by MCS. However, the errors grad-

ually increase with the excitation amplitudes. When

the excitation amplitude increases, the vibration

responses will gradually increase and the nonlinear

term will have a greater impact. Generally, the

equivalent linearization is applicable to the case of

nonlinear vibration with small amplitudes. For the

systems with large nonlinearity, the results obtained

by stochastic linearization will have a certain

deviation.

Figure 3 shows the time histories of the generalized

displacement. It can be seen that the responses of the

first-order modal vibration are much larger than that of

other modes. Besides, the response of the even-order

modal vibration is relatively small, which can be

neglected. In fact, it is seen from Eq. (27) that the

excitation amplitude of the even order generalized

Fig. 2 RMS values of qkðtÞ under different values of excitation

amplitude f0
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displacement is 0 for the excitations with constant

amplitudes.

Figure 4 shows the RMS values of the transverse

vibration at each position of the inclined cable. It can

be seen that its shape is similar to the shape function of

the first-order modal vibration, which is mainly due to

the dominant role of the first-order vibration. The

theoretical results obtained by using stochastic lin-

earization also agree well with the results obtained

from MCS.

In Fig. 5, the RMS values of qkðtÞ are shown for

different values of damping coefficients. It is seen that

the amplitude of the odd order mode is larger than that

of the even order mode. This is because the excitation

amplitude of the even order mode is 0 from Eq. (27).

Therefore, the vibration of the even order mode is

mainly caused by the mutual coupling of the modes. In

addition, under uniformly distributed noise excitation,

the influence of the first modal vibration on the overall

vibration is far greater than that of other higher-order

modes. In fact, because the higher-order mode has a

larger vibration frequency, its vibration energy is more

easily consumed by the damping.

In Fig. 6, the RMS values of qkðtÞ are shown under

different locations of the damper xd. It is found that for

different modal vibrations, the decrease of the

responses is greatly affected by the location of the

damper. When the damper is installed at the extreme

value of the vibration mode, the responses of the

corresponding mode can be suppressed significantly.

Fig. 3 Time histories of qkðtÞ

Fig. 4 The mean squares of vðx; tÞ

Fig. 5 RMS values of qkðtÞ under different values of damping

coefficients cd

Fig. 6 RMS of qkðtÞ under different locations of the damper xd
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While the damper is installed at the node of the

vibration mode, it has little effect on the vibration of

the corresponding order. The generalized displace-

ment qkðtÞ is the largest if the damper is located at the

extreme points of the mode and it will be smallest if it

is located at the nodes.

3.3 Numerical results for the random excitation

with linear amplitude of excitation

The nonlinear vibrations of the inclined cable under

stochastic excitations with linearly increasing ampli-

tude are considered by adopting aðxÞ ¼ f0ð1 þ axÞ.
Through calculation, the excitation amplitude applied

to the kth order of modal vibration is

fn ¼ �
ffiffiffi
2

p
f0 cos np� 1ð Þ=np�

ffiffiffi
2

p
f0a cos np=np

ð28Þ

The parameters of the inclined cable are the same as

selected in Sect. 3.2. Other parameters used in the

calculations are:

c ¼ 0:02;cd ¼ 0:08;xd ¼ 0:5;f0 ¼ 0:002,a ¼ 1:0,

otherwise mentioned.

Figure 7 shows the changes in the RMS values of

qkðtÞ under linearly distributed excitation with ampli-

tude f0. It can be seen that the errors between the

results obtained by stochastic linearization and the

results obtained by MCS increase gradually with the

increasing excitation amplitudes. In addition, due to

the linear distribution of excitation, the excitation

amplitudes of even order modal vibration obtained

from Eq. (28) are not zero. Therefore, the vibration of

even order modes can have a certain impact on the

overall vibration of the inclined cable.

Figure 8 shows the changes in RMS value of qkðtÞ
under linearly distributed parameters a. It is seen that

the responses of the even order modal vibration are

also affected by the slope parameter a of the linear

distributed excitation. For example, when the value of

a exceeds a certain critical value, the vibration

responses of the second mode are greater than that of

the third mode. The same situation also occurs in the

fourth and fifth modal vibrations.

Figure 9 shows the time histories of the generalized

coordinates of each mode under different values of a.

It is seen more intuitively that the vibration response of

the even order mode is smaller when a is smaller, and

the vibration response of the even order mode is larger

when a is larger.

Figure 10 shows the RMS values of the transverse

vibration at each position of the inclined cable under

linearly distributed excitation. The theoretical results

are derived from Eq. (21). Similar results can be found

that the first-order modal vibration plays the dominant

role.

Figure 11 shows the RMS values of qkðtÞ under

different damping coefficients. In calculation, the

excitation amplitude is selected with f0 ¼ 0:002 and

the position of the damper is installed at the midpoint

of the inclined cable. It is seen from Fig. 11 that the

steady-state responses of the odd-order modal vibra-

tion will gradually decrease with the increasing

damping coefficients, while the responses of the

even-order modal vibration remain almost unchanged.
Fig. 7 RMS values of qkðtÞ under different values of excitation

amplitude f0

Fig. 8 RMS values of qkðtÞ under different values of a
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This is due to that the position of the damper just

coincides with the extreme point of the odd order

mode shape function and the node of the even order

mode shape function.

Figure 12 shows the influences of different loca-

tions of the damper on the vibration responses, which

can more clearly explain the above phenomenon.

When the damper is installed at the extreme value of

the vibration mode, the responses of the corresponding

vibration mode can be obviously suppressed. When

the damper is installed at the node of the vibration

mode, it has little effect on the responses of the

corresponding vibration mode.

3.4 Numerical results for the wide-band random

noise excitations

The responses of the inclined cable under wide-band

random noise excitations can be derived from

Eq. (26). Here, the wide-band random excitations

with linearly increasing amplitude with aðxÞ ¼ f0ð1 þ
axÞ is adopted. The random excitations with constant

amplitude can be obtained by selecting a ¼ 0. In the

calculation, The bandwidth parameter r ¼ 2:0;D ¼
1:0 is adopted and other parameters are the same as

selected in Sect. 3.2.

Fig. 9 Time histories of qkðtÞ under different values of a, a a = 2.5, b a = 0.1

Fig. 10 The RMS values of vðx; tÞ under different excitation

amplitude f0
Fig. 11 RMS values of qkðtÞ under different values of

excitation amplitude cd
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Figure 13 shows the changes in the RMS values of

qkðtÞ under different values of excitation amplitudes

with a ¼ 0; 1:0, respectively. Similar to the case for

Gaussian white noises, when the amplitude of the

excitation increases, the vibration responses gradually

increase and the nonlinear term have a large effect.

However, unlike the case under Gaussian noises, the

steady state response under wideband noise excitation

is smaller than the responses under Gaussian white

noise excitation. This is due to that the distribution of

the excitation intensity on each frequency is smaller,

which can be seen from the spectral density in

Eq. (22).

The influence of the slope parameter a is also shown

in Fig. 14, which has a similar effect as the case of

Gaussian white noise excitation. Compared to Fig. 8,

the steady responses under wide-band noise excitation

are much smaller than the steady response under

Gaussian white noise excitation, and the results are

more consistent with those obtained by MCS as the

excitation increases.

Figure 15 shows the RMS values of qkðtÞ under

different values of bandwidth parameter r. It is seen

that the responses of each order modal vibration will

decrease with the increase of r. This is because the

increase in r can reduce the values of the excitation in

each mode.

4 The responses of the main modes by using

the stochastic averaging method

4.1 Stochastic averaging for the primary mode

under wide-band noise excitation

When the responses of the system increase gradually,

the nonlinear term will become larger, and the results

derived from stochastic linearization will not be

accurate enough. It is seen from the discussion in the

previous section that the primary modal vibration has

the greatest impact on the responses. The amplitudes

of other vibration modes are relatively small. To

obtain the responses more accurately, the stochastic

Fig. 12 RMS values of qkðtÞ under different values of location

xd

Fig. 13 RMS values of qkðtÞ under different values f0, a a ¼ 0, b a ¼ 1:0
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averaging of the energy envelope is developed to

analyze the primary modal vibration.

The vibration equation of the primary mode is

€q1 þ x2
1q1 ¼ �2l1 _q1 � c11 _q1 � C11q

2
1 � K111q

3
1

þ F1wðtÞ
ð29Þ

where c11 ¼ cdu1ðxdÞu1ðxdÞ and wðtÞ is the wide-

band noise described in Eq. (23). The correlation

function of wðtÞ is

RðsÞ ¼ Rðu� vÞ ¼ E½nðuÞnðvÞ� ¼ D

r
expð�r sj jÞ

ð30Þ

where s ¼ u� v.

The total energy and the potential of system (29) is

H ¼ 1

2
_q2
1 þ Gðq1Þ; Gðq1Þ ¼

Z
gðq1Þdq1: ð31Þ

where gðq1Þ¼x2
1q1þC11q

2
1þK111q

3
1 is the conserva-

tive force and Gðq1Þ is the potential. Since the

conservative force contains quadratic terms, the

potential function Gðq1Þ is asymmetrical. Thus, there

are two values ql and qr meeting the relation GðqlÞ ¼
GðqrÞ ¼ H for the given value of H. The period of

system (29) is

TðHÞ ¼ 2

Z qr

ql

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2Uðq1Þ

p dq1 ð32Þ

Let Y ¼ _q1. Equation (29) can be rewritten in the

following form

_q1 ¼ Y ;

_Y ¼ �ð2l1 þ c11ÞY � gðq1Þ þ F1wðtÞ
ð33Þ

By making a transformation from ðq1; YÞ to ðq1;HÞ,
the equations for ðq1;HÞ are

_q1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2Uðq1Þ

p

_H ¼ �ð2l1 þ c11Þ 2H � 2Uðq1Þð Þ
� F1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2Uðq1Þ

p
wðtÞ

ð34Þ

To adopt the stochastic averaging method for wide-

band noise excitations, the first step to derive a

diffusion equation to approximate the original equa-

tion. According to the averaging procedure proposed

in [42], the following equivalent diffusion equation is

established

dq1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2Uðq1Þ

p
dt

dH ¼ �ð2l1 þ c11Þ 2H � 2Uðq1Þð Þ þ F2
1K

� 	
dt

� 2F2
1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2Uðq1Þ

p
dWðtÞ

ð35Þ

where WðtÞ is the standard Wiener process and

K ¼
Z 0

�1
RðsÞds ¼ 1

Dt

Z tþDt

t

du

Z u

t

E½nðuÞnðvÞ�dv:

ð36Þ

The above equation is accurate enough if the

correlation time of the excitation is small (under wide-

band noise excitation). When the damping force and

Fig. 14 RMS values of qkðtÞ under different values of a

Fig. 15 RMS values of qkðtÞ under different values of r
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excitation amplitude are small, the energy is a slowly

varying variable. Thus, the stochastic averaging of the

energy envelope can be applied to obtain the ItÔ

equation for HðtÞ

dH ¼ mðHÞdt þ rðHÞdWðtÞ ð37Þ

where the drift and the diffusion coefficients are

mðHÞ ¼ 2

TðHÞ

Z qr

ql

"
�ð2l1 þ c11Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2Uðq1Þ

p

þ 1

2

F2
1Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2H � 2Uðq1Þ
p

#
dq1

r2ðHÞ ¼ 2

TðHÞ

Z qr

ql

F2
1K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2Uðq1Þ

p
dq1

The probability density function (PDF) of HðtÞ is

determined by the corresponding FPK function with

the following form

op

ot
¼ � o

oA
mðHÞp½ � þ 1

2

o2

oH2
r2ðHÞp
� 	

ð38Þ

The boundary conditions for Eq. (32) are

p; dp=dH ! 0;H ! 1 ð39Þ

The stationary PDF of HðtÞ can be obtained by

omitting the partial differential term with time t as

follows

pðHÞ ¼ C

r2ðHÞ exp

Z H

0

2mðuÞ
r2ðuÞ du

� �
ð40Þ

where C is a normalized constant. The joint stationary

PDF for ðq1; _q1Þ can be derived from pðHÞ with

pðq1; _q1Þ ¼
pðHÞ
TðHÞ






H¼ _q2

1
=2þUðq1Þ

ð41Þ

and the stationary PDF of q1ðtÞ can be calculated by

integrating Eq. (35) with _q1ðtÞ

pðq1Þ ¼
Z

pðq1; _q1Þd _q1 ð42Þ

Then, the RMS value of q1ðtÞ can be calculated by

the following equation

Eðq2
1Þ ¼

Z
q2

1

pðHÞ
TðHÞ






H¼ _q2

1
=2þUðq1Þ

dq1d _q1 ð43Þ

and the RMS of q1ðtÞ can also be derived with

RMSðq1ðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
E q2

1

� 	q
ð44Þ

4.2 Numerical results of the primary mode

under Gaussian white noise excitation

If wðtÞ is a Gaussian white noise with intensity 2D,

K ¼ D can be derived from Eq. (36). Recalling the

expressions of the stochastic excitations for the

primary modal vibration, the intensity of the stochastic

excitation mainly depends on its amplitude. Thus, the

stochastic excitations with constant amplitude are

considered by selecting aðxÞ ¼ f0. Then, the amplitude

of the stochastic excitation is F1 ¼ 2
ffiffiffi
2

p
f0=p.

By using the formula derived previously, the

stochastic responses of the primary modal vibration

can be calculated. The parameters of the inclined cable

are the same as selected in Sect. 3.2. Other parameters

adopted in the calculations are:

c ¼ 0:01;cd ¼ 0:005;xd ¼ 0:5;f0 ¼ 0:02,D ¼ 1:0.

The values of the derived parameters in Eq. (29) are

x2
1 ¼ 1:0012,l1 ¼ 0:005,c11 ¼ 0:01,C11 ¼ 1:62,-

. For comparison, the stochastic responses derived by

MCS are also shown in the figures.

Figure 16 shows the steady-state PDF of the energy

H under different values of excitation amplitude. The

solid lines in the figure are the theoretical results

obtained by stochastic averaging of the energy

envelope and the circles are the results derived from

MCS. It is seen that the PDFs of the system energy can

Fig. 16 PDFs of the energy under different values of excitation

amplitude f0
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be flatter with a larger excitation amplitude, which

means the response of the primary vibration is bigger.

The steady PDFs of the generalized coordinates of

the primary vibration can be calculated by Eq. (42).

The steady PDFs of q1 and the logarithmic plot of

pðq1Þ for the right half side are shown in Fig. 17. It is

seen that the theoretical solutions and the solutions

obtained from MCS are also in good agreement for

different values of excitation amplitude. The increas-

ing of the excitation amplitude can increase the

responses, especially in the tail of the PDFs.

Figure 18 shows the RMS values of q1ðtÞ of the

primary modal vibration under different damping

coefficients. It is seen that the responses of the primary

modal vibration will decrease with bigger damping

coefficients, which means the damper is effective. The

theoretical results obtained by stochastic averaging of

the energy envelope are in good agreement with the

simulation solution, indicating the effectiveness of the

stochastic averaging of the energy envelope.

Figure 19 shows the responses of the primary

modal vibration under different installation positions

of the damper. It is seen that the primary modal

vibration is the smallest with the damper installed at

the midpoint of the inclined cable. Compared with the

results derived by stochastic linearization, the results

obtained by stochastic averaging of energy envelope

are more accurate, especially for the situation of

strongly nonlinear systems.

4.3 Numerical results of the primary mode

under wide-band noise excitation

Here, the responses of the primary mode under wide-

band noise excitation are calculated. The parameters

used in the calculation are f0 ¼ 0:02;D ¼ 1 and other

parameters are the same values as used in the Gaussian

white noise case.

Figures 20 and 21 shows the steady-state PDF of

the energy H and the generalized displacement q1

under different values of band-width constant

r ¼ 1:5; 2; 3, respectively. The solid lines in the

figure are the theoretical results obtained by stochastic

averaging of the energy envelope and the circles are

Fig. 17 PDFs of the generalized displacement under different values of f0

Fig. 18 The RMS values of q1ðtÞ under different values of cd
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the results derived from MCS. It is seen that the PDFs

of the system energy is flatter with a smaller band-

width constant, which means that the increasing of the

band-width constant r can decrease the responses.

This is due to that bigger value of r can lead to the

decrease of the excitation amplitude at the primary

mode. It is also seen that the theoretical solutions and

the solutions obtained from MCS are in good agree-

ment for different values of band-width constant.

4.4 Responses of the main two modes

Here, aðxÞ ¼ f0ð1 þ axÞ is adopted and the Gaussian

white noise case is considered. Recalling the conclu-

sion derived in Sect. 3, the values of a greatly

determine the main vibration modes. Thus, two cases

are discussed.

Case 1: The first-order and third-order modal

responses. When a is relatively large, the first-order

and second-order modal responses are larger. By using

Eq. (12), the equations for the first-order and second-

order generalized coordinates are

€q1 þ x2
1q1 � a2q

2
1 � a3q

2
2 þ a4q

3
1 þ 4a4q1q

2
2

þ ð2l1 þ c11Þ _q1 þ c12 _q2 ¼ f1wðtÞ
€q2 þ x2

2q2 � 2a3q1q2 þ 4a4q2q
2
1 þ 16a4q

3
2

þ c21 _q1 þ ð2l2 þ c22Þ _q2 ¼ f2wðtÞ

ð45Þ

where wðtÞ is a Gaussian white noise with intensity

2D. The coefficients can be obtained from Eq. (13)

with

a1 ¼ 24
ffiffiffi
2

p
ld2=p4; a2 ¼ 24

ffiffiffi
2

p
ld=p; a3 ¼ 32

ffiffiffi
2

p
ld=p;

a4 ¼ lp2=2;x2
1 ¼ 1 þ a1;x

2
2 ¼ 4

ð46Þ

It is seen from Eq. (45) that q1 and q2 are coupled to

form a nonintegrable Hamiltonian system. The Hamil-

tonian and potential function of system (45) are

H ¼ 1

2
_q2
1 þ

1

2
_q2
2 þ Uðq1; q2Þ;

Uðq1; q2Þ ¼
x2

1

2
q2

1 þ
x2

2

2
q2

2 �
a2

3
q3

1 � a3q1q
2
2 þ

a4

4
q4

1

þ 2a4q
2
1q

2
2 þ 4a4q

4
2

ð47Þ

Fig. 19 The RMS values of q1ðtÞ under different values of xd

Fig. 20 PDFs of the energy under different values of r

Fig. 21 PDFs of the generalized displacement under different

values of r
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Defining the generalized momentums

ðp1; p2Þ ¼ ð _q1; _q2Þ, system (45) can be modelled as a

quasi-nonintegrable system. Then, the stochastic

averaging method for the quasi-nonintegrable system

[43] can be used to yield the diffusion process for the

system energy

dH ¼ mðHÞdt þ rðHÞdWðtÞ ð48Þ

where mðHÞ and rðHÞ are the drift and diffusion

coefficients with the following expressions

mðHÞ ¼ 1

TðHÞ

Z
X ð�c11p

2
1 � c11p

2
2Þ þ D f 2

1 þ f 2
2

� �� 	
=p1dq1dq2dp2

r2ðHÞ ¼ 2

TðHÞ

Z
X D f1p

2
1 þ f2p

2
2

� �
=p1

� 	
dq1dq2dp2

TðHÞ ¼
Z

X 1=p1ð Þdq1dq2dp2

ð49Þ

The steady PDF for H can be derived by solving the

FPK equation associated with Eq. (48) with

pðHÞ ¼ C1

r2ðHÞ exp

Z H

0

2mðHÞ
r2ðHÞ dy

� �
ð50Þ

The steady PDF for q1; q2; p1; p2 can be derived

with

pðq1; q2; p1; p2Þ ¼
pðHÞ
TðHÞ






H¼ _q2

1
=2þ _q2

2
=2þUðq1;q2Þ

ð51Þ

Thus, the PDF of pðq1Þ can be obtained from

Eq. (51) by integral. For comparision, in the calcula-

tion, aðxÞ ¼ 2f0ð1 þ axÞ=3 and a ¼ 1:0 are selected to

make the excitation amplitude of the first mode equal

to the value in Sect. 4.2. Other parameters are the

same as those used in Sect. 4.2. The values of the

derived parameters are listed in Table 1.

Figures 22 and 23 shows the PDFs of the energy

and the generalized displacement for the first and the

second vibration mode under different values of f0. It

is seen that the PDFs of the system energy is flatter

with a larger excitation amplitude, which means the

response of the primary vibration is bigger. Compared

with the results derived in the primary mode vibration,

the PDFs of the generalized displacement q1 is a little

sharper, which means the responses are lightly

reduced. This is due to the extra nonlinear stiffness

of the second vibration mode. The good agreement in

the figures also showed the effectiveness of the

averaging method adopted in the calculation.

Case 2: The first-order and third-order modal

responses. When a is relatively small, the first-order

and third-order modal responses are larger. The

equation for the first-order and third-order generalized

coordinates is

Table 1 Values of the derived parameters

Parameters Value

x2
1;x

2
2

1:0012; 4:00

a2; a3; a4 1:62; 2:16; 493:48

c11; c12; c21; c22 0:01; 0; 0; 0

l1;l2 0:005; 0:005

Fig. 22 PDFs of the energy under different values of f0

Fig. 23 PDFs of the generalized displacement under different

values of f0
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€q1 þ x2
1q1 � a2q

2
1 � b1q

2
3 � 2bq1q3 þ a4q

3
1

� 9a4q1q
2
3 þ ð2l1 þ c11Þ _q1 þ c13 _q3 ¼ f1wðtÞ

€q3 þ x2
3q3 � bq2

1 � b1q
2
3 � 2b1q1q3 þ 9a4q3q

2
1

þ 81a4q
3
3 þ c31 _q1 þ ð2l3 þ c33Þ _q3 ¼ f3wðtÞ

ð52Þ

The expressions of the used coefficients are listed in

Eq. (46) with

x2
3 ¼ 9 þ a1=9,b1 ¼ 27b; b ¼ 8

ffiffiffi
2

p
dl=3p. The

Hamiltonian and potential function of system (52) are

H ¼ 1

2
_q2
1 þ

1

2
_q2
3 þ Uðq1; q3Þ;

U ¼ 1

2
x2

1q
2
1 þ

1

2
x2

3q
2
3 �

a2

3
q3

1 �
b1

3
q3

1 � 27bq1q
2
3

� bq2
1q3 þ

a4

4
q4

1þ
9a4

2
q2

1q
2
3 þ

81a4

4
q4

3

ð53Þ

The steady probability density function for H of

system (52) can be derived by using a similar

procedure as that in case 1 with modified potential in

Eq. (53). In the calculation, aðxÞ ¼ f0 is selected to

make the excitation amplitude of the first mode equal

with the results for primary mode vibrtion under

Gaussian white noise excitation. The other parameters

are the same as those calculated in Sect. 4.2. The

values of the derived parameters are listed in Table 2.

Figures 24 and 25 shows the PDFs of H and q1 for

the first and the third vibration mode under different

values of excitation amplitude. The solid lines in the

figure are the theoretical results obtained by stochastic

averaging of quasi-nonintegrable systems and the

circles are the results derived from MCS. Similar

phenomena can be derived as the results for the first

and the second vibration mode. Compared with the

results derived in the primary mode vibration, the

PDFs of the generalized displacement q1 is a little

sharper and the responses are decreased due to the

extra nonlinear stiffness of the third mode. But it is a

little bigger than the responses in the first and the

second vibration mode. This is due to that the

excitation amplitude is smaller for the third mode

under the given parameters. Thus, the extra stiffness is

smaller.

5 Conclusions

In this paper, the stochastic vibrations of nonlinear

inclined cables under random perturbation are studied.

First, the vibrational differential equations of the

inclined cables are established and the equations of the

generalized displacements for each vibrational mode

are derived and truncated by using Galerkin’s

Table 2 Values of the derived parameters

Parameters Value

x2
1;x

2
3

1:0012; 9:001

b; b1 0:18; 4:86

c11; c13; c31; c33 �0:01;�0:01;�0:01; 0:01

l1;l2 0:005; 0:005

Fig. 24 PDFs of the energy under different values of f0

Fig. 25 PDFs of q1 under different values of f0
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discretization. Then, the discrete nonlinear equations

under stochastic excitations are analyzed by using the

stochastic linearization method and the stochastic

averaging method. Through the analysis of the results,

the following conclusions are obtained:

1. For Gaussian white noise and wide-band noise

excitations with constant distribution and linear

distribution, the primary modal vibration has the

greatest impact on the overall vibration of the

inclined cable.

2. For the random excitations with constant distri-

bution, the even-order modal vibrations are very

small, while they are increasing with the linear

slope parameter a for linearly distributed random

excitations.

3. The stochastic linearization method is applicable

for nonlinear systems with small nonlinearity,

while the stochastic averaging method is also

accurate for strongly nonlinear systems.

4. The influences of excitation intensity, damping

coefficient, damper installation position and other

parameters on the vibrational response of the

inclined cable are studied.

The results obtained are also verified by MCS

simulation, which showed the effectiveness of the

developed analytical methods.
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