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Abstract This article investigates the effect of tem-
perature modulation on convective heat transport in a
fluid-saturated porous layer under local thermal non-
equilibrium (LTNE) conditions. The boundary temper-
atures aremodulated to have twoparts: a steadypart and
an externally imposed time-dependent oscillatory part.
An extendedDarcymodelwith a time derivative term is
used for the momentum equation for porous medium.
A fifth-order Lorenz model is derived using a trun-
cated Fourier series representation involving only two
terms. The resulting heat transfer is calculated in terms
of thermal Nusselt number by solving finite-amplitude
equations numerically. The influence of the governing
physical parameters on heat transport is analyzed and
depicted graphically. It has been found that heat transfer
can be effectively controlled by appropriately adjust-
ing the external thermal mechanisms of the system. A
study of streamlines and isotherms has also been con-
ducted to get an insight of the flow phenomena under
LTNE conditions. The plots of bifurcation diagrams
and the largest Lyapunov exponent are also reported in
the paper to describe the chaotic behavior of the fifth-
order, non-autonomous system.
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1 Introduction

A medium composed of a solid matrix with inter-
connected voids is called a porous medium, such as
metal foam or rock. The liquid can flow through the
pores present in a porous material. Physical quanti-
ties have a random trend in pore size and are evalu-
ated macroscopically based on the number of voids.
Porous medium has a wide range of applications in
various industrial sectors such as electronic equipment
cooling, geothermal conditions, petroleum extraction,
grain storage, drying processes, heat exchangers, and
heat pipes [1,2]. In addition, the flow theory and heat
transfer in these materials have been studied in various
fields of engineering such as petroleum engineering,
mechanical engineering, environment, and agriculture
(for details, see Ingham and Pop [3], Vafai [4], and
references therein).

The problem of natural convection in an infinitely
extended horizontal dense porous layer saturated with
Newtonian fluid heated from below is known asDarcy–
Bénard convection (DBC) [5–7]. In modeling DBC,
most studies assume local thermal equilibrium (LTE)
conditions between fluid and solid phases. At any loca-
tion, temperature gradient between the two phases is
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negligible. The LTE assumption is not appropriate in
many practical applications with high-speed flows or
significant temperature differences between the phases.
It is, therefore, essential to consider the LTNE effect
[8,9]. As the porous media theory has various applica-
tions in simple techniques such as microwave heating,
drying and freezing of foods, and many others, so, it is
believed that the idea of LTNE plays an essential role
in future developments [10–14].

LTNE is a specific condition wherein employing a
single heat transfer equation becomes inadequate to
model infinitesimal heat exchange occurring between
the fluid and solid phases. In such scenarios, a dual-
heat transfer approach is adopted, entailing the use of
separate heat transfer equations for each phase, and the
system is closed by adding a source/sink term propor-
tional to the temperature difference between the phases.
The early studies by Anzelius [15] and Schumann [16]
represent pioneering works that employed two distinct
temperature fields to investigate LTNE phenomena.
Notably, Banu and Rees [8] used LTNEmodel to show
that Lapwood’s result, originally applicable to LTE
model, could be retrieved by approaching the LTE limit
through parameter variations in the non-equilibrium
analysis. Subsequently, several studies [17–19] con-
sidered LTNE effect in a porous medium, contribut-
ing to the understanding of this complex thermal phe-
nomenon.

Over the past few decades, in a system with the time
oscillating boundary conditions, natural convection has
garnered a lot of attention [20–23]. The basic tem-
perature gradient within the fluid layer should exhibit
both space and time-dependent. It can be constructively
used to control convection through external interven-
tions and adjustments. Firstly, Venezian [24] analyzed
Rayleigh-Bénard convection (RBC) for free-free sur-
faces linearly for small-amplitude temperature modu-
lation. The author employed a perturbation method to
determine the shift in the critical Rayleigh number. The
results of the author’swork demonstrated that by appro-
priately adjusting the modulation frequency, it is pos-
sible to either destabilize or stabilize the system. Cal-
tagirone [25] conducted a study exploring the impact
of thermal modulation on the onset of Darcy convec-
tion within a porous medium saturated with fluid. The
author linearly analyzed the system using the Galerkin
technique. Stability analysis in a fluid-saturated porous
media with a non-zero mean value of time-periodic
temperaturemodulationon theboundaries is performed

by Chhuon and Caltagirone [26]. Later, many authors
such as Gershuni and Zhukhovitskii [27], Rosenblat
and Tanaka [28], Rosenblat and Herbert [29], Bhadau-
ria and Bhatia [30], and Malashetty and Swamy [31]
studied similar problems with various configurations.

The studies reviewed so far have primarily focused
on the linear stability analysis of thermal systems
within porous media in the presence of gravity or tem-
perature modulation, thus addressing only the issues
related to the onset of convection. However, for a com-
prehensive understanding of systems’ dynamic behav-
ior, encompassing aspects like chaotic motion, heat
transfer within porous media, linear stability analy-
sis proves inadequate, making nonlinear stability anal-
ysis imperative. Roppo et al. [32] first studied the
non linear realm of thermal instability under temper-
ature modulation. Siddheshwar et al. [33] adopted a
weakly nonlinear study to analyze the conductive fluid
layer’s magnetic convection under the influence of
gravity and temperature modulation. Bhadauria et al.
[34] also contributed by conducting a weakly non-
linear stability analysis to study the effects of time-
periodic gravity and temperature modulation on ther-
mal instability within a fluid-saturated, rotating porous
layer. The authors used stationary convection modes to
study the individual impacts of gravity and temperature
modulation on heat transport. Furthermore, Siddhesh-
war et al. [35] delved into the nonlinear analysis of
two-component convection within a porous medium,
exploring the effects of gravity and temperature modu-
lation. Their work involved deriving a non-autonomous
Ginzburg-Landau equation, allowing them to study
heat and mass transfer in stationary convection. Sid-
dheshwar et al. [36] investigated the influence of asyn-
chronous and synchronous boundary temperaturemod-
ulation on Darcy–Bénard convection (DBC) using a
new approach to determine the impact of phase angle
and frequency on the mean Nusselt number. Later, sev-
eral authors [37–41] also examined the effect of exter-
nal modulation on heat transfer in a horizontal fluid-
saturated porous layer.

Lorenz [42] conducted a nonlinear stability analysis
of RBC within a fluid layer, using a truncated Fourier
series representation with only two terms. This model
effectively describes the qualitative dynamics of the
entire system. The author found chaos in a relatively
simple system comprising three autonomous ordinary
differential equations (ODEs), using only second-order
non-linearities to describe a simplified RBC problem.
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For low and moderate Prandtl numbers, Vadasz and
Olek [43,44] studied chaotic convection in a porous
layer using LTEmodel. Vadasz [45–49] has also shown
that a truncated Galerkin expansion may be used to
recover the transition from rigid behavior to chaotic
convection in porous media. Siddheshwar et al. [50]
used the energy-conserving Lorenz model to investi-
gate the impact of boundary conditions on the onset
of chaos in RBC. Following Lorenz’s research, chaotic
systems have been actively employed to investigate var-
ious thermal convection problems [51–56] under LTE
conditions. By employing LTNEmodel, Sheu [57] ana-
lyzed how inter-phase heat transfer changes the route
toward chaos and how using the LTNE model may sta-
bilize steady convection. Later, several authors [58–60]
studied chaotic convection in a porous medium under
LTNE conditions.

As can be observed from the above literature review,
the works on thermal instability discussed earlier with
heat transport are in the absence of a time-dependent
temperature field under LTNE conditions. The LTNE
modelwith temperaturemodulation has practical appli-
cations in diverse fields. In biomedical applications,
it improves thermal therapies with tissue temperature
modulation. In microelectronics, such as integrated
circuits (ICs) or microprocessors, where heat gener-
ation is significant, managing temperature distribution
is important for reliability and optimal performance of
devices. Considering LTNE conditions with tempera-
turemodulation can help in design of heat sinks or cool-
ing systems and engineers can enhance heat dissipa-
tion efficiency and prevent localized overheating, thus
improving the overall reliability and lifespan of elec-
tronic devices. In industrial processes involving heating
or cooling, such as chemical reactors, food processing,
or metal casting, precise control over temperature dis-
tribution and heat transfer rates is essential for product
quality and process efficiency. By incorporating LTNE
with thermalmodulation into process design and equip-
ment operation, engineers can optimize thermal man-
agement strategies to improve process performance and
energy efficiency.

A linear analysis investigating the effect of thermal
modulation onDBCusing anLTNEmodelwas recently
studied by Bansal and Suthar [61]. To the best of our
knowledge, no study dealing with non-linear analysis
has been available that investigates the effect of temper-
ature modulation under LTNE conditions. A linear sta-
bility analysis is sufficient to obtain the stability condi-

tion and the corresponding eigenfunctions of the static
solution. It qualitatively describes the convection but
cannot provide information about its amplitude or heat
transfer rate. We perform a weakly nonlinear analy-
sis under LTNE conditions with these motives, consid-
ering the temperature modulation at both boundaries.
This helps to understand the physical mechanism with
minimal mathematical analysis and represents a step
towards understanding a complete nonlinear problem.
A fifth-order Lorenz model is derived using a truncated
two-term Fourier series representation. The objective
of present study aims to address the following ques-
tions:

1. In both the solid and fluid phases, how do the gov-
erning parameters affect the heat transfer in the sys-
tem?

2. What is the impact of LTNE parameters on the flow
pattern?

3. How do modulation and LTNE parameters affect
the chaotic motion within the system?

The answer to the first question is addressed in terms
of the Nusselt number in Sect. 4.1. Further, the nature
of flow patterns and temperature distribution in the
form of streamlines and isotherms has also been inves-
tigated in Sect. 4.2. For the third question, the influ-
ence of various modulation parameters, i.e., amplitude
and frequency of modulation, and LTNE parameters,
i.e., inter-phase heat transfer coefficient and porosity-
modified conductivity ratio, on chaotic motion is
explained using plots of the bifurcation diagrams and
largest Lyapunov exponent in Sect. 4.3.

2 Mathematical formulation

We assumed (x, y, z) as the coordinate frame in this
study so that the z-axis is vertically upward and the
origin is on the lower plane. A horizontal porous layer
saturated with Newtonian fluid is considered, which
is bounded between two infinitely extended parallel
planes at z = 0 and z = d and is time-periodically
heated from below and cooled from above. The gravity
acts in the vertical downward direction. The fluid and
porous matrix are assumed to be out of thermal equilib-
rium; hence, a two-field temperature model is adopted.
The system of equations that govern the fluid motion
for analyzing DBC in a porous medium using an LTNE
model [8] is:
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∇ · u = 0, (2.1)
ρ0 f

δ

∂u
∂t

= −∇ p − μ

K
u + ρ f (T f )g, (2.2)

δ(ρ0c) f
∂T f

∂t
+ (ρ0c) f u · ∇T f = δk f ∇2T f

+h(Ts − T f ), (2.3a)

(1 − δ)(ρ0c)s
∂Ts
∂t

= (1 − δ)ks∇2Ts − h(Ts − T f ),

(2.3b)

where ρ(T f ) is given by

ρ f (T f ) = ρ0 f [1 − β(T f − T0)], (2.4)

so that the reference density, ρ0 f = ρ f (T0). Further-
more, we adopt the modulated boundary temperatures
as described by Venezian [24].

T f = Ts

=
{
T0 + 1

2�T [1 + ε cos(ωt)] at z = 0,

T0 − 1
2�T [1 − ε cos(ωt + φ)] at z = d,

(2.5)

We must note that since LTNE includes both the
solid and fluid phases, selecting appropriate thermal
boundary conditions at the boundaries is difficult. The
assumption in the Eq. (2.5) that the modulated temper-
atures of the two phases are the same at the boundary
surfaces helps to relieve this difficulty and to obtain an
analytical expression for the basic state of the system.
Furthermore, assuming that thermally induced insta-
bilities predominate over hydrodynamic instabilities,
we neglect the convective acceleration term ((u · ∇)u),
which represents the inertial effects within the system,
in comparison to heat advection term

(
(u · ∇)T f

)
. In

the Eqs. (2.1)–(2.5) mentioned above, several symbols
are employed to represent various physical parame-
ters. Specifically, u = (u, v) signifies the velocity vec-
tor, while p represents pressure. The symbols β, k f ,
and μ denote the fluid’s thermal expansion coefficient,
thermal conductivity, and viscosity, respectively. Fur-
thermore, the ratio of the voids in the porous medium
to its total volume, i.e. porosity, is denoted by δ, and
K denotes the permeability that indicates ease of flow
through themedium. (ρ0c)s and (ρ0c) f are used to sig-
nify the volumetric heat capacity of the solid and the
fluid, respectively. Additionally, the symbol h stands
for the inter-phase heat transfer coefficient and ks rep-
resents the thermal conductivity of the solid phase. The

temperature variables in the system include T0 as a ref-
erence temperature for the fluid, T f for the fluid-phase
temperature, and Ts for the solid-phase temperature.
The parameter φ signifies the phase angle, while ε and
ω represent the amplitude and frequencyofmodulation,
respectively. Please refer to Fig. 1 for a schematic of the
system’s physical configuration. To render the govern-
ing system of equations dimensionless, we employ the
following transformations:

(x∗, y∗, z∗) = (x, y, z)

d
, u∗ = (ρ0c) f d

δk f
u,

t∗ = k f

(ρ0c) f d2
t, p∗ = (ρ0c) f K

δμk f
p,

ω∗ = (ρ0c) f
k f

d2ω, ρ∗ = ρ − ρ0 f

ρ0 f
,

θ∗
f = T f − T0

�T
, θ∗

s = Ts − T0
�T

,

where, non-dimensional quantities are representedwith
asterisks (∗). After eliminating the pressure term in
Eq. (2.2) and introducing the stream function ψ such
that u = ψz and v = −ψx , the resulting non-
dimensional equations governing the motion (with the
asterisks dropped) can be expressed as follows:(

1 + 1

Va

∂

∂t

)
∇2ψ = −Ra

∂θ f

∂x
, (2.6)

∂θ f

∂t
− ∇2θ f − H(θs − θ f ) = ∂(ψ, θ f )

∂(x, z)
, (2.7)

α
∂θs

∂t
− ∇2θs + γ H(θs − θ f ) = 0, (2.8)

and the corresponding non-dimensionalized boundary
conditions are

θ f = θs =
{

1
2 [1 + ε cos(ωt)] at z = 0,

− 1
2 [1 − ε cos(ωt + φ)] at z = 1,

(2.9)

where ∇2 ≡ ∂2

∂x2
+ ∂2

∂z2
and the non-dimensional

parameters

Pr = μ

ρ0k f
, Da = K

d2
, Va = δPr

Da
,

Ra = ρgβ�T Kd

δμκ f
,

H = hd2

δk f
, α = (ρ0c)s

(ρ0c) f

k f

ks
, γ = δk f

(1 − δ)ks
,
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Fig. 1 Physical
configuration

are Prandtl number, Darcy number, Vadasz number,
Darcy–Rayleigh number, scaled inter-phase heat trans-
fer coefficient, diffusivity ratio, porosity-modified con-
ductivity ratio, respectively. It’s important to note that
the non-dimensionalized parameters mentioned above
are valid within the constraint of 0 < δ < 1.

The quantities associated with the quiescent basic
state are expressed as follows:

ψb = 0, θ f = θ f b(z, t), θs = θsb(z, t),

where the basic state quantities are denoted with the
subscript b.

To obtain the temperature field θ f b, we consider a
composition of two components: a steady temperature
field and an unsteady oscillating part εF(z, t). Under
the boundary conditions described in (2.9), we derive
the basic state solution as follows

θ f b(z, t) = 1

2
(1 − 2z) + εF(z, t), (2.10)

and

θsb(z, t) = 1

2
(1 − 2z) + εG(z, t), (2.11)

where

F(z, t) = 1

2

[
f (z)eiωt + f̄ (z)e−iωt

]
, (2.12)

and

G(z, t)

= 1

2

[(
1 + iω

H

)
f (z)eiωt +

(
1 − iω

H

)
f̄ (z)e−iωt

]

− 1

2H

[
g(z)eiωt + ḡ(z)e−iωt

]
,

(2.13)

with

f (z) = A(λ1, λ2, z) + A(λ2, λ1, z), (2.14)

g(z) = λ21A(λ1, λ2, z) + λ22A(λ2, λ1, z),

(2.15)

A(λ1, λ2, z) = 1

2 sinh(λ1)

(λ22 + iω)

(λ22 − λ21)[
e−iφ sinh(λ1z) + sinh(λ1(1 − z))

]
,

(2.16)

λ21 = −X − √
X2 + 4(iωH(α + γ ) + αω2)

2
,

(2.17a)

λ22 = −X + √
X2 + 4(iωH(α + γ ) + αω2)

2
,

(2.17b)

and

X = −(1 + γ )H + iω(1 + α). (2.17c)

A finite amplitude perturbation is assumed on the qui-
escent basic state, which can be expressed in the fol-
lowing manner:

ψ = 0+ψ
′
, θ f = θ f b+θ

′
f , θs = θsb+θ

′
s, (2.18)

where the prime notation is used to denote infinitesi-
mal perturbedquantities.By substitutingEq. (2.18) into
Eqs. (2.6)–(2.8), we arrive at the following
expressions

(
1+ 1

Va

∂

∂t

)
∇2ψ

′+Ra
∂θ

′
f

∂x
=0,

(2.19a)
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(
∂

∂t
−∇2+H

)
θ

′
f −Hθ

′
s−

∂ψ
′

∂x

∂θ f b

∂z
−∂(ψ

′
, θ

′
f )

∂(x, z)
=0,

(2.19b)(
α

∂

∂t
−∇2+Hγ

)
θ

′
s−Hγ θ

′
f =0,

(2.19c)

and the following perturbed boundary conditions are

ψ
′ = 0, θ

′
f = 0, θ

′
s = 0 at z = 0, 1.

3 Weakly nonlinear analysis

To conduct a nonlinear analysis, we employ a trun-
cated Fourier series representation, wherein the series
coefficients are solely dependent on time. In Fourier
representation for stream function, like Lorenz’s for-
mulation, only one term is retained. However, to main-
tain some portion of the non-linearities in Eqs. (2.19a)–
(2.19c), two terms in the temperatures’ expressions
are needed. Thus, we represent ψ

′
, θ

′
f , and θ

′
s in their

respective forms

ψ
′
(x, z, t) = −

√
2 �2

aπ
A(t) sin(ax) sin(π z),

θ
′
f (x, z, t) =

√
2

rπ
B1(t) cos(ax) sin(π z)

− 1

rπ
B2(t) sin(2π z),

θ
′
s(x, z, t) =

√
2

rπ
C1(t) cos(ax) sin(π z)

− 1

rπ
C2(t) sin(2π z),

(3.1)

where �2 = π2+a2, r= a2Ra

�4 and A is the amplitude

of velocity convection, B1 and B2 are the amplitudes of
fluid phase temperature, C1 and C2 are the amplitudes
of solid phase temperature and these amplitudes are to
be determined from the systems’ dynamics. On substi-
tuting Eq. (3.1) into Eqs. (2.19a)–(2.19c) and employ-
ing the orthogonality condition with the eigenfunctions
as per Eq. (3.1), along with spatial domain integration,
we obtain a system of five ODEs governing the time
evolution of the amplitudes in the following manner:

d A(t)

dτ
=−Va∗ (A(t)−B1(t)) , (3.2a)

dB1(t)

dτ
=−(1+H∗)B1(t)+H∗C1(t)−A(t)B2(t)

−rA(t)I (t), (3.2b)
dB2(t)

dτ
=−(B∗+H∗)B2(t)+H∗C2(t)+A(t)B1(t),

(3.2c)

α
dC1(t)

dτ
=γ H∗B1(t) − (1+γ H∗)C1(t), (3.2d)

α
dC2(t)

dτ
=γ H∗B2(t)−(B∗+γ H∗)C2(t), (3.2e)

where I (t) = ∫ 1
0

[
∂θ f b(z, t)

∂z
sin2(π z)

]
dz, τ = �2t ,

Va∗ = Va

�2 , H
∗ = H

�2 , and B∗ = 4π2

�2 .

The fifth-order generalizedLorenz systemdescribed
by Eqs. (3.2a)–(3.2e) maintains uniform boundedness
over time and encapsulates several essential character-
istics of the complete problem.Moreover, it is notewor-
thy that the phase-space volume consistently undergoes
uniform contraction.

∂

∂A

(
d A(t)

dτ

)
+ ∂

∂B1

(
dB1(t)

dτ

)
+ ∂

∂B2

(
dB2(t)

dτ

)

+ ∂

∂C1

(
dC1(t)

dτ

)
+ ∂

∂C2

(
dC2(t)

dτ

)

= −
(
Va∗ + 1 + B∗ + 2H∗ + 1 + B∗ + 2γ H∗

α

)
.

(3.3)

This negativity of the rate implies that the system is both
bounded and dissipative in this case. Consequently, the
trajectories within the system are subsequently drawn
toward a set of measure zero within the phase space.
Specifically, these trajectories may converge to a fixed
point, a limit cycle, or even a strange attractor. We
have a well-established theory for Lorenz systems of
third order, as documented in references [6,42,62–64].
However, for higher-dimensional Lorenz systems or
Lorenz-like systems, one has to resort to computational
analysis.

From Eq. (3.3), we can deduce that if we have an
initial set of points in phase space occupying a region
V (0) at time τ = 0, then after a certain time, the end-
points of the corresponding trajectories will encompass
a volume V (τ ), given as

V (τ ) = V (0) exp
[− (

Va∗ + 1 + B∗ + 2H∗

+1 + B∗ + 2γ H∗

α

)]
. (3.4)
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For general time-dependent variables, the above non-
autonomous nonlinear ODE system is unsuitable for
analytical treatment. Therefore it must be solved
numerically. The horizontally averaged thermal Nus-
selt number for the fluid-phase (Nu f ), for the stationary
convection is defined as

Nu f (τ ) = 1 +

⎡
⎢⎢⎣

∫ 2π/a
0

(
∂θ

′
f

∂z

)
dx

∫ 2π/a
0

(
∂θ f b
∂z

)
dx

⎤
⎥⎥⎦
z=0

. (3.5)

On substituting expression for θ
′
f in the above equation,

we get

Nu f (τ ) = 1 + 2

r
B2(τ ). (3.6)

Similarly, for solid-phase, Nusselt number (Nus) is
given by

Nus(τ ) = 1 + 2

r
C2(τ ). (3.7)

3.1 Largest lyapunov exponent

Lyapunov characteristic exponents (LCE) is used in
chaos theory to measure the rate of convergence or
divergence of nearby trajectories in a dynamical sys-
tem, i.e., it helps to determine how sensitive the sys-
tem is to initial conditions. A positive LCE indicates
chaotic behavior, suggesting that small changes in ini-
tial conditions lead to significantly different outcomes
over time. This concept is widely used in various fields
such as biology, physics, and engineering, to study the
predictability and stability of complex systems.

For n-dimensional non-autonomous dynamical sys-
tem, we will not explicitly consider it as Ẋ = F(X, τ ),
but for our purpose, it will be sufficient to treat τ

as an independent variable with the trivial evolution
equation τ̇ = 1. In other words, we will rewrite
the non-autonomous system as an autonomous system
Ẋ = F(X, τ ), τ̇ = 1 at the expense of increasing the
dimension by one. Lyapunov exponent are calculated
as

ζi = lim
τ→∞

[
1

τ
ln

( |�Xi (τ )|
|�Xi (0)|

)]
, (3.8)

such that �Xi (τ ) satisfy the variational equation

d(�X)

dτ
= J�X, (3.9)

where Ji j = ∂Fi/∂X j . Here, the number of exponents
is one more than the dimension of the system. The
greatest exponent is indicated by the symbol ζMax, and
the exponents are listed in descending order. One can
describe the behavior of the system using the value
of ζMax. The state is regular if ζMax < 0, but the
state is chaotic if ζMax > 0. The periodic or quasi-
periodic condition is represented by the marginal case
of ζMax = 0. It takes the entire Lyapunov spectrum to
fully understand the periodicity’s nature.

A bifurcation diagram is an additional tool that can
be used to characterize the dynamical state.When there
is a continuous stream of points in the variable in
the bifurcation diagram, the behavior is either quasi-
periodic or chaotic. On the other hand, when there is
only one point in the variable, the state is either station-
ary or periodic with a period of one.

4 Results and discussion

This article investigates the effects of time-periodic
boundary temperatures on the thermal instability in a
Newtonian fluid-saturatedDarcy porous layer using the
LTNEmodel.Anonlinear analysis is performed assum-
ing Boussinesq approximation and small-scale convec-
tive motions. A fifth-order Lorenz model is derived
using a truncated two terms Fourier series represen-
tation. For the effect of thermal modulation on the sys-
tem, twomodulations are considered at the boundaries:
synchronous (when φ = 0) and asynchronous (when
φ 	= 0). Since our main aim is to understand the effect
of thermal modulation under LTNE, thus the main gov-
erning parameters are γ and H , along with ε, φ and ω.

We assume modulation to be of order δ, meaning
only a small modulation amplitude has been consid-
ered. To study the effect of the following systemparam-
eters diffusivity ratio (α), porosity-modified conduc-
tivity ratio (γ ), inter-phase heat transfer coefficient
(H ), Vadasz number (Va), modulation amplitude (ε),
and modulation frequency (ω) on the convective heat
transport, we report the variation of Nusselt numbers
to time in Figs. 2–3. Taking into account the experi-
mentally possible values of the parameters, we choose
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Fig. 2 Effect of α, γ , H ,
Va, ε, and ω on Nu f and
Nus with τ in case of
synchronous modulation

ε = 0.05, γ = 1, α = 0.5, Va = 100, H = 50,
ω = 20, and r = 20 as constant fixed values of these
parameters. Unless otherwise mentioned, the paramet-
ric values below are thosementioned above. From these
figures, it can be observed that Nu initially starts with
1, which exhibits a conduction state. This means that
when τ is small, heat transfer through the porous layer
is only by conduction. It can also be concluded that
for intermediate values of τ , the Nu value increases
and often oscillates, indicating unsteady heat transfer
between the phases. However, over time, the amount of
heat transferred reaches a nearly constant value, repre-
senting a fully developed convective flow.

4.1 Effect of physical parameters on Nusselt number

First,wediscuss the results onheat transfer in both solid
andfluid phases corresponding to the synchronous tem-
perature modulation as illustrated in Fig. 2, in which

we plotted the thermal Nusselt number (Nus) for solid
phase and (Nu f ) for fluid phase, with respect to the
slow time (τ ) for various values of system parame-
ters. From Fig. 2a, it is noted that there is no signifi-
cant effect of α in fluid phase but in solid phase, the
heat transfer decreases with increasing α. Increasing
the value of α leads to a decrease in the heat con-
ductions’ contribution of the solid phase and thus,
decreases the heat transfer at the lower boundary in
solid phase. In Fig. 2b, we observe that both Nu f and
Nus increases with the increasing γ . Smaller values of
γ correspond to a dense porous media leading to flow
restriction. In contrast, a large value of γ reduces the
non-equilibrium state between the saturating fluid and
porous matrix. It corresponds to fluids’ high thermal
conductivity relative to that of solid. Therefore, both in
solid and fluid, heat transfer increases with an increase
in γ . Figure2c presents the effect of H on Nu f and
Nus . It is observed that heat transfer in fluid decreases
with increasing H while an opposite effect is observed
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Fig. 3 Effect of α, γ , H ,
Va, ε, and ω on Nu f and
Nus with τ in case of
asynchronous modulation

in solid phase. We recollect that for extremely small
H -values, there is almost no interaction between solid
and fluid phases, i.e., they act independently, and the
heat transfer between the phases is nearly zero. There-
fore, when limit H → 0, the fluid properties dominate
the flow development and solid-phase temperature no
longer affects the fluid-phase temperature (and vice-
versa). Hence, heat transfer in solid phase is insignifi-
cant for small H -values. On the other hand, for moder-
ate H -values, the temperatures of both solid and fluid
phases are different, as the properties of the solid also
contribute to the system’s stability. As a result, it is
expected (and shown in Fig. 2c) that heat transfer in
the fluid will lessen, and the system will become more
unstable on increasing H . However, when H → ∞,
the temperature of both phases becomes indistinguish-
able, and they act as a single phase fluid leading to the
system being in LTE.

The effect of Va onNu f andNus is shown in Fig. 2d.
It is observed that on increasing Va, the heat transfer

also increases. As Va governs the effect of porosity
on the flow in a porous medium and with a densely
packed porous medium, inertial effects are less impor-
tant. Thus, the destabilizing effect is also lower com-
pared to the Venezian’s [24] clear liquid problem. On
further increasing the time, its effect on heat transfer
diminishes. The effect of ε and ω on Nu f and Nus is
presented in Fig. 2e and f, respectively. It shows that in
the case of synchronous modulation, these parameters
do not affect the heat transfer at the lower boundary.
This is because the boundary temperature does not sig-
nificantly change the temperature gradient across the
layer. Therefore, no significant effect of modulation on
heat transfer is observed in this case.

Figure3 shows the effect of asynchronous temper-
ature modulation (corresponding to φ = π ) on heat
transport in both solid and fluid phases. The impact
of α, γ , H , and Va on Nu f and Nus is observed in
Fig. 3a–d, respectively. It is observed that these param-
eters affect heat transfer in the same way as they do
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Fig. 4 Variation in
streamlines and
isotherms(fluid) for
different values of γ and H

under synchronous modulation, but for large t , the
behavior is sinusoidal in fluid phase, i.e., Nu f doesn’t
achieve a constant value. The effect of ε on Nu f and
Nus is shown in Fig. 3e. It is found that increasing ε

increases the magnitude of Nu f , improves heat trans-
fer, and promotes the onset of convection. An increase
in ε leads to larger areawhere thefluid and solid temper-
ature difference is different. This benefits the enhance-
ment of heat transfer between solid and fluid phases. In
Fig. 3f, it is observed that the heat transport amplitude
decreases, and the wavelength of oscillation shortens
as ω increases. As for low values of ω, a modulating
effect on the temperature field is felt across the fluid
layer. Therefore, convective waves propagate through
thefluid layer for asynchronousmodulation, preventing
instability and the convection occurs at higher Rayleigh
numbers than predicted by linear theory with a steady
temperature gradient. However, the effect of thermal
modulation diminished as the ω increased, and finally,

the impact ofmodulation completely disappearedwhen
ω was very large, confirming the Venezian [24] results.

A comparative analysis of the values of thermalNus-
selt numbers for fluid and solid phases (reported in
Figs. 2–3) reveals that Nu is larger for the fluid phase
than for the solid phase. It indicates that the amount
of heat transfer is higher in fluid compared to the
solid phase. Another important observation one should
make here is that the effect of modulation is prominent
when asynchronous modulation is considered. Keep-
ing these observations in mind, we plot in Figs. 4–5,
the streamlines and isotherms for the fluid and solid
phases in the case of asynchronous temperature mod-
ulation (φ = π ).

4.2 Effect of γ and H on streamlines and isotherms

The plots in Figs. 4–5 are aimed at analyzing the flow
pattern and temperature distribution within the porous
medium under local thermal non-equilibrium. Hence,
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Fig. 5 Variation in
streamlines and isotherms
(solid) for different values
of γ and H

we consider a variation in the values of γ and H . The
standard natural convection pattern is visible in these
plots as assumed through normal mode expansion. In
the streamline plots, the sense of movement in subse-
quent cells is alternately identical with and opposite to
the adjacent cell. The streamlines are colored accord-
ing to the velocity magnitude at different cell points to
visualize the change in velocity magnitudes. The color
legends at the top correspond to velocity magnitude.
We observe that the fluid velocity is prominent in the
middle and outer portion of a cell, whereas it is small
in the center and edges of a cell (see Figs. 4–5).

We first report the observation regarding the flow
pattern by analyzing the streamlines. First, one should
note that the streamlines plotted in Figs. 4 and 5 are
identical and show that the velocity magnitude remains
same when the porosity-modified conductivity ratio γ

increases for small H value. This result is evident as
higher γ corresponds to a fluid with higher thermal
conductivity resulting in a stable layer. Moreover, it is

apparent from the figures that the cells also become
slightly broader (c.f. [8]) on increasing γ . These fig-
ures also show that the flow velocity is higher for
H = 10 than for H = 50 throughout the cell when
the time τ is small (see the subplot corresponding to
τ = 0.1). The difference between the velocity magni-
tudes increases as time progresses. This phenomenon
occurs because large values of H correspond to better
heat transfer between the phases, enhancing heat dif-
fusion as time progresses. Thus, the convective flow
slows down, resulting in a decreased velocity. We also
note that the cell size increases with H , as reported by
Banu and Rees [8].

Assessing fluid-isotherms plotted as the background
in Fig. 4a (for γ = 0.1), we observe that initially,
the temperature is higher at the center due to higher
fluid velocity. But, as time progresses, the temperature
spreads quickly across the porous layer but returns to
its earlier state as fluid velocity increases. However,
due to the large value considered for γ (greater than 1),
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Fig. 6 Largest Lyapunov
exponent and bifurcation
diagrams as a function of r
for LTE and LTNE cases,
with and without
modulation effect

we observe in Fig. 4b (for γ = 1) that the temperature
diffusion is higher even with a lower fluid velocity at
all times. The isotherms for fluid phase in Fig. 4b and
c reflect that heat diffusion is faster for higher values
of H as the higher temperature region in the center of
the cell is narrower for H = 50. A similar observation
regarding higher heat exchange between the phases can
bemade for Fig. 5b and c that the isotherms for solid are
almost invariant for a small value of H . Whereas, for
large H , the isotherms display heat diffusion induced
by the convective flow. Therefore, the center of the
cell (see Fig. 5c) is a slightly higher temperature region
when compared to the isotherms in Fig. 5b. Thus, we
can conclude that the inter-phase heat transfer coeffi-

cient’s role is vital in setting up the convective currents
and the heat transfer process.

On the same reasoning, we may proceed to interpret
the result depicted in Fig. 5a–b. We observe that the
isotherms of the solid phase are substantially affected
by a change in γ . For large values of γ , the fluid prop-
erties dominate the flow development and increase the
heat transfer in the solid phase through convection.

4.3 Effect of modulation on bifurcation and Chaos

We computed the Lyapunov exponents following the
algorithm suggested by Wolf et al. [65], with a partic-
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Fig. 7 Largest Lyapunov
exponent and bifurcation
diagrams as a function of r
for LTE and LTNE cases,
with and without
modulation effect

ular focus on the largest exponent, denoted as ζMax.
Using a constant time step of �τ = 0.005 and
a set of randomly chosen fixed initial conditions:
(A, B1, B2,C1,C2, τ ) = (0.58923, 0.61950, 0.39968,
0.28658, 0.16479, 0), we conducted our simulations
employing the conventional fourth-order Runge–Kutta
technique. To plot bifurcation diagram, we need to take
into account the time series of B2(t) and identified its
local maximum values within a time interval between
0 and 1000.

Figures6 and 7 visually depict the largest Lyapunov
exponent (LLE), ζMax and the bifurcation diagram of
BMax
2 as functions of r for non-modulated and mod-

ulated LTE and LTNE cases. These figures provide

insights into the presence of windows containing peri-
odic points or intervals and reveal regions characterized
by chaotic dynamics. It’s worth noting that prior to the
existence of a window of periodic points, there exist
certain points where LLE is close to zero (ζMax ≈ 0).
This is something that can be seen before the creation
of the window of periodic points. These points do not
exhibit clear periodic or chaotic behavior, and we cat-
egorize them as nearly periodic or chaotic. The Hopf–
Darcy–Rayleigh number (rh) signifies the critical value
of r marking the transition from regular convective
motion to chaotic motion in the system.

By carefully examining Figs. 6 and 7, one can find
several important and interesting physical phenomena.
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Fig. 8 Phase portraits in
(A, B1, B2) - space at r =
110

Table 1 Value of rh at which chaotic motion starts for LTE and LTNE cases, with and without modulation effect

Cases ε = 0 ω = 2 ω = 20
ε = 0.05 ε = 0.1 ε = 0.05 ε = 0.1

LTE (limiting case) (γ = 1, H → 0) 23.1 23.5 23.7 22.9 22.9

LTNE (γ = 1, H = 10) 44.4 44.3 44.1 42.6 41.8

LTNE ( γ = 10, H = 10) 32.9 33.2 33.2 32.6 32

LTE (γ H → ∞) 23.4 23.8 24 23.2 23.1
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Table 2 Lyapunov spectrum at different values of r for LTE and LTNE cases, with modulation effect (ω = 20)

Cases r ζ1 ζ2 ζ3 ζ4 ζ5
∑

ζi

LTE (limiting case) (γ=1,H→0) 91.5 −0.545673 −0.645763 −2.01841 −3.9995 −6.85695 −14.0663

96 0.772248 −0.631692 −2.02427 −4.01097 −8.17162 −14.0663

117.5 −0.443907 −0.619556 −2.0242 −4.01616 −6.96248 −14.0663

125.3 1.01483 −0.301352 −2.02408 −4.01748 −8.73822 −14.0663

134.8 −1.34744 −1.82122 −2.06803 −4.01906 −4.81055 −14.0663

LTNE (γ=1,H=10) 40.8 0.0136061 −0.249959 −2.92036 −4.59003 −8.09735 −15.8441

42 −0.0354287 −0.115009 −2.92406 −4.58386 −8.18573 −15.8441

45.6 0.369182 −0.147907 −2.91205 −4.5999 −8.55342 −15.8441

100.5 −1.32972 −1.55123 −2.80674 −4.23495 −5.92146 −15.8441

110.2 0.740679 −0.550172 −2.91271 −4.62424 −8.49765 −15.8441

130.3 −0.229637 −0.418793 −2.90843 −4.59151 −7.69572 −15.8441

LTNE (γ=10,H=10) 96.1 −1.85089 −1.94373 −4.34632 −12.6271 −14.3677 −35.1358

100.2 0.359783 −0.390523 −8.03163 −12.6255 −14.4479 −35.1358

113.1 −0.0570508 −0.14613 −7.95139 −12.5568 −14.4244 −35.1358

119.8 1.14115 −0.816981 −8.3082 −12.73501 −14.4168 −35.1358

125.9 −0.469919 −0.580525 −7.05009 −12.54997 −14.4853 −35.1358

LTE (γ H→∞) 91.5 −0.843035 −2.50981 −4.72486 −4379.664 −3092.801 −7480.54

96 0.686138 −0.469782 −8.29406 −4367.173 −3101.533 −7476.78

117.5 −1.82322 −2.40848 −3.84604 −4324.514 −3151.634 −7484.23

125.3 1.03828 −0.462034 −8.65399 −4319.283 −3152.694 −7480.05

134.8 −0.676027 −2.04775 −5.35399 −4273.971 −3193.596 −7475.65

In Fig. 6a, for γ = 1 and small value of H , i.e.,
H = 0.01 (which indicates weak inter-phase heat
transfer between the solid and fluid phase), the bifurca-
tion from regular convection to chaos is observed in the
neighborhood of rh , i.e., r-value at which the first tran-
sition to chaotic motion occurred, for all modulated
and non-modulated cases. It is also observed that in
non-modulated case, there are more possible periodic
windows, around r≈ 55, 75, 90, 103 and a transition to
awide periodicwindow regime in the range r≈ 81−90
and above r≈ 105 as compared to themodulated cases.
For ω = 2, the possible periodic window is around r
≈ 82.6.Awide periodicwindow is also observed above
r ≈ 121, while for ω = 20, the possible periodic win-
dows are around r ≈ 90–92, 106, 115–120, 138, 141–
142, and many more. Still, no such wide periodic win-
dow is observed, as observed in other cases. LLE and
the bifurcation scenarios characterized by the parame-
ters γ = 1, H = 10 (LTNE) are illustrated in Fig. 6b,
respectively, for the interval 0 �r � 150. When H is
increased to 10, some more periodic windows appear

around r ≈ 43, 44, 48, 49, 50, after the onset of chaos,
rh ≈ 42.6 for the modulated case with ω = 20 as com-
pared to other modulated and non-modulated cases. In
this case, the route to chaos differs from the case when
H = 0.01, i.e. gets delayed. The wide period windows
for both modulated, ω = 2 and non-modulated cases
also get delayed, i.e., r≈ 138 and r≈ 128, respectively.

The bifurcation diagram and LLE are shown in
Fig. 7a for γ = 10 and H = 10. Here, we observed that
a sudden transition from regular convection to chaos
occurred earlier than when γ = 1 (Fig. 6b) for all
modulated and non-modulated cases. No periodic win-
dows just after the onset of chaos are observed for the
modulated case when ω = 20, as observed in Fig. 6b.
However, the detailed scenarios of the route to chaos
for modulated case, ω = 2 and non-modulated case
are similar to the case when γ = 1 (Fig. 6b). Figure7b
shows the bifurcation diagram and LLE as a function of
r for γ = 102 and H = 104, i.e., LTE case (γ H → ∞).
Here, the detailed scenarios of the route to chaos for all
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modulated and non-modulated cases are similar to the
case with γ = 1 and H = 0.01, as observed in Fig. 6a.

A comparison of the results between modulated and
non-modulated scenarios in both LTE and LTNE cases
reveals a notable observation. In the non-modulated
LTE case, numerous nearly periodic or mildly chaotic
points appear compared to that of LTNE cases, high-
lighting the inherent unpredictability in the dynamics
associated with LTE. When γ is small and H is mod-
erate, an abrupt chaotic transition is observed for mod-
ulated cases with moderate modulation frequency. We
also remark here that the bifurcation diagrams reiterate
the results obtained using LLE.

Figure8 shows the phase portraits for all modulated
and non-modulated LTE and LTNE cases at r = 110.
Period-2 is observed for non-modulated LTE (limiting
case) and LTE cases, while period-4 is observed for
both non-modulated LTNE cases at r = 110. However,
we observe chaotic motion at r= 110 for all modulated
LTE and LTNE cases. Extensive computational analy-
sis further reveals that the trajectories do not exhibit
attraction towards a strange attractor; instead, they are
drawn towards limit cycles.

From Table 1, considering LTE (limiting case), we
observe that rh value is larger for ω = 2, while forω =
20, its value is less than as observed in non-modulated
case. However, for small modulation frequency, i.e.,
ω = 2, rh value increases with an increase in modu-
lation amplitude, ε. In contrast, its value remains the
same while considering a moderate value of ω, i.e.,
ω = 20. A similar effect is observed for the LTE case,
i.e., γ H → ∞. In this case, for ω = 20, there is a
decrease in the rh value with an increase in modulation
amplitude. In LTNE case, when γ = 1 and H = 10, we
observe that for modulated cases, the chaotic motion
sets in earlier than in the non-modulated case. How-
ever, in modulated cases, with an increase in modu-
lation amplitude, there is a decrease in the rh value
for both the considered modulation frequencies. Also,
in LTNE case, it should be noted that on increasing
porosity modified conductivity ratio, i.e., γ = 10 for
the same H value, there is a decrease in the rh value as
compared to the case when γ = 1, since smaller val-
ues of γ correspond to a dense porous medium leading
to the inhibition of flow in the medium and delay the
onset of chaos. As a result, chaotic motion sets in ear-
lier for larger γ values. In this case, we also observe
that for modulation frequencyω = 2, there is a delay in
the onset of chaos, i.e., rh value is greater. In contrast,

for ω = 20, its value is less than the non-modulated
case. Next, we report the conclusions drawn from this
investigation.

Table 2 reports numerical values of the Lyapunov
exponents (LEs) ζi calculated for the time series
obtained for the amplitudes A, B1, B2,C1 and C2 for
different values of the bifurcation parameter r. The Lya-
punov exponent of the auxiliary equation is always
zero and, hence, isn’t included in the table. The LE
for the stream function amplitude equation is always
the largest and changes significantly with a change in r.
This observation is analogous to the results concerning
the classical Lorenz model. The values of r, for which
tabulated values are given, were chosen on the criteria
that r > rh and the variation in the LLE is maximum at
these points compared to the neighboring points. This
table again implies that moderate-frequency tempera-
turemodulation can suppress chaoticmotions in porous
mediums with LTE/LTNE conditions for specific val-
ues of r.

5 Conclusions

Temperature modulations’ effect on heat transport in
DBC is investigated by considering an LTNE model.
An equivalent Lorenz model is derived using a trun-
cated two terms Fourier series representation. Also,
with the help of finite-amplitude equations, we have
obtained the Nusselt number. The effect of modula-
tion parameters and LTNE parameters on heat transfer
and chaotic motion using plots of the largest Lyapunov
exponent and bifurcation diagrams has been found, and
the following conclusions have been drawn:

1. In the case of synchronous temperaturemodulation,
when time is small, the value of Nusselt number
is found to be oscillatory. However, it attains an
almost constant value when time is large.

2. In the case of asynchronous temperature modula-
tion, the value of the Nusselt number is large than
that of synchronous temperature modulation.

3. In the case of asynchronous temperature modula-
tion, modulation amplitude enhances heat transfer.

4. Effect of diffusivity ratio decreases the heat trans-
port for both types of modulations in the solid
phases.

5. The effect of porosity-modified conductivity ratio
and the Vadasz number enhances heat transport for
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both types of modulations in the fluid and solid
phases.

6. In fluid phase, the effect of inter-phase heat transfer
coefficient is to suppress heat transport. Whereas,
in solid phase, its effect enhances heat transport as
expected.

7. Onset of chaos for small modulation frequency get
delayed as compared to non-modulated case.

8. Increasing modulation frequency sets-in the onset
of chaos earlier.

9. For small γ -value and moderate H -values, an
abrupt transition to chaos is observed for largemod-
ulation frequency case.

Acknowledgements The authors are grateful to MNIT Jaipur
for providing research facilities and the financial assistance to
AB. The authors thank the anonymous reviewers for their educa-
tive comments that helped improve the manuscript greatly.

Funding The authors have not disclosed any funding.

Data availability The authors confirm that the data supporting
the findings of this study are available within the article.

Declarations

Conflict of interest The authors declare that they have no known
competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

References

1. Nield, D.A., Bejan, A.: Convection in Porous Media, vol. 3.
Springer, Cham (2006)

2. Bear, J.: Modeling Phenomena of Flow and Transport in
Porous Media, vol. 1. Springer, Cham (2018)

3. Ingham, D.B., Pop, I.: Transport Phenomena in Porous
Media. Elsevier, Amsterdam (1998)

4. Vafai, K.: Handbook of Porous Media. Crc Press, Boca
Raton (2015)

5. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Sta-
bility. Courier Corporation, Chelmsford, MA (2013)

6. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cam-
bridge University Press, Cambridge (2004)

7. Idris, R., Hashim, I.: Effects of a magnetic field on chaos for
low Prandtl number convection in porous media. Nonlinear
Dyn. 62, 905–917 (2010)

8. Banu, N., Rees, D.A.S.: Onset of Darcy–Bénard convection
using a thermal non-equilibrium model. Int. J. Heat Mass
Transf. 45(11), 2221–2228 (2002)

9. Straughan, B.: Global nonlinear stability in porous convec-
tion with a thermal non-equilibrium model. Proc. R. Soc. A
Math. Phys. Eng. Sci. 462(2066), 409–418 (2006)

10. Straughan, B.: Porous convection with local thermal non-
equilibrium temperatures and with Cattaneo effects in the

solid. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(2157),
20130187 (2013)

11. Straughan, B.: Exchange of stability in Cattaneo-LTNE
porous convection. Int. J. Heat Mass Transf. 89, 792–798
(2015)

12. Ljung, A.L., Lundstrom, S.: Heat, mass and momentum
transfer within an iron ore pellet during drying. In: Pro-
ceedings of CHT-08 ICHMT International Symposium
on Advances in Computational Heat Transfer, Marrakech,
Morocco, May 11–16, 2008, Begel House Inc. (2008)

13. Luo, X., Guan, X., Li, M., Roetzel, W.: Dynamic behaviour
of one-dimensional flow multistream heat exchangers and
their networks. Int. J. Heat Mass Transf. 46(4), 705–715
(2003)

14. Rees, D.A.S., Bassom, A.P., Siddheshwar, P.G.: Local ther-
mal non-equilibrium effects arising from the injection of a
hot fluid into a porousmedium. J. FluidMech. 594, 379–398
(2008)

15. Anzelius, A.: Über erwärmung vermittels durchströmender
medien. ZAMM J. Appl. Math. Mech. Z. Angew. Math.
Mech. 6(4), 291–294 (1926)

16. Schumann, T.E.W.: Heat transfer: a liquid flowing through
a porous prism. J. Frankl. Inst. 208(3), 405–416 (1929)

17. Quintard,M.,Kaviany,M.,Whitaker, S.: Two-medium treat-
ment of heat transfer in porous media: numerical results
for effective properties. Adv. Water Resour. 20(2–3), 77–94
(1997)

18. Rees, D.A.S., Pop, I.: Free convective stagnation-point flow
in a porous medium using a thermal non-equilibriummodel.
Int. Commun. Heat Mass Transf. 26(7), 945–954 (1999)

19. Siddabasappa, C.: A study on the influence of a local thermal
non-equilibrium on the onset of Darcy–Bénard convection
in a liquid-saturated anisotropic porous medium. J. Therm.
Anal. Calorim. 147(10), 5937–5947 (2022)

20. Buongiorno, J.: Convective transport in nanofluids. J. Heat
Transf. 128(3), 240–250 (2006)

21. Kuznetsov, A.V., Nield, D.A.: Effect of local thermal non-
equilibrium on the onset of convection in a porous medium
layer saturated by a nanofluid. Transp. Porous Media 83(2),
425–436 (2010)

22. Basak, A.: Study of a periodically forced magnetohydrody-
namic system using Floquet analysis and nonlinear Galerkin
modelling. Nonlinear Dyn. 94(4), 2763–2784 (2018)

23. Kanchana, C., Siddheshwar, P.G., Zhao, Y.: Regulation of
heat transfer in Rayleigh–Bénard convection in Newtonian
liquids and Newtonian nanoliquids using gravity, bound-
ary temperature and rotational modulations. J. Therm. Anal.
Calorim. 142(4), 1579–1600 (2020)

24. Venezian, G.: Effect of modulation on the onset of thermal
convection. J. Fluid Mech. 35(2), 243–254 (1969)

25. Caltaoirone, J.P.: Stabilité d’une couche poreuse horizontale
soumise a des conditions aux limites périodiques. Int. J. Heat
Mass Transf. 19(8), 815–820 (1976)

26. Chhuon, B., Caltagirone, J.P.: Stability of a horizontal
porous layer with timewise periodic boundary conditions.
J. Heat Transf. 101(2), 244–248 (1979)

27. Gershuni, G.Z., Zhukhovitskii, E.M.: On parametric excita-
tion of convective instability. J. Appl. Math. Mech. 27(5),
1197–1204 (1963)

28. Rosenblat, S., Tanaka, G.A.: Modulation of thermal convec-
tion instability. Phys. Fluids 14(7), 1319–1322 (1971)

123



16492 A. Bansal, O. P. Suthar

29. Rosenblat, S., Herbert, D.M.: Low-frequency modulation of
thermal instability. J. Fluid Mech. 43(2), 385–398 (1970)

30. Bhadauria, B.S., Bhatia, P.K.: Time-periodic heating of
Rayleigh–Bénard convection. Phys. Scr. 66(1), 59 (2002)

31. Malashetty, M.S., Swamy,M.: Effect of thermal modulation
on the onset of convection in a rotating fluid layer. Int. J. Heat
Mass Transf. 51(11–12), 2814–2823 (2008)

32. Roppo, M.N., Davis, S.H., Rosenblat, S.: Bénard convec-
tionwith time-periodic heating. Phys. Fluids 27(4), 796–803
(1984)

33. Siddheshwar, P.G., Bhadauria, B.S., Mishra, P., Srivas-
tava, A.K.: Study of heat transport by stationary magneto-
convection in a Newtonian liquid under temperature or grav-
ity modulation using Ginzburg–Landau model. Int. J. Non-
linear Mech. 47(5), 418–425 (2012)

34. Bhadauria, B.S., Siddheshwar, P.G., Kumar, J., Suthar, O.P.:
Weakly nonlinear stability analysis of temperature/gravity-
modulated stationary Rayleigh–Bénard convection in a
rotating porous medium. Transp. Porous Media 92(3), 633–
647 (2012)

35. Siddheshwar, P.G., Bhadauria, B.S., Srivastava, A.: An ana-
lytical study of nonlinear double-diffusive convection in
a porous medium under temperature/gravity modulation.
Transp. Porous Media 91(2), 585–604 (2012)

36. Siddheshwar, P.G., Bhadauria, B.S., Suthar, O.P.: Syn-
chronous and asynchronous boundary temperature modula-
tions of Bénard–Darcy convection. Int. J. Nonlinear Mech.
49, 84–89 (2013)

37. Bhadauria, B.S., Kiran, P.: Effect of rotational speed mod-
ulation on heat transport in a fluid layer with temperature
dependent viscosity and internal heat source. Ain Shams
Eng. J. 5(4), 1287–1297 (2014)

38. Manjula, S.H.,Kiran, P.,Narsimlu,G.,Roslan,R.: The effect
of modulation on heat transport by a weakly nonlinear ther-
mal instability in the presence of applied magnetic field and
internal heating. Int. J. Appl. Mech. Eng. 25(4), 96–115
(2020)

39. Mathew,A., Pranesh, S.: The onset ofRayleigh–Bénard con-
vection and heat transfer under two-frequency rotationmod-
ulation. Heat Transf. 50(7), 7472–7494 (2021)

40. Bhadauria, B.S.: Combined effect of local thermal nonequi-
librium and gravity modulation on thermal instability in
micropolar nanofluid saturated porous media. J. Porous
Media 27(2), 81–99 (2024)

41. Ragupathi, E., Prakash, D., Muthtamilselvan, M., Al-
Mdallal, Q.M.: A case study on heat transport of electrically
conducting water based-CoFe2O4 ferrofluid flow over the
disc with various nanoparticle shapes and highly oscillating
magnetic field. J. Magn. Magn. Mater. 589, 171624 (2024)

42. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci.
20(2), 130–141 (1963)

43. Vadasz, P., Olek, S.: Weak turbulence and chaos for low
Prandtl number gravity driven convection in porous media.
Transp. Porous Media 37, 69–91 (1999)

44. Vadasz, P., Olek, S.: Route to chaos for moderate Prandtl
number convection in a porous layer heated from below.
Transp. Porous Media 41, 211–239 (2000)

45. Vadasz, P.: Local and global transitions to chaos and hys-
teresis in a porous layer heated from below. Transp. Porous
Media 37(2), 213–245 (1999)

46. Vadasz, P.: Heat transfer regimes and hysteresis in porous
media convection. J. Heat Transf. 123(1), 145–156 (2001)

47. Vadasz, P.: Analytical prediction of the transition to chaos in
Lorenz equations. Appl. Math. Lett. 23(5), 503–507 (2010)

48. Vadasz, P.: Capturing analytically the transition to weak tur-
bulence and its control in porousmedia convection. J. Porous
Media 18(11), 1075–1089 (2015)

49. Vadasz, P.: Instability and route to chaos in porous media
convection. Fluids 2(2), 26 (2017)

50. Kanchana, C., Siddheshwar, P.G., Yi, Z.: The effect of
boundary conditions on the onset of chaos in Rayleigh–
Bénard convection using energy-conserving Lorenzmodels.
Appl. Math. Model. 88, 349–366 (2020)

51. Siddheshwar, P.G., Stephen Titus, P.: Nonlinear Rayleigh–
Bénard convection with variable heat source. J. Heat Transf.
135(12), 122502 (2013)

52. Kiran, P., Bhadauria, B.S.: Chaotic convection in a porous
medium under temperature modulation. Transp. Porous
Media 107(3), 745–763 (2015)

53. Layek, G., Pati, N.: Chaotic thermal convection of couple-
stress fluid layer. Nonlinear Dyn. 91, 837–852 (2018)

54. Jin, M., Sun, K., Wang, H.: Dynamics and synchronization
of the complex simplified Lorenz system. Nonlinear Dyn.
106, 2667–2677 (2021)

55. Semenov, M.E., Borzunov, S.V., Meleshenko, P.A.: A new
way to compute the Lyapunov characteristic exponents for
non-smooth and discontinues dynamical systems. Nonlinear
Dyn. 109(3), 1805–1821 (2022)

56. Margazoglou, G., Magri, L.: Stability analysis of chaotic
systems from data. Nonlinear Dyn. 111(9), 8799–8819
(2023)

57. Sheu, L.J.: An autonomous system for chaotic convection in
a porous medium using a thermal non-equilibrium model.
Chaos Solitons Fractals 30(3), 672–689 (2006)

58. Siddheshwar, P.G., Kanchana, C., Laroze, D.: A study of
Darcy–Bénard regular and chaotic convection using a new
local thermal non-equilibrium formulation. Phys. Fluids
33(4), 044107 (2021)

59. Mamatha, A.L., Ravisha, M., Shivakumara, I.S.: Chaotic
Cattaneo-LTNE porous convection. Waves Random Com-
plex Media 34, 1–23 (2022)

60. Surendar, R.,Muthtamilselvan,M.:Helical forcewith a two-
phase Cattaneo LTNEmodel on hyper-chaotic convection in
the presence of magnetic field. Eur. Phys. J. Plus 138(7), 658
(2023)

61. Bansal, A., Suthar, O.P.: A study on the effect of tempera-
ture modulation on Darcy–Bénard convection using a local
thermal non-equilibriummodel. Phys. Fluids 34(4), 044107
(2022)

123



Temperature modulation effects on chaos and heat transfer 16493

62. Hilborn, R.C.: Chaos and nonlinear dynamics: an introduc-
tion for scientists and engineers. Oxford University Press,
New York (2000)

63. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos,
and Strange Attractors, vol. 41. Springer, Cham (2012)

64. Khayat, R.E.: Chaos and overstability in the thermal con-
vection of viscoelastic fluids. J. Nonnewton. Fluid Mech.
53, 227–255 (1994)

65. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Deter-
mining Lyapunov exponents from a time series. Phys. D
Nonlinear Phenom. 16(3), 285–317 (1985)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

123


	Temperature modulation effects on chaos and heat transfer in Darcy–Bénard convection using a local thermal non-equilibrium model
	Abstract
	1 Introduction
	2 Mathematical formulation
	3 Weakly nonlinear analysis
	3.1 Largest lyapunov exponent

	4 Results and discussion
	4.1 Effect of physical parameters on Nusselt number
	4.2 Effect of γ and H on streamlines and isotherms
	4.3 Effect of modulation on bifurcation and Chaos

	5 Conclusions
	Acknowledgements
	References




