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Abstract Enzyme-catalyzed reactions are frequently
observed in the chemical process, and could be
described by the mathematical model, such as the
Gray–ScottmodelwithLangmuir–Hinshelwoodmech-
anism. The complex dynamical behaviors are analyzed
in this work, including the existence and their stability
of equilibrium points and the bifurcations of themodel.
By using stability theory, normal form technique and
bifurcation analysis, the stability and the saddle-node
bifurcation, Hopf bifurcation and Bogdanov–Takens
bifurcation are explored in detail. Numerical simula-
tions are also carried out to verify the validity of theo-
retical results.

Keywords Enzyme-catalyzed reaction · Stability ·
Hopf bifurcation · Bogdanov–Takens bifurcation

1 Introduction

In the early 20th century, scientists began to study some
phenomena, such as catalytic reactions and cell division
in living organisms, and found the involved changes
of matters in space and time. Reaction-diffusion equa-
tions, which describe nonlinear interactions between
diffusion and reaction terms, were developed to explain
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self-organizing phenomena in chemical and biologi-
cal processes. As the result of the nonlinear interaction
between diffusion and reaction terms, self-organizing
patterns will emerge, forming various type of patterns,
when some specific parameter conditions are satisfied.
Turing initiated the research of such self-organizing
patterns in 1952 [1], which is now often referred to as
the Turing pattern.

Among the various autocatalytic reaction models,
Gray–Scott model is one of popular models, which was
proposed by Gray and Scott [2–4], when they consid-
ered the autocatalytic process in a continuous stirred
tank reactor and studied the interaction between the
chemical and the catalyst. They found that the system
could exhibit different self-organizing phenomena, s
uch asmultistability, hysteresis, extinction, ignition and
self sustained oscillations. The model takes the follow-
ing dimensionless form

{
∂u
∂t = −uv2 + a(1 − u) + Du

∂2u
∂x2

,

∂v
∂t = uv2 − (a + b)v + Dv

∂2v
∂x2

,
(1)

where the state variables u(x, t) and v(x, t) respec-
tively represent the concentrations of reactants and
autocatalysts, a is the dimensionless feed rate, b is the
dimensionless rate constant of the second reaction, and
Du and Dv represent the diffusion coefficients of the
reactant and autocatalyst, respectively. In practice, this
is also the model of chemical substances in a gel reac-
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tor, where the rate a can be relatively easily modified,
while b depends on the system temperature.

The enzyme-catalyzed reaction model not only pro-
vides new ideas andmethods to study self-organization
phenomena in chemical reactions, but also has been
widely applied in other fields such as biology, physics,
and geology. Chen et al. [5] investigated a general
reaction-diffusion model with non-local activators and
inhibitors and applied the results to Klausmeier–Gray–
Scott water-plant model and Holling-Tanner predator–
prey model. In [6], Dong et al. proposed a new method
for identifying the Gray–Scott model through deter-
ministic learning and interpolation, which is based on
local identification results and uses interpolation to
achieve global identification. Gandhi et al. [7] consid-
ered the spatially localized structures in the Gray–Scott
model and focused on the regime in diffusivities by
using a combination of numerical continuation tech-
nique and weakly nonlinear theory. Saadi et al. [8] dis-
cussed a homotopy, which took a Schnakenberg-like
glycolysis model to the Gray–Scott model. Several dis-
tinct codimension-two bifurcations were discovered by
numerical continuation. Kuznetsov et al. [9] studied
the homoclinic orbits of the second-order Gray–Scott
model and gave the standard form of the Bogdanov–
Takens bifurcation of the system.

The Bogdanov–Takens bifurcation is an important
research topic in bifurcation theory. Many scholars
have applied it to other models and obtained various
research results. Yuan et al. [10] studied the bifurca-
tions analysis in a generalist predator–prey model with
stage structure. They showed saddle-node bifurcation
of codimension 1 and 2, Hopf bifurcation, Bogdanov–
Takens bifurcation, and bifurcations of nilpotent sin-
gularities of elliptic and focus type of codimension 3.
And they also found that the nilpotent focus of codi-
mension 4 serves as an organizing center to connect all
the codimension 3 bifurcations in the two-dimensional
center manifold of the system, and the bifurcations are
also associated with a third order cubic Liénard sys-
tem. In [11],Xiang et al. considered theHolling–Tanner
model with constant-yield prey harvesting. They gave
the analysis of the nilpotent cusp of codimension 4 and
the Bogdanov–Takens bifurcation of codimension 4.
And they also showed the situation that Hopf bifurca-
tion of codimension 3 occurs. Jiao et al. [12] consid-
ered a delayed predator–prey systemwith double Allee
effect in prey and presented the detailed bifurcation sit-
uation. Su et al. [13] studied a dynamicmodel of the ini-

tial lung infection response of the innate immune sys-
tem, which has a high-dimensional bifurcation, includ-
ing the Bogdanov–Takens bifurcation of codimension
3 and the Hopf bifurcation of 2 codimension.

In the heterogeneous catalysis, for the vast majority
of surface catalytic reactions the Langmuir–
Hinshelwood mechanism is preferred [14] to describe
the kinetics of enzyme-catalyzed surface reactions. For
the enzyme-catalyzed reaction model, we will intro-
duce the Langmuir–Hinshelwoodmechanism, which is
similar to the Michaelis-Menten type functional reac-
tion function. Moreover, if the concentration of sub-
stance v represented by v

1+mv
, then v will reach satu-

ration during the reaction as v is sufficiently large, i.e.
limv→∞ v

1+mv
= 1

m . Therefore, from the perspective
of controllability of chemical reactions, considering the
Langmuir–Hinshelwood reaction mechanism may be
more practical. So we will consider the impact on the
dynamics of local system and find that the model could
exhibit the stability, instability and bifurcation.

The paper is organized as follows. The enzyme-
catalyzed reactionmodelwithLangmuir–Hinshelwood
mechanism is first formulated. The existence and their
stability of equilibrium points are given in Sect. 2.
In Sect. 3, specific bifurcations are presented, includ-
ing saddle-node bifurcation, Hopf bifurcation, and
Bogdanov–Takens bifurcation. Numerical simulations
are given to validate theoretical results in Sect. 4. Some
conclusions are drawn in Sect. 5.

2 Existence and stability of equilibria

With the Langmuir–Hinshelwood mechanism the
enzyme-catalyzed reactionmodel takes the form as fol-
lows

{
∂u
∂t = −u + u2v

1+mv
,

∂v
∂t = b − dv − u2v

1+mv
.

(2)

where the state variables u(x, t) and v(x, t) respec-
tively represent the concentration of autocatalyst and
reactant, where b, d, and m are positive constants. Let
f (u, v) = −u + u2v

1+mv
and g(u, v) = b − dv − u2v

1+mv
,

solving the f (u, v) = 0 and getting that u = 0 or
u = mv+1

v
. Now, we consider these two cases respec-

tively.
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At the boundary equilibrium E0(u0, v0) = (0, b
d ),

the Jacobian matrix is

JE0 =
[−1 0
0 −d

]
.

The eigenvalues of JE0 are λ1 = −1 < 0, λ2 = −d <

0. So E0 is a stable node of the system (2).
Then we discuss the case of positive equilibrium.

From f (u, v) = 0, we have u = mv+1
v

, substituting it
into g(u, v) = 0, one has the following equation

h(v)
�= dv2 − bv + mv + 1 = 0.

The discriminant of h(v) can be obtained as

� = (m − b)2 − 4d.

According to the discriminant, when d = (m−b)2

4 , h(v)

has a unique solution

v1 = b − m

2d
.

When d <
(m−b)2

4 , there are two distinct roots

v2 = b − m + √
�

2d
, v3 = b − m − √

�

2d
.

In order to ensure that the obtained roots are positive,
here we assume that b − m > 0.

Therefore, we have the following result.

Theorem 1 Assume that b − m > 0, system (2) has
only one boundary equilibrium E0 (0, v0) = (

0, b
d

)
,

and

(i) if d >
(m−b)2

4 , then there are no real equilibria,
therefore no positive equilibria;

(ii) If d = (m−b)2

4 , then there is a unique positive

equilibrium E1 (u1, v1) =
(
b+m
2 , 2

b−m

)
;

(iii) If d <
(m−b)2

4 , then there are two positive equilib-

ria E2 (u2, v2) =
(
m

√
�+bm−m2+2d
b−m+√

�
, b−m+√

�
2d

)
and E3 (u3, v3) =

(
m

√
�−bm+m2−2d
m−b+√

�
, b−m−√

�
2d

)
.

Next, we will present the stability analysis of the
equilibrium points E1, E2 and E3. As for E1, we have
the following statements.

Theorem 2 The following statements about E1 are
true.

(i) If d = 1
2 , then E1 is a cusp of codimension two;

(ii) If d < 1
2 , then E1 is a saddle-node with an unsta-

ble parabolic sector;
(iii) If d > 1

2 , then E1 is a saddle-node with a stable
parabolic sector.

Proof Since the Jacobian matrix of system (2) at equi-
librium E1 is

JE1 =
(

1 d
−2 −2d

)
,

we have

tr JE1 = 1 − 2d, det JE1 = 0.

Now we translate E1(u1, v1) = ( bm−m2+2d
b−m , b−m

2d ) to
the origin with (u, v) = (U +u1, V +v1), then system
(2) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U̇ = a10U + a01V + a20U 2 + a11UV + a02V 2

+a21U 2V + a12UV 2 + a03V 3 + P (U, V ) ,

V̇ = b10U + b01V + b20U 2 + b11UV + b02V 2

+b21U 2V + b12UV 2 + b03V 3 + Q (U, V ) ,

(3)

where

a10 = 1, a01 = d, a20 = b − m

bm − m2 + 2d
,

a11 = 8d2

(b − m)(bm − m2 + 2d)
,

a02 = − 2d2m

bm − m2 + 2d
, a21 = 4d2

(bm − m2 + 2d)2
,

a12 = − 16d3m

(b − m)(bm − m2 + 2d)2
,

a03 = 4d3m2

(bm − m2 + 2d)2
, b10 = −2, b01 = −2d,

b20 = − b − m

bm − m2 + 2d
,

b11 = − 8d2

(b − m)(bm − m2 + 2d)
,

b02 = 2d2m

bm − m2 + 2d
,
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b21 = − 4d2

(bm − m2 + 2d)2
,

b12 = 16d3m

(b − m)(bm − m2 + 2d)2
,

b03 = − 4d3m2

(bm − m2 + 2d)2
,

and P(U, V ), Q(U, V ) are terms of at least order
four in U and V .

When d = 1
2 , we find that both the trace and deter-

minant of JE1 are equal to zero, indicating that both of
eigenvalues of JE1 are also equal to zero. After a trans-
formation to (3) by letting (U, V ) = (x, 2x+2y), then
we get the following form

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx
dt = y + c20x2 + c11xy + c02y2 + c30x3 + c21x2y

+c12xy2 + c03y3 + P1(x, y),
dy
dt = d20x2 + d11xy + d02y2 + d30x3 + d21x2y

+d12xy2 + d03y3 + Q1(x, y),

(4)

where

c20 = b2 − 4mb + 3m2 − 4

(b − m)(mb − m2 + 1)
, c11 = 4

b − m
,

c02 = − 2m

mb − m2 + 1
,

c30 = −2(2m2b − 2m3 + b + 3m)

(b − m)(mb − m2 + 1)2
,

c21 = 2(6m2b − 6m3 + b + 7m)

(b − m)(mb − m2 + 1)2
,

c12 = − 12m(mb − m2 + 2
3 )

(b − m)(mb − m2 + 1)2
,

c03 = 4m2

(mb − m2 + 1)2
,

d20 = b2 − 4mb + 3m2 − 4

2(b − m)(mb − m2 + 1)
,

d11 = 2

b − m
, d02 = − m

mb − m2 + 1
,

d30 = − 2m2b − 2m3 + b + 3m

(b − m)(mb − m2 + 1)2
,

d21 = (6m2b − 6m3 + b + 7m)

(b − m)(mb − m2 + 1)2
,

d12 = − 6m(mb − m2 + 2
3 )

(b − m)(mb − m2 + 1)2
,

d03 = 2m2

(mb − m2 + 1)2
,

and P1(x, y), Q1(x, y) are terms of at least order
four in x and y.

To facilitate further calculation, we apply the change
(x, y) = (x1, y1 + d02x1y1 − c02y21 ) to system (4) to
eliminate the y2 term and rewrite system (4) as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = y1 + e20x21 + e11x1y1 + e30x31 + e21x21 y1
+e12x1y21 + e03y31 + P2(x1, y1),

ẏ1 = f20x21 + f11x1y1 + f30x31 + f21x21 y1
+ f12x1y21 + f03y31 + Q2(x1, y1),

(5)

where

e20 = c20, e11 = d02 + c11, e30 = c30,

e21 = c21 + c11d02,

e12 = c12 − c02c11 + 2c02d02, e03 = c03 − 2c202,

f20 = d20, f11 = d11, f30 = d30,

f21 = d21 − c20d02 + 2c02d20,

f12 = d12 + d202 + c02d11 − c11d02,

f03 = d03 − 2c02d02,

and P2(x1, y1), Q2(x1, y1) are terms of at least order
four in x1 and y1.

Further, we reduce (5) into the following form by the
transformation (x2, y2) = (x1, y1+ e20x21 + e11x1y1 +
M(x1, y1)). Here the M(x1, y1) is the term of at least
order three in x1 and y1.

⎧⎪⎨
⎪⎩
ẋ2 = y2,

ẏ2 = g20x22 + g11x2y2 + g02y22 + g30x32 + g21x22 y2
+g12x2y22 + g03y32 + Q2(x2, y2),

(6)
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where

g20 = f20, g11 = f11 + 2e20, g02 = e11,

g30 = f30 + e11 f20 − e20 f11,

g21 = f21 − e11e20, g12 = f12 − e211,

g03 = f03,

and Q2(x2, y2) is the term of at least order four in x2
and y2.

Then to eliminate the y22 term in system (6), we first
apply the scaling transformation dt = (1 − g02x2)dτ

to it and obtain the system as

⎧⎪⎨
⎪⎩

dx2
dτ

= (1 − g02x2)y2,
dy2
dτ

= (1 − g02x2)(g20x22 + g11x2y2 + g02y22 + g30x32
+g21x22 y2 + g12x2y22 + g03y32 + Q2(x2, y2)).

(7)

Further transformation (x3, y3)=(x2, (1−g02x2)y2)
for system (7) yields the following result

{
dx3
dτ

= y3,
dy3
dτ

= g20x23 + g11x3y3 + Q3(x3, y3),
(8)

where

g20 = b2 − 4bm + 3m2 − 4

2(b − m)(bm − m2 + 1)
,

g11 = 2b2 − 6bm + 4m2 − 6

(b − m)(bm − m2 + 1)
,

and Q3(x3, y3) is the term of at least order three in x3
and y3.

Simple calculation gives

g20g11 = (b2 − 4bm + 3m2 − 4)(b2 − 3bm + 2m2 − 3)

(b − m)2(bm − m2 + 1)2
.

If b = 2m ± √
m2 + 4 or b = 3m

2 ±
√
m2+12
2 , then

g20g11 = 0. However, note that b−m > 0, d = 1
2 and

� = (m−b)2−4d = 0, then one has that b = m+√
2.

So it follows that g20g11 �= 0 and E1(u1, v1) is a cusp
of codimension two.

Next, for the situation d �= 1
2 , we apply the transfor-

mation (U, V ) = (−dx − y
2 , x + y) to system (3) and

obtain the following system

{ ˙̄x = c̄20 x̄2 + c̄11 x̄ ȳ + c̄02 ȳ2 + P4(x̄, ȳ),
˙̄y = d̄01 ȳ + d̄20 x̄2 + d̄11 x̄ ȳ + d̄02 ȳ2 + Q4(x̄, ȳ),

(9)

where

c̄20= − d(b3 − 3bm2 + (3m2 − 8d)b − m3)

4(2d − 1)(bm − m2 + 2d)
,

c̄11= − −m3+3bm2+(−3b2−8d2+4d)m+b(b2−8d2−4d)

4(2d − 1)(bm − m2 + 2d)
,

c̄02= − 32d3m − b3 + 3b2m + 16d2b − 3bm2 − 16d2m + m3

16d(2d − 1)(bm − m2 + 2d)
,

d̄01=1 − 2d,

d̄20= − d(b3 − 3b2m + (3m2 − 8d)b − m3)(d − 1)

4(2d − 1)(bm − m2 + 2d)
,

d̄11= − ((−8b − 8m)d2 + (4m − 4b)d + (b − m)3)(d − 1)

4(2d − 1)(bm − m2 + 2d)
,

d̄02= − (−m3+3b2m+(−32d3−3b2+16d2)m+b3−16d2b)(d−1)

16d(d − 1
2 )(bm − m2 + 2d)

,

andP4(x̄, ȳ)) and Q4(x̄, ȳ)) are the terms of at least
order three in x̄ and ȳ.

After introduction of a new time variable τ = (1 −
2d)t to system (9), the we arrive at the following form

{
dx̄
dτ = ē20 x̄2 + ē11 x̄ ȳ + ē02 ȳ2 + P5(x̄, ȳ)),
d ȳ
dτ = ȳ + f̄20 x̄2 + f̄11 x̄ ȳ + f̄02 ȳ2 + Q5(x̄, ȳ)),

(10)

where ēi j = c̄i j
1−2d , f̄i j = d̄i j

1−2d (i + j ≤ 2, 0 ≤ i, j ≤
2), P5(x̄, ȳ)) = P4(x̄,ȳ))

1−2d and Q5(x̄, ȳ)) = Q4(x̄,ȳ))
1−2d .

By calculation, it can be obtained that ē20 =
d(b3−3b2 m+(3m2−8d)b−m3)

4(1−2d)2(bm−m2+2d)
�= 0. From Theorem 7.1 in

[15], the origin is always a saddle-node. When d < 1
2 ,

E1 is a saddle-node with an unstable parabolic sector,
and it is a saddle-node with a stable parabolic sector
when d > 1

2 .
The proof is completed. �	

If � > 0, then h(u) has two solutions E2(u2, v2)
and E3(u3, v3). Now, we intend to give their stability
results.
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Theorem 3 E2 is a saddle and E3 is

(i) a source when tr JE3 > 0, i.e. d>
(b−m+1)(b−m−1)

(b−m)2
;

(ii) a center or a fine focus when tr JE3 = 0, i.e. d =
(b−m+1)(b−m−1)

(b−m)2
;

(iii) a sink when tr JE3 < 0, i.e. d <
(b−m+1)(b−m−1)

(b−m)2
.

Proof The Jacobian matrix at E2(u2, v2) and E3(u3,
v3) are

JE2,3 =
⎛
⎝ 1 −2

1
v22,3

− dv22,3+1

v22,3

⎞
⎠ .

The determinants of JE2 and JE3 are, respectively.

detJE2 = −2d
√

�(b − m + √
�)

(b − m + √
�)2

< 0,

and

detJE3 = 2d
√

�(b − m − √
�)

(b − m − √
�)2

> 0.

So E2 is a saddle and the stability of E3 is up to the
sign of the trace

tr JE3=
2(d−1)(b−m)

√
�(2−2d)(b2+m2)+4m(d−1)b−4d

(b − m − √
�)2

.

It follows that E3 is a sourcewhend >
(b−m+1)(b−m−1)

(b−m)2
;

it is a center or a fine focus when d = (b−m+1)(b−m−1)
(b−m)2

and is a sink when d <
(b−m+1)(b−m−1)

(b−m)2
. �	

3 Bifurcation analysis

3.1 Saddle-node bifurcation

After checking the existence of equilibrium points, we
find that the number of equilibria changes with respect

to the parameter d. Specifically, when d = (m−b)2

4 , the
saddle-node bifurcation may occur. In the following
discussion, we will investigate the saddle-node bifur-
cation around E1.

Theorem 4 When bifurcation parameter d ≡ dSN =
(m−b)2

4 , system (2) will experience the saddle-node
bifurcation around E1.

Proof By applying Sotomayor’s theorem [16],we need
to verify the transversality condition around d ≡ dSN .
The Jacobian matrix at E1 is given by

JE1 =
(

1 d
−2 −2d

)

Let M and N represent the eigenvectors of the eigen-
value λ1 of JE1 and J TE1

, respectively. To be specific,
we have

M =
(
M1

M2

)
=

(−d
1

)
, N =

(
N1

N2

)
=

(
2
1

)
.

Moreover, we have

Fd(E1, dSN ) =
(

0
2

m−b

)
,

and

D2F(E1, dSN )(M, M)

=
(

∂2 f
∂u2

M2
1 + 2 ∂2 f

∂u∂v
M1M2 + ∂2 f

∂v2
M2

2
∂2g
∂u2

M2
1 + 2 ∂2 f

∂u∂v
M1M2 + ∂2 f

∂v2
M2

2

)
(E1,dSN )

=
(

− (b−m)3

4
(b−m)3

4

)
.

Hence, M and N satisfy the transversality conditions,
which are given by

NT Fd(E1, dSN ) = − 2

b − m
�= 0,

and

NT [D2F(E1, dSN )(M, M)] = (b − m)3

4
�= 0.

Therefore, the system (2) exhibits the saddle-node
bifurcation around E1. �	

3.2 Hopf bifurcation

FromTheorem3,wefind thatwhend= (b−m+1)(b−m−1)
(b−m)2

,
E3 becomes a center or a fine focus, indicating that the
Hopf bifurcation may happen. Next, we will explore
whether or not the Hopf bifurcation around E3 exists.
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According to the Hopf theorem [17], we need to
verify the transversal condition

dtr JE2

dd

∣∣∣∣
d=c

= (4((−b4 + 4b3m + (1 − 6m2)b2 + (4m3 − 2m)

× b − m4 + m2 − 1)

√
(b2 − 2bm + m2 − 2)2

(b − m)2

+ (b4 − 4b3m + (6m2 − 3)b2

+ (6m − 4m3)b + m4 − 3m2 + 3)(b − m)))

/(

√
(b2 − 2bm + m2 − 2)2

(b − m)2
(b − m

−
√

(b2 − 2bm + m2 − 2)2

(b − m)2
)3(b − m)) �= 0.

Hence the Hopf bifurcation happens at E3 in system
(2).

Thenwewant to give the direction of theHopf bifur-
cation. Translating E3(u3, v3) into (0, 0)with (û, v̂) =
(u − u3, v − v3), system (2) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̃u = ã10ũ + ã01ṽ + ã20ũ2 + ã11ũṽ + ã02ṽ2

+P̃(ũ, ṽ),

˙̃v = b̃10ũ + b̃01ṽ + b̃20ũ2 + b̃11ũṽ + b̃02ṽ2

+Q̃(ũ, ṽ),

(11)

where

ã10 = 1, ã01 = 1

v23
, ã20 = v3

mv3 + 1
,

ã11 = 2

v3(mv3 + 1)
,

ã02 = − m

v23(mv3 + 1)
, b̃10 = −2,

b̃01 = −d∗v23 − 1

v23
, b̃20 = − v3

mv3 + 1
,

b̃11 = − 2

v3(mv3 + 1)
, b̃02 = m

v23(mv3 + 1)
,

and P̃(ũ, ṽ), Q̃(ũ, ṽ) are the terms of at least order
three in ũ and ṽ.

We continue to change the system (11) by the trans-
formation

x̃ = −ũ, ỹ = 1√
S
(ã10ũ+ ã01ṽ), dτ = √

Sdt,

where S = ã10b̃01 − ã01b̃10 = −d∗v23+1

v23
. Then we

obtain the following form

{ ˙̃x = −ỹ + f̃ (x̃, ỹ),
˙̃y = x̃ + g̃(x̃, ỹ).

(12)

where

{
f̃ (x̃, ỹ) = c̃20 x̃2 + c̃11 x̃ ỹ + c̃02 ỹ2 + P̃1(x̃, ỹ),

g̃(x̃, ỹ) = d̃20 x̃2 + d̃11 x̃ ỹ + d̃02 ỹ2 + Q̃1(x̃, ỹ),

and

c̃20 = − ã02ã210√
−ã01b̃10 + ã10b̃01ã201

+ ã11ã10√
−ã01b̃10 + ã10b̃01ã01

− ã20√
−ã01b̃10 + ã10b̃01

,

c̃11 = −2ã02ã10
ã201

+ ã11
ã01

,

c̃02 = ã02b̃10√
−ã01b̃10 + ã10b̃01ã01

− ã02ã10b̃01√
−ã01b̃10 + ã10b̃01ã201

,

d̃20 = b̃02ã210
(−ã01b̃10 + ã10b̃01)ã10

− b̃11ã10
S

+ ã01b̃20
S

+ ã02ã210
Sã201

− ã11ã10
Sã01

+ ã20
S

,

d̃11 = 2b̃02ã10
Sã01

− b̃11√
S

+ 2ã02ã10√
Sã201

− ã11√
Sã01

,

d̃02 = − b̃02b̃10
S

+ b̃02ã10b̃01
Sã01

− ã02b̃10
Sã01

+ ã02ã10b̃01
Sã201

,

and P̃1(x̃, ỹ), Q̃1(x̃, ỹ) are the terms of at least order
three in x̃ and ỹ.
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We can get the first-order Lyapunov number of the
system by using MATLAB, which is

σ = 1

16
[ f̃ x̃ x̃ x̃ + f̃ x̃ ỹ ỹ + g̃x̃ x̃ ỹ + g̃ỹ ỹ ỹ]

+ 1

16
[ f̃ x̃ ỹ( f̃ x̃ x̃ + f̃ ỹ ỹ) − g̃x̃ ỹ(g̃x̃ x̃ + g̃ỹ ỹ)

− f̃ x̃ x̃ g̃x̃ x̃ + f̃ ỹ ỹ g̃ỹ ỹ]
= − 1

8S
3
2 a401

[−2b20(a20
b11
2

)a501]

+ [(2a11b20 + 2a20b11 + 2b02b20 + b211)a10

− a11b20 − 2a220 − a20b11]a401 + ...

And ifσ < 0, then theHopf bifurcation is supercritical;
if σ > 0, then it’s subcritical [18].

Theorem 5 When � = (b − m)2 − 4d > 0 and d =
(b−m+1)(b−m−1)

(b−m)2
> 0, system (2) experiences the Hopf

bifurcation around E3.

Remark 1 1. When m = 0, i.e. the system (2) does not
have the Langmuir–Hinshelwood mechanism, the first

Lyapunov coefficient is l ′1 = − 6v3(v23+ 1
2 )π

(1−dv23)
3
2

< 0. Here,

1 − dv23 > 0 and d = b2−1
b2

> 0 needs to be satisfied.

Therefore, whenm = 0, b2−4d > 0, 1−dv23 > 0, and

d = b2−1
b2

> 0, it has a supercritical Hopf bifurcation
occurs around E3.

2. In Ref. [19], the phase portraits and bifurcation
diagrams were present for the Gray–Scott model, that
is, the model (2) with m = 0, but no result about the
Hopf bifurcation or the Bogdanov–Takens bifurcation.

3.3 Bogdanov–Takens bifurcation

FromTheorems 1 and 2, the system has a positive equi-
librium point E1(u1, v1)when� = (m−b)2−4d = 0
and b > m. Furthermore, whenm = m1 ≡ b−√

2 and
d ≡ d1 = 1

2 , we find that tr JE1 = det JE1 = 0 and E1

is a cusp of codimension 2. Therefore, the Bogdanov–
Takens bifurcation will appear around E1 in the sys-
tem. Now select m and b as the bifurcation parameters
to give the detailed analysis.

Theorem 6 When bifurcation parameters m = m1

and d = d1, the Bogdanov–Takens bifurcation occurs
in the small neighborhood of E1 in system (2).

Proof Replacing m and d with m1 + ε1 and d1 + ε2
respectively in system (2), one has

{
u̇ = −u + u2v

1+(m1+ε1)v
,

v̇ = b − (d1 + ε2)v − u2v
1+(m1+ε1)v

.
(13)

Using the transformation (x, y) = (u−u1, v−v1), we
expand system (13) at the origin and obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = a00(ε) + a10(ε)x + a01(ε)y + a20(ε)x2

+a11(ε)xy + a02(ε)y2 + M0(x, y, ε),

ẏ = b00(ε) + b10(ε)x + b01(ε)y + b20(ε)x2

+b11(ε)xy + b02(ε)y2 + N0(x, y, ε),

(14)

where

a00(ε) = − (m1v1 + 1)ε1
1 + (m1 + ε1)v1

, b00(ε) = b − (d1ε2)v1 − (m1v1 + 1)2

v1(1 + (m1 + ε1)v1)
, a10(ε) = 1 + (m1 − ε1)v1

1 + (m1 + ε1)v1
,

a01(ε) = (m1v1 + 1)2

v21(1 + (m1 + ε1)v1)2
, a20(ε) = v1

1 + (m1 + ε1)v1
, a11(ε) = 2m1v1 + 2

v1(1 + (m1 + ε1)v1)2
,

a02(ε) = − (m1v1 + 1)2(m1 + ε1)

v21(1 + (m1 + ε1)v1)3
, b10(ε) = −2m1v1 − 2

1 + (m1 + ε1)v1
,

b01(ε) = −1 − (m1 + ε1)
2(d1 + ε2)v

4
1 − 2(m1 + ε1)(d1 + ε2)v

3
1 + (−m2

1 − d1 − ε2)v
2
1 − 2m1v1

v21(1 + (m1 + ε1)v1)2
,

b20(ε) = − v1

1 + (m1 + ε1)v1
, b11(ε) = −2m1v1 − 2

v1(1 + (m1 + ε1)v1)2
, b02(ε) = (m1v1 + 1)2(m1 + ε1)

v21(1 + (m1 + ε1)v1)3
,
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and M0(x, y, ε), N0(x, y, ε) are the terms of at least
order three in x and y.

In order to obtain the universal unfolding of the sys-
tem, it is necessary to eliminate the y2-term in sys-
tem (14). To this end, by the transformation (x, y) =
(x1 + a02(ε)

a01(ε)
x1y1, y1 + b02(ε)

a01(ε)
x1y1), we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = c00(ε) + c10(ε)x1 + c01(ε)y1 + c20(ε)x21
+c11(ε)x1y1 + M1(x1, y1, ε),

ẏ1 = d00(ε) + d10(ε)x1 + d01(ε)y1 + d20(ε)x21
+d11(ε)x1y1 + N1(x1, y1, ε),

(15)

where

c00(ε) = a00(ε), c10(ε) = a10(ε) − a02(ε)b00(ε)

a01(ε)
,

c01(ε) = a01(ε) − a00(ε)a02(ε)

a01(ε)
,

c20(ε) = a20(ε) − a02(ε)b10(ε)

a01(ε)
,

c11(ε) = a11(ε) + b02(ε) − a02(ε)b01(ε)

a01(ε)
,

d00(ε) = b00(ε), d10(ε) = b10(ε) − b00(ε)b02(ε)

a01(ε)
,

d01(ε) = b10(ε) − a00(ε)b02(ε)

a01(ε)
,

d20(ε) = b20(ε) − b10(ε)b02(ε)

a01(ε)
,

d11(ε) = b11(ε) − a10(ε)b02(ε)

a01(ε)
+ a02(ε)b10(ε)

a01(ε)
,

andM1(x1, y1, ε), N1(x1, y1, ε) are the terms of at least
order three in x1 and y1.

Through the C∞ change of variables (x2, y2) =
(x1, c00+c10x1+c01y1+c20x21+c11x1y1+...), system
(15) becomes

⎧⎪⎨
⎪⎩
ẋ2 = y2,

ẏ2 = e00(ε) + e10(ε)x2 + e01(ε)y2 + e20(ε)x22
+e11(ε)x2y2 + e02(ε)y22 + N2(x2, y2, ε),

(16)

where

e00(ε) =c01(ε)d00(ε) − c00(ε)d01(ε),

e01(ε) =c10(ε) + d01(ε) − c11(ε)c00(ε)

c01(ε)
,

e10(ε) = − c00(ε)d11(ε) − c10(ε)d01(ε)

+ d00(ε)c11(ε) + c01(ε)d10(ε),

e01(ε) =c10(ε) + d01(ε) − c11(ε)c00(ε)

c01(ε)
,

e11(ε) =d11(ε) − c11(ε)c10(ε)

c01(ε)
+ c211(ε)c00(ε)

c201(ε)

+ 2c20(ε),

e20(ε) = − d11(ε)c10(ε) − d01(ε)c20(ε)

+ c11(ε)d10(ε) + c01(ε)d20(ε),

e02(ε) =c11(ε)

c01(ε)
,

and N2(x2, y2, ε) is the term of at least order three in
x2 and y2.

Next, introduce a new time variable dt = (1 −
e02(ε)x2)dτ and we still denote t as τ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ2 = (1 − e02(ε)x2)y2,

ẏ2 = [e00(ε) + e10(ε)x2 + e01(ε)y2 + e20(ε)x22
+e11(ε)x2y2 + e02(ε)y22 + N2(x2, y2, ε)]
×(1 − e02(ε)x2).

(17)

Again by the transformation (x3, y3) = (x2, y2(1−
e02(ε)x2)), one has

⎧⎪⎨
⎪⎩
ẋ3 = y3,

ẏ3 = f00(ε) + f10(ε)x3 + f01(ε)y3 + f20(ε)x23
+ f11(ε)x3y3 + N3(x3, y3, ε),

(18)

where

f00(ε) = e00(ε), f10(ε) = e10(ε) − 2e00(ε)e02(ε),

f01(ε) = e01(ε),

f20(ε) = e20(ε) − 2e02(ε)e10(ε) + e00(ε)e
2
02(ε),

f11(ε) = e11(ε) − e01(ε)e02(ε),

and N3(x3, y3, ε) is the term of at least order three in
x3 and y3.
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Next, there will be some classification discussions
about f20(ε).

(a) If f20(ε) < 0, then the transformation is
(x4, y4) = (x3,

y3√− f20(ε)
) and τ = √− f20(ε)t , which

will lead to

⎧⎪⎨
⎪⎩
ẋ4 = y4,

ẏ4 = g00(ε) + g10(ε)x4 + g01(ε)y4 − x24
+g11(ε)x4y4 + N4(x4, y4, ε),

(19)

where

g00(ε) = − f00(ε)

f20(ε)
, g10(ε) = − f10(ε)

f20(ε)
,

g01(ε) = − f01(ε)√− f20(ε)
, g11(ε) = − f11(ε)√− f20(ε)

,

and N4(x4, y4, ε) is the term of at least order three in
x4 and y4.

Let (x5, y5) = (x4 − g10(ε)
2 , y4), then system (19)

becomes

⎧⎪⎨
⎪⎩
ẋ5 = y5,

ẏ5 = h00(ε) + h01(ε)y5 − x25 + h11(ε)x5y5
+N5(x5, y5, ε),

(20)

where

h00(ε) = g00(ε) + g210(ε)

4
,

h01(ε) = g01(ε) + g10(ε)g11(ε)

2
, h11(ε) = g11(ε),

and N5(x5, y5, ε) is the term of at least order three in
x5 and y5.

Here we suppose f11(ε) �= 0, then h11(ε) =
g11(ε) = f11(ε)√− f20(ε)

�= 0. Further, we apply the trans-

formation (x6, y6) = (h211(ε)x5,−h311(ε)y5) and τ =
− 1

h11(ε)
t to system (20) and obtain

{
ẋ6 = y6,

ẏ6 = i1(ε) + i2(ε)y6 − x26 + x6y6 + N6(x6, y6, ε),

(21)

where

i1(ε) = −h00(ε)h
4
11(ε), i2(ε) = −h01(ε)h11(ε),

and N6(x6, y6, ε) is the term of at least order three in
x6 and y6.

(b) If f20(ε) > 0, then the transformation is
(x7, y7) = (x3,

y3√
f20(ε)

), and τ = √
f20(ε)t , which

will give

⎧⎪⎨
⎪⎩
ẋ7 = y7,

ẏ7 = ḡ00(ε) + ḡ10(ε)x7 + ḡ01(ε)y7 − x27
+ḡ11(ε)x7y7 + N7(x7, y7, ε),

(22)

where

ḡ00 = − f00(ε)

f20(ε)
, ḡ10 = − f10(ε)

f20(ε)
,

ḡ01 = − f01(ε)√
f20(ε)

, ḡ11 = − f11(ε)√
f20(ε)

,

and N7(x7, y7, ε) is the term of at least order three in
x7 and y7.

Furthermore, by the transformation (x8, y8) = (x7+
ḡ10(ε)

2 , y7), one gets

⎧⎪⎨
⎪⎩
ẋ8 = y8,

ẏ8 = h̄00(ε) + h̄01(ε)y8 + x28 + h̄11(ε)x8y8
+N8(x8, y8, ε),

(23)

where

h̄00(ε) = ḡ00(ε) − ḡ210(ε)

4
,

h̄01(ε) = ḡ01(ε) − ḡ10(ε)ḡ11(ε)

2
, h̄11(ε) = ḡ11(ε),

and N8(x8, y8, ε) is the term of at least order three in
x8 and y8.

Similarly, supposing f11(ε) �= 0, then h̄11(ε) =
ḡ11(ε) = f11(ε)√

f20(ε)
�= 0. Applying transformation

(x9, y9) = (h̄211(ε)x8, h̄
3
11(ε)y8) and τ = 1

h̄11(ε)
t to

(23), one obtains

{
ẋ9 = y9,

ẏ9 = ī1(ε) + ī2(ε)y9 + x2 + xy + N9(x9, y9, ε),

(24)

where

ī1(ε) = h̄00(ε)h̄
4
11(ε), ī2(ε) = h̄01(ε)h̄11(ε),
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and N9(x9, y9, ε) is the term of at least order three in
x9 and y9.

In order to simplify the discussions, we still denote
ī1(ε) and ī2(ε) as i1(ε) and i2(ε). Here with the help of
the MATLAB, we have

∣∣∣∣∂(i1(ε), i2(ε))

∂(ε1, ε2)

∣∣∣∣
ε1=ε2=0

�= 0.

So i1(ε) and i2(ε) are dependent. Then we could give
the local representations of the bifurcation curves up to
second-order approximation in the following (“+”for
f20(ε) > 0, “-”for f20(ε) < 0):
(1) The saddle-node bifurcation curve SN =

{(ε1, ε2) : g1(ε1, ε2) = 0, g2(ε1, ε2) �= 0};
(2) The Hopf bifurcation curve H = {(ε1, ε2) :

g2(ε1, ε2) = ±√−g1(ε1, ε2), g1(ε1, ε2) < 0};
(3) The homoclinic bifurcation curve HL = {(ε1,

ε2) : g2(ε1, ε2) = ± 5
7

√−g1(ε1, ε2), g1(ε1, ε2) < 0}.
�	

4 Numerical simulation

In this section, we would like to demonstrate the com-
plex dynamical behaviors through numerical simula-
tion. Effectiveness of the theoretical analysis presented
above could be confirmed through the phase portraits
by using MATLAB. Here, m, b and d are parameters
of system (2).

Example 1 Figure1 shows the dynamical behavior of
system (2) with given parameters m = 0.3 and b =
0.3 + √

2. In this case, dSN = (m−b)2

4 = 0.5. As
shown in Fig. 1a, when d = 0.6 > dSN , the system
only has one boundary equilibrium E0 = (0, 1.0071).
In Fig. 1b, when d = 0.5 = dSN , the system has a
boundary equilibrium E0 = (0, 3.4284) and a posi-
tive equilibrium E1 = (1.0071, 1.4142), which is a
cusp. Saddle-node bifurcation may occur around E1.
In Fig. 1c, when d < dSN , the system has a bound-
ary equilibrium point E0 = (0, 4.2855) and two pos-
itive equilibrium E2 = (0.6909, 2.5583) and E3 =
(1.3233, 0.9772).

Example 2 Figure2 shows the dynamical behavior of
system (2) with given parameter m = 0.3. In Fig. 2a,
taking b = 0.3 + √

2.4 and d = 0.6, the system has
a unique positive equilibrium E1 = (1.0746, 1.2910),

which is a saddle node with a stable parabolic sec-
tor. In Fig. 2b, taking b = 0.3 + √

1.6 and d = 0.4,
the system has a unique positive equilibrium point
E1 = (0.9325, 1.5811), which is a saddle node with
an unstable parabolic sector. As shown in Fig. 1b, with
b = 0.3 + √

2 and d = 0.5, the positive equilibrium
point E1 = (1.0071, 1.4142) is a cusp of codimension
2. Therefore, the Bogdanov–Takens bifurcation may
occur around E1.

Example 3 Figure3 shows the phase portrait of sys-
tem (2) with parameters m = 0.09 and b = 1.39.
At this point, dH = (b−m+1)(b−m−1)

(b−m)2
= 0.69/1.69.

In Fig. 3a, where d = dH , the system has a bound-
ary equilibrium and two positive equilibrium points
E2 = (0.6208, 1.8841) and E3 = (0.8592, 1.3000).
E2 is a saddle point, while E3 is a fine focus. In
Fig. 3b, where d = 0.2 < dH , the system has a bound-
ary equilibrium and two positive equilibrium points
E2 = (0.2683, 5.6085) and E3 = (1.2117, 0.8915).
E2 is a saddle point, while E3 is a sink. In Fig. 3c, where
d = 0.4 > dH , the point E3(0.89, 1.25) is a source.
So the system may undergo the Hopf bifurcation near
E3.

Example 4 Take parameters m = 0.3, b = 0.3 +√
2, d = 0.5, then the Bogdanov–Takens bifurca-

tion occurs around E1. The bifurcation thresholds are
m1 = m and d1 = d. Then we have

∣∣∣∣∂(i1(ε), i2(ε))

∂(ε1, ε2)

∣∣∣∣
ε1=ε2=0

= −16.5324 �= 0.

Therefore the rank of matrix
∣∣∣ ∂(i1(ε),i2(ε))

∂(ε1,ε2)

∣∣∣
ε1=ε2=0

is 2.

For sufficiently small εi (i = 1, 2), the local represen-
tation of the bifurcation curves could be approximated
as follows:

SN = {(ε1, ε2) : −17.3481ε21 − 75.8515ε1ε2

+ 4.7011ε1 − 82.9553ε22 + 9.9123ε2 = 0,

ε2 �= 0},
H = {(ε1, ε2) : −14.4343ε12 − 53.4060ε1ε2

+ 4.3203ε1 − 36.1388ε22 + 8.1175ε2 = 0, ε2 < 0},
HL = {(ε1, ε2) : −5.9373ε21 − 16.2542ε1ε2

+ 2.0177ε1 + 4.4923ε22 + 3.2624ε2 = 0, ε2 < 0}.

123



14374 R. Wu, L. Yang

Fig. 1 Dynamics of system (2) with parameters m = 0.3 and b = 0.3 + √
2. a d = 0.6; b d = 0.5; c d = 0.4

Fig. 2 Dynamics of system (2) with parameters m = 0.3. a b = 0.3 + √
2.4, d = 0.6; b b = 0.3 + √

1.6, d = 0.4

Fig. 3 Phase portraits
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Fig. 4 a The subcritical
Bogdanov–Takens
bifurcation diagram of
system (13); b When
(ε1, ε2) = (0.1,−0.0033),
the system has no positive
equilibrium point in region
I; c When
(ε1, ε2) = (0.064,−0.048),
the system has an unstable
focus in region II; d When
(ε1, ε2) = (0.064,−0.05),
the system has an unstable
limit cycle in region III; e
When (ε1, ε2) =
(0.064,−0.05280294849),
the system has an unstable
homoclinic orbit on curve
HL; f When
(ε1, ε2) = (0.064,−0.1),
the system has a stable
focus in region IV

Figure4 shows the subcritical Bogdanov–Takens
bifurcation diagram and phase portraits of system (13).
The conclusions are as follows.

(a) The bifurcation curves SN , H and HL divide the
(ε1, ε2)-plane into four regions, which rotate clock-
wise around the critical parameter values of the
Bogdanov–Takens bifurcation (ε1, ε2) = (0, 0), as
shown in Fig. 4a.

(b) In Fig. 4b, when the parameters are in region I, the
system has no positive equilibrium point.

(c) When the parameter is on the curve SN , the system
has a positive equilibrium point, which is a saddle
node.

(d) When the parameter crosses the curve SN and
enters region II, passing through the saddle-node
bifurcation, the systemhas twopositive equilibrium
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points, one unstable focus and the other a saddle
point (See Fig. 4c).

(e) When the parameter is on the curve H , there are
two positive equilibrium points, one unstable fine
focus and the other a saddle point.

(f) When the parameter crosses the curve H and enters
region III, passing through the subcritical Hopf
bifurcation, an unstable limit cycle appears, with
the focus being stable (See Fig. 4d).

(g) When the parameter crosses region III and is on the
curve HL , passing through the homoclinic bifur-
cation, an unstable homoclinic orbit containing a
stable focus appears (See Fig. 4e).

(h) When the parameter crosses the curve HL and
enters region IV, the homoclinic orbit breaks and a
stable focus and a saddle point appear (See Fig. 4f).

5 Conclusion

An enzyme-catalyzed reaction model is formulated in
this work. Existence and their stability of equilibrium
points, and the bifurcations, including the saddle-node
bifurcation, the Hopf bifurcation and the Bogdanov–
Takens bifurcation of codimension 2, in the system are
presented. By using the stability theory, the existence
and stability of equilibrium points of system (2) are
provided. Moreover, the detailed bifurcation behaviors
of the model are discussed through bifurcation theory,
which includes the Sotomayor’s theorem, Hopf anal-
ysis and perturbed theory. Numerical simulations are
used to validate the results obtained. Specifically, com-
pared to the original temporal Gray–Scott model, the
system (2) exhibits richer dynamic behaviors. Effects
of the diffusion on the model will be still interesting
and could be further explored.
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