
Nonlinear Dyn (2024) 112:16113–16134
https://doi.org/10.1007/s11071-024-09856-6

RESEARCH

An improved physics-informed neural network with
adaptive weighting and mixed differentiation for solving the
incompressible Navier–Stokes equations

Jie Wang · Xufeng Xiao · Xinlong Feng · Hui Xu

Received: 5 February 2024 / Accepted: 6 June 2024 / Published online: 19 June 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract Physics-informedneural networks (PINNs)
have been an effective tool for approximating the map-
ping between points in the spatio-temporal domain and
solutions of partial differential equations (PDEs).How-
ever, there are still some challenges in dealing with the
nonlinear characteristics and complexity of theNavier–
Stokes (N–S) equations. In this paper, the improved
adaptiveweightingPINNsbasedon theGaussian likeli-
hood estimation are applied to solve theN–S equations.
The weights of the different loss items are allocated
adaptively by the maximum likelihood estimation. The
improved network structure has been designed with
considering both the global and local information,mak-
ing it easier to capture the part of PDEs solution with
drastic changes. A combinationalmethod of the numer-
ical differentiation (ND) and the automatic differentia-
tion (AD) is proposed to compute the differential oper-
ators, with the improved computational efficiency. The

J. Wang · X. Xiao (B) · X. Feng · H. Xu
College of Mathematics and System Science, Xinjiang Univer-
sity, Urumqi 830046, People’s Republic of China
e-mail: xiaoxufeng111@sina.com

J. Wang
e-mail: wangjie06152023@163.com

X. Feng
e-mail: fxlmath@xju.edu.cn

H. Xu
e-mail: dr.hxu@sjtu.edu.cn

H. Xu
School of Aeronautics and Astronautics, Shanghai Jiao Tong
University, Shanghai 200240, People’s Republic of China

derivative operation of the convection and pressure-
gradient terms was carried out using the combined
method in solving the incompressible N–S equations.
The results show that the effectiveness and training effi-
ciency of this method are better than PINNs.

Keywords Physics-informed neural networks ·
Adaptive weighting · Expressive capacity of neural
networks · Mixed differentiation · Navier–Stokes
equations

1 Introduction

The incompressible Navier–Stokes (N–S) equations
are fundamental for fluid flow. They are widely applied
in fluid simulation, such as the applications in meteo-
rology, aviation, and engineering. The classical numer-
ical methods, e.g., the finite element [1], the finite
volume [2], and the finite difference [3] methods are
widely used in solving the N–S equations. These
discretization-based methods utilize the values of grid
points distributed in the space and time domains to
approximate the solution of the partial differential
equations (PDEs). However, the classical numerical
methods present some challenges, e.g., the curse of
dimensionality, the reliance on grid structures, and
the numerical instabilities. Compared to traditional
numerical methods, the machine learning demon-
strates remarkable efficiency and accuracy in solving
the incompressible Navier–Stokes equations, partic-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-024-09856-6&domain=pdf

16114 J. Wang et al.

ularly when dealing with complex geometries, high-
dimensional problems, and inverse problems. And the
method without discretization can successfully address
the challenges of the traditionalmethods in dealingwith
the complex problems [4–9].

The neural networks have been applied to solve
PDEs,which is an important application of themachine
learning. The neural networks in solving PDEs were
proposed at in 1990s [10,11]. In recent years, vari-
ous types of neural networks have emerged so far, in
the fields of scientific computation and deep learning.
With the increase in computational power and avail-
ability of data, neural networks, show a significant
impact on solving PDEs [12–18]. In particular, the
frameworks of the physics-informed neural networks
(PINNs) were developed [19–21], and the automatic
differentiation (AD) techniques were used to compute
the derivative terms in time and space. The loss func-
tion is designed based on the physical principles under-
lying the governing equations. The back-propagation
algorithm iteratively adjusts the weights of the neu-
ral networks. Subsequently, the PINNs framework has
been further developed,with various improvements and
applications. Chiu et al. [22] proposed a method that
combines AD and the finite difference methods, which
utilizes the neighboring points to calculate the deriva-
tives. Patel et al. [23] proposed cvPINNs, combining
the finite volume method with PINNs and utilizes the
integral methods to the offset for derivative operations
in equations. Other methods based on domain decom-
position are also available, which divide the computa-
tional domains into a multiple of smaller subdomains
[24–26].Researchers have also studied someother vari-
ants of PINNs [27–32].

The continuous development of PINNs has led
to widespread applications fluid mechanics [33–36].
There are two notable methods for solving the N–
S equations, which deserves special attention. Jin et
al. [33] proposed the NSFnets model for simulating
the incompressible laminar and turbulent flows. This
method directly encodes the governing equations in the
deep neural networks to address the time-consuming
issues of integrating multiple datasets and generat-
ing grids. Dwivedi et al. [35] developed a distributed
PINNs framework for the incompressible N–S equa-
tions. It decomposes the computational domain into
multiple subdomains with simple learning machines
on each subdomain to solve problems, thereby reduc-

ing the burden. These methods show high accuracy and
stability in solving the incompressible N–S equations.

The methods mentioned above have shown promis-
ing advantages, but they are only applicable to regu-
lar domains. Therefore, a new deep learning method
is proposed in this study, which can solve the incom-
pressible N–S equations with irregular domains. This
study will focus on three aspects to reduce the errors as
much as possible and improve the computational effi-
ciency of the neural networks. Firstly, the loss function
for PINNs is a combination of multiple weighted loss
terms. Minimizing the loss function can be viewed as
an optimization problem with multiple objectives. The
issues of imbalanced each loss term can be addressed
by adaptively assigning the corresponding weights to
each loss term based on the maximum likelihood esti-
mation using the Gaussian distributions. Secondly, an
improved network is proposedwith the global and local
information. This design can transfer the input infor-
mation to the hidden layers of the networks and capture
the drastic parts of the PDEs solution. This enhances
the expressive power of the deep neural networks with
reducing the approximation errors. Thirdly, combin-
ing AD with ND can deal with the issues of com-
putational efficiency and stability encountered in AD,
thereby improving the performance of PINNs.

The paper is organized as follows. Section2 details
the incompressible N–S equations and the basic struc-
ture of the PINNs. In Sect. 3, the methods proposed in
this study are presented, including the adaptive weight-
ing, the improved neural networks, and the mixed dif-
ferentiation. And the effectiveness of our method is
validated through the numerical experiments in Sect. 4.
Section5 summarizes the paper and the future research
prospects.

2 Preliminaries

2.1 Model equation

The non-dimensional incompressible N–S equations
are considered in this study, which is expressed in a
three-dimensional domain � × (0, T] as follows:
∂u
∂t

+ (u · ∇)u = −∇ p + 1

Re
∇2u in � × (0, T],

(2.1a)

∇ · u = 0 in �, (2.1b)

123

An improved physics-informed neural network with adaptive weighting 16115

u = uϒ on ϒD, (2.1c)

∂u
∂n

= 0 on ϒN , (2.1d)

u(x, 0) = s(x) in �, (2.1e)

where u = [u(x, t), v(x, t), w(x, t)] is the non-
dimensional velocity vector, p(x, t) is the non-dimensional
pressure, and Re is the Reynolds number. The Dirichlet
and Neumann boundary conditions are denoted with
ϒD and ϒN , respectively. s(x) represents the initial
velocity field.

2.2 PINNs

The standard PINNs (s-PINNs) approximate the map-
ping between the spatio–temporal domain points and
the solution of PDEsusing the training neural networks.
In the s-PINNs framework, the core of the training
model is the fully-connected neural networks. This type
of neural networks typically consist of an input layer,
an output layer, and n hidden layers. Figure1 depicts
the structure of the s-PINNs.

We will use the first component u(x, t) as an exam-
ple to outline the general approach, and similar meth-
ods can be applied to the other variables. Ultimately,
the construction of the network will involve all three
variables simultaneously. To effectively approximate
the solution u(x, t) of the N–S equations, the fully-
connected neural networks represented as ûN (x, t; θ)
are applied. The input of the neural networks consists
of the independent variables x and t , while the output
corresponds to the predicted solution ûN (x, t; θ) at that
specific points. The connections between the layers are
represented as follows:

I nput layer : ûiN (x, t) = [x, t]T,

Hidden layers : ûiN (x, t) = �
(
W iN i−1(x) + bi

)

f or 2 ≤ i ≤ L − 1,

Output layer : ûLN (x, t) = W LN L−1(x) + bL ,

(2.2)

where ûiN (x, t) and ûLN (x, t) are the inputs and out-
puts of the model. � is the activation function, usually
taken as sigmoid or tanh, sin, etc [37]. The activation
function realizes the nonlinear approximation of the
model by nonlinear transformation of the output val-
ues. θ = (Wi , bi) represents a set of weight matrices
and the bias vectors of the i-th layer.

The loss functions of the s-PINNs consist of three
components, including the initial and boundary condi-
tions reflecting the spatio-temporal domains, and the
residuals of the PDEs at the selected points in the
domain (called collocation points). They are defined
as the initial loss, the boundary loss and the residual
loss, respectively. The output of the neural networks
is denoted as ûN (x, t; θ), the three error parts of the
s-PINNs loss functions are given below [38]:

The loss of the mean squared error of the initial con-
dition is given as:

Lini = MSEini = 1

Nini

Nini∑
i=1

|ûN

(
xinii , 0

)

− sinii |2, xinii ∈ �, (2.3)

where ûN
(
xinii , 0

)
is the output of the neural networks

and sinii is the given initial condition at
(
xinii , 0

)
.

The loss of the mean squared error on the boundary
condition:

Lbcs = MSEbcs = 1

Nbcs

Nbcs∑
j=1

∣∣∣ûN

(
xbcsj , tbcsj

)

− hbcs
i

∣∣∣
2
,
(

xbcsj , tbcsj

)
∈ ϒ × (0, T], (2.4)

hbcs
j stands for the boundary conditions. The point set(
xbcsj , tbcsj

)
represents the boundary points.

The mean squared error resulting from the residuals
of the incompressible N–S equations:

R1(x, t) := ∂u
∂t

+ (u · ∇)u + ∇ p − 1

Re
∇2u,

R2(x, t) := ∇ · u. (2.5)

Lres = MSEres = 1

Nres

Nres∑
k=1

∣∣R1
(
xresk , tresk

)∣∣2

+ ∣∣R2
(
xresk , tresk

)∣∣2 ,
(
xresk , tresk

) ∈ ϒ × (0, T],
(2.6)

where
(
xresk , tresk

)
are the internal residual points that

are randomly sampled and uniformly distributed. The
Latin hypercube samplingmethod [39] is used to obtain
the points within the interior domain and boundaries.
Therefore, the expression for the total loss function can
be written as follows:

Lsum = Lini + Lbcs + Lres . (2.7)

The loss function Lsum was then minimized using the
optimization techniques like Adam, LBFGS, and SGD
until it is close to zero [40]. The ideal parameter is

123

16116 J. Wang et al.

Fig. 1 The architecture of
the standard
physics-informed neural
networks

finally obtained after a specific number of iterative
training.

The relative discrete l2-error is introduced to eval-
uate the deviation between the approximate solution
ûN

(
x∗
i , t

∗
i

)
of the neural networks and the exact solu-

tion u
(
x∗
i , t

∗
i

)
of the PDEs.

Eerror :=
√

1
N

∑N
i=1

(
ûN

(
x∗
i , t

∗
i

) − u
(
x∗
i , t

∗
i

))2
√

1
N

∑N
i=1

(
u

(
x∗
i , t

∗
i

))2 ,

(2.8)

where ûN
(
x∗
i , t

∗
i

)
is the output for a series of test

point networks
{(

x∗
i , t

∗
i

)}N
i=1, and u

(
x∗
i , t

∗
i

)
denotes

the exact value.

3 Solution methodology

In this section, the maximum likelihood estimation of
the Gaussian distribution is utilized to adaptively bal-
ance the weights of each loss term. According to the
attention mechanism in computer vision, the s-PINNs
are improved by introducing the additional spatio-
temporal variable sets. Furthermore, the improved neu-
ral networks utilize the mixed differentiation to com-
pute the differential operators, thereby enhancing the
computational efficiency of the training neural net-
works.

3.1 Adaptive weighting method for PINNs

The schematic diagram of the adaptive weighting
PINNs (aw-PINNs) is shown in Fig. 2. Following the

methods in Ref [41], there are effective methods for
determining the weightings of the multiple loss func-
tions in scene geometry and semantic multi-task deep
learning problems. The principle is to assign the differ-
ent weights to the various losses based on their contri-
bution to the overall performance of the model.

When solving the N–S equations, we model the out-
put ûN (x, t; θ) of PINNs as a Gaussian probability dis-
tribution,

P(u | ûN (x, t; θ)) = N
(

ûN (x, t; θ), ξ2
)

, (3.1)

with an uncertainty parameter ξ .
The uncertainty parameter for the decay of the

weights is adjusted using the maximum likelihood
inference. According to the probability density func-
tion of the Gaussian distribution:

P(ζ | θ) = 1√
2πξ

exp

(
− (ζ − ω)2

2ξ2

)
, (3.2)

where ω represents the mathematic expectation, and
ξ is the standard deviation. By minimizing the objec-
tive and preventing data underflow, the negative log-
likelihoodof themodel isminimized followingEq. (3.2),

− log P(u | ûN (x, t; θ))

= − log N
(

ûN (x, t; θ), ξ2
)

∝ 1

2ξ2
|u − ûN (x, t; θ)|2 + log ξ

= 1

2ξ2
L(θ) + log ξ, (3.3)

where the weighted loss functions and the uncertainty
regularization terms for each task are considered. The
parameter ξ of each epoch is updated iteratively using

123

An improved physics-informed neural network with adaptive weighting 16117

themaximum likelihood estimation to adapt the weight
of each loss term.

The loss of the initial and boundary conditions can
be represented by the Gaussian probability models of
the outputs s and h.

P(u, s, h | ûN (x, t; θ))

= P(u | ûN (x, t; θ)) · P(s | ûN (x, t; θ))

·P(h | ûN (x, t; θ))

= N
(

ûN (x, t; θ), ξ2r

)
· N

(
ûN (x, t; θ), ξ2i

)

·N
(

ûN (x, t; θ), ξ2b

)
. (3.4)

We aim tominimize the joint probability distribution
of the multi-output model.

− log P(u, s, h | ûN (x, t; θ)) ∝ 1

2ξ2r
|u − ûN (x, t; θ)|2

+ 1

2ξ2i
|s − ûN (x, t; θ)|2

+ 1

2ξ2b
|h − ûN (x, t; θ)|2 + log ξr ξi ξb

= 1

2ξ2r
Lres(θ) + 1

2ξ2i
Lini (θ)

+ 1

2ξ2b
Lbcs(θ) + log ξr ξi ξb.

(3.5)

In a word, the loss functions are defined for the PINNs
using a multi-output model with four vectors. The
loss function of the adaptive weighting PINNs can be
expressed as follows:

L(θ; ξ) = 1

2ξ2r
Lres (θ) + 1

2ξ2i
Lini (θ)

+ 1

2ξ2b
Lbcs (θ) + log ξrξiξb,

(3.6)

where ξ = {ξr , ξi , ξb} represents the adaptive weight-
ing coefficients assigned to each loss term. λ =
{λres, λini , λbcs}, λ := 1

2ξ2
denotes the overall weight

of each loss term. Thus, the weight of each loss term
can be adjusted automatically and systematically. Dur-
ing the training process, we introduce a trainable and
adaptive parameter Q = {Qr , Qi , Qb} to prevent the
denominator from being zero, where Q := log ξ2

improves the robustness of the model. The final adap-

tive weighting loss function can be represented as:

L(θ; Q) = 1

2
exp (−Qr)Lres (θ)

+ 1

2
exp (−Qi)Lini (θ)

+ 1

2
exp (−Qb)Lbcs (θ)

+ 1

2
(Qr + Qi + Qb)

∝ exp (−Qr)Lres (θ) + exp (−Qi)Lini (θ)

+ exp (−Qb)Lbcs (θ) + Qr + Qi + Qb.

(3.7)

We use Eq. (3.7) as the final loss function for aw-
PINNs. The loss function can beminimized through the
exponential mapping without constraints. The adaptive
weights converge slowly to zero because the exponen-
tial function produces only positive values, which con-
tributes to improve numerical stability during training.

3.2 Improved network structure for PINNs

To enhance the approximation capability of adaptive
the weighting neural networks, we have devised a
novel network architecture, drawing inspiration from
the attention mechanisms that are prominent in trans-
formers [42]. The neural networkswith attentionmech-
anisms are currently a hot research topic in deep
learning. They enable the neural networks to selec-
tively focus on the specific parts of the input data
when processing information, rather than processing
all input data equally. This selective focus can greatly
improve the accuracy and efficiency of the neural net-
works in various tasks. The attention technique used by
the neural networks is to merge the encoder–decoder
framework, as described in [43]. The encoder–decoder
framework encodes variable-length input sequences
into fixed-length vectors, which are then processed
by neural network layers to decode them into corre-
sponding variable-length output sequences. Applying
the encoder–decoder framework to PINNs, the model
adds three additional transformer networks γ1, γ2 and
γ3 to enhance the performance and accuracy of the
model. Finally, the neural networks will generate the
output ûN (x, t; θ) by decoding. The designed network
framework connects three transformer networks to two
fully connected trunk networks. The improved neu-
ral network introduces additional spatial and temporal
variables as inputs, which makes the input information

123

16118 J. Wang et al.

Fig. 2 The schematic
diagram of the adaptive
weighting physics-informed
neural networks

Fig. 3 Improved neural
networks: attention
mechanisms are combined
with neural networks, with
only additional weights and
biases for the transformer
networks

easier to transfer the hidden layers. Each transformer
network structure is shown in Fig. 4. This design can
deal with the global and local information at the same
time, with maintaining the integrity of the input and
enhancing the expressive capacity of the neural net-
works.We call the improved adaptiveweighting PINNs
(iaw-PINNs). The model framework of the iaw-PINNs
is shown in Fig. 3. The improved adaptive weighting
method is summarized as the algorithm1.

Thehidden layers of the iaw-PINNs is updated based
on the forward propagation rules:

γ1 = �
(
W1

0X + b10
)

,

γ2 = �
(
W2

0X + b20
)

,

γ3 = �
(
W3

0X + b30
)

,

Z1 = �
(
W1X + b1

)
,

Y k+1
1 = �

(
Wk+1

0 Zk + bk+1
0

)
,

k = 1, 2, · · · , L − 2,

Y k+1
2 = �

(
Wk+1

1 Zk + bk+1
1

)
,

k = 1, 2, · · · , L − 2,

Hk+1 =
(
I − Y k+1

1 − Y k+1
2

)
� γ1 + Y k+1

1 � γ2

+Y k+1
2 � γ3, k = 1, 2, · · · , L − 2,

ûN (x, t; θ) = HL WL + bL . (3.8)

where X = [x, t]T denotes the input training data-
points, � is the activation function and � denotes
the element-wisemultiplication.

{(
W1

0, b
1
0

)
,
(
W1

0, b
1
0

)
,(

W1
0, b

1
0

)}
are the weights and the biases used in the

addition of three transformer networks. γ1, γ2 and γ3
represent the transformer networks that incorporate the

123

An improved physics-informed neural network with adaptive weighting 16119

Fig. 4 The architecture of the transformer network

extra primitive input X . Z1 is the input to the first hid-
den layer of an ordinary fully-connected neural net-
work, while Y1 and Y2 are the two fully connected
trunk networks. For example, when k = 1, if there
are no additional γ1, γ2 and γ3, then Y1 and Y2 rep-
resent the outputs produced by the first hidden layer
of the two trunk fully connected networks. By intro-
ducing the extra γ1, γ2 and γ3, the input to the second
hidden layer is no longer Y1 and Y2, but rather H2 that
is transformed from γ1, γ2 and γ3. I is a matrix whose
elements are all equal to one.

Algorithm1 : Adaptive weighting method for improved the network structure.

Step1: Consider an improved fully connected neural network to define the PINNs
ûN (x, t; θ).

Step2: Compute the residuals of the PDEs with automatic differentiation and establish
terms for loss functions.(Eq.(2.3),Eq.(2.4),Eq.(2.6)).

Step3: Initialize the adaptive weights collection ξ = {ξr , ξi , ξb}.
Step4: Build Gaussian probability models using the mean generated by PINNs and

the adapted collection of weights ξ .
Step5: Using the definition in Eq.(3.8),the hidden layers are updated.
Step6: Use L steps gradient descent algorithm iterations to update the parameters

ξ and θ as:
for k = 1 to L do
Z1 = �

(
X W1 + b1

)
,

Y k+1
1 = �

(
Wk+1Zk + bk+1

)
, k = 1, 2, · · · , L − 2,

Y k+1
2 = �

(
Wk+1Zk + bk+1

)
, k = 1, 2, · · · , L − 2,

Hk+1 =
(
I − Y k+1

1 − Y k+1
2

)
� γ1 + Y k+1

1 � γ2 + Y k+1
2 � γ3, k = 1, 2, · · · , L − 2,

(1) Create the adaptive weighting loss function L (θk; ξk) (Eq.(3.6)) using the maximum
likelihood estimation as the basis.

(2) Adjust the adaptive weights collection ξ using the Adam+L-BFGS optimizer to maximize
the likelihood of meeting the constraints.
ξk+1 ← Adam + L-BFGS (L (θk; ξk))

(3) Optimize the network parameters θ using Adam+L-BFGS optimizer.
θk+1 ← Adam + L-BFGS (L (ξk; θk))

end for
Return
The optimal values of the model parameters θ∗ and the updated adaptive weights collection
ξ∗are obtained at the end.

Fig. 5 Schematic diagram of the backward propagation for
derivative computation in fully connected feed-forward neural
networks

3.3 Mixed differentiation for PINNs

There are significant differences between ND and AD
when it comes to computing the differential operators.
ND approximates the derivative term by utilizing the
local support points, whereas AD precisely computes
the derivatives at any given point. The AD in Ten-
sorflow [44] is a built-in function that can be called
directly. For derivative operations in the neural net-
works, the x-derivative of the output z concerning the
input can be calculated according to the reverse chain
shown in Fig. 5. The advantages of AD and ND are

123

16120 J. Wang et al.

Fig. 6 The schematic of the approximate derivative of themixed
differentiation for PINNs, the red and black points are the addi-
tional support points

combined to construct a loss function coupling the
neighboring support points and their derivative terms.
The AD and ND are combined as the mixed differen-
tiation in this work, which captures the physical fea-
tures more accurately with greater training efficiency
as compared to that of AD [22].

To estimate the first-order derivative ∂u(x)
∂x , we

employ the following approach.

∂u(x)

∂x
= ûNe − ûNw

x

= ûN (x +
x/2) − ûN (x −
x/2)

x
,

(3.9)

The distance between the two adjacent points is repre-
sented by
x in Eq. (3.9). For the mixed differentiation
method,
x is a hyper-parameter, and the ûN value at
(x+
x) and (x−
x) is obtained using ûN (x+
x; θ)

and ûN (x −
x; θ), as illustrated in Fig. 6.

3.3.1 The second-order upwind scheme for PINNs

Take the velocity component u(x, t) as an example
to illustrate the scheme. As for the first-order deriva-
tive term ûN x |m of the proposed mixed differentiation,
according to the multi-moment method mentioned in
[45], we use ûN and ûN x to approximate the first-order
derivative term ûN x |m , where ûN x is obtained using
AD. To couple ûN and ûN x , ûNe is approximated as
ue|m(us) [22]:

ûNe ∼= ue
∣∣
m(us) = aûN (x, t; θ)

+ bûNx (x, t; θ).
(3.10)

We perform Taylor series expansions on ûN (x, t; θ)

and ûN x (x, t; θ) with respect to ûNe and
∂ ûNe
∂x .

ûN (x, t; θ) = ûNe −
x

2

∂ ûNe

∂x
+

(

x

2

)2
∂2ûNe

∂x2

−
(

x

2

)3
∂3ûNe

∂x3
+

(

x

2

)4
∂4ûNe

∂x4
+ · · · ,

ûN x (x, t; θ) = ∂ ûNe

∂x
−
x

2

∂2ûNe

∂x2
+

(

x

2

)2
∂3ûNe

∂x3

−
(

x

2

)3
∂4ûNe

∂x4
+

(

x

2

)4
∂5ûNe

∂x5
+ · · · ,

(3.11)

By eliminating the primary error terms for the above
two equations, we can obtain the values of a and b:

a = 1,

b = a
x

2
=
x

2
.

(3.12)

Substituting a and b in Eq. (3.10) we get:

ue|m(us) = ûN (x, t; θ) +
x

2
ûN x (x, t; θ). (3.13)

uw|m can be obtained in the same way as:

uw|m(us) = ûN (x −
x, t; θ)

+
x

2
ûN x (x −
x, t; θ).

(3.14)

The first-order derivative can be approximately
expressed as follows:

∂u(x)

∂x
∼= ∂u(x)

∂x

∣∣∣∣
m(us)

= ue|m(us) − uw|m(us)

x

= ûN (x, t; θ) − ûN (x −
x, t; θ)

x

+1

2

(
ûN x (x, t; θ) − ûN x (x −
x, t; θ)

)
.

(3.15)

The above equations have been streamlined as follows:

∂u(x)

∂x

∣∣∣∣
m(us)

= ûN x (x, t; θ)

+
(
ûN (x, t; θ) − ûN (x −
x, t; θ)

x

−1

2

(
ûN x (x, t; θ) + ûN x (x −
x, t; θ)

))
.

(3.16)

123

An improved physics-informed neural network with adaptive weighting 16121

Following the Taylor series, by expanding ûN (x −

x, t; θ) and ûN x (x −
x, t; θ) at ûN (x, t; θ) and
ûN x (x, t; θ), it can then be further simplified as:

∂u(x)

∂x

∣∣∣∣
m(us)

= ûN x (x, t; θ) −
(

x2

12

)
û(3)
N (x, t; θ)

+
(

x3

24

)
û(4)
N (x, t; θ) + · · · .

(3.17)

The second-order upwind scheme introduces the addi-
tional stabilization terms with the second-order accu-
racy.When
x approaches to zero, ûN x is the derivative
of AD.

3.3.2 The central difference scheme for PINNs

When solving the incompressible N–S equations, the
traditional central difference methods for the pressure-
gradient terms may lead to decoupling between the
velocity and pressure variables. To address the decou-
pling issue, we adopt the central difference scheme
of the mixed differentiation method to approximate
the pressure-gradient terms [22]. Following the same
approach, we can derive the expressions for p̂e and p̂w.

p̂e ∼= pe
∣∣
m(cd)

= p̂N (x +
x, t; θ) + p̂N (x, t; θ)

2

−
x

8

(
p̂N x (x +
x, t; θ)

− p̂N x (x, t; θ)
)
,

(3.18)

p̂w
∼= pw

∣∣
m(cd)

= p̂N (x, t; θ) + p̂N (x −
x, t; θ)

2

−
x

8

(
p̂N x (x, t; θ)

− p̂N x (x −
x, t; θ)
)
,

(3.19)

Thefirst-order derivative canbe approximately expressed
as follows:
∂p(x)

∂x
∼= ∂p(x)

∂x

∣∣∣∣
m(cd)

= pe|m(cd) − pw|m(cd)

x

= p̂N (x +
x, t; θ) − p̂N (x −
x, t; θ)

2
x

− 1

8

(
p̂N x (x +
x, t; θ) − 2 p̂N x (x, t; θ)

+ p̂N x (x −
x, t; θ)
)
.

(3.20)

Equation (3.20) is simplified as follows:

∂p(x)

∂x

∣∣∣∣
m(cd)

= p̂N x (x, t; θ)

+
(
p̂N (x +
x, t; θ) − p̂N (x −
x, t; θ)

2
x

−1

8

(
p̂N x (x +
x, t; θ) + 6 p̂N x (x, t; θ)

+ p̂N x (x −
x, t; θ)
))

, (3.21)

To further simplify into the following format:

∂p(x)

∂x

∣∣∣∣
m(cd)

= p̂N x (x, t; θ) +
(

x2

24

)
p̂(3)
N (x, t; θ)

−
x4

480
p̂(5)
N (x, t; θ) + · · · .

(3.22)

From the above Eq. (3.20), it is evident that the
equation involves both the contribution of the adjacent
points and the collocated contribution p̂N x (x; t; θ).
Equation (3.22) shows that the theoretical accuracy of
the central difference scheme is also second-order. The
fundamental analysis in [22] shows that the proposed
schemes have better dispersion and dissipation perfor-
mance, when compared with the baseline scheme. Fur-
thermore, the inclusion of AD leads to more precise
solutions than those of the central difference scheme.

4 Numerical experiments

In this section, the proposed method is used to simulate
the two-dimensional unsteady Taylor vortex problem,
the two-dimensional steady Kovasznay flow, the three-
dimensional unsteady Beltrami flow, the Flow in a
Lid-driven cavity and the forward and inverse problem
of Cylinder wake. The convection terms are approxi-
mated using the second-order upwind scheme, whereas
the pressure-gradient terms are approximated using the
central difference scheme to account for the physical
properties of the different derivative terms.We assessed
the efficacy of the proposed approach using the relative
l2-error and compared it with that of s-PINNs.

4.1 Taylor vortex problem

The Taylor vortex flow [46] is simulated to verify the
effectiveness of ourmethod for solving the incompress-
ible fluids. There is an analytical solution expressed as:

u(x, t) = − cos(πx) sin(πy) exp

(
−2π2t

Re

)
,

v(x, t) = sin(πx) cos(πy) exp

(
−2π2t

Re

)
,

p(x, t) = −1

4
[cos(2πx) + cos(2πy)] exp

(
−4π2t

Re

)
.

(4.1)

123

16122 J. Wang et al.

In this case, Re=1000, and the initial and boundary
conditions can be derived from Eq. (4.1). The simula-
tion was conducted within a square domain [−1, 1]2
with a circular boundary, and the radius is r = 0.5.
For this problem, we utilized a network structure con-
sists of 4 hidden layers, and each layer contains 50
neurons. We randomly generate a subset of samples
in a size of 1000 for the initial boundary value train-
ing data. The boundary points are equidistantly spaced
collocation points, as shown in Fig. 7a. The difference
from the s-PINNs sampling is shown in Fig. 7b. Tak-
ing 10000 equidistantly spaced collocation points are
used in the solution domain to apply to Eq. (2.1), the
sampling distribution is displayed in Fig. 7c. The space-
filling Latin hypercube sampling strategy is applied in
the s-PlNNs to generate the randomly sampled points as
shown in Fig. 7d. The equidistantly spaced collocation
points can cover the entire solution region, accurately
capturing the variation characteristics of the function
within the region. Therefore, the evenly spaced sam-
pling points were selected as the interpolation basis
points to simplify the calculation process and improve
the accuracy of the model. Figure8 shows the down-
ward trend of the loss functions of the s-PINNs and the
improved PINNs, while the improved PINNs display

a more rapid decline particularly at the initial stages.
Figure9 presents the prediction solution of velocity
u(x, t), v(x, t), and pressure p(x, t) and the compari-
son with the exact solutions. The experimental results
show that the error between the predicted and the real
values is very small, and the prediction performance
is excellent. The performance decline of the loss func-
tions is compared in Fig. 10 throughout the entire itera-
tion epoch via boxplot. The red horizontal lines refer to
the usual medians, and theminimum value is marked in
the formof a small circle. Observations indicate that the
loss function associated with our method diminishes
at a more gradual rate, which leads to the enhanced
training performance. This method can accurately pre-
dict the flow behavior of Taylor vortex. It can be seen
that the proposed method also achieves better predic-
tion results than the s-PINNs. For the Taylor-vortex
problem, the method adopted in this paper improves
the accuracy of velocity and pressure by two orders
of magnitude under the same conditions, as shown in
Table1. Table2 presents the relative discrete l2-error
between the predicted solution and the exact solution
for different numbers of sampling points.

Table 1 Relative discrete l2-error comparison between the predicted and the exact solution obtained using different methods for the
Taylor vortex problem

Method Layers Neurons εu εv εp Total loss

Standard PINNs 4 50 5.9899e−03 5.9514e−03 1.9402e−02 2.8398e−04

Adaptive weighting (aw) 4 50 1.9397e−04 2.1026e−04 3.8006e−03 5.5799e−07

Improved network (in) 4 50 7.6382e−04 8.7836e−04 5.0853e−03 7.3092e−07

Mixed differentiation (md) 4 50 5.8693e−04 6.2351e−04 2.9563e−03 8.9512e−07

aw-in-PINNs 4 50 8.6721e−05 9.6401e−05 6.6609e−04 9.2089e−08

aw-in-md-PINNs 4 50 6.5724e−05 7.6401e−05 1.3098e−04 7.6544e−08

Table 2 Relative discrete l2-errors between the predicted and the exact solutions for the Taylor vortex problem at different numbers of
residual points

Method Layers Neurons Residual points εu εv εp

Standard PINNs 4 50 1000 7.6956e−03 6.0901e−02 3.0400e−02

aw-in-md-PINNs 4 50 1000 8.0391e−05 8.0510e−05 3.1242e−04

Standard PINNs 4 50 10000 5.9899e−03 5.9514e−03 1.9402e−02

aw-in-md-PINNs 4 50 10000 6.5724e−05 7.6401e−05 1.3098e−04

Standard PINNs 4 50 50000 7.9782e−03 7.0939e−03 3.6201e−02

aw-in-md-PINNs 4 50 50000 8.6921e−05 9.0058e−05 4.5628e−04

123

An improved physics-informed neural network with adaptive weighting 16123

Fig. 7 a The sampling points of the improved PINNs on the boundary. b The sampling points of s-PINNs on the boundary. c The
sampling points of the improved PINNs within the region. d The sampling points of the s-PINNs within the region

4.2 The Kovasznay flow

The two-dimensional steady Kovasznay flow is further
studied. We utilize the Kovasznays analytical solution
as the benchmark for comparison. For a given viscosity
of ν = 0.1, this solution is given by

u∗(x, y) = 1 − eλx cos(2πy),

v∗(x, y) = λeλx

2π
sin(2πy),

p∗(x, y) = −1

2
eλx + 1/2.

(4.2)

where

λ = −8π2

ν−1 + √
ν−2 + 64π2

, (4.3)

123

16124 J. Wang et al.

Fig. 8 a The graph depicts the decreasing trend of the loss function obtained from training with s-PINNs. b The graph depicts the
decreasing trend of the loss function obtained from training with improved PINNs

Fig. 9 Distribution of velocity and pressure of prediction solution, exact solution, and absolute pointwise error for Taylor vortex
problem a snapshot in time t = 1, Re = 1000

123

An improved physics-informed neural network with adaptive weighting 16125

Fig. 10 a Training loss distribution of s-PINNs for the Taylor vortex problem. b Training loss distribution of the improved PINNs for
the Taylor vortex problem

Table 3 Relative discrete l2-error comparison between the predicted and the exact solution obtained using different methods for the
Kovasznay flow

Method Layers Neurons εu εv εp Total loss

Standard PINNs 4 50 1.3605e−03 1.3789e−03 3.4027e−03 2.3092e−05

Adaptive weighting (aw) 4 50 1.9397e−04 2.1026e−04 3.8006e−04 5.5799e−07

Improved network (in) 4 50 7.3521e−04 7.6805e−04 6.5432e−04 6.5799e−07

Mixed differentiation (md) 4 50 3.9876e−04 4.3938e−04 4.6573e−04 5.5799e−07

aw-in-PINNs 4 50 6.5724e−05 7.6401e−05 1.3098e−04 8.6544e−08

aw-in-md-PINNs 4 50 1.7379e−05 1.3922e−05 3.1526e−05 7.0582e−08

the L-shaped domain of � = (− 1
2 ,

3
2

)
× (0, 2)\ (− 1

2 ,
1
2

) × (0, 1) is considered. A deep neu-
ral network architecture with 4 hidden layers of 50
neurons each was used. The 500 equidistantly spaced
collocation points of the boundaries, and the 2601
equidistantly spaced collocation points are distributed
the region. In Table3, the relative discrete l2-error and
the comparison between the s-PINNs and the results of
this paper are shown. The l2-error of the s-PINNs can
only reach the order of 10−3, while our method can
reach the order of 10−5 and predict a more accurate
solution. Figure11 shows a boxplot of the loss drops for
the s-PINNs and the improved PINNs over the entire
domain. It can be seen that the loss function of this
method decreases fast and converges easily. Figure12
presents a comprehensive comparison among the pre-
diction solution, the exact solution, and the absolute
pointwise error of Kovasznay flow across the entire
domain. It can be seen that our method has greatly

improved the accuracy of velocity and pressure, and
the convergence is faster than s-PINNs.

4.3 Three-dimensional Beltrami flow

The unsteadyBeltrami flow [47] is also considered, and
the analytic solution is given as follows:

u(x, t) = −a
[
eax sin(ay + dz) + eaz cos(ax + dy)

]
e−d2t ,

v(x, t) = −a
[
eay sin(az + dx) + eax cos(ay + dz)

]
e−d2t ,

w(x, t) = −a
[
eaz sin(ax + dy) + eay cos(az + dx)

]
e−d2t ,

p(x, t) = −1

2
a2

[
e2ax + e2ay + e2az

+2 sin(ax + dy) cos(az + dx)ea(y+z)

+2 sin(ay + dz) cos(ax + dy)ea(z+x)

+2 sin(az + dx) cos(ay + dz)ea(x+y)
]
e−2d2t .

(4.4)

where the parameters a = d = 1. The computational
domain is [−1, 1] × [−1, 1] × [−1, 1], t ∈ [0, 1]. The

123

16126 J. Wang et al.

Fig. 11 a Training loss distribution of s-PINNs for the Kovasznay flow. b Training loss distribution of the improved PINNs for the
Kovasznay flow

Fig. 12 Distribution of velocity and pressure prediction solution, exact solution, and absolute pointwise error for the Kovasznay flow

123

An improved physics-informed neural network with adaptive weighting 16127

Fig. 13 a Training loss distribution of s-PINNs for the Beltrami flow. b Training loss distribution of the improved PINNs for the
Beltrami flow

initial condition for PINNs training is the flow field at
the initial moment. The unsteady Beltrami flow field is
solved at a time step set of 0.05 s. In this case, we used
a neural network with 5 hidden layers 50 neurons per
layer to simulate the dynamic behavior of this prob-
lem. The 10000 residual training points are distributed
in the spatio-temporal domain for the equation, and
the 800 boundary training points, and the 1000 initial
training points are also adopted. In Table4, the relative
discrete l2-errors of the velocity and pressure predic-
tions obtained by the different methods are shown. It is
clear that the relative discrete l2-errors of our method
can reach the order of 10−5. The final adaptive error
means and standard deviations are shown in Fig. 13.
Figure14 illustrates the comparison of the predicted
velocity components u, v, and w on the z = 0 plane
at t = 1 and their exact solutions, as well as the abso-
lute pointwise error. The absolute pointwise error of the
velocity given in [33] reaches the maximum of order
of 10−3, while our method is in the order of 10−5.
According to the results shown in Fig. 15, our method
shows a high accuracy for the prediction solution of the
three-dimensional Beltrami flow pressure.

4.4 Flow in a Lid-driven cavity

The classical steady flow in a two-dimensional lid-
driven cavity flow in computational fluid dynamics
[48] is also simulated with our method. In this case,
Re = 100. Our goal is to train a neural network in the

domain [0, 1] × [0, 1], and apply the no-slip boundary
conditions at the left, lower, and right boundaries. The
top boundary moves at a constant speed in the posi-
tive x-direction. We have constructed a neural network
with 5 hidden layers, each contains 50 neurons, for
predicting the potential velocity and pressure fields.
We use 5000 residual points and 1000 upper bound
training points to simulate fluid flow. The average rela-
tive discrete relative l2-error for five independent runs

|u(x)| =
√
u21(x) + u22(x) are summarized in Table5.

In Figs. 16, 17 and 18, the experimental results of our
neural network prediction are shown. The predictions
of our neural network model are consistent with the
results in [48]. The predicted velocity field is in good
agreement with the reference solution, whereas the s-
PINNs fail to produce a reasonable prediction.

4.5 Cylinder wake

Cylinder wake is a classical fluid dynamics prob-
lem involving the flow and turbulence patterns of a
fluid after it flows through a cylinder. This phenomenon
has aroused great interest in many engineering appli-
cations, such as wind energy, ocean engineering, and
aerospace.We employ themethod proposed in this arti-
cle to simulate the Cylinder wake, Re = 3900 [49]. The
size of the simulation domain is [0, 4] × [− 1.5, 1.5].
In this test case, a neural network with 7 hidden lay-
ers is utilized to predict Cylinder wake. Each hidden

123

16128 J. Wang et al.

Table 4 Relative discrete l2-error comparison between the predicted and the exact solution obtained using different methods for the
Beltrami flow

Method εu εv εw εp Total loss

Standard PINNs 1.3697e−03 1.1152e−03 1.0262e−03 1.3925e−03 9.6812e−05

Adaptive weighting (aw) 4.5839e−04 5.9397e−04 3.5867e−04 3.8006e−04 5.5799e−06

Improved network (in) 6.2583e−04 7.1523e−04 5.6923e−04 6.3104e−04 7.2798e−06

Mixed differentiation (md) 5.4327e−04 4.5069e−04 4.6672e−04 4.1526e−04 6.9213e−06

aw-in-PINNs 6.2396e−05 8.6721e−05 9.6401e−05 6.6609e−05 9.2089e−07

aw-in-md-PINNs 2.6366e−05 4.3535e−05 2.7418e−05 3.1624e−05 3.1481e−07

Fig. 14 The distribution of exact velocities u, v, and w, as well as prediction solution for a three-dimensional Beltrami flow in the
z = 0 plane at a snapshot in time t = 1

123

An improved physics-informed neural network with adaptive weighting 16129

Fig. 15 The distribution of three-dimensional Beltrami flow pressure of the prediction solution, exact solution, and absolute pointwise
error

Fig. 16 s-PINNs shows the velocity prediction solution, reference solution, and absolute point error of Flow in a Lid-driven cavity

Fig. 17 Our method shows the velocity prediction solution, reference solution, and absolute point error of flow in a Lid-driven cavity

Fig. 18 Absolute pointwise
error between the prediction
solution and reference
solution in 3D of the
s-PINNs and our method for
flow in a Lid-driven cavity

123

16130 J. Wang et al.

Table 5 Relative discrete l2-error comparison between the predicted and the reference solution obtained using different methods for
flow in a Lid-driven cavity

Method Layers Neurons Activation function l2-error

Standard PINNs 5 50 tanh 5.3651e−01

Adaptive weighting (aw) 5 50 tanh 2.5031e−01

Improved network (in) 5 50 tanh 1.6305e−01

Mixed differentiation (md) 5 50 tanh 5.6895e−02

aw-in-md-PINNs 5 50 tanh 2.3267e−02

Fig. 19 Distribution of velocity prediction solution, reference solution, and absolute pointwise error for cylinder wake

Table 6 Relative discrete l2-error comparison between the predicted and the reference solution obtained using different methods for
cylinder wake

Method Layers Neurons Activation function l2-error

Standard PINNs 7 100 tanh 7.8631e−01

Adaptive weighting (aw) 7 100 tanh 3.5781e−01

Improved network (in) 7 100 tanh 2.9854e−01

Mixed differentiation (md) 7 100 tanh 6.9056e−02

aw-in-md-PINNs 7 100 tanh 3.7267e−02

layer consists of 100 neurons. The training dataset for
this problem contains 10000 boundary training points,
5000 initial training points, and 40000 residual training
points. Table6 summarizes the results of the average

relative discrete l2 -error for |u| =
√
u21 + u22 across

five independent runs. It is evident that our method sig-
nificantly enhances the accuracy of the prediction. Fig-
ure19 shows the distribution of the prediction solution,
reference solution, and absolute pointwise error in the
computational domain. It can be seen that our method
produces accurate predictions with small errors, which
reflects the excellent performance of themethod in pre-
dicting fluid mechanics problems.

4.6 Inverse problem of the wake flow of a circular
cylinder

We simulated the two-dimensional vortex shedding
behind a cylinder of diameter 1 under Re = 100,
� = [0, 8] × [−2,−2] [19]. In this case, λ1 =
1.0, λ2 = 0.01. We take 10000 residual points and
3000 initial boundary points as the training dataset. Our
goal is to determine the values of the unknown param-
eters λ1, λ2, and obtain a reasonably accurate recon-
struction of the velocity u(x, t) and v(x, t) in the wake
flow of a circular cylinder. We consider the unsteady
incompressible N–S equations in two dimensions as

123

An improved physics-informed neural network with adaptive weighting 16131

Fig. 20 Distribution of velocity prediction solution and reference solution of the wake flow of a circular cylinder for a snapshot in time
t = 10

Fig. 21 Iterative training curves for the parameters λ1 and λ2

Table 7 Relative discrete l2-error comparison between the predicted and the reference solution obtained using different methods for
the wake flow of a circular cylinder

Method l2-error u l2-error v λ1(%) λ2(%)

Standard PINNs 8.103e−03 6.378e−03 0.99 2.30

Adaptive weighting (aw) 1.158e−03 2.563e−03 0.73 1.46

Improved network (in) 2.591e−03 3.156e−03 0.69 1.53

Mixed differentiation (md) 1.301e−03 1.905e−03 0.58 1.29

aw-in-md-PINNs (clean) 3.285e−04 4.624e−04 0.05 0.85

aw-in-md-PINNs (1%noise) 5.534e−04 6.102e−04 0.20 1.90

123

16132 J. Wang et al.

Fig. 22 Iterative training curves for the parameters λ1 and λ2

follows.

ut + λ1
(
uux + vuy

) = λ2
(
uxx + uyy

) − px ,

vt + λ1
(
uvx + vvy

) = λ2
(
vxx + vyy

) − py,

ux + vy = 0.

(4.5)

The architecture of the neural network is constructed
using 4 hidden layers, each consists of 50 neurons.
The numerical results of the wake flow of a circular
cylinder are presented in Table7. Figure20 shows the
representative snapshots of the velocity components
u(x, t), v(x, t) predicted by the training model. The
results show that the error between the predicted and
the true values is very small in the whole calculation
domain. This method can accurately simulate the com-
plex flow phenomena in the wake flow of a circular
cylinder. The predicted λ1 = 1.00043, λ2 = 0.00996.
Figure21 shows the curves of the predicted parameters
λ1 and λ2, and the neural network can accurately infer
the unknown parameters in the equation. As shown
in Fig. 22, the method can still accurately identify the
unknown parameters λ1 and λ2 after the training data
is corrupted by noise of 1%. This shows that the model
performs well in dealing with complex problems, with
a high degree of accuracy and reliability. Our adopted
method accurately solves both the forward and inverse
problems of circular tail traces. This method can also
be applied to address corresponding challenges in other
fields.

5 Conclusions

In this paper, we proposed a novel adaptive PINNs
method to solve the incompressibleN–S equations. The
significant impact of the initial and boundary condi-
tions on the accuracy of the problem has been studied.
Secondly, the loss functions of PINNs are composed
of a weighted combination of the PDEs and the initial
boundary values. Theweighted combination of the loss
functions can easily affect the performance and con-
vergence of the networks. Therefore, we proposed an
adaptive weighting PINNs, which adaptively assigns
the weights of the loss functions based on the max-
imum likelihood estimation of Gaussian distribution.
he performance and effectiveness of the network are
further enhanced, utilizing the physical equation con-
straints and initial boundary information to improve
the accuracy of the solution. In addition, an improved
neural network architecture has been designed simulta-
neously using the global and local information, which
is good for passing the input information to the hid-
den layers while maintaining the integrity. As shown
in the numerical experiments, this network can grasp
the part of the N–S equations solution with drastic
changes. The derivative term in the loss function is
then approximated using the mixed differentiation, i.e.,
AD and the local support points. We adopt the upwind
and central difference schemes to compute the deriva-
tives of the convective and pressure-gradient terms in
the N–S equations. By combining the advantages of
both AD and ND, the sampling efficiency, the conver-
gence speed, and the accuracy are improved. In future

123

An improved physics-informed neural network with adaptive weighting 16133

work,wewill further explore how to apply the proposed
model to higher dimensionality and complex geome-
tries.

Author contributions Jie Wang: investigation, software, val-
idation, writing—original draft. Xufeng Xiao: conceptualiza-
tion, methodology, formal analysis, software, writing—review
and editing. Xinlong Feng: formal analysis, writing—review and
editing. Hui Xu: formal analysis, writing—review and editing.

Funding Thiswork is supported by theNationalNatural Science
Foundation of China (Nos. 12361090, 12071406 and 12271465),
the Natural Science Foundation of Xinjiang Province (Nos.
2023D01C164, 6142A05230203, 2022D01D32), and the Tian-
shan Talent Training Program (No. 2023TSYCQNTJ0015 and
No. 2022TSYCTD0019).

Data availability The code can be found at https://github.com/
upwaj/aw-in-md-PINNs.

Declarations

Conflict of interest No conflict of interest exists in the submis-
sion of this manuscript, and the manuscript is approved by all
authors for publication.

References

1. Girault, V., Raviart, P.-A.: Finite element methods for
Navier–Stokes equations: theory and algorithms, vol. 5.
Springer Science & Business Media, Cham (2012)

2. Coelho, P.J., Pereira, J.C.F.: Finite volume computation of
the turbulent flow over a hill employing 2D or 3D non-
orthogonal collocated grid systems. Int. J. Numer. Methods
Fluids 14(4), 423–441 (1992)

3. Weinan, E., Liu, J.-G.: Finite difference methods for 3D vis-
cous incompressible flows in the vorticity-vector potential
formulation on nonstaggered grids. J. Comput. Phys. 138(1),
57–82 (1997)

4. Ranade, R., Hill, C., Pathak, J.: DiscretizationNet: a
machine-learning based solver for Navier–Stokes equations
using finite volume discretization. Comput. Methods Appl.
Mech. Eng. 378, 113722 (2021)

5. Wang, Y., Lai, C.-Y.: Multi-stage neural networks: function
approximator of machine precision. J. Comput. Phys. 504,
112865 (2024)

6. Li, X., Liu, Y., Liu, Z.: Physics-informed neural network
based on a new adaptive gradient descent algorithm for solv-
ing partial differential equations of flow problems. Phys.
Fluids 35(6), 063608 (2023)

7. Eivazi, H., Tahani, M., Schlatter, P., Vinuesa, R.: Physics-
informed neural networks for solving Reynolds-averaged
Navier–Stokes equations. Phys. Fluids 34(7), 075117 (2022)

8. Xiao,M.-J., Teng-Chao,Y., Zhang,Y.-S., Yong,H.: Physics-
informed neural networks for the Reynolds-averaged
Navier–Stokes modeling of Rayleigh–Taylor turbulent mix-
ing. Comput. Fluids 266, 106025 (2023)

9. Azizzadenesheli, K., Kovachki, N., Li, Z., Liu-Schiaffini,
M.,Kossaifi, J.,Anandkumar,A.:Neural operators for accel-
erating scientific simulations and design. Nat. Rev. Phys. 6,
1–9 (2024)

10. Lee, H., Kang, I.S.: Neural algorithm for solving differential
equations. J. Comput. Phys. 91(1), 110–131 (1990)

11. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural net-
works for solving ordinary and partial differential equations.
IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)

12. Weinan, E., Bing,Y.: The deepRitzmethod: a deep learning-
based numerical algorithm for solving variational problems.
Commun. Math. Stat. 6, 1–12 (2018)

13. Chen, M., Niu, R., Zheng, W.: Adaptive multi-scale neural
network with resnet blocks for solving partial differential
equations. Nonlinear Dyn. 111, 6499–6518 (2022)

14. Gao, R., Wei, H., Fei, J., Hongyu, W.: Boussinesq equation
solved by the physics-informed neural networks. Nonlinear
Dyn. 111, 15279–15291 (2023)

15. Zhang, T., Hui, X., Guo, L., Feng, X.: A non-intrusive neural
network model order reduction algorithm for parameterized
parabolic PDEs. Comput. Math. Appl. 119, 59–67 (2022)

16. Hou, J., Li, Y., Ying, S.: Enhancing PINNs for solving PDEs
via adaptive collocation point movement and adaptive loss
weighting. Nonlinear Dyn. 111, 15233–15261 (2023)

17. Wang, H., Zou, B., Jian, S., Wang, D.: Variational methods
and deep Ritz method for active elastic solids. Soft Matter
18(7), 6015–6031 (2022)

18. Gao, Z., Yan, L., Zhou, T.: Failure-informed adaptive sam-
pling for PINNs. SIAM J. Sci. Comput. 45, A1971–A1994
(2023)

19. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-
informed neural networks: a deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. J. Comput. Phys. 378, 686–
707 (2019)

20. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P.,
Wang, S., Yang, L.: Physics-informed machine learning.
Nat. Rev. Phys. 3(6), 422–440 (2021)

21. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE:
a deep learning library for solving differential equations.
SIAM Rev. 63(1), 208–228 (2021)

22. Chiu, P.-H., Wong, J.C., Ooi, C., Dao, M.H., Ong, Y.-S.:
CAN-PINN: a fast physics-informed neural network based
on coupled-automatic-numerical differentiation method.
Comput. Methods Appl. Mech. Eng. 395, 114909 (2022)

23. Patel, R.G., Manickam, I., Trask, N.A., Wood, M.A., Lee,
M., Tomas, Ignacio, Cyr, Eric C.: Thermodynamically con-
sistent physics-informedneural networks for hyperbolic sys-
tems. J. Comput. Phys. 449, 110754 (2022)

24. Jagtap, A.D., Kharazmi, E., Karniadakis, G.E.: Conserva-
tive physics-informed neural networks on discrete domains
for conservation laws: applications to forward and inverse
problems. Comput. Methods Appl. Mech. Eng. 365, 113028
(2020)

25. Jagtap, A.D., Karniadakis, G.E.: Extended physics-
informed neural networks (XPINNs): a generalized space-
time domain decomposition based deep learning framework
for nonlinear partial differential equations. Commun. Com-
put. Phys. 28, 2002–2041 (2020)

123

https://github.com/upwaj/aw-in-md-PINNs
https://github.com/upwaj/aw-in-md-PINNs

16134 J. Wang et al.

26. Wei, W., Feng, X., Hui, X.: Improved deep neural networks
with domain decomposition in solving partial differential
equations. J. Sci. Comput. 93, 1–34 (2022)

27. Wang, S., Sankaran, S.,Wang, H., Perdikaris, P.: An expert’s
guide to training physics-informed neural networks (2023).
arXiv preprint: arXiv: 2308.08468

28. McClenny, L.D., Braga-Neto, U.M.: Self-adaptive physics-
informed neural networks. J. Comput. Phys. 474, 111722
(2023)

29. Tang, S., Feng, X., Wei, W., Hui, X.: Physics-informed
neural networks combined with polynomial interpolation to
solve nonlinear partial differential equations.Comput.Math.
Appl. 132, 48–62 (2023)

30. Peng, P., Pan, J., Hui, X., Feng, X.: RPINNs: rectified-
physics informed neural networks for solving stationary
partial differential equations. Comput. Fluids 245, 105583
(2022)

31. Chenxi, W., Zhu, M., Tan, Q., Kartha, Y., Lu, L.: A compre-
hensive study of non-adaptive and residual-based adaptive
sampling for physics-informed neural networks. Comput.
Methods Appl. Mech. Eng. 403, 115671 (2023)

32. Bai,Y.,Chaolu,T.,Bilige, S.: SolvingHuxley equationusing
an improvedPINNmethod.NonlinearDyn. 105, 3439–3450
(2021)

33. Jin, X., Cai, S., Li, H., Karniadakis, G.E.: NSFnets (Navier–
Stokes flow nets): physics-informed neural networks for the
incompressible Navier–Stokes equations. J. Comput. Phys
(2021). https://doi.org/10.1016/j.jcp.2020.109951

34. Rao, C., Sun, H., Liu, Y.: Physics-informed deep learning
for incompressible laminar flows. Theor. Appl. Mech. Lett.
10(3), 207–212 (2020)

35. Dwivedi, B.S.V., Parashar, N.: Distributed learning
machines for solving forward and inverse problems in par-
tial differential equations. Neurocomputing 420, 299–316
(2021)

36. Gao, H., Sun, L., Wang, J.-X.: PhyGeoNet: physics-
informed geometry-adaptive convolutional neural networks
for solving parameterized steady-state PDEs on irregular
domain. J. Comput. Phys. 428, 110079 (2021)

37. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wet-
zstein, G.: Implicit neural representations with periodic acti-
vation functions. Adv. Neural Inf. Process. Syst. 33, 7462–
7473 (2020)

38. Mattey, R., Ghosh, S.: A novel sequential method to train
physics informed neural networks for Allen–Cahn and
Cahn–Hilliard equations. Comput. Methods Appl. Mech.
Eng. 390, 114474 (2022)

39. Stein, M.: Large sample properties of simulations using
Latin hypercube sampling. Technometrics 29(2), 143–151
(1987)

40. Liu, D.C., Nocedal, J.: On the limited memory BFGS
method for large scale optimization. Math. Program. 45(1–
3), 503–528 (1989)

41. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using
uncertainty to weigh losses for scene geometry and seman-
tics. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 7482–7491 (2018)

42. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A.N., Kaiser, Ł, Polosukhin, I.: Attention is all
you need. Adv. Neural Inf. Process. Syst. 30, 1 (2017)

43. Cho, K., Merrienboer, B., Gulcehre, C., Bougares, F.,
Schwenk, H., Bengio, Y.: Learning phrase representations
using RNN encoder-decoder for statistical machine transla-
tion. In: Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2014) (2014)

44. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M.: Tensor-
flow: a system for large-scale machine learning on hetero-
geneous distributed systems (2016). arXiv: 1603.04467

45. Xiao, F., Akoh, R., Ii, S.: Unified formulation for compress-
ible and incompressible flows by using multi-integrated
moments ii: multi-dimensional version for compressible
and incompressible flows. J. Comput. Phys. 213(1), 31–56
(2006)

46. Sheu, T.W.H., Chiu, P.H.: A divergence-free-condition com-
pensated method for incompressible Navier–Stokes equa-
tions. Comput. Methods Appl. Mech. Eng. 196(45–48),
4479–4494 (2007)

47. Ethier, C.R., Steinman, D.A.: Exact fully 3D Navier–Stokes
solutions for benchmarking. Int. J. Numer. Methods Fluids
19(5), 369–375 (1994)

48. Ghia, U.K.N.G., Ghia, K.N., Shin, C.T.: High-Re solutions
for incompressible flow using the Navier–Stokes equations
and a multigrid method. J. Comput. Phys. 48(3), 387–411
(1982)

49. Williamson, C.H.K.: Vortex dynamics in the cylinder wake.
Ann. Rev. Fluid Mech. 28(1), 477–539 (1996)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor (e.g. a society or other partner)
holds exclusive rights to this article under a publishing agreement
with the author(s) or other rightsholder(s); author self-archiving
of the accepted manuscript version of this article is solely gov-
erned by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/2308.08468
https://doi.org/10.1016/j.jcp.2020.109951
http://arxiv.org/abs/1603.04467

	An improved physics-informed neural network with adaptive weighting and mixed differentiation for solving the incompressible Navier–Stokes equations
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Model equation
	2.2 PINNs

	3 Solution methodology
	3.1 Adaptive weighting method for PINNs
	3.2 Improved network structure for PINNs
	3.3 Mixed differentiation for PINNs
	3.3.1 The second-order upwind scheme for PINNs
	3.3.2 The central difference scheme for PINNs

	4 Numerical experiments
	4.1 Taylor vortex problem
	4.2 The Kovasznay flow
	4.3 Three-dimensional Beltrami flow
	4.4 Flow in a Lid-driven cavity
	4.5 Cylinder wake
	4.6 Inverse problem of the wake flow of a circular cylinder

	5 Conclusions
	References

