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Abstract This paper adopts an optimization-oriented
exponential-polynomial-closure (OEPC) approach for
conducting probabilistic analyses of oscillators under
correlated multi-power velocity multiplicative excita-
tion and additive excitation using the idea of expo-
nential polynomial and for extending the conventional
EPC method. While the EPC method uses the pro-
jection of the residue of the reduced FPK equation
to formulate algebraic equations, the OEPC approach
minimizes the residue square to handle the stochastic
problem. The optimization process entails constructing
an objective function (OBJ) with a weight function.
The unknown coefficients in the exponential polyno-
mial for estimating the probabilistic solution are then
determined by minimizing the OBJ using a gradient-
basedmethod. The OEPC approach leads to an approx-
imate probabilistic solution to the system response,
which allows for statistical evaluations, such as the
mean up-crossing rate. Four examples are provided to
demonstrate the effectiveness of the OEPC approach in
computing the asymmetric probabilistic solution of the
stochastic oscillators with both odd and even nonlinear
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terms and subjected to correlated multi-power veloc-
ity multiplicative excitation and additive excitation. In
particular, the verification of the solutions is done by
comparison with both Gaussian closure method and
Monte Carlo simulation to test the accuracy and relia-
bility of the OEPC approach.

Keywords Nonlinear stochastic oscillator · Proba-
bilistic density function · FPK equation · Exponential-
polynomial closure · Optimization

1 Introduction

The probabilistic solutions of random systems have
numerous applications in the field of engineering,
including the study of structural reliability and risk
analysis. Unpredictable failure can appear under ran-
dom loading conditions, which may result in a sig-
nificant impact on the safety and reliability of the
structures like dams, bridges and towers [1,2]. Ran-
dom and unpredictable natural phenomena, such as
wind, can pose a hazard to buildings and other struc-
tures. There were some well-known events that were
caused by wind flow, i.e. Tacoma Bridge event (1940)
[3], Lodemann Bridge event (1972) [4] and Humen
Bridge event (2020) [5]. For the wind-excited or self-
excited tower, dynamic analysis has been applied to
explore the impact of turbulence on towers, as evi-
denced in several studies [6–9]. However, relatively
few studies have been conducted on the probabilistic
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analysis of the system considering the randomness of
wind turbulence. In this article, a probabilistic anal-
ysis is conducted on an established system through
optimization-oriented exponential-polynomial-closure
(OEPC) approach. This approach is based on the expo-
nential polynomial assumption of the traditional EPC
method [10,11] and extends it through an optimization
solution procedure.

There are numerous methods to acquire the proba-
bilistic solution, namely the probability density func-
tion (PDF), for the responses of random systems.
Although exact solutions are rare to handle practi-
cal issues or problems, such solutions remain the first
choicewhenever available [12,13].Numericalmethods
such as Monte Carlo Simulation (MCS) are commonly
employed for obtaining the numerical solutions. How-
ever, the application of MCS is always constrained by
the inefficiency and time consuming [14–18].

The semi-analytical methods are frequently
employed in handling real-world problems. Moment
functions of first two orders can be obtained using
equivalent linearization [19–21]. The Gaussian closure
method (GCM) can be applied to solve weakly non-
linear problems using lower-order moments [22,23].
Building upon the equivalent linearization method, the
statistical linearization method combines the harmonic
balance method to solve the system under both peri-
odic and random excitation [24]. Utilizing the path
integration (PI) technique, it is feasible to obtain the
PDF of a given system without solving Fokker-Planck-
Kolmogorov (FPK) equation [25–28]. The cell map-
ping method divides the state space into a limited
quantity of cells, being computationally efficient than
the path integration method in some cases [29–31].
An extrapolation approach is recently developed to
improve the computational efficiency of PI, exhibit-
ing high solution accuracy between the current and the
extrapolated points [32]. The computational efficiency
of PI can also be improved by utilizing sparse PDF
expansion, which can be determined by L1/2-norm
minimization formulation [33]. The stochastic averag-
ing method is applicable for the weakly damped and
excited system [34–36]. Basing on a high-order finite
difference procedure and utilizing the inverse Fourier
transformation, the PDF solution can be estimated [37].
The random vibration behavior of a nonlinear oscilla-
tor can be examined through the application of the non-
linear energy sink method [38,39]. By developing the
pole-residue transfer function, the pole-residuemethod

is able to provide nonstationary response statistics for
the systems subjected to modulated white noise excita-
tion [40]. The exponential-polynomial-closure (EPC)
method can solve strongly nonlinear problems, partic-
ularly for estimating the tails of PDF solution, as well
as the system under Gaussian or Poisson white noise,
parametric excitation and with various nonlinear terms
[10,41–43]. As for high-dimensional problems, it is
suggested to combine the state-space-split method for
applications, such as in the analysis of geometrically
nonlinear plates [44], stretched Bernoulli beams [45],
and the random characteristics analysis of cables [46].
By the results from detailed balance method, the EPC
method is further extended [47,48]. Recently, the EPC
method has been expanded to acquire the transient or
non-stationary PDF solutions of nonlinear stochastic
oscillators [11,49–52].

This paper presents the OEPC approach for ran-
dom vibration analysis, which introduces an alterna-
tive way for determining the values of variables in
the traditional EPC expression. Utilizing the expres-
sion of exponential polynomial, the objective func-
tion (hereafter referred to as OBJ) is devised to be
the squared residual error of the FPK equation. The
unknown coefficients of OEPC are then determined by
minimizing the OBJ via a gradient-basedmethod.With
this approach, this paper provides an approximate PDF
solution for the system response, enabling statistical
evaluations such as the mean up-crossing rate (MCR)
analysis. To assess the precision of the outcome and the
feasibility of the method, four examples based on the
established governing equation are given in this paper.
The first example is about a system with independent
excitations, the second one is about a system with half-
correlated excitations, and the third one is about a sys-
tem with fully correlated excitations. The last example
aims to evaluate the accuracy of the solution for higher
values of coefficients in the nonlinear damping part.
The effectiveness of the presented approach in solving
nonlinear oscillations under correlated additive excita-
tion andmultiplicative excitation (on powered velocity)
has been verified based on the results obtained from the
examples.
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2 Formulation of FPK equation

The stochastic oscillator being analyzed can be math-
ematically expressed using Eq. (1).

�̈ + 2ξω0�̇ + ω2
0� + c1�̇

2 + c2�̇
3 + c3

= γ1�̇
3�1(t) + γ2�̇�2(t) + γ3�3(t) (1)

where � and �̇ are the displacement and velocity,
respectively, and [�, �̇] ∈ R

2; ξ and ω0 are the damp-
ing ratio and natural frequency, respectively; c1 and c2
are the coefficients of �̇2 and �̇3, respectively. It is
noted that the term c1�̇2 can cause even nonlinearity
and c3�̇3 can cause odd nonlinearity in the oscillator.
c3 denotes a constant. The system is subjected to three
unit Gaussian white noise excitations denoted as �i (t)
(i = 1, 2, 3) with power spectral density (PSD) 1

2π .
�1(t) corresponds to the multiplicative excitation of
the cubic velocity term (�̇3), and �2(t) corresponds
to the multiplicative excitation of the primary velocity
term (�̇). These two denote the multi-power veloc-
ity multiplicative excitation. �3(t) corresponds to the
additive excitation. The coefficients of each excitation,
γi (i = 1, 2, 3), reflect the intensities of their respective
parts.

Without loss of generality, the excitation described
in Eq. (1) is capable of representing the Gaussian white
noise with a power spectral density that is not equal to
1
2π . For instance, one can set �e

3(t) = γ3�3(t), where

the power spectral density of �e
3(t) will be

γ 2
3

2π .
The current scope of this study is limited to solving

problems under Gaussian excitations. However, since
Poisson white noise (a typical non-Gaussian excita-
tion) is also governed by the FPK equation [43], the
OEPCmethod is still feasible. Therefore, the procedure
for solving the problem under Gaussian excitation can
be extended to solve the problem under non-Gaussian
excitation using different types of FPK equations.

Setting � = �1, �̇ = �2 and h (�1, �2) =
2ξω0�2+ω2

0�1+c1�2
2 +c2�3

2 +c3, the Stratonovich
form of Eq. (1) can be written as{

�̇1 = �2

�̇2 = −h + γ1�
3
2�1(t) + γ2�2�2(t) + γ3�3(t)

(2)

�1,2,3(t) are characterized by⎧⎨
⎩

E[�i (t)]=0, i = 1, 2, 3;
E[�i (t)�i (t+τ)]=δ(τ ), i=1, 2, 3;
E[�i (t)� j (t+τ)]=ρi jδ(τ ), i �= j, i, j=1, 2, 3;

(3)

where τ denotes the time lag; δ denotes the Dirac func-
tion; ρi j is the correlation coefficient between �i (t)
and � j (t).

The formulation of the following reducedFPKequa-
tion for the stationary PDF solution p (ψ1, ψ2) is a con-
sequence of theMarkovian property of the two random
processes �1 and �2 in Eq. (2).

∂(ψ2 p)

∂ψ1
− ∂(hp)

∂ψ2
+ 1

2

∂(β1 p)

∂ψ2
− 1

2

∂2(β2 p)

∂ψ2
2

= 0 (4)

where

β1 = 3γ 2
1 ψ5

2 + 4ρ12γ1γ2ψ
3
2 + 3ρ13γ1γ3ψ

2
2

+γ 2
2 ψ2 + ρ23γ2γ3;

β2 = γ 2
1 ψ6

2 + 2ρ12γ1γ2ψ
4
2 + 2ρ13γ1γ3ψ

3
2

+γ 2
2 ψ2

2 + 2ρ23γ2γ3ψ2 + γ 2
3 . (5)

In addition, it is assumed that p(ψ1, ψ2) fulfills the
following conditions.

⎧⎨
⎩

p(ψ1, ψ2) > 0, [ψ1, ψ2] ∈ R
2

limψi→∞ p(ψ1, ψ2) = 0, i = 1, 2∫ +∞
−∞

∫ +∞
−∞ p(ψ1, ψ2)dψ1dψ2 = 1

(6)

3 Procedure of OEPC approach

3.1 Formulation of residual error

In accordance with the conventional EPC methods, the
PDF solution to Eq. (4) is given as follows [10].

p̃n(ψ;α) = C exp(Qn(ψ;α)) (7)

where ψ denotes [ψ1, ψ2]; α is the coefficient vector
to be determined; p̃n is the approximate PDF with the
same order as Qn ; C is a normalization constant; the
polynomial, Qn , is expressed as

Qn(ψ;α) = α1ψ1 + α2ψ2 + ... + αNψn
2 (8)

where the highest order of ψi in Qn is denoted by n;
the number of components in Qn is N = n

2 (n + 3);
[α1, α2, ..., αN ]T forms the coefficient vectorα; further
details regarding the terms in Qn are exhibited in Table
1.
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Table 1 Polynomial terms in Qn

The left-hand side of Eq. (4) can be used to obtain
the residual error �n by substituting Eq. (7) into it.

�n(ψ;α) = C

[
ψ2

∂ exp Qn

∂ψ1

+
(
1

2

∂β1

∂ψ2
− 1

2

∂2β2

∂ψ2
2

− ∂h

∂ψ2

)
exp Qn

+
(

β1

2
− ∂β2

∂ψ2
− h

)
∂ exp Qn

∂ψ2

−β2

2

∂2 exp Qn

∂ψ2
2

]

(9)

The expression presented in Eq. (9) can be further
simplified as

�n(ψ;α) = p̃n(ψ;α)rn(ψ;α) (10)

where

rn(ψ;α) = ψ2
∂Qn

∂ψ1
+ 1

2

∂β1

∂ψ2
− 1

2

∂2β2

∂ψ2
2

− ∂h

∂ψ2

+
(

β1

2
− ∂β2

∂ψ2
− h

)
∂Qn

∂ψ2

−β2

2

(
∂2Qn

∂ψ2
2

+ ∂Qn

∂ψ2

∂Qn

∂ψ2

)

(11)

3.2 Construction of OBJ

In Eq. (10), it is observed that�n(ψ;α) consists of two
components, namely p̃n(ψ;α) and rn(ψ;α). The first
component, p̃n(ψ;α), is obtained from Eq. (7), and
solely contains exponential terms, ensuring it positive.
Hence, to minimize �(ψ;α) towards zero, the second
component, rn(ψ;α), must approach zero. Therefore,

the expression of rn(ψ;α), Eq. (11) is adopted to for-
mulate the OBJ for determining the values of α.

�n(α) =
∫ +∞

−∞

∫ +∞

−∞
r2n (ψ;α) p̂2(ψ)dψ1dψ2 (12)

where �n is the formulated OBJ; p̂2(ψ) is the weight-
ing functionwhich is fromGCM,allowing theweighted
error to be integrated in closed form.

The weighting function p̂2(ψ) is designed to cal-
culate the integral of the constructed OBJ within
(−∞,+∞) by replacing the integral terms with
the corresponding expectation values. Therefore, the
weighting function ensures the integral to be calculated
analytically. Comparing to the numerical integration in
a finite rage, i.e., [m−4σ,m+4σ ], the analytical inte-
gration can improve the accuracy of the result. There-
fore, the weighting function enhances the accuracy of
the integral calculations.

By employing a gradient-based method, the values
of α can be determined through Eq. (13).

min
α

�n(α) (13)

In the optimization procedure, finding the mini-
mum value of OBJ requires an initial guess, denoted as
α(0), to determine the values of the unknown variables.
According to empirical evidence, using a Gaussian ini-
tial guess helps to achieve a converged solution. A good
initial estimate assists in yielding a quality solution and
reducing computational time. The detailed procedures
for determining p̂2(ψ) and α(0) are presented.

3.3 Weighting function and initial coefficient

When building the OBJ, introducing the weighting
function into the spatial integration Eq. (12) helps to
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improve the integral accuracy and simplify the cal-
culation. p̂2(ψ) is Gaussian type PDF, which can be
expressed as

p̂2(ψ; η) = C2 exp(η1ψ1 + η2ψ2 + η3ψ
2
1 + η4ψ1ψ2

+η5ψ
2
2 ) (14)

whereC2 serves as a constant for achieving normaliza-
tion in the equation; η is a coefficient vector that can
be estimated by GCM as follows.

Linearizing the system from Eq. (2) gives the lin-
earization coefficient equations, which are expressed
by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν1 = E[h (�1, �2) �2] − E[h (�1, �2)]E[�2]
E[�2

2 ] − E[�2]2
ν2 = E[h (�1, �2)�1] − E[h (�1, �2)]E[�1]

E[�2
1 ] − E[�1]2

ν3 = E[h (�1, �2)] − ν1E[�2] − ν2E[�1]
(15)

where ν1, ν2, and ν3 are parameters in the linearized
system Eq. (16).

⎧⎨
⎩

�̇1 = �2

�̇2 = −ν1�2 − ν2�1 − ν3 + γ1�
3
2�1(t)

+γ2�2�2(t) + γ3�3(t)
(16)

The moment equations corresponding to Eq. (16)
are listed in Eq. (17).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν1E[�2] + ν2E[�1] + ν3 − 1

2

(
3γ 2

1 E[�2
5]

+4ρ12γ1γ2 + E[�2
3] + 3ρ13γ1γ3E[�2

2]
+γ2E[�2] + ρ23γ2γ3

)
=0

E[�2] = 0 − E[�2
2] + ν1E[�1�2] + ν2E[�2

1 ]
+ν3E[�1] − 1

2

(
3γ 2

1 + E[�1�2
5]

+4ρ12γ1γ2E[�1�2
3] + 3ρ13γ1γ3E[�1�2

2]
+γ 2

2 E[�1�2] + ρ23γ2γ3E[�1]
)

= 0

−2E[�1�2] = 02(ν1E[�2
2] + ν2E[�1�2]

+ν3E[�2]) −
(
4γ 2

1 E[�2
6] + 6ρ12γ1γ2E[�2

4]
+5ρ13γ1γ3E[�2

3] + 2γ 2
2 E[�2

2]
+3ρ23γ2γ3E[�2] + γ 2

3

)
= 0

(17)

Equations (15 and 17) contains multiple unknown
moments such as E[� i

1] and E[� i
2](i = 1, 2, 3, etc).

Through simplifying with Eq. (18), only the first two

order moments are retained.⎧⎪⎨
⎪⎩

E[� i
1�

j
2 ] = E[� i

1]E[� j
2 ], i, j = 0, 1, 2, . . .

E[� j
i ] = E[�i ]E[� j−1

i ] + ( j − 1)
(
E[�2

i ]
−E[�i ]2

)
E[� j−2

i ], i = 1, 2; j >= 3.

(18)

After simplification, Eqs. (15 and 17) can be solved
by iterative procedure, leading to the values of ν1,
ν2, ν3, E[�1], E[�2], E[�2

1 ] and E[�2
2]. Then the

unknowns in Eq. (14) can be given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 = E[�1]
E[�2

1 ] − E[�1]2
η2 = E[�2]

E[�2
2 ] − E[�2]2

η3 = − 1

2(E[�2
1 ] − E[�1]2)

η4 = 0

η5 = − 1

2(E[�2
2 ] − E[�2]2)

C2 =
√

η3η5

π
exp

(
−η1

2
E[�1] − η2

2
E[�2]

)

(19)

Using the weight function, the integral
∫ +∞
−∞∫ +∞

−∞ ∗ p̂2dψ1dψ2 in Eq. (12) can be directly replaced
by the value of E[∗], where ∗ denotes the polyno-
mial term in the expansion of r2n . Additionally, Eq. (18)
enables the derivation of higher-order moments, which
correspond to higher order terms in r2n . Therefore, by
utilizing p̂2, Eq. (12) can be analytically integrated
within (−∞,+∞).

Based on Eq. (19), the initial coefficient required to
start the optimization procedure can be obtained. Set-
ting α

(0)
i = 0 for i ≥ 6, the initial coefficient vector can

be expressed asα(0) = [η1, η2, η3, η4, η5, 0, 0, . . . , 0].

3.4 Optimization solution procedure

To solve Eq. (13), the Broyden-Fletcher-Goldfarb-
Shanno (BFGS)method is adopted [53–56]. TheBFGS
method is a type of quasi-Newton method, which is
also a gradient-based method [57,58]. The fundamen-
tal theory of BFGS can be represented by the following
equation [59].

α( j+1) = α( j) − k jG j∇�n(α
( j)) (20)

where j denotes the number of iteration; k j is a coef-
ficient to be determined in the procedure of BFGS;
G j is the estimated inverse Hessianmatrix;∇�n(α

( j))

denotes the gradient of �n .
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Table 2 BFGS algorithm program procedure

The BFGS involves initializing an approximate
inverse Hessian and updating it at each iteration. The
quasi-Newtonmethod are so-called because of using an
approximation inverse Hessian instead of the true one
[60]. Since computing the inverse of Hessian by the
original Newton method can be prohibitively expen-
sive, the BFGS method improves the computational
efficiency by updating the approximate inverse Hes-
sian matrix without having to compute it directly [61].
The detailed procedure of BFGS algorithm is shown in
Table 2.

In Table 2, IN is an identity matrix; N is the number
of variables in α; ε0 is the iteration stopping criteria
which is taken as 10−8; || ∗ || refers to Euclidean norm.

The function argmink≥0

[
�n(α

( j) + kd( j))
]

means

that, under the condition k ≥ 0, the value of k makes
�n(α

( j) + kd( j)) minimized, which can be regarded
as a one-dimensional optimization problem. The prob-
lem can be solved by Golden section search method
[60]. The value of k can also be approximated by

− (g( j))T d( j)

(d( j))T Hd( j) which is adopted in the following analy-
sis [62].

As shown in Table 2, BFGS is able to ensure
a positive-definite matrix approximation that gets
updated at every iteration, improving the second-order
derivative along the search direction. It is noted that
the original Newton method cannot guarantee the posi-

tive definiteness of Hessian matrix [63,64]. The loss of
the positive definiteness can result in the loss of min-
imum point in the optimization procedure. Therefore,
by approximating the inverse Hessian with a positive-
definite matrix, the BFGSmethod enhance the solution
procedure by providing an accurate estimate of theHes-
sian’s inversewith significantly less computational cost
[62,65].

4 Example of probability analysis

In this paper, the performance of the OEPC approach is
evaluated through the analyses of four different oscil-
lators. The first one is excited using three indepen-
dent noise sources with ρi, j = 0 (i �= j). The sec-
ond one is subjected to three correlated noise sources,
where ρi, j = 0.5 (i �= j). The third one is excited
by fully correlated noise sources, where ρi, j = 1 for
all i �= j . The fourth oscillator extends the second
onewith increased nonlinearity. The accuracy ofOEPC
solutions is assessed by performing a comparison with
MCS. Additionally, the results are also compared with
those from GCM in each example. All calculations are
conducted on a computer equipped with ’CPU: Intel R©
CoreTM i9-12900H Processor (24M Cache, up to 5.00
GHz); Memory Module: DDR5(4800Mhz, 16.00GB);
and SSD DISK: 512 GB’.
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Fig. 1 PDF solutions in the case of three independent excitations (Example 1); GCM:m1 = 0.4498,m2 = 0, σ1 = 0.5008, σ2 = 0.5008

4.1 Example 1

The values of systemparameters in Eq. (1) are specified
by ξ = 0.1, ω0 = 1, c1 = 0.2, c2 = 0.4, c3 = −0.5,
γ1 = 0.05, γ2 = 0.5, γ3 = 0.01. Then the governing
equation is given as Eq. (21).

�̈ + 0.2�̇ + � + 0.2�̇2 + 0.4�̇3 − 0.5
= 0.05�̇3�1(t) + 0.5�̇�2(t) + 0.01�3(t)

(21)

The correlation coefficient matrix of the three inde-
pendent noises is expressed as

ρ =
⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ (22)

The OBJ for Eq. (1) is specified as

�n(α) =
∫
R2

{
ψ2

∂Qn

∂ψ1
− 15γ 2

1

2
ψ4
2

− (3c2 + 6ρ12γ1γ2) ψ2
2 − (2c1 + 3ρ13γ1γ3) ψ2

− 2ξω0 − γ 2
2

2
+ ∂Qn

∂ψ2
×

[
− 9γ 2

1

2
ψ5
2

− (c2 + 6ρ12γ1γ2) ψ3
2 −

(
c1 + 9ρ13γ1γ3

2

)
ψ2
2

−
(
2ξω0 + 3γ 2

2

2

)
ψ2 − ω2

0ψ1 − c3 − 3ρ23γ2γ3
2

]

−
(γ 2

1 ψ6
2 + 2ρ12γ1γ2ψ4

2 + 2ρ13γ1γ3ψ3
2

2

+γ 2
2 ψ2

2 + 2ρ23γ2γ3ψ2 + γ 2
3

2

)
(

∂2Qn

∂ψ2
2

+ ∂Qn

∂ψ2

∂Qn

∂ψ2

) }2

p̂2(ψ)dψ1dψ2

(23)

The minimum of �n(α) is located through the
optimization procedure. The obtained PDF solution
p(ψ1, ψ2) is plotted within [m−4σ,m+4σ ] in Fig. 1.
m and σ denote the mean and standard deviation from
GCM in all examples.mi and σi correspond to the state
variable ψi (i = 1, 2).

The estimated p(ψ1, ψ2) is shown in Fig. 1a. Fig-
ure 1b presents the solution of MCS with the sam-
ple size 3 × 108. The PDF solution obtained through
the OEPC method shows a strong resemblance to the
PDF solutions derived from MCS, as can be noted by
observation. The PDFs p(ψ1) and p(ψ2) can be got by
integrating p(ψ1, ψ2). The logarithmic marginal PDFs
from MCS, GCM and OEPC (n = 6) are plotted in
Fig. 2.

In Fig. 2, the curve of GCM represents the solution
from GCM, which is also used as the initial guess for
the OEPC method. As depicted in Fig. 2, the PDFs of
OEPC exhibit excellent agreement with the solutions
of MCS, and significantly improve in comparison to
the solutions obtained via GCM.

In application, the MCR is used to estimate the reli-
ability of extreme events such as wind loads or fatigue
crack growth in structures [66,67]. MCR can also be
used in the benchmark studies to evaluate the accuracy
and reliability of civil engineering structures [68,69].
It is known that MCR (ν+

G ) from GCM can be directly
obtained byEq. (24) and non-GaussianMCR (ν+) need
to be integrated by Eq. (25) [70].
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Fig. 2 Logarithmic PDF solutions of the responses � and �̇ and their comparison (Example 1)

Fig. 3 MCR and Logarithmic MCR (Example 1)

ν+
G (ψ1) = σ2

2πσ1
exp

[
− (ψ1 − m1)

2

2σ 2
1

]
(24)

ν+(ψ1) =
∫ ∞

0
ψ2 p(ψ1, ψ2)dψ2 (25)

The MCR and log10 MCR are illustrated in Fig. 3.
It demonstrates that the MCR obtained by the OEPC
approach almost coincideswith that ofMCSand signif-

icantly surpasses the GCM result. These findings indi-
cate the advantage of the OEPC technique. In addition,
the total timeofOEPC (45s) is the sumof the time spent
by GCM (1.95s) and the time spent on formulation and
optimization procedures (42.75s). The time required
for computation of MCS (3× 108) is 3257s, while the
OEPC approach with n = 6 only requires 45 s, which
highlights the efficiency of the OEPC approach.
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Fig. 4 PDF solutions in the case of three half correlated excitations (Example 2); GCM: m1 = 0.4559, m2 = 0, σ1 = 0.5023,
σ2 = 0.5022

Fig. 5 Logarithmic PDF solutions of the responses � and �̇ and their comparison (Example 2)

4.2 Example 2

Equation (21) can also be used to express the system in
Example 2. However, the correlation coefficient matrix
for the three noises differs from that in Example 1. The
matrix is given as follows:

ρ =
⎡
⎣ 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

⎤
⎦ (26)

The PDF solutions of the OEPC and MCS within
[m − 4σ,m + 4σ ] are presented in Fig. 4. Notably, the
p(ψ1, ψ2) obtained from the OEPC method remains
excellent agreement with that determined by the MCS.

In Fig. 5, the logarithmic marginal PDF solutions
are plotted with MCS, GCM and OEPC (n = 6). The
corresponding figures reveal that the PDFs yielded by
the OEPCmethod are almost identical to those ofMCS
and outperform those by the GCM approach.
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Fig. 6 MCR and Logarithmic MCR (Example 2)

The MCR comparisons among OEPC, MCS and
GCM are presented in Fig. 6. The OEPC’s MCR aligns
favorablywithMCS’s, surpassingGCM’s significantly.
The total time of OEPC (53s) is the sum of the time
spent by GCM (1.88s) and the time spent on formu-
lation and optimization procedures (50.66s). Remark-
ably, the OEPC technique completes the calculations in
just 53 s, whereas the MCS (3 × 108) requires 3223s.
This indicates that the OEPC method offers a speed
advantage of approximately 60 times compared to
MCS in this case. These results suggest that the OEPC
method has the potential to enhance the efficiency and
accuracy for the probabilistic analysis.

4.3 Example 3

The system parameters in Example 3 are the same as
those in Eq. (21), except for the correlation coefficient
matrix of the noises. Thematrix is expressed as follows:

ρ =
⎡
⎣1 1 1
1 1 1
1 1 1

⎤
⎦ (27)

The matrix Eq. (27) is not positive definite, meaning
that the computation of the Cholesky decomposition
for ρ is invalid, making the MCS procedure incapable.
Thus, it is essential to provide an alternative way to

address this issue. Since the PSDs of�i (t) (i = 1, 2, 3)
are the same in this case, it is possible to describe the
analyzed oscillator with a single noise term, which is
denoted as �(t) = �i (t). Hence, Eq. (21) can be fur-
ther expressed as

�̈ + 0.2�̇ + � + 0.2�̇2 + 0.4�̇3 − 0.5

= 0.05�̇3�(t) + 0.5�̇�(t) + 0.01�(t) (28)

In real application, such as the towers or bridges
that are subjected to wind from different directions, the
external and parametric excitations are typically con-
sidered from one wind source, resulting in full correla-
tion. Consequently, as demonstrated in several studies
[6–9], the system subjected to a single wind source can
be used to analyze the impact of wind turbulence on
frame towers, which provides a realistic background
for Eq. (28).

ThePDF solutions toEq. (28) are presented in Fig. 7.
In this case, the bivariate PDF of OEPC (with n = 6)
exhibits a remarkable similarity to the solution from
MCS within [m − 4σ,m + 4σ ].

Furthermore, in Fig. 8, the logarithmic marginal
PDF solutions of OEPC are almost identical to those
of MCS and superior to those of GCM.

The MCRs from MCS, GCM and OEPC (n = 6),
are presented in Fig. 9, where it can be observed that the
MCRfromOEPC is consistentwithMCSand surpasses
that of GCM. Furthermore, the total time of OEPC

123



Probabilistic analysis of nonlinear oscillators...

Fig. 7 PDF solutions in the case of three fully correlated excitations (Example 3); GCM: m1 = 0.4619, m2 = 0, σ1 = 0.5037,
σ2 = 0.5036

Fig. 8 Logarithmic PDF solutions of the responses � and �̇ and their comparison (Example 3)

(53 s) is the sum of the time spent by GCM (1.20s)
and the time spent on formulation and optimization
procedures (51.72s). The computational time of MCS
is 2929s, while OEPC only takes 53s, resulting in a
significant time reduction.

4.4 Impact of correlation coefficients

Examples 1, 2 and 3 correspond to the systems under
independent excitations, half-correlated excitations,
and fully correlated excitations, respectively. Compar-
ing the logarithmic PDF solutions of the three exam-

ples in Fig. 10, it can be observed that the length of
their left and right arms is different. This indicates that
the correlation coefficients have an influence on the tail
behavior of the PDF solution, which is similar to the
phenomenon described in [71].

The difference in logarithmic PDFs is attributed to
the variation in the PDF solutions from Figs. 1, 4 and
7. Since the contour lines in the bottom right quadrant
of Fig. 1 are slightly denser than those in Figs. 4 and
7, it indicate a steeper joint PDF and faster changes of
the values in that region. In addition, the peak in Fig. 7
moves slightly to the upper left compared to those in
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Fig. 9 MCR and Logarithmic MCR (Example 3)

Fig. 10 Logarithmic PDF comparison (OEPC)

Figs. 4 and 1. Consequently, the density and peak posi-
tion of the contour lines exhibit slight variations corre-
sponding to the changes in correlation coefficients.

Furthermore, the comparison of Figs. 1, 4 and
7 is performed in Figs. 11, 12 and 13 within the
union domain, where � ∈ [−1.56, 2.48] and �̇ ∈
[−2.02, 2.02].

The PDF solutions in Example 1, 2 and 3 (denoted
as p1, p2 and p3, respectively) are compared pairwise

in Figs. 11, 12 and 13. Despite the presence of ran-
dom factors in the comparison conducted byMCS, both
MCS and OEPC yield similar magnitudes of solution
differences. The shapes of the contour lines of OEPC
andMCS are nearly identical, providing additional evi-
dence for the credibility of this comparison. Further-
more, Figs. 11, 12 and 13 directly illustrate the influ-
ence of correlation coefficients on the system.
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Fig. 11 PDF comparison between Example 1 (p1) and Example 2 (p2)

Fig. 12 PDF comparison between Example 2 (p2) and Example 3 (p3)

Fig. 13 PDF comparison between Example 1 (p1) and Example 3 (p3)
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Table 3 Comparison of αi values between OEPC (n = 6) and PEPC (n = 6) in Example 4

i OEPC PEPC i OEPC PEPC

1 1.549 1.539 15 −0.09590 −0.08653

2 0.1112 0.08337 16 0.04558 0.01618

3 −1.580 −1.489 17 −0.1606 −0.1332

4 0.5575 0.5498 18 0.05200 −0.01648

5 −0.6921 −0.6881 19 −0.01433 −0.02174

6 0.7211 0.7315 20 0.06181 −0.01303

7 −0.07479 −6.691E−03 21 0.06162 0.07354

8 0.4726 0.4758 22 3.717E−03 0.01236

9 −0.2642 −0.1314 23 0.2302 0.2655

10 −0.6418 −0.7296 24 0.1061 0.1500

11 −0.1632 −0.1743 25 0.2412 0.2721

12 −1.609 −1.749 26 0.05284 0.08147

13 −1.047 −1.091 27 −0.01111 −0.03458

14 −1.402 −1.339

Table 4 Error measurement in Example 4

Function
Vector α

α (OEPC) α (PEPC)

Θ(α) (OEPC) 3.248E-03 < 6.372E-03
Λ(α) (PEPC) 2.698E-03 > 2.948E-07

In summary, the correlation between noise sources
has an impact on the pattern of PDF solutions. In a
2D PDF image, the variation of the correlation coeffi-
cient can changes the density and peak position of the
contour lines. In the logarithmic marginal PDF plot,
changing the correlation coefficient induces variations
in the length of curve’s left and right arms, thereby
influencing the tail behavior of PDF solutions.

Fig. 14 p(ψ1, ψ2) from OEPC (Example 4)

4.5 Example 4 (system of stronger nonlinearity)

In order to evaluate the accuracy of the solution for a
system with higher nonlinearity, the values of c1 and
c2 from Example 2 are doubled in this example. Con-
sequently, c1 is set to 0.4 and c2 to 0.8 for the ensuing
analysis. To facilitate a comparison between the results
obtained from the OEPCmethod and the standard EPC
method, Table 3 illustrates the values of α (n = 6)
from the two methods. In the subsequent discussion,
the standard EPC method, which utilizes the projec-
tion solution procedure, is denoted as PEPC.

As listed in Table 3, the values of αi obtained from
OEPC and PEPC are not identical, indicating that these
two methods are not equivalent.

The difference between the twomethods can also be
demonstrated by substituting the two different α back
into their respective solution procedures to measure
the resulting errors. The error measurement function
of OEPC is adopted as the OBJ �(α). Meanwhile, the
error from the PEPC method is measured by

�(α) = ||L(α)|| (29)

where � denotes the error measurement function of
PEPC; ||∗|| refers to Euclidean norm;L is a vector, and
Li (i = 1, 2, . . . , N ) denotes the algebraic equation
formulated by PEPC, which can be expressed as

Li (α) =
∫
R2
rn(ψ;α) p̂2(ψ)ψ

j−k
1 ψk

2dψ1dψ2 (30)
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Fig. 15 p(ψ1, ψ2) from PEPC (Example 4)

Fig. 16 p(ψ1, ψ2) from MCS (Example 4)

where i = j ( j+1)
2 + k; j = 1, 2, . . . , n; k =

0, 1, . . . , j .
The errors are measured and listed in Table 4. It

is observed that both OEPC and PEPC successfully
minimize the errors in their respective solution proce-
dures. This observation further confirms the distinction
between the two methods.

In Figs. 14, 15 and 16, it can be observed that the
solutions of PEPC and OEPC exhibit remarkable sim-
ilarity to those of MCS, indicating the effectiveness of
both methods. The bivariate PDFs are plotted within
the range of m ± 5σ , where m1 = 0.4297, m2 = 0,
σ1 = 0.4376 and σ2 = 0.4376 are the values provided
by GCM.

In Fig. 17, both PEPC and OEPC perform well in
the range of [m − 4σ,m + 4σ ]. However, the tail of
the PEPC has lifted a bit near m1 + 5σ1. The trend of
the curve suggests that the OEPC method has a slight
advantage over the PEPC method. The sample size of
MCS is increased to 109 in this example to show more

PDF tails in [m − 5σ,m + 5σ ], resulting in a time
consumption of 8882s. However, even with the sam-
ple size being 109, the tails from MCS still can not
cover the entire range of [m2 −5σ2,m2 +5σ2]. In con-
trast, the PEPC only takes 12s and the OEPC takes
72s. Therefore, both OEPC and PEPC exhibit higher
efficiency compared to MCS. The total time of OEPC
(72s) is the sum of the time spent by GCM (2.33s) and
the time spent on formulation and optimization proce-
dures (69.91s).

Regarding the MCR depicted in Fig. 18a, the solu-
tions from PEPC and OEPC align well with MCS.
However, in Fig. 18b, for the lo garithmicMCR, the tail
trend of OEPC demonstrates enhanced alignment with
MCS. This suggests that the OEPC method effectively
captures the tail behavior in PDF and MCR analysis.

5 Conclusions

The current study presents a new optimization-oriented
EPC approach to solve the reduced FPK equation, aim-
ing to explore the probabilistic solutions of the stochas-
tic systems that incorporate both even and odd nonlin-
ear terms in velocity, under the correlatedmultiplicative
excitation on powered velocity and additive excitation
being Gaussian white noises. In contrast to the conven-
tional EPC solution procedure, theOEPCmethod intro-
duces a substitution for the projection solution proce-
dure by implementing an optimization-oriented proce-
dure. This change results in the formulation of the OBJ
as the integration of squared residual error. By intro-
ducing theweight function, the spatial integration in the
OBJ can be calculated analytically,which simplifies the
computation and improves the accuracy of the integral
procedure. In addition, the initial values of the unknown
parameters are also provided to ensure the convergence
of the solution in optimization. To comprehensively
evaluate the OEPC approach, four examples with dif-
ferent correlated excitations are provided. In the analy-
sis, we investigate the joint PDFs of displacement and
velocity, as well as the marginal PDF solutions and
MCRs. Our findings suggest that the OEPCmethod not
only provides improved solution accuracy compared to
GCM but also demonstrates superior efficiency com-
pared to MCS. Furthermore, the impact of correlation
coefficients is discussed by collectively analyzing the
first three examples. It can be concluded that the vari-
ation of correlation coefficients can impact both the
contour lines and tail behavior of the PDF solutions. In

123



G.-P. Bai et al.

Fig. 17 Logarithmic marginal PDF solutions of the responses � and �̇ and their comparison (Example 4)

Fig. 18 MCR and Logarithmic MCR (Example 4)

Example 4, the OEPC method also exhibits improved
PDF andMCR solutions in their remote tails in the case
of strong system nonlinearity as compared to the tradi-
tional EPC method. Consequently, the OEPC method
provides an option for analyzing stochastic nonlinear
oscillators under correlated multi-power velocity mul-
tiplicative excitation and additive excitation.
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