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Abstract For a class of pure-feedback nonlinear sys-
tems, a novel adaptive predefined-time fuzzy control
strategy is researched in this paper. Different from the
existing nonlinear systems with predefined-time con-
trol, both the input and output signals are quantized in
this strategy. In the control process, firstly, by utiliz-
ing the Butterworth low-pass filter technique to handle
the form of pure-feedback and FLSs to approximate
the unknown functions, a novel fuzzy state observer
is devised to estimate the immeasurable states. Sec-
ondly, in the traditional backstepping process, the vir-
tual control signals are usually differentiable. Due to
the discontinuity of the output quantization, they are
not differentiable which makes the traditional back-
stepping method not applicable. To handle this issue,
a command filtering technique is applied in this strat-
egy. Thirdly, by using a class of smooth functions, an
intermediate auxiliary control signal and a novel adap-
tive predefined-time controller are constructed. More-
over, to compensate the impact of quantization errors,
Lemma9 is proved.On this basis, the proposed strategy
can ensure the systems under input and output quanti-
zation are practical predefined-time stable. Lastly, an
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example is applied to demonstrate the feasibility of this
strategy.
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1 Introduction

In the field ofmodern control, convergence is an impor-
tant index to measure stability. To realize a faster con-
vergence speed, the finite/fixed-time stability has raised
the attention of many scholars [1–4], which makes the
closed-loop system’s state converge to the equilibrium
point within a finite/fixed time. For the past few years,
based on the good approximation capability of fuzzy
logic systems (FLSs) /neural network (NNs), many sig-
nificant results about adaptive intelligent finite/fixed-
time control have been obtained [5–8]. Among them,
for single-input single-output (SISO) nonlinear sys-
tems, considering the full-state constraints and actu-
ator failures, Zhang et al. [5] developed an adaptive
neural finite-time control approach; for multiple-input
multiple-output (MIMO) nonlinear systems, the issue
of the nonsingular fixed-time output feedback control
is resolved in literature [6]; for stochastic nonlinear sys-
tems, an adaptive fuzzy finite-time control scheme is
presented by Sui et al. [7]; for multi-agent nonlinear
systems, Wu et al. [8] investigated a fixed-time fuzzy
consensus control strategy. Notably, the bounds on the
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settling times in above results [5–8] can not be arbitrar-
ily set. However, many engineering applications, for
example autonomous vehicle rendezvous and missile
guidance [9], need to ensure the desired performance of
the system in preset time, which motivates the research
about predefined-time control.

A predefined-time stability represents a particular
case of the fixed time stability where the convergence
time can be chosen a priori. It is presented by Sánchez-
Torres et al. [10]. Subsequently, a sufficient condition
of predefined-time stability is put forward in literature
[11]. Based on the excellent features of predefined-
time stability, its applications in robotics, rigid space-
craft and other fields have been researched, such as
[12–15]. Noting that the nonlinearities of systems in
above literatures [12–15] are known or need to sat-
isfy the linear growth conditions. With the develop-
ment of the complex systems, the nonlinearities of
practical control systems are often unknown. There-
fore, based on FLSs/NNs, the issue of adaptive intel-
ligent predefined-time control has raised attention of
many scholars. In particular, for the unknown strict-
feedback nonlinear systems (SFNSs), the issue of an
adaptive fuzzy predefined-time control is researched in
literature [16]. On the basis of [16] and considering
the impact of input saturation and output hysteresis,
Zhang et al. [17] developed a predefined-time adap-
tive fuzzy controller. It is well known that the pure-
feedback nonlinear systems refer to a more general
class of nonlinear systemswhich have no affine appear-
ance of the state variables. Furthermore, [18] presented
a global adaptive NNs control algorithm for unknown
pure-feedback systems to achieve zero tracking error
within a predefined time. Notably, the signal quantiza-
tion is not considered in the above predefined-time out-
comes [16–18]. However, in networks systems, signals
are required to quantize before transmission due to the
limited communication capacity. With the wide appli-
cation of networks systems, quantization has attracted
extensive attention.

Quantization can be viewed as a mapping from a
continuous set to a discrete set. In the quantized con-
trol, due to the nonlinear feature of quantization, the
performance and stability of the system are affected.
Thus, it is significant to ensure the system’s stability
while guaranteeing the relatively communication rates.
In recent years, for the nonlinear systems, many signif-
icant outcomes about adaptive quantized control have
been developed [19–21].Notably, the results in [19–21]

only considered the quantization in the input channel,
which means that the control process still depends on
continuous states/output. Actually, in practical remote
control systems, control input signal and sensor infor-
mation are communicated by network. Due to the lim-
ited bandwidth of the communication channel, both the
control input and states/output signals should be quan-
tized before transmission. To better meet the needs
of practical engineering, by combining dynamic fil-
tering technology with backstepping technology, the
issue of the adaptive output feedback control for the
nonlinear systems under input and output quantization
is resolved in literature [22]. Based on [22], consider-
ing the effect of the sensor failures, an adaptive quan-
tized output controller is established in [23]. Notably,
the systems in [22,23] are linear parameterizations. In
addition, their parameters are bounded as a prior knowl-
edge and nonlinear functions need to satisfy global
Lipschitz continuity condition. To remove these limita-
tions, for a class of unknown SFNSs with output quan-
tization, Lu et al. [24] raised an adaptive fuzzy output
feedback control strategy by using FLSs to approxi-
mate the unknown nonlinearities. It is mentioning that
the above literatures [22–24] only ensure asymptotic
stability of SFNSs. However, in practical engineering,
the pure-feedback nonlinear systems are more general
than SFNSs. Moreover, the stability of the system is
expected to be achieved within a predefined time.

Although the problems of predefined-time con-
trol and the output quantization of SFNSs have been
solved separately, it is difficult to design an adaptive
predefined-time control strategy for unknown pure-
feedback nonlinear systems with input and output
quantization. There are three main difficulties: firstly,
the existing state observers under input and output
quantization are only applied to SFNSs, in which the
variables x j+1 are affine in the ẋ j (1 ≤ j ≤ m − 1)
equations. Since the pure-feedback nonlinear systems
are non-affine systems, these observers are unsuitable.
Thus, how to design a corresponding state observer
to estimate the immeasurable states? Secondly, in the
existing predefined-time control processes, the virtual
control signals must be differentiable. However, when
output quantization is applied to establish the virtual
control signals in each recursive step, the virtual con-
trol signals are discontinuous and their derivatives can-
not be calculated as often done in standard backstep-
ping design progress. This means that the traditional
backstepping progress is not applicable. Thus, how to
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design the control progress to obtain the controller?
Thirdly, the existing adaptive predefined-time control

results are often used the term “− �i σ̄
2
i√

�2i σ̄
2
i +σ 2i

” to avoid

the singularity problem. However, when the input and
output signals are quantized, it is difficult to deal with
the quantization errors generated in the above term.
Thus, how to construct the controller to handle this
difficulty and ensure the practical predefined-time sta-
bility of systems?

In this article, the above difficulties are overcome.
The main contributions are shown below:

(1) A novel adaptive fuzzy predefined-time control
scheme is presented in this article. Compared with
the existing predefined-time control scheme [21]
with input quantization, the input and output sig-
nals are both quantized in this scheme. In the back-
stepping process, because of the quantized output’s
discontinuity, a command filtering technique is
applied to avoid the partial derivatives of the virtual
control signals. On this basis and a class of smooth
functions, an intermediate auxiliary control signal
is established and a novel adaptive predefined-time
controller is obtained.

(2) Different from the existing results under input and
output quantization [22–24], an unknown pure-
feedback nonlinear system under input and out-
put quantization is researched in this article, which
is more general than the systems in [22–24]. By
utilizing the Butterworth low-pass filter technique
to handle the form of pure-feedback and FLSs to
approximate the unknown functions, a novel fuzzy
state observer is devised to estimate the immea-
surable states. Moreover, Lemma 9 is presented
to compensate the quantization errors. Based on
Lemma 9, the practical predefined-time stability of
system is ensured, which can achieve a faster con-
verge speed than [22–24].

The rest of this article is organized as below: Prepara-
tions and problem formulation are displayed in Sect. 2.
In Sect. 3, an predefined-time adaptive fuzzy quantized
control scheme is proposed. Stability analysis is shown
in Sect. 4. Section5 represents the simulation example.
Conclusion is summarized in Sect. 6.

2 Preparations and problem formulation

2.1 Definitions and lemmas

Definition 1 [10]. The equilibrium point υ = 0 of the
system υ̇ = h̄(υ) is practical predefined-time stable
(PPTS) if there exist the constants� > 0 and T ∗ > 0
to make ‖υ(t)‖ ≤ � , for all t ≥ T ∗. Where υ ∈ Rm

and h̄(υ) : Rm → Rm represent the state variable and
nonlinear function, respectively.

Lemma 1 [16]. If there exist Lyapunov function V and
constants γ ∈ (0, 1); �3 > 0 such that

V̇ ≤ − π

γ T ∗
(
V 1+ γ

2 + V 1− γ
2
) + �3 (1)

then the system υ̇ = h̄(υ) is PPTS, and V can maintain
in the area V ≤ γ T ∗�3

π
within a predefined time 2T ∗.

Definition 2 [25].UniformQuantizer:Auniformquan-
tizer is represented as

q(υ) =
{
δi sgn(υ), δi − b

2 < |υ| ≤ δi + b
2 ,

0, |υ| ≤ δ0, (2)

where i = 1, . . . , n. The parameter b stands for the
quantization interval’s length, δ0 = b

2 determines the
size of the deadzone for q(υ), δ1 = δ0 + b

2 , δi+1 =
δi + b. The following property is met:

|q(υ)− υ| ≤ τυ (3)

where τυ ≥ b
2 .

Lemma 2 [26]. For ∀χ ≥ υ > 0 and j > 0, one
obtains

υ(χ − υ)j ≤ j

1 + j (χ
j+1 − υj+1). (4)

Lemma 3 [27]. For υ j ∈ R, one has

m∑
j=1

|υ j |p ≥
⎧
⎨
⎩

( ∑m
j=1 |υ j |

)p
, 0 < p ≤ 1

1
mp−1

( ∑m
j=1 |υ j |

)p
, p > 1

(5)

Lemma 4 [28]. For real variables υ and υ̌, and any
constants ı ∈ (0, 1) and  > 0, we have

|υ|ı |υ̌|1−ı ≤ ı|υ| + (1 − ı)
−ı
1−ı |υ̌|. (6)

Lemma 5 [29]. For real variables υ ≥ 0 and υ̌ ≥ 0,
and a constant ′ ≥ 1, the following inequalities hold:

|υ1/′ − υ̌1/′| ≤ 21−1/′|υ − υ̌|1/′;
|υ ′ − υ̌ ′| ≤ b1|υ − υ̌|(|υ − υ̌|′−1 + υ̌ ′−1), (7)

where b1 > 0 denotes a constant.
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Lemma 6 [30]. If there is a bounded function υ̃ such
that |υ̃ j | ≤ υ∗

j with υ∗
j being a boundary. For μ1 ∈

(0, 1), μ2 > 1, q j > 1, one has

−
m∑
j=1

υ̃2j

q j
≤ −

( m∑
j=1

υ̃2j

2q j

)μ1

− 1

mμ2−1

( m∑
j=1

υ̃2j

2q j

)μ2 + C, (8)

where C = ∑m
j=1

(
(υ∗

j )
2

2q j

)μ2 + (1 − μ1)μ

μ1
1−μ1
1 .

Lemma 7 [31]. If a matrix ϒ1 ∈ Rm×m is stable, it
yields

‖eϒ1‖ ≤ ω1e−ω2t (9)

where ω1 = √
λmax(ϒ2)/λmin(ϒ2) and ω2 = 1/λmax

(ϒ2); ϒ2 is a symmetric positive definite matrix and it
meets ϒT

1 ϒ2 + ϒ2ϒ1 = −2I .

2.2 System description

In this article, considering a pure-feedback nonlinear
system under input and output quantization as follows:
⎧
⎨
⎩
υ̇i = h̄i (ῡi , υi+1), 1 ≤ i ≤ m − 1,
υ̇m = h̄m(ῡm, q(u)),
y = υ1,

(10)

where ῡi = [υ1, . . . , υi ]T ∈ Ri , y ∈ R and u ∈ R

represent the state vector, the output and control input
of the system, respectively; h̄i (·) ∈ R is an unknown
smooth function. q(u) denotes the output of the quan-
tizer (2) and takes the quantized value.

Remark 1 If system is unknown SFNSs, the adaptive
fuzzy control with output quantization was researched
in literature [24]. Moreover, the adaptive fuzzy pred-
efined-time control with input quantization was inves-
tigated in literature [21]. However, system (10) studied
in this paper is in pure-feedback form, which is more
general than the strict-feedback form. To the best of our
knowledge, so far, there are no results on predefined-
time control with input and output quantization for sys-
tem (10).

ControlObjective: In this paper, under input and out-
put quantization, the objective is to establish an adap-
tive fuzzy predefined-time quantized controller that

guarantees the practical predefined-time stability of
system (10).

Select the following function transformations:

h̄i (ῡi , υi+1) = Hi (ῡi , υi+1)+ υi+1, 1 ≤ i ≤ m − 1

h̄m(ῡm, q(u)) = Hm(ῡm, q(u))+ q(u) (11)

Thus, the system (10) is equivalent as follows:
⎧
⎨
⎩
υ̇i = Hi (ῡi , υi+1)+ υi+1, 1 ≤ i ≤ m − 1,
υ̇m = Hm(ῡm, q(u))+ q(u),
y = υ1,

(12)

Assumption 1: Suppose that the function h̄i meets
the global Lipschitz condition, i.e., there exists a con-
stant�i (1 ≤ i ≤ m) such that the following inequality
is met:

|h̄i (χ1)− h̄i (χ2)| ≤ �i‖χ1 − χ2‖,∀χ1, χ2 ∈ Ri .

(13)

2.3 Fuzzy logic systems

Lemma 8 [32]. For a continuous function H(υ) on a
compact set �, there exists an FLS ϑTϕ(υ), it yields:

sup
υ∈�

|H(υ)− ϑTϕ(υ)| ≤ ε, (14)

in which ε > 0 denotes the fuzzy minimum approx-
imation error; υ = [υ1, υ2, ..., υm]T ∈ Rm stands
for the FLS’s input; ϑT = [ϑ1, ϑ2, . . . , ϑM ] with
M standing for the fuzzy rules’ number; ϕ(υ) =
(ϕ1(υ), ϕ2(υ), . . . , ϕM (υ))

T denotes a fuzzy basic
function vector and the following ϕo(υ) is chosen:

ϕo(υ) =
∏m

j=1 μAo
j
(υ j )

∑M
o=1[

∏m
j=1 μAo

j
(υ j )]

where Ao
j (o = 1, . . . ,M, j = 1, . . . ,m) represents

the fuzzy set andμAo
j
denotes the membership function.

3 Predefined-time adaptive fuzzy quantized
control design

3.1 Fuzzy state observer design

Firstly, rewrite the system (12) as
⎧
⎨
⎩
υ̇i =Hi ( ˆ̄υi , υ̂i+1, f )+υi+1+�Hi , 1≤ i ≤m − 1,
υ̇m = Hm( ˆ̄υm, q(u) f )+ q(u)+�Hm,

y = υ1,
(15)

123



Predefined-time adaptive fuzzy control 18223

where �Hi = Hi (ῡi , υi+1) − Hi ( ˆ̄υi , υ̂i+1, f ); υ̂i
denotes the estimation of υi ; υ̂i+1, f , q(u) f represent
the signal filters defined by [34,35], as shown below:

υ̂i+1, f = HL(s)υ̂i+1 ≈ υ̂i+1,

q(u) f = HL(s)q(u) ≈ q(u)

with HL(s) standing for a Butterworth low-pass filter.
Assumption2:Anunknownconstant℘ fM > 0 exists

and satisfies |υ̂i+1− υ̂i+1, f | ≤ ℘ fM ; |q(u)−q(u) f | ≤
℘ fM , i = 1, . . . ,m − 1.

Utilizing the FLSs to approximate the functions
Hi ( ˆ̄υi , υ̂i+1, f ) andHm( ˆ̄υm, q(u) f ).According toLem-
ma 8 and the quantized output q(y), a fuzzy state
observer is devised, as shown below:⎧
⎨
⎩

˙̂υi = υ̂i+1 + ϑ̂T
i ϕi (

ˆ̄υi , υ̂i+1, f )+ ki (q(y)− ŷ),
˙̂υm=q(u)+ϑ̂T

mϕm(
ˆ̄υm, q(u) f )+km(q(y)−ŷ),

ŷ=υ̂1,
(16)

where k j stands for the design parameter and it makes
the matrix

Ac =
⎡
⎢⎣

−k1
... Im−1

−km . . . 0

⎤
⎥⎦ (17)

a strict Hurwitz matrix. Thus, there exist a symmetric
positive definite matrix G and a constant d > 0, Ac

satisfies the following equality:

AT
c G + GT Ac = −d I. (18)

The observation error e = [e1, . . . , em]T with e j =
υ j − υ̂ j being defined. According to (15) – (17), one
obtains

ė = Ace +
m∑
j=1

Bj

(
ϑ̃T
j ϕ j (Z j )+ ε j +�Hj

)

+K (y − q(y)), (19)

where Bj = [0, . . . , 1︸ ︷︷ ︸
j

, . . . , 0]T , K = [k1, . . . , km]T ,

ϑ̃ j = ϑ∗
j −ϑ̂ j and Zi = [ ˆ̄υi , υ̂i+1, f ](i = 1, 2, . . . ,m−

1), Zm = [ ˆ̄υm, q(u) f ].
Select a Lyapunov function candidate as follows:

V0 = eT Ge. (20)

According to the Assumptions 1–2, the property (3)
and Young’s inequality, the derivative of (20) holds

V̇0 = eT (AT
c G + GT Ac)e + 2eT G

[ m∑
j=1

Bj

(
ϑ̃T
j ϕ j (Z j )

+ε j +�Hj

)
+ K (y − q(y))

]

≤ −(d − 4‖G‖2−
m∑
j=1

� 2
j )‖e‖2 +

m∑
j=1

ϑ̃T
j ϑ̃ j

+‖K‖2τ 2y +
m∑
j=1

(
(ε∗j )2+� 2

j ℘
2
fM

)

≤ −(d − 4‖G‖2−
m∑
j=1

� 2
j )‖e‖2

+
m∑
j=1

ϑ̃T
j ϑ̃ j+�0, (21)

where �0 = ‖K‖2τ 2y + ∑m
j=1

(
(ε∗j )2 +� 2

j ℘
2
fM

)
.

3.2 Adaptive fuzzy predefined-time quantized control
process

The quantized output variable cannot be directly uti-
lized in the Lyapunov-based backstepping design due
to its discontinuity. Thus, the control process is divided
into twoparts. Firstly, in (i), incorporating second-order
low-pass filters with a class of smooth functions, an
intermediate auxiliary control signal will be devised by
applying the unquantized output vector y and the state
estimation υ̂ j ( j = 1, . . . ,m). Secondly, by replacing
the output y in the virtual signals and intermediate aux-
iliary control signal with the quantized output q(y),
an actual adaptive predefined-time controller will be
obtained in (ii).

(i) In this section, by utilizing the continuous out-
put y before quantization, an adaptive predefined-time
fuzzy control scheme is presented with a class of
smooth functions and FLSs.

Define the following coordinate transformation:

�1 = y,

�ι+1 = υ̂ι+1 − α̂ι,1,
α̃ι,1 = α̂ι,1 − αι, (22)

where α̃ι,1 stand for filtering errors; αι represent the
virtual control signals and α̂ι,1 are acquired from the
following second-order low-pass filters:

˙̂αι,1 = α̂ι,2
˙̂αι,2 = −2θιζια̂ι,2 − ζ 2ι (α̂ι,1 − αι) (23)

with α̂ι,1(0) = αι(0), α̂ι,2(0) = 0(ι = 1, . . . ,m − 1),
θι > 0 and ζι > 0 denoting the damping factors and
the natural frequencies of the filters, respectively.
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For the filters (23), define a vector α̃ι = [α̃ι,1, α̃ι,2]T
and α̃ι,2 = α̂ι,2. According to (23), the derivative of α̃ι
is acquired as

˙̃αι = Qια̃ι + �̄�ι (24)

where �̄ = [−1, 0]T and �ι = α̇ι. Because θι > 0,
ζι > 0,

Qι =
[

0 1
−ζ 2ι −2θιζι

]

is a Hurwitz matrix. Thus, for arbitrary matrix Eι > 0,
there is amatrix Rι > 0 such that QT

ι Rι+RιQι = −Eι.
Consider a class of smooth functions sg j (·) as fol-

lows:

sg j (� j ) =
{ � j

|� j | , |� j | ≥ σ j
� j

(σ 2j −�2j )2+|� j | , |� j | < σ j
(25)

and a class of switched functions

ψ j (� j ) =
{
1, |� j | ≥ σ j
0, |� j | < σ j (26)

where σ j > 0 and j = 1, . . . ,m denote the designed
parameters. From (25) and (26), the following proper-
ties hold:

sg j (� j )ψ j (� j ) =
{
� j
|� j | , |� j | ≥ σ j
0, |� j | < σ j (27)

and

[ψ j (� j )]� = ψ j (� j ), (28)

where � = 1, 2, . . . stands for positive integer.
Step 1. According to (15) and (22), one obtains

�̇1 = e2 + ϑ̂T
1 ϕ1(Z1)+ ε1 + ϑ̃T

1 ϕ1(Z1)

+�2 + α̃1,1 + α1 +�H1. (29)

ALyapunov function candidate is chosen as follows:

V1 = 1

2
(|�1| − σ1)2ψ1(�1) (30)

and its derivative is calculated as

V̇1 = (|�1| − σ1)sg1(�1)ψ1
[
e2 + ϑ̂T

1 ϕ1(Z1)+ ε1 + �2
+α̃1,1 + α1 +�H1

]

+ϑ̃T
1 (|�1| − σ1)sg1(�1)ψ1ϕ1(Z1). (31)

By utilizing Young’s inequality, one has

(|�1| − σ1)sg1(�1)ψ1(e2 + α̃1,1 + ε1 +�H1)

≤ 1 +� 2
1

2
‖e‖2 + ‖α̃1‖2

2
+ ε∗1

2

2
+ � 2

1℘
2
fM

2

+5

2
(|�1| − σ1)2ψ1. (32)

Substituting (32) into (31), it yields

V̇1 ≤ 1 +� 2
1

2
‖e‖2 + ‖α̃1‖2

2
+ ε∗1

2

2
+ � 2

1℘
2
fM

2
+(|�1| − σ1)sg1(�1)ψ1

[
�2 + α1 + ϑ̂T

1 ϕ1(Z1)

+5

2
(|�1| − σ1)sg1(�1)

]

+ϑ̃T
1 (|�1| − σ1)sg1(�1)ψ1ϕ1(Z1). (33)

Define a virtual control signal α1 as follows:

α1 = − β1

21+
γ
2
(|�1| − σ1)1+γ sg1(�1)

− β2

21−
γ
2
(|�1| − σ1)1−γ sg1(�1)

−ϑ̂T
1 ϕ1(Z1)− 11

4
(|�1| − σ1)sg1(�1)

−(σ2 + 1)sg1(�1) (34)

with 0 < β1 < 1, 0 < β2 < 1 being the
designed constants and β1 = π

hγ T ∗ , β2 = π
γ T ∗ , h =

min{(2/m)γ /2, (m − 1)−γ /2}.
According to (34), (33) further becomes as follows:

V̇1 ≤ 1 +� 2
1

2
‖e‖2 + ‖α̃1‖2

2
+ ε∗1

2

2
+ � 2

1℘
2
fM

2
+ϑ̃T

1 (|�1| − σ1)sg1(�1)ψ1ϕ1(Z1)

−β1
[ (|�1| − σ1)2

2
ψ1

]1+ γ
2

−β2
[ (|�1| − σ1)2

2
ψ1

]1− γ
2 − 1

4
(|�1| − σ1)2ψ1

+(|�1| − σ1)ψ1(|�2| − σ2 − 1). (35)

Step ι(2 ≤ ι ≤ m − 1). From the coordinate trans-
formation (22) and the observer (16), we have

�̇ι = �ι+1 + α̃ι,1 + αι + ϑ̂T
ι ϕι(Zι)+ kι(q(y)− y)

+kιe1 − α̂ι−1,2

= �ι+1 + α̃ι,1 + αι + ϑ̂T
ι ϕι(Zι)+ kι(q(y)− y)

+kιe1 − α̂ι−1,2 + ϑ̃T
ι ϕι(Zι)− ϑ̃T

ι ϕι(Zι). (36)

The following Lyapunov function is considered

Vι = Vι−1 + 1

2
(|�ι| − σι)2ψι. (37)

From (36), its derivative is obtained as:

V̇ι = V̇ι−1+(|�ι|−σι)sgι(�ι)ψι
[
�ι+1+αι+ϑ̂T

ι ϕι(Zι)

+kι(q(y)− y)+α̃ι,1+kιe1−α̂ι−1,2 − ϑ̃T
ι ϕι(Zι)

]
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+ϑ̃T
ι (|�ι| − σι)sgι(�ι)ψιϕι(Zι). (38)

ByapplyingYoung’s inequality, the following inequ-
ality can be obtained:

(|�ι| − σι)sgι(�ι)ψι
[
kιe1 + α̃ι,1 + kι(q(y)− y)− ϑ̃T

ι ϕι(Zι)
]

≤ k2ι ‖e‖2
2

+ ‖α̃ι‖2
2

+ k2ι τ
2
y

2
+ ϑ̃T

ι ϑ̃ι

2
+ 2(|�ι| − σι)2ψι.(39)

Bringing (39) into (38), it yields

V̇ι ≤ V̇ι−1 + k2ι ‖e‖2
2

+ ‖α̃ι‖2
2

+ k2ι τ
2
y

2
+ ϑ̃T

ι ϑ̃ι

2
+ϑ̃T

ι (|�ι| − σι)sgι(�ι)ψιϕι(Zι)
+(|�ι| − σι)sgι(�ι)ψι

[
�ι+1 + αι + ϑ̂T

ι ϕι(Zι)

+2(|�ι| − σι)sgι(�ι)− α̂ι−1,2

]
. (40)

The following virtual control signals αι are devised

αι = − β1

21+
γ
2
(|�ι| − σι)1+γ sgι(�ι)

− β2

21−
γ
2
(|�ι| − σι)1−γ sgι(�ι)+ α̂ι−1,2

−13

4
(|�ι| − σι)sgι(�ι)− ϑ̂T

ι ϕι(Zι)

−(σι+1 + 1)sgι(�ι). (41)

Bringing (41) into (40), (40) is further computed as
follows:

V̇ι ≤ 1

2
(1 +

ι∑
l=2

k2l +� 2
1 )‖e‖2 +

ι∑
l=1

‖α̃l‖2
2

+ ε∗1
2

2

+
ι∑

l=2

ϑ̃T
l ϑ̃l

2
+�

2
1℘

2
fM

2
+

ι∑
l=2

k2l τ
2
y

2

+
ι∑

l=1

ϑ̃T
l (|�l | − σl)sgl(�l)ψlϕl(Zl)

−β1
ι∑

l=1

[ (|�l | − σl)2
2

ψl

]1+ γ
2 + ∇ι

−β2
ι∑

l=1

[ (|�l | − σl)2
2

ψl

]1− γ
2

−1

4
(|�ι| − σι)2ψι + (|�ι| − σι)ψι(|�ι+1|

−σι+1 − 1) (42)

where

∇ι = −1

4
(|�ι−1| − σι−1)

2ψι−1 − (|�ι| − σι)2ψι
+(|�ι−1| − σι−1)ψι−1(|�ι| − σι − 1). (43)

For the term ∇ι, we have the following analy-
sis: If |�ι| ≤ σι + 1, obviously, there is (|�ι−1| −
σι−1)ψι−1(|�ι| − σι − 1) ≤ 0, then ∇ι ≤ 0; if
|�ι| > σι + 1, by using Young’s inequality, we have
(|�ι−1| − σι−1)ψι−1(|�ι| − σι − 1) ≤ 1

4 (|�ι−1| −
σι−1)

2ψι−1+(|�ι|−σι−1)2. Because of |�ι| > σι+1,
(|�ι| − σι− 1)2 ≤ (|�ι| − σι)2ψι. Thus, ∇ι ≤ 0 always
holds.

Step m. According to the observer (16) and the coor-
dinate transformation (22), we have

�̇m = q(u)+ ϑ̂T
mϕm(Zm)+ km(q(y)− y)+ kme1

−α̂m−1,2 + ϑ̃T
mϕm(Zm)− ϑ̃T

mϕm(Zm). (44)

Choosing a Lyapunov function candidate as below

Vm = Vm−1 + 1

2
(|�m | − σm)2ψm . (45)

and its derivative as

V̇m = V̇m−1 + (|�m | − σm)sgm(�m)ψm(q(u)− v)
+ϑ̃T

m (|�m | − σm)sgm(�m)ψmϕm(Zm)

+(|�m | − σm)sgm(�m)ψm

[
v+km(q(y)− y)+kme1

+ϑ̂T
mϕm(Zm)−α̂m−1,2−ϑ̃T

mϕm(Zm)
]
. (46)

Similar to Step ι, by utilizing theYoung’s inequality,
the derivative of Vm is further computed as

V̇m ≤ V̇m−1 + k2m‖e‖2
2

+ k2mτ
2
y

2
+ ϑ̃T

m ϑ̃m

2
+(|�m | − σm)sgm(�m)ψm(q(u)− v)
+(|�m | − σm)sgm(�m)ψm

[
v + ϑ̂T

mϕm(Zm)

−α̂m−1,2 + 3

2
(|�m | − σm)sgm(�m)

]

+ϑ̃T
m (|�m | − σm)sgm(�m)ψmϕm(Zm). (47)

Design an intermediate auxiliary control signal v, as
shown below

v = − β1

21+
γ
2
(|�m | − σm)1+γ sgm(�m)

− β2

21−
γ
2
(|�m | − σm)1−γ sgm(�m)+ α̂m−1,2

−ϑ̂T
mϕm(Zm)− (5

2
+ 1)(|�m | − σm)sgm(�m).

(48)

Substituting (48) into (47), V̇m is further computed
as

V̇m ≤ 1

2
(1 +

m∑
l=2

k2l +� 2
1 )‖e‖2 +

m−1∑
l=1

‖α̃l‖2
2
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+ε
∗
1
2

2
+

m∑
l=2

ϑ̃T
l ϑ̃l

2
+

m∑
l=2

k2l τ
2
y

2
+�

2
1℘

2
fM

2

+
m∑
l=1

ϑT
l (|�l | − σl)sgl(�l)ψlϕl(Zl)

+(|�m | − σm)sgm(�m)ψm(q(u)− v)

−β1
m∑
l=1

[ (|�l | − σl)2
2

ψl

]1+ γ
2

−β2
m∑
l=1

[ (|�l | − σl)2
2

ψl

]1− γ
2

−(|�m | − σm)2ψm . (49)

(ii) In this section, the quantized output q(y) dis-
places the continuous output y in above section. Thus,
an actual adaptive predefined-time quantized controller
is got as follows:

u = − β1

21+
γ
2
(|�qm | − σm)1+γ sgm(�qm)

− β2

21−
γ
2
(|�qm | − σm)1−γ sgm(�qm)+ α̂qm−1,2

−ϑ̂T
mϕm(Zm)− 7

2
(|�qm | − σm)sgm(�qm), (50)

where �q1 = q(y), �qι+1 = υ̂ι+1 − α̂
q
ι,1 and α̂qι,1 is

obtained by the following filter:

˙̂αqι,1 = α̂qι,2;
˙̂αqι,2 = −2θιζια̂

q
ι,2 − ζ 2ι (α̂qι,1 − αqι ). (51)

Moreover, the virtual control signals αqι , parameter

adaptive laws ˙̂
ϑ j are devised:

α
q
1 = − β1

21+
γ
2
(|�q1 | − σ1)1+γ sg1(�q1 )

− β2

21−
γ
2
(|�q1 | − σ1)1−γ sg1(�q1 )− ϑ̂T

1 ϕ1(Z1)

−(σ2+1)sg1(�
q
1 )−

11

4
(|�q1 |−σ1)sg1(�q1 );

(52)

αqι = − β1

21+
γ
2
(|�qι | − σι)1+γ sgι(�qι )

− β2

21−
γ
2
(|�qι | − σι)1−γ sgι(�qι )− ϑ̂T

ι ϕι(Zι)

+α̂qι−1,2 − 13

4
(|�qι | − σι)sgι(�qι )

−(σι+1 + 1)sgι(�
q
ι ); (53)

˙̂
ϑ1 = λ1(|�q1 | − σ1)sg1(�q1 )ψ1(�

q
1 )ϕ1(Z1)

−β1ϑ̂1+γ
1 − (β2 + 3λ1)ϑ̂1, ϑ̂1(t0) ≥ 0; (54)

˙̂
ϑl = λl(|�ql | − σl)sgl(�ql )ψl(�

q
l )ϕl(Zl)

−β1ϑ̂1+γ
l − (β2 + 4λl)ϑ̂l , ϑ̂l(t0) ≥ 0, (55)

where λ j > 0 denote the designed constants and func-
tions sg j (�

q
j ), ψ j (�

q
j ) are as:

sg j (�
q
j ) =

⎧
⎪⎨
⎪⎩

�
q
j

|�qj |
, |�qj | ≥ σ j
�
q
j

(σ 2j −(�qj )2)2+|�qj |
, |�qj | < σ j

(56)

ψ j (�
q
j ) =

{
1, |�qj | ≥ σ j
0, |�qj | < σ j

(57)

and j = 1, 2, . . . ,m, l = 2, . . . ,m.

Remark 2 In this backsteppingprocess, the timederiva-
tive of αqj is replaced with the variable αqj,2 by fil-
ters (51). Thus, the issues of output quantization
and “explosion of complexity” are resolved. Although
dynamic surface technology also usually is applied to
handle the above issues ([22]–[23]), the differential of
the first-order filter generated by the quantized out-
put is discontinuous.Moreover, for higher-order filters,
smoother outputs require more complicated computa-
tions. To balance computational complexity with filter
performance, a second-order commandfilter is applied.
In addition, a class of functions sg j , ψ j are applied
to devise a novel adaptive fuzzy predefined-time con-
troller.

4 Stability analysis

To compensate the impact of the quantization errors,
the following lemma is given.

Lemma 9 Define the quantization errors as follows:

ϒ� j = � j − �qj , ϒαι = αι − αqι , ϒα̂ι,1 = α̂ι,1 − α̂qι,1,
ϒα̂ι,2 = α̂ι,2 − α̂qι,2, ϒv = u − v, (58)

where j = 1, . . . ,m, ι = 1, . . . ,m−1. There exist the
positive constants ℵ� j ,ℵαι ,ℵα̂ι ,ℵv , respectively, such
that |ϒ� j | ≤ ℵ� j , |ϒαι | ≤ ℵαι , ‖ϒα̂ι‖ ≤ ℵα̂ι , |ϒv| ≤
ℵv with α̂ι = [α̂ι,1, α̂ι,2]T .
Proof (1) When j = ι = 1, based on the characteristic

of uniform quantizer (3), it yields

|�1 − �q1 | = |y − q(y)| ≤ τy � ℵ�1 . (59)
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From (34) and (52), the following formula is
obtained:

ϒα1 = α1 − αq1
= − β1

21+
γ
2

[
(|�1| − σ1)1+γ sg1(�1)

−(|�q1 | − σ1)1+γ sg1(�q1 )]
− β2

21−
γ
2

[
(|�1| − σ1)1−γ sg1(�1)

−(|�q1 | − σ1)1−γ sg1(�q1 )
]

−11

4

[
(|�1| − σ1)sg1(�1)

−(|�q1 | − σ1)sg1(�q1 )
]

−(σ2 + 1)
[
sg1(�1)− sg1(�

q
1 )

]
. (60)

When |�1| ≥ σ1, |�q1 | ≥ σ1, according to Lemma 5,
define a term as:

� = β1

21+
γ
2

∣∣∣(|�1| − σ1)1+γ sg1(�1)

−(|�q1 | − σ1)1+γ sg1(�q1 )
∣∣∣

+ β2

21−
γ
2

∣∣∣(|�1| − σ1)1−γ sg1(�1)

−(|�q1 | − σ1)1−γ sg1(�q1 )
∣∣∣ (61)

and it yields

� ≤ β1b1

21+
γ
2
ℵ�1(ℵγ�1 + σγ1 )+ β2 · 2 3γ

2 −1ℵ1−γ
�1
. (62)

When |�1| ≥ σ1, |�q1 | < σ1, we have
� ≤ β1

21+
γ
2

∣∣∣(|�1| − σ1)1+γ
∣∣∣+ β1

21+
γ
2

∣∣∣(|�q1 |−σ1)1+γ
∣∣∣

+ β2

21−
γ
2

∣∣∣(|�1|−σ1)1−γ
∣∣∣+ β2

21−
γ
2

∣∣∣(|�q1 | − σ1)1−γ
∣∣∣

≤ β1

21+
γ
2

∣∣∣|�1| − |�q1 |
∣∣∣
1+γ + β1σ

1+γ
1

21+
γ
2

+ β2

21−
γ
2

∣∣∣|�1| − |�q1 |
∣∣∣
1−γ + β2σ

1−γ
1

21−
γ
2

≤ β1

21+
γ
2
ℵ1+γ
�1

+ β2

21−
γ
2
ℵ1−γ
�1

+ β1σ
1+γ
1

21+
γ
2

+ β2σ
1−γ
1

21−
γ
2
.

(63)

Thus, when |�1| < σ1, |�q1 | ≥ σ1, the above inequali-
ties also hold.

When |�1| < σ1, |�q1 | < σ1, similar to (63), we have

� ≤ β1σ
1+γ
1

2
γ
2

+ β2σ 1−γ1 2
γ
2 . (64)

According to (62) – (64), we have

|ϒα1 | ≤ β1b1

21+
γ
2
ℵ�1(ℵγ�1 + σγ1 )+ β2 · 2 3γ

2 −1ℵ1−γ
�1

+β1σ
1+γ
1

2
γ
2

+ β2σ 1−γ1 2
γ
2 + 11

4
ℵ�1

+2(σ2 + 1)� ℵα1 . (65)

From (23) and (51), one obtains

ϒ̇α̂1 = Q1ϒα̂1 + B̄1ϒα1 , (66)

where B̄1 = [0, ζ 21 ].
By reducing the equation, we obtain

ϒα̂1(t) = eQ1tϒα̂1(0)+
∫ t

0
eQ1(t−ν) B̄ϒα1(ν)dν.(67)

Because Q1 is invertible, the following inequality is
met

‖ϒα̂1(t)‖ ≤ ‖eQ1t‖ · ‖ϒα̂1(0)‖
+ℵα1‖B̄‖ · ‖Q−1

1 (I − eQ1t )‖. (68)

Due to α̂1,1(0) = α1(0), α̂1,2(0) = 0, thus
‖ϒα̂1(0)‖ = |ϒα̂1(0)|. From Lemma 7, the above
inequality goes further

‖ϒα̂1(t)‖ ≤ ω1e−ω2t |ϒα̂1(0))|
+ℵα1‖B̄‖ · ‖Q−1

1 ‖(1 + ω1) � ℵα̂1 . (69)

Therefore, |ϒα̂1,1 | ≤ ℵα̂1 and |ϒα̂1,2 | ≤ ℵα̂1 are
established.

(2) From the definition of �2, it yields

|�2 − �q2 | = |υ̂2 − α̂1,1 − υ̂2 + α̂q1,1| ≤ ℵα̂1 � ℵ�2 .
(70)

Similarly the procedure in (1), according toα2 (41),
α
q
2 (53), the second-order low-pass filters (23) and

(51), there exist the positive constants ℵα2 and ℵα̂2
such that

|ϒα2 | ≤ ℵα2 , ‖ϒα̂2‖ ≤ ℵα̂2 . (71)

(3) According to the recursive method, ϒ� j , j =
3, . . . ,m; ϒαι, ϒα̂ι,1 , ϒα̂ι,2 , ι = 3, . . . ,m − 1 and
ϒv are bounded, as shown below:

|ϒ� j |≤ℵ� j , |ϒαι |≤ℵαι , ‖ϒα̂ι‖≤ℵα̂ι , |ϒv|≤ℵv.
(72)

The proof of Lemma 9 is accomplished.

Remark 3 Lemma 9 proves the boundness of the quan-
tization errors. It is significant tool to ensure the prac-
tical predefined-time stability of system (10).
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Theorem 1 For arbitrary initial conditions satisfying
V (0) ≤  where  > 0 stands for a constant, under
Assumptions 1 and 2, consider the pure-feedback non-
linear system with input and output quantization (10).
If the observer (16), the second-order low-pass filter
(51), the virtual control signals (52)–(53), the param-
eter adaptive laws (54)–(55) and the actual quantized
controller (48) are adopted, the closed-loop system (12)
is PPTS. Furthermore, within a predefined time 2T ∗,
the variable �1 can converge to a neighborhood around
the origin.

Proof Choose the following Lyapunov function:

V = V0 + Vm +
m−1∑
ι=1

α̃Tι Rια̃ι +
m∑
j=1

ϑ̃2
j

2λ j
. (73)

From (21), (23)–(24), (49) and (54)–(55), V̇ is com-
puted as

V̇ ≤ −
[
d − 4‖G‖2 −

m∑
j=1

� 2
j − 1

2
(1 +

m∑
l=2

k2l +� 2
1 )

]
‖e‖2 + �1

+
m−1∑
ι=1

‖α̃ι‖2
2

+
m−1∑
ι=1

[−α̃Tι Eια̃ι + 2α̃Tι Rι�̄�ι]
︸ ︷︷ ︸

�1

−β1
m∑
l=1

[ (|�l | − σl)2
2

ψl

]1+ γ
2 − β2

m∑
l=1

[ (|�l | − σl)2
2

ψl

]1− γ
2

+
m∑
j=1

ρ j ϑ̃
T
j ϑ̃ j + β1

m∑
j=1

ϑ̃T
j ϑ̂

1+γ
j

λ j
+ β2

m∑
j=1

ϑ̃T
j ϑ̂ j

λ j
+

m∑
l=2

4ϑ̃T
l ϑ̂l + 3ϑ̃T

1 ϑ̂1

︸ ︷︷ ︸
�2

−(|�m | − σm)2ψm

+(|�m | − σm)sgm(�m)ψm

[
(q(u)− u)+ (u − v)

]
(74)

where �1 = �0 + ε∗1
2

2 + ∑m
l=1

k2l τ
2
y

2 + ∑m
l=1

ℵ2
�l
2

+� 2
1℘

2
fM

2 and ρ1 = 3/2, ρ2 = 2, . . . , ρm = 2.

According to the definition of v (48), u (50), the prop-
erty (3) and Lemma 9, the following inequality is
obtained:

(|�m | − σm)sgm(�m)ψm

[
(q(u)− u)+ (u − v)

]

≤ (|�m | − σm)2ψm + τ 2u

2
+ ℵ2

v

2
. (75)

For the term �1, define a set "ι as follows: "ι ={
2eT Ge+ ∑ι+1

j=1(|� j | − σ j )2ψ j + ∑ι
j=1 2α̃

T
j R j α̃ j +

∑ι+1
j=1

ϑ̃T
j ϑ̃ j

λ j
≤ 2 

}
with ι = 1, 2, . . . ,m − 1. Since

"ι ∈ Rm+3ι+2 is a compact set. Thus, from �ι = α̇ι,
|�ι| ≤ �̄ι is obtained on "ι with �̄ι > 0 representing
a constant. Therefore, it yields

2α̃Tι Rι�̄�ι ≤ ‖α̃ι‖2‖�ι‖2 + ‖Rι‖2
≤ ‖α̃ι‖2�̄2

ι + ‖Rι‖2. (76)

Substituting the above inequality to �1, we have

�1 ≤ −
m−1∑
ι=1

[
λmin(Eι)− 1

2
− �̄2

ι

]
‖α̃ι‖2

+
m−1∑
ι=1

‖Rι‖2. (77)

According to Lemma 2, the following inequalities
are obtained:

ϑ̃T
j ϑ̂

1+γ
j ≤ 1 + γ

2 + γ
[
(ϑ∗

j )
2+γ − ϑ̃2+γ

j

]
;

ϑ̃T
j ϑ̂ j ≤ (ϑ∗

j )
2

2
− ϑ̃2

j

2
. (78)

From Lemma 4 with ı = 2−γ
2 ,  = 2

2−γ , υ =
1, υ̌ = ∑m

j=1
ϑ̃2j
2λ j

, the following inequality holds:

(

m∑
j=1

ϑ̃2
j

2λ j
)1−

γ
2 ≤

m∑
j=1

ϑ̃2
j

2λ j
+ γ

2
(
2 − γ
2
)
2−γ
γ . (79)

Substituting the above inequality to the term�2, we
have

�2 ≤ −
m∑
j=1

1 + γ
2 + γ

β1

λ j
ϑ̃
2+γ
j − β2(

m∑
j=1

ϑ̃2
j

2λ j
)1−

γ
2 + �2.
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(80)

where �2 = β2γ
2 (

2−γ
2 )

2−γ
γ + ∑m

j=1
1+γ
2+γ

β1
λ j
(ϑ∗

j )
2+γ +

∑m
j=1

β2(ϑ
∗
j )

2

2λ j
+ ∑m

j=1 ρ j (ϑ
∗
j )

2.

Bringing (75), (77) and (80) into (74), V̇ is further
calculated as

V̇ ≤ −
[
d − 4‖G‖2 −

m∑
j=1

� 2
j

−1

2
(1 +

m∑
l=2

k2l +� 2
1 )

]
‖e‖2

+τ
2
u

2
+ ℵ2

v

2
+ �1 + �2 +

m−1∑
ι=1

‖Rι‖2

−β1
m∑
l=1

[ (|�l | − σl)2
2

ψl

]1+ γ
2

−β2
m∑
l=1

[ (|�l | − σl)2
2

ψl

]1− γ
2

−
m∑
j=1

1 + γ
2 + γ

β1

λ j
ϑ̃
2+γ
j − β2(

m∑
j=1

ϑ̃2
j

2λ j
)1−

γ
2

−
m−1∑
ι=1

[
λmin(Eι)− 1

2
− �̄2

ι

]
‖α̃ι‖2. (81)

According to (81), obviously, when t → ∞, the
system’s error variables can be stabilized in a residual
set. Therefore, there exist the positive constants e∗ and
α̃∗
ι such that ‖e‖ ≤ e∗ and ‖α̃ι‖ ≤ α̃∗

ι hold.
Define a constant D = d − 4‖G‖2 − ∑m

j=1�
2
j −

1
2 (1 + ∑m

l=2 k
2
l +� 2

1 ), which meets D ≥ 2λmax(G),
according to Lemma 6, we have

− D‖e||2 ≤ −(eT Ge)1+
γ
2 − (eT Ge)1−

γ
2 + �1

≤ −β1(eT Ge)1+
γ
2 − β2(eT Ge)1−

γ
2 + �1,

(82)

where �1 = (e∗/λmax(G))1+
γ
2 + γ

2 (1− γ
2 )

2−γ
γ . Simi-

larly, define a constant ι = λmin(Eι)− 1
2 −�̄2

ι , which
meets  ι ≥ 2λmax(Rι), we obtain

−
m−1∑
ι=1

 ια̃
T
ι Rια̃ι

≤ −
( m−1∑
ι=1

α̃Tι Rια̃ι
)1− γ

2 + �2

−(m − 1)−
γ
2

( m−1∑
ι=1

α̃Tι Rια̃ι
)1+ γ

2

≤ −β1(m − 1)−
γ
2

( m−1∑
ι=1

α̃Tι Rια̃ι
)1+ γ

2 + �2

−β2
( m−1∑
ι=1

α̃Tι Rια̃ι
)1− γ

2
, (83)

where �2 = ∑m−1
ι=1 [(α̃∗

ι )
2/λmax(Rι)]1+ γ

2 + γ
2 (1 −

γ
2 )

2−γ
γ .
Substituting (82)–(83) into (81), according toLemma

3, the following inequality is obtained:

V̇ ≤ −β1(eT Ge)1+
γ
2 −β1(m−1)−

γ
2

( m−1∑
ι=1

α̃Tι Rια̃ι
)1+ γ

2

−β1(m)−
γ
2

[ m∑
l=1

(|�l |−σl)2
2

ψl

]1+ γ
2

−1+γ
2+γ

β121+
γ
2

m
γ
2

( m∑
j=1

ϑ̃2
j

2λ j

)1+ γ
2

−β2(eT Ge)1−
γ
2 − β2

( m−1∑
ι=1

α̃Tι Rια̃ι
)1− γ

2

−β2(
m∑
j=1

ϑ̃2
j

2λ j
)1−

γ
2

−β2
m∑
l=1

[ (|�l | − σl)2
2

ψl

]1− γ
2 + �3

≤ −β1hV 1+ γ
2 − β2V 1− γ

2 + �3
≤ − π

γ T ∗
(
V 1+ γ

2 + V 1− γ
2

)
+ �3 (84)

where�3 = �1+�2+ τ 2u
2 +ℵ2

v

2 +∑m−1
ι=1 ‖Rι‖2+�1+�2.

From the definition of V and Lemma 1, within the
predefined time 2T ∗, the variable �1 can converge to

|�1| ≤
√
2γ�3T ∗
π

+σ1. (85)

Thus, the proof of Theorem 1 is completed.

Remark 4 Due to output quantization q(y) is discon-
tinuous, it cannot be applied to the Lyapunov-based
stability analysis of system, but unquantized output
y can be applied to stability analysis. However, only
the output quantization q(y) is utilized to construct
the controller u (50). Therefore, how to establish the
relationship between quantized signals and unquan-
tized signals is the main challenge in stability analysis.
More specifically, a major difficulty in stability analy-
sis is how to compensate for the effect from the term
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(|�m | − σm)sgm(�m)ψm(u − v) in (75). With the help
of Lemma 9, the above term can be compensated by
(|�m | − σm)2ψm/2; ℵ2

v/2, which are irrelevant to the
output quantization q(y). Thus, since the relationship
between quantized signals and unquantized signals in
Lemma 9, quantized output q(y) can be applied to con-
trol design and unquantized output y can be applied to
stability analysis.

Remark 5 From (84) and (85), it can be acquired that
increasing the parametersλ j and decreasing the param-
eters γ, T ∗, σ j , k j , bu, by contribute to improve the
converge performance. However, too smaller T ∗, σ j
may make the amplitude of the control input u too
large, resulting in more control energy consumption.
Thus, we need to a trade-off between the converge per-
formance and control energy consumption.

5 Simulation example

Example 1 The followingpure-feedbacknonlinear sys-
tem is considered:

υ̇1 = h̄1(υ1, υ2),

υ̇2 = h̄2(ῡ2, q(u)),

y = υ1. (86)

where ῡ2 = [υ1, υ2]T , y denote a state variable
and the output of system, respectively; h̄1(υ1, υ2) =
sin υ1υ2 + 2υ2 + υ21

1+υ21
υ32 and h̄2(ῡ2, q(u)) = υ1υ2 +

q(u) + q(u)3

7 stand for the nonlinear functions. q(u)
indicates the output of the quantizer (2) and takes the
quantized value.

Firstly, five fuzzy sets are defined over the interval
[−2, 2] with the partition points are −2;−1; 0; 1; 2.
The following membership functions are chosen:

μAo
1
(υ̂1) = exp− 1

2 (υ̂1−3+o)2 ,

μAo
2
(υ̂2) = exp− 1

2 (υ̂2−3+o)2 ,

μAo
3
(υ̂2, f ) = exp− 1

2 (υ̂2, f −3+o)2 ,

μAo
4
(q(u) f ) = exp− 1

2 (q(u) f −3+o)2 , o = 1, 2, 3, 4, 5.

(87)

The fuzzy basis functions are

ϕo1(υ̂1, υ̂2, f ) = μAo
1
(υ̂1)μAo

3
(υ̂2, f )∑5

o=1[μAo
1
(υ̂1)μAo

3
(υ̂2, f )]

,

ϕo2(
ˆ̄υ2, q(u) f )

= μAo
1
(υ̂1)μAo

2
(υ̂2)μAo

4
(q(u) f )∑5

o=1[μAo
1
(υ̂1)μAo

2
(υ̂2)μAo

4
(q(u) f )]

(88)

Thus, ϕ1 = [ϕ11 , ϕ21 , · · · , ϕ51 ]T and ϕ2 = [ϕ12 , ϕ22 ,
· · · , ϕ52 ]T .

From Theorem 1, we select the virtual controller,
actual controller and parameter adaptive laws as fol-
lows:

α
q
1 = − β1

21+
γ
2
(|�q1 | − σ1)1+γ sg1(�q1 )

− β2

21−
γ
2
(|�q1 | − σ1)1−γ sg1(�q1 )− ϑ̂T

1 ϕ1(Z1)

−(σ2 + 1)sg1(�
q
1 )−

11

4
(|�q1 | − σ1)sg1(�q1 );

u = − β1

21+
γ
2
(|�q2 | − σ2)1+γ sg2(�q2 )

− β2

21−
γ
2
(|�q2 | − σ2)1−γ sg2(�q2 )+ α̂q1,2

−ϑ̂T
2 ϕ2(Z2)− 7

2
(|�q2 | − σ2)sg2(�q2 );

˙̂
ϑ1 = λ1(|�q1 | − σ1)sg1(�q1 )ψ1(�

q
1 )ϕ1(Z1)

−β1ϑ̂1+γ
1 − (β2 + 3λ1)ϑ̂1;

˙̂
ϑ2 = λ2(|�q2 | − σ2)sg2(�q2 )ψ2(�

q
2 )ϕ2(Z2)

−β1ϑ̂1+γ
2 − (β2 + 4λ2)ϑ̂2,

where α̂q1,2 is generated from (51).
In this simulation, the initial condition is selected

as [υ1, υ2, υ̂1, υ̂2] = [0.4, 0.2, 0.5, 0.3]T ; α̂q1,1 =
α̂
q
1,2 = 0; ϑ̂1 = [0.3, 0.3, 0.3, 0.3, 0, 3︸ ︷︷ ︸

25

]T and ϑ̂2 =

[0.2, 0.2, 0.2, 0.2, 0.2︸ ︷︷ ︸
45

]T .

Moreover, the parameters of the quantizer (3) are
selected by = 0.02 and bu = 0.08, respectively; the
parameters of the observer (16) are: k1 = 6, k2 = 8. In
addition, the other parameters in control process are
θ1 = 0.707, ζ1 = 18, σ1 = 1.1, σ2 = 0.2, λ1 =
0.15, λ2 = 0.25, γ = 0.81. In this simulation, we
choose the predefined time T ∗ = 4s.

Thus, the results of this simulation can be acquired
in the Fig.s 1–5. Specifically, Fig. 1 exhibits the tra-
jectories of y with and without quantization, and also
displays the trajectories of υ1 and its estimation υ̂1.
The trajectories of the state υ2 and its estimation υ̂2
are shown in Fig. 2. Figure 3 exhibits the curves of
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Fig. 1 The quantized
output q(y), state υ1 and its
estimation υ̂1 in Example

Fig. 2 The state υ2 and its
estimation υ̂2 in Example

Fig. 3 The controller u
with quantization and
without quantization in
Example

the control input signal u with and without quantiza-
tion. The curves of the norm of the adaptive param-
eters ϑ̂1, ϑ̂2 and the variable �q1 are shown in Fig. 4
and Fig. 5, respectively. From Fig.s 1–5, the proposed
control strategy can ensure that the system (86) under
input and output quantization is practical predefined-
time stable. Moreover, the variable �q1 can converge to
a small domain within a predefined time 4s.

To further indicate the superiority of input and out-
put quantization, a comparison is presented with the
existing finite-time control method in [33] under the
same initial conditions. From Fig. 6, both the method
in [33] and the proposed scheme can make the state
variable converge to a relatively small domain. How-
ever, more energy consumption in the method in [33]
is required than the proposed scheme. Thus, the input
and output quantization before transmission can reduce
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Fig. 4 The norm of the
adaptive parameters ϑ̂1 and
ϑ̂2 in Example

Fig. 5 The variable �q1 in
Example

Fig. 6 Performance comparison between our proposed method and the method in [33]. (a) Variable �q1 ; (b) Control input u

the energy consumption. Furthermore, to confirm the
validity of the proposed predefined-time scheme, the
system performance is verified when the predefined
time is T ∗ = 4s, T ∗ = 7s, respectively. From Figs. 7
(a), it can be acquired that the variable �q1 can con-
verge to a smaller region by a smaller predefined time.
However, from Fig. 7 (b), with the decrease of prede-

fined time, the control input increases. Thus, in practi-
cal application, we need to a trade-off between control
consumption and settling time.
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Fig. 7 Systems Performance within T ∗ = 4s, T ∗ = 7s, respectively. (a) Variable �q1 ; (b) Control input u

6 Conclusion

For a class of pure-feedback nonlinear systems with
input and output quantization, the issue of adaptive
predefined-time control has been resolved. First of all,
by using the Butterworth filter to transform the sys-
tems to the form of strict-feedback, a class of nonlinear
functions have been constructed. On this basis and by
utilizing the FLSs to approximate them, a new fuzzy
state observer has been built. Secondly, in the back-
stepping control process, the command filtering tech-
nique has been applied to avoid the partial derivatives
of virtual control signals. Furthermore, by applying a
class of smooth functions, an intermediate auxiliary
control signal has been devised. On this basis, an actual
predefined-time controller has been obtained. Thirdly,
Lemma 9 has been proved the boundness of quantiza-
tion errors. Based on Lemma 9, the designed control
scheme has guaranteed the practical predefined-time
stability of the systems. Finally, the feasibility of this
scheme has been proved by an example.

In this proposed scheme, only the issues of control
energy consumption in signal transmission and con-
verge time are researched, but the predefined accuracy
is ignored.However,many actual systems have require-
ments of convergence time and control accuracy. Thus,
for a class of pure-feedback nonlinear systems with
input and output quantization, how to design a control
scheme to make stabilization error converge to prede-
fined accuracy within a predefined time is our future
work.
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