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Abstract To explore the efficacy of integrated pest
management, we modify the predator–prey (pest–
natural enemy) model by incorporating Holling III
functional response and transform it into a non-smooth
Filippov control system. Unlike conventional Filippov
systems, the model takes into consideration time delay
and spatial heterogeneity. Consequently, we establish
and examine a delayed reaction–diffusion Filippov
prey–predator model. Firstly, the dynamics of the two
subsystems are analyzed, which includes the existence
and stability of the equilibriumpoints, alongwith deter-
mining the adequate conditions for local Hopf bifur-
cation. Subsequently, we implement a detailed inves-
tigation of the sliding mode dynamics and stability of
the pseudoequilibrium. Theoretical and numerical sim-
ulations indicate that on the one hand, the threshold
level should be prescribed adequately to reduce the
pest population equal to or below the threshold level.
On the other hand, reading from the boundary node
and boundary focus bifurcations, slightly varying the
economic threshold may save a failure control strat-
egy by dragging the number of the pests from a regular
equilibrium above the threshold to a boundary equi-
librium or a pseudoequilibrium equal to the threshold.
Furthermore, the sequent appearance of global sliding
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bifurcations including touching, sliding switching and
crossing bifurcations expound that the incorporation
of time delay not only complicates the dynamics of the
system, but also brings more challenge for pest control.

Keywords Time delay · Reaction–diffusion ·
Threshold strategy · Sliding mode dynamics · Global
sliding bifurcation

1 Introduction

Subsequent to the pioneering contributions of Lotka
andVolterra [1,2], numerous researchers have put forth
a significant number of different models for prey–
predator interactions [3–6] to investigate the complex
dynamics. There are many types of mathematical mod-
els that can simulate the interactions of the prey and
predator, such as ordinary differential equations, partial
differential equations and discrete equations. Mokni et
al. [7] applied a new approach to a special class of
discrete time evolution models and established a solid
mathematical foundation to analyse them. Liu et al. [8]
proposed a Filippov prey–predator model with time
delay to address how the threshold and time delay influ-
ence the dynamics of the model. However, the authors
did not consider the spatial location variations in the
model.

Traditional prey predator models generally assume
that all species are spatially homogeneous [4–6,9,10].
Actually, the predators and preys are always mov-
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ing in space, their distribution across different spa-
tial locations is not uniform. Pests tend to relocate
to areas with lower population density as a means of
increasing their chances of survival. Therefore, many
literatures [11–13] suggest that the reaction–diffusion
prey–predator models are more suitable for studying
complex spatiotemporal predator dynamics. Reaction–
diffusion equations are usually used to modeling abun-
dance of organisms and the spatiotemporal distribu-
tion [14–22]. Huang et al. [12] investigated a prey–
predator model under Dirichlet boundary condition
and showed that the synchronized steady state solu-
tion is locally asymptotically stable under equal growth
and diffusion rates. In [13], the authors considered
the spread of rumors into a non-smooth reaction–
diffusion system, then proved the existence of non-
negative solutions using the upper and lower solution
method. Numerical simulations were given to illustrate
various bifurcation phenomena. Considering reaction–
diffusion into a prey–predator model may bemore real-
istic from biological point of view.

Reducing the presence of crop pests and pathogens
is essential for enhancing the overall performance of
global agriculture and associated food systems [23–
25]. The increasing number of pests has led to the
ingestion of crops worldwide, the quality of harvest
production is influenced, which may potentially result
in future shortages of food. Therefore, to resist pests
and deal with the losses are urgent [26]. It is usually
not possible to kill pests completely, which is also eco-
nomically or biologically undesirable [27,28]. Hence,
it is crucial to adopt the integrated pest management
(IPM) approach that strives to maintain pest popula-
tionswithin acceptable or anticipated thresholds to pre-
vent detrimental impacts of pest outbreaks. The appli-
cation of IPMnot only prevents financial losses but also
promotes sustainable development of agricultural sys-
tems. The objective of IPM is to combine suitable tac-
tics, such as chemical and/or biological means, to man-
age pests within an economically tolerable threshold
level (ET). This ET serves as a tolerable limit, beyond
which control measures are implemented to prevent
pest populations from surpassing the acceptable level.
Consequently, this study puts forth a non-smooth Fil-
ippov system with threshold control. When the pests
reaches or surpasses the economic threshold, the appli-
cation of insecticides and introduction of natural preda-
tors will be promptly initiated [29–33]. Tang et al. [34]
constructed a Filippov prey–predator model incorpo-

rating threshold control strategies and time delay to
examine the equilibrium points, sliding mode dynam-
ics and different diverse branching phenomena. The
results indicate that the dynamics of the system are sig-
nificantly influenced by both time delay and threshold
value. Jiao et al. [4,5] and Wang et al. [6] provided a
more comprehensive discussion on qualitative analysis
of equilibrium points and global sliding bifurcations.

In real ecosystems, the species need a certain period
of time to produce offsprings and digest food, the
growth of organisms is not an instantaneous process,
and the response time of system members to environ-
mental changes cannot be disregarded [35–37]. Mathe-
matically, models with delaymay exhibit more compli-
cated dynamic performances, such as changes in equi-
librium stability, the emergence of Hopf bifurcation,
and the possibility of various bifurcation phenomena.
As pointed out by Mahmoud et al. [35], time delay
has the potential to alter the stability of equilibrium in
a system. It may even lead to the formation of mul-
tiple periodic motions and chaotic behaviors. Hence,
it is indispensable to take account of time delay into
predator–prey models to precisely reflect how the pop-
ulation dynamics rely on past corresponding informa-
tion [38–42].

Therefore, we develop a Filippov reaction–diffusion
predator–prey model with time delay. Usually, it is
assumed that the system meets the Neumann bound-
ary condition, which means that the prey and predator
population is confined within a given domain. We are
interested in how the diffusion, time delay, and thresh-
old switching will affect the predator–prey model. Will
the existence of the Laplacian term bring challenges
to the proof of the existence of the sliding mode? Can
the introduction of time delay result in more intricate
dynamic performance, like Hopf bifurcations? Can the
Filippov control strategy effectively lower the pest pop-
ulation below the designed tolerable threshold, thereby
accomplish the control objectives? Furthermore, our
research concentrates on examining the discontinu-
ity bifurcation triggered by the right-hand disconti-
nuity and time delay, and investigating the potential
challenges posed by time delay and diffusion to Fil-
ippov control. Zhang et al. [38] considered a such
model to study the dynamics of a prey–predator model
with threshold harvesting, which, to our knowledge, is
the few work considering both reaction–diffusion and
delay in Filippovmodels.Wewill carry outmore global
dynamics and sliding bifurcation analysis in this work.
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The manuscript is then structured as follows. We
establish and elaborate the delay reaction–diffusionFil-
ippov system in Sect. 2. Section 3 is dedicated to ana-
lyzing the existence and stability of equilibria as well
as the occurrence of Hopf bifurcations. What follows
are the sliding domain and sliding mode dynamics in
Sect. 4. In Sect. 5, we concentrate on investigating the
impacts of economic threshold and time delay on sys-
temdynamics and pest control. Local and global sliding
bifurcations are investigated in Sect. 6.We conclude the
work in the final section.

2 The delay reaction–diffusion Filippov
prey–predator model

Based on the analysis presented above, in order to
explore how the time delay and Filippov strategies will
influence the reaction–diffusion prey predator model,
and meanwhile, biologically investigate more complex
dynamical behaviors such as Hopf bifurcations and
discontinuity-induced bifurcations the time delay may
bring, here, we construct amathematicalmodel accord-
ing to the following assumptions.

(i) u(x, t) and v(x, t) represent the population den-
sity of prey (pest) and predator (natural enemy),
respectively. The diffusion coefficients of prey and
predator are denoted by d1 and d2, respectively.
Filippov models with time delay have been inves-
tigated in [5,6,8], however, spatial heterogene-
ity are rarely considered. Here, we incorporate
reaction–diffusion into a delay Filippov model.

(ii) r represents the intrinsic growth rate of the prey
population, while k denotes the carrying capacity.
The impact of the predator on the prey popula-
tion is regulated by a Holling type III functional
response αu2v

β+u2
,α represents themaximumcapture

rate of the prey, while β denotes the search rate of
the predator. δ is the mortality rate of the preda-
tor, η is the conversion factor of prey capture. All
parameters are positive. In general, there are three
different functional response functions for differ-
ent types of species based on experiments, Holling
I, Holling II and Holling III. Holling I functional
response function adapts to algae, cells and lower
organisms, Holling II functional response func-
tion adapts to invertebrates, and Holling III func-
tional response function is for vertebrates. Here,

we consider Holling III functional response func-
tion other than linear rate to investigate the prey
predator interactions.

(iii) p > 0 represents the killing rate of the prey
population as a result of pesticide spraying, here,
assume r > p. q > 0 is the release rate of natural
enemies, and q < δ. τ indicates the time required
for the predator population to become pregnant or
mature.

(iv) Δ represents the Laplacian operator. Ω repre-
sents a bounded domain. n is the normal vector
that extends outward from the bounded domain
Ω . ∂/∂n represents the outward normal deriva-
tive on ∂Ω . The homogeneous Neumann bound-
ary conditions imply that there is no population
flux across the boundaries.

We adopt the IPM strategy, that is, once the pest
population surpasses the ET, control strategies will be
implemented by spraying pesticides with rate p and
releasing natural enemies with rate q. The system can
be then described as follows:

∂u

∂t
= d1Δu(x, t) + ru(x, t)

(
1 − u(x, t)

k

)

−αu2(x, t)v(x, t)

β+u2(x, t)
−εpu(x, t),

∂v

∂t
= d2Δv(x, t) − δv(x, t) + ηαu2(x, t − τ)v(x, t)

β + u2(x, t − τ)

+ εqv(x, t), t > 0, x ∈ Ω,

(1)

with

ε =
{
0, for u(x, t) − ET < 0,
1, for u(x, t) − ET > 0,

(2)

and the Neumann boundary conditions

∂u(x, t)

∂n
= 0,

∂v(x, t)

∂n
= 0, t > 0, x ∈ ∂Ω.

The initial condition is u(x, t) = φ1(x, t) ≥ 0, v(x, t)
= φ2(x, t) ≥ 0, (x, t) ∈ Ω × (−τ, 0),Ω = Ω ∪ ∂Ω.

Here, we assume that φ1, φ2 ∈ C = C([−τ, 0], X),
X = {u ∈ W 2,2(Ω) : ∂u(x,t)

∂n = ∂v(x,t)
∂n = 0, x ∈ ∂Ω}

with the inner product 〈·, ·〉.
Remark 1 There are lots of models established to
investigate the prey and predator interactions and its
control [1–8]. c differentiates these existing models
from the following aspects. Firstly, spatial heterogene-
ity is considered to explore the prey and predator inter-
actions. The transmission of the prey and predator can
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be numerically provided by the analysis. Secondly, we
consider a Holling type III functional response αu2v

β+u2
,

which is different from the traditional linear rate or
Holling I and II functional response functions. The
delay reaction–diffusion Filippov system (1) with (2)
reflects the real interactions and controls more pre-
cisely.

Let ρ(z) = u−ET with z = (u, v)T , then the space
R2+ = {(u, v)T |u(x, t) ≥ 0, v(x, t) ≥ 0} is divided
into three parts:

Γ1 = {z ∈ R2+|ρ(z) < 0}, Γ2 = {z ∈ R2+|ρ(z) > 0},
Γ = {z ∈ R2+|ρ(z) = 0}.
The dynamics of the system (1) with (2) in Γ1 and Γ2

are determined by FΓ1 and FΓ2 , respectively, where

FΓ1(z, zτ ) =
⎛
⎝d1Δu + ru(1 − u

k ) − αu2v
β+u2

d2Δv − δv + ηαu2(t−τ)v

β+u2(t−τ)

⎞
⎠ ,

(3)

FΓ2(z, zτ ) =
⎛
⎝d1Δu + ru(1 − u

k ) − αu2v
β+u2

− pu

d2Δv − δv + ηαu2(t−τ)v

β+u2(t−τ)
+ qv

⎞
⎠ .

(4)

Here, denote (z(t), z(t − τ)) = (z, zτ ) for simplicity.
In the subsequent discussion, the delay Filippov sys-
tem (1) with (2) in regionΓ1 is designated as subsystem
(3), and in region Γ2 is designated as subsystem (4).

The delay reaction–diffusion Filippov system (1)
with (2) could exhibit various equilibrium points, for
further investigation, we first present these different
types of equilibria, including regular/virtual, pseudoe-
quilibrium and boundary/tangent points [4–6].

Definition 1 If an equilibrium E satisfies FΓ1(z, zτ ) =
0, ρ(z) < 0, or FΓ2(z, zτ ) = 0, ρ(z) > 0, then E is
called a regular equilibrium, denoted by ER ; While if
FΓ1(z, zτ ) = 0, ρ(z) > 0, or FΓ2(z, zτ ) = 0, ρ(z) <

0, then E is called a virtual equilibrium, denoted by
EV .

Definition 2 If an equilibrium E satisfies FΓ1(z, zτ ) =
0, ρ(z) = 0, or FΓ2(z, zτ ) = 0, ρ(z) = 0, then E
is called a boundary equilibrium; E is called a tan-
gent point if 〈∇ρ(z), FΓ1(z, zτ )〉 = 0, ρ(z) = 0, or
〈∇ρ(z), FΓ2(z, zτ )〉 = 0, ρ(z) = 0, where 〈·〉 indi-
cates the standard scalar product,∇ρ(z) is the gradient
of ρ(z) on the discontinuity surface Γ .

Definition 3 If a point satisfies εFΓ1(z, zτ ) + (1 −
ε)FΓ2(z, zτ ) = 0, ρ(z) = 0, ε = 〈∇ρ(z),FΓ2 〉

〈∇ρ(z),FΓ2−FΓ1 〉 , then
the point is called a pseudoequilibrium,where∇ρ(z) =
(1, 0)T represents the normal vector perpendicular to
Γ . Accordingly, the system FΓs = εFΓ1 + (1− ε)FΓ2

is denoted as the sliding mode dynamics.

3 Dynamic analysis of subsystems (3) and (4)

Firstly, we will conduct a comprehensive investigation
into the existence of equilibrium points of subsystems
(3) and (4), and then the stability of the equilibrium
points will be obtained by analyzing the corresponding
characteristic equations. Finally, Hopf bifurcation will
be investigated.

3.1 The equilibrium points of subsystems (3) and (4)

For subsystem (3), (0, 0) and (k, 0) are always two
predator-free equilibria. The interior equilibrium satis-
fies

ru
(
1 − u

k

)
− αu2v

β + u2
= 0,

−δv + ηαu2v

β + u2
= 0.

Calculation yields that if R1 = k2αη

k2δ+βδ
> 1, then

subsystem (3) possesses a unique endemic equilibrium

E1 = (u∗
1, v

∗
1) = (

√
δβ

ηα−δ
,

rηβ
k(δ−αη)

+ ηr
√

β√
δ(αη−δ)

).

For subsystem (4), (0, 0) and (k(1 − p
r ), 0) are

always two predator-free equilibria. Calculation yields

that if R2 = k2(1− p
r )2αη

k2(1− p
r )2(δ−q)+(δ−q)β

> 1, then subsys-

tem (4) possesses a unique endemic equilibrium E2 =
(u∗

2, v
∗
2) = (

√
(δ−q)β
ηα−δ+q ,

rηβ
k(δ−αη−q)

+ η(r−p)
√

β√
(δ−q)(αη−δ+q)

).

3.2 Stability analysis and Hopf bifurcation

Notation 31 On the basis of homogeneous Neumann
boundary condition, we assume that 0 = σ0 < σ1 <

σ2 < · · · < σn < · · · → ∞ are the eigenvalues of −�
on Ω , then the space decomposition below is true.

(1) S(σn) is the eigenfunction space relative to σn for
n = 0, 1, 2, . . ..

(2) Xi j := {c · φi j , c ∈ R2}, φi j are orthonormal basis
of S(σn) for j = 1, 2, . . . , dim[S(σn)].
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(3) X := {z = (u, v) ∈ [C1(Ω)]2 : ∂u
∂n = ∂v

∂n = 0},
and X = ⊕∞

i=1Xi , where Xi = ⊕dim[S(σ j )]
j=1 Xi j .

Linearizing system (1) at any equilibrium E =
(u∗, v∗) can yield the corresponding characteristic
equation as follows,∣∣∣∣Δ11 Δ12

Δ21 Δ22

∣∣∣∣ = 0, (5)

where

Δ11 = d1σn + r − 2ru∗

k

−
2αu∗v∗

(
β + u∗2

)
− 2αu∗3v∗

(
β + u∗2)2

− εp − λ,

Δ12 = − αu∗2

β + u∗2 ,

Δ21 = 2αηu∗v∗

β + u∗2

(
1 − u∗2

β + u∗2

)
e−λτ ,

Δ22 = d2σn − δ + ηαu∗2

β + u∗2 + εq − λ.

Expanding (5)we can obtain the following equation,

�n(λ) = λ2 + Anλ + Bn + Ce−λτ = 0, (6)

with

An = d1σn + d2σn + ru∗

k
+ αu∗v∗

β + u∗
(
1 − 2u∗2) ,

Bn =
(
d1σn + ru∗

k
+ αu∗v∗

β + u∗
(
1 − 2u∗2))

d2σn,

C = 2α2ηu∗3v∗
(
β + u∗2)2

(
1 − u∗2

β + u∗2

)
> 0.

Obviously, the predator-free equilibria (0, 0) of sub-
systems (3) and (4) are always unstable for one of the
eigenvalues is λ = d1σn + r − εp > 0. The predator-
free equilibria (k, 0) and (k(1− p

r ), 0) are always unsta-
ble if R1 > 1 and R2 > 1 for one of the eigenvalues is

λ = d2σn − δ + ηαu∗2

β+u∗2 + εq > 0.

When τ = 0, Eq. (6) can be rewritten as the follow-
ing form,

λ2 + Anλ + Bn + C = 0. (7)

Consequently, if condition (Π1) is satisfied, the char-
acteristic equation (7) will have roots with negative real
parts, where

(Π1) : An > 0, Bn + C > 0.
In this case, the positive equilibria E1 and E2 for sub-
systems (3) and (4) are locally asymptotically stable.

Next, if iω(ω > 0) is a root of Eq. (6), then
ω will satisfy the following equation for some n ∈
{0, 1, 2, . . .}, which examines the impact of time delay
τ on the stability of the positive equilibrium,

− ω2 + i Anω + Bn + C(cos(ωτ) − i sin(ωτ)) = 0.(8)

By separating the real and imaginaryparts,weobtain
that{−ω2 + Bn = −C cos(ωτ),

Anω = C sin(ωτ).
(9)

Squaring both sides of Eq. (9) and adding them reads

ω4 +
(
A2
n − 2Bn

)
ω2 + B2

n − C2 = 0. (10)

Denote Z = ω2, A2
n − 2Bn = D1, B2

n − C2 = D2,
Eq. (10) then can be written as

Z2 + D1Z + D2 = 0. (11)

The existence of positive roots of Eq. (10) can be
deduced by Eq. (11), which is listed in the following
lemma.

Lemma 1 1. If D2 > 0 and D1 < 0 and D2
1 > 4D2

is satisfied, Eq. (10) has two positive roots, denoted

by ωn± , where ωn± =
√

−D1±
√
D2
1−4D2

2 .

2. If either D1 < 0 and D2
1 = 4D2 or D2 < 0 is

satisfied, Eq. (10) has only one positive root ωn+ ,

ωn+ =
√

−D1+
√
D2
1−4D2

2 .

3. If either D2 > 0 and D1 > 0 or D2
1 < 4D2 is

satisfied, Eq. (10) has no positive root.

Without less of generality, assume Eq. (10) has two
positive roots, then from Eq. (9), we can deduce

τ
( j)
n± =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
ωn±

(
arccos

ω2
n±−Bn
C + 2π j

)
,

Anωn±
C ≥ 0,

1
ωn±

(
2π − arccos

ω2
n±−Bn
C + 2π j

)
,

Anωn±
C < 0,

(12)

with j = 0, 1, 2, . . ..
The following result verifies the validity of the

transversality condition.
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Lemma 2 Assume λn(τ ) = αn(τ ) ± iωn(τ ) is a root
of Eq. (6) near τ = τ

( j)
n± satisfying αn(τ

( j)
n± ) = 0

and ωn(τ
( j)
n± ) = ωn± , j = 0, 1, 2, . . . . The following

transversality conditions are satisfied,

Re

(
dλ

dτ

)
τ=τ

( j)
n+ ,ω=ωn+

> 0,

Re

(
dλ

dτ

)
τ=τ

( j)
n− ,ω=ωn−

< 0.

Proof Differentiating Eq. (6) with respect to τ yields

dλ

dτ

(
2λ + An − Cτe−λτ

) = Cλe−λτ .

Therefore,
(
dλ

dτ

)−1

= 2λ + An − Cτe−λτ

Cλe−λτ
= 2

C
eλτ

+ An

Cλ
eλτ − τ

λ
.

Accordingly,

Re

(
dλ

dτ

)−1

τ=τ
( j)
n± ,ω=ωn±

=
2 cos

(
ωn±τ

( j)
n±

)
C

+
An sin

(
ωn±τ

( j)
n±

)
Cωn±

.

SinceC cos(ωn±τ
( j)
n± ) = ω2

n± −Bn andC sin(ωn±τ
( j)
n± )

= Anωn± , hence, we have

Re

(
dλ

dτ

)−1

τ=τ
( j)
n± ,ω=ωn±

= ±
√(

A2
n − 2Bn

)2 − 4
(
B2
n − C2

)
C2 .

The result is then followed.

The first inequality in Lemma 2 indicates that the
root crosses the imaginary axis from left to right, indi-
cating the instability of the equilibrium. While the sec-
ond inequality indicates that the equilibrium is stable.

The ensuing theorem provides an analysis of the sta-
bility of the endemic equilibria E1 and E2.

Theorem 1 Assuming τ
( j)
n± is described by (12), the

following assertions hold true.

(1) If (Π1) does not hold, equilibria E1 and E2 are
unstable for τ ∈ [0,+∞).

(2) If (Π1) holds, equilibrium Ei , i = 1, 2, is sta-
ble when τ ∈ [0, τ (0)

n+ ) and unstable when τ ∈
(τ

(0)
n+ ,+∞). Furthermore, when τ = τ

(0)
n+ , system

(1) undergoes a Hopf bifurcation at the equilibrium
Ei , i = 1, 2.

Proof Based on Theorem 2.1 in [42], if Π1 does
not hold, it can be concluded that Ei , i = 1, 2,
is unstable for τ ∈ [0, τ (0)

n+ ). Furthermore, due to
Re

( dλ
dτ

)
τ=τ

(0)
n+ ,ω=ωn+

> 0, we have Ei , i = 1, 2, is

unstable for τ ≥ τ
(0)
n+ , then E1, E2 are unstable for all

τ ≥ 0.
If Π1 holds, Ei , i = 1, 2, is stable for τ ∈ [0, τ (0)

n+ ).
Re

( dλ
dτ

)
τ=τ

(0)
n+ ,ω=ωn+

> 0 indicates that Ei , i = 1, 2, is

unstable for τ ∈ [τ (0)
n+ , τ

(1)
n+ ). Re

( dλ
dτ

)
τ=τ

(1)
n+ ,ω=ωn+

> 0

indicate that Ei , i = 1, 2, is unstable for τ = τ
(1)
n+ , and

τ > τ
(1)
n+ , the stability of Ei is switched when τ = τ

(0)
n+ ,

and the system undergoes a Hopf bifurcation.

4 Sliding regions and sliding mode dynamics

The existence of the sliding mode is contingent on the
fact that the two subsystemvectors are oriented in oppo-
site directions towards each other on the surface of dis-
continuity, that is,

ρ(z)
∂ρ(z)

∂t
= ρ(x, t)

∂ρ(x, t)

∂t
≤ 0.

There are two methods for solving sliding mode
dynamics in general, the Utkin’s equivalent control
method and the Filippov convex method [4–6]. In
this study, we will utilize the Filippov convex method
to investigate the sliding mode dynamcis of delay
reaction–diffusion Filippov system (1) with (2). For
convenience, denote

f (u, v) = (u − ET) f1(u, v),

f1(u, v) = ru
(
1 − u

k

)
− αu2v

β + u2
+ u − ET − εpu,

with ε defined in (2).

Theorem 2 Suppose that [r(1 − ET
k ) − p]β+ET2

αET =
vmin < v < vmax = r(1 − ET

k )
β+ET2

αET and d1 < 1
holds, then the sliding mode will occur on u = ET
when vmin < v < vmax .
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Proof First, solving two algebraic equations about v,

rET

(
1 − ET

k

)
− αET2v

β + ET2 = 0,

and

rET

(
1 − ET

k

)
− αET2v

β + ET2 − pET = 0,

yields two roots, vmin = [r(1 − ET
k ) − p]β+ET2

αET and

vmax = r(1 − ET
k )

β+ET2

αET . Obviously, f (u, v) < 0
holds if (u, v) ∈ {(u, v) | vmin < v < vmax ,ET −ζ <

u < ET + ζ } for some sufficiently small ζ > 0. Then
in the following, we discuss the existence of the sliding
mode for the delay reaction–diffusion Filippov system
(1) with (2) in region {(u, v) | vmin < v < vmax ,ET −
ζ < ET < ET + ζ }. There holds

ρ(z) · ∂ρ(z)

∂t
= (u − ET)

∂u

∂t

= (u − ET)
(
d1Δu + ru

(
1 − u

k

)

− αu2v

β + u2
− εpu

)

=(u−ET)d1Δu−(u−ET)2+ f (u, v)

≤ ρ(x, t)d1Δρ(x, t) − ρ2(x, t). (13)

Denote V (x, t) = ρ(x, t)Δρ(x, t) − ρ2(x, t), sub-
stitute it into (13), then one can obtain

ρ(z) · ∂ρ(z)

∂t
≤ d1V (x, t) − (1 − d1)ρ

2(x, t). (14)

Next, we prove that V (x, t) ≤ 0 holds for ∀x ∈ Ω by
contradiction [38]. If this is not true, let

Ω1 = {x | V (x, t) > 0, x ∈ Ω},
Ω2 = {x | V (x, t) ≤ 0, x ∈ Ω},
therefore, ∂Ω1 = [∂Ω

⋂
∂Ω1] ⋃[Ω ⋂

∂Ω1], and
V (x, t) = 0 for x ∈ ∂Ω1. From the definition of V,

one gets

0 <

∫
Ω1

V (x, t)dx =
∫

Ω1

ρ(x, t)Δρ(x, t)dx

−
∫

Ω1

ρ2(x, t)dx

= ρ(x, t)
∂ρ(x, t)

∂x

∣∣∣∣
∂Ω1

−
∫

Ω1

(
∂ρ(x, t)

∂x

)2

dx

−
∫

Ω1

ρ2(x, t)dx . (15)

We clarify with the following two cases.

(i) if x ∈ ∂Ω
⋂

∂Ω1, then x ∈ ∂Ω. Based on
the homogeneous neumann boundary condition,

ρ(x, t) ∂ρ(x,t)
∂x

∣∣∣∣
∂Ω1= 0, which contradicts with (15).

(ii) if x ∈ Ω
⋂

∂Ω1, then x ∈ ∂Ω1, sinceV (x, t) = 0
for x ∈ ∂Ω1, then ρ(x, t) = Δρ(x, t) for x ∈
∂Ω1.

From (14) we have

ρ(z) · ∂ρ(z)

∂t
≤ −(1 − d1)ρ

2(x, t).

Solving the above equation, there holds

ρ2(x, t) ≤ ρ2(x, 0)e−2(1−d1)t .

This implies that if x ∈ ∂Ω1 and t is sufficiently
large, |ρ(x, t)| is sufficiently small. Due to ρ(x, t) =
Δρ(x, t), x ∈ ∂Ω1, then |Δρ(x, t)| is also sufficiently
small when t is sufficiently large and x ∈ ∂Ω1. Thus,∣∣∣∣ ∂ρ(x,t)

∂x

∣∣∣∣ (x ∈ ∂Ω1) is bounded. So

∣∣∣∣ρ(x, t) ∂ρ(x,t)
∂x

∣∣∣∣
∂Ω1

is sufficiently small when t is sufficiently large, which
contradicts with (15).

By combining with (i) and (ii), it can be concluded
that for ∀x ∈ Ω, V (x, t) ≤ 0. Hence, from (13) we
have

ρ(z) · ∂ρ(z)

∂t
≤ −(1 − d1)(u − ET)2 < 0, u �= ET ,

which implies that a sliding mode occurs on u = ET
when vmin < v < vmax . The proof is completed.

Based on the analysis above, we can describe the
sliding segment as follows,

Γs = {(u, v) ∈ Γ | u = ET ,max{0, vmin}
< v < vmax , vmax > 0}.

According to the relationship between ET and
k, k(r−p)

r , the sliding segment can be clarified to three
cases.

1. When ET > k, then vmax < 0, sliding segment is
no longer present.

2. When k(r−p)
r < ET < k, then vmin < 0, vmax >

0, the system possesses a sliding segment Γ 1
s =

{(u, v) ∈ Γ |u = ET , 0 < v < vmax }.
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3. When ET <
k(r−p)

r , vmin > 0, the system pos-
sesses a sliding segment Γ 2

s = {(u, v) ∈ Γ |u =
ET , vmin < v < vmax }.
In the subsequent analysis, we make the assump-

tion that ET < k to ensure the presence of the sliding
segment.

Then, by employing theFilippov convexmethod, the
dynamics on the sliding segment Γs can be represented
by

FΓs = εFΓ1 + (1 − ε)FΓ2 , u = ET ,

with

ε = 〈∇ρ(z), FΓ2〉
〈∇ρ(z), FΓ2 − FΓ1〉

= 1 − 1

p

(
r

(
1 − ET

k

)

− αETv

β + ET2

)
,

0 < ε < 1. Hence, the sliding mode dynamics on
sliding segment Γs can be listed as

∂v

∂t
= d2Δv − δv + ηαu2(x, t − τ)v

β + u2(x, t − τ)

+ q

p
v

(
r

(
1 − ET

k

)
− αETv

β + ET2

)
,

t > 0, x ∈ Ω, u = ET ,

∂v

∂x
= 0, t > 0, x ∈ ∂Ω.

(16)

In fact, the sliding mode dynamics (16) can also be
obtained by applying the Utkin’s equivalent method.
From ρ(z) = u − ET , then

ρ′ = u′ = ru(x, t)

(
1 − u(x, t)

k

)
− αu2(x, t)v(x, t)

β + u2(x, t)
−εpu(x, t) = 0,

it follows that

ε = 1

p

(
r
(
1 − u(x, t)

k

)
− αuv

β + u2

)
.

Substituting the above ε into (1), (16) can also be
obtained. Generally, the two methods are equiva-
lent. However, when referring to discussions about
some complicated phenomena, such as chattering, the
Utkin’s equivalent method may have more advantages,
for it is a method of forcing the trajectory of a system
to move on a sliding surface.

The sliding mode dynamics (16) admits an equilib-
rium point Ep = (ET , vp) with

vp = β + ET2

αET

(
r

(
1 − ET

k

)
− δp

q

)
+ pηET

q
.

The existence and stability of the pseudoequilibrium
can be established by the following result.

Fig. 1 Illustration of the existence of the pseudoequilibriumwith
d1 = 0.2, d2 = 0.3, r = 3, k = 8, α = 4.5, β = 2.26, δ =
2.7, η = 0.833, p = 0.8, q = 0.2. (Color figure online)

Theorem 3 Ep = (ET , vp) is a pseudoequilibrium
for the sliding mode dynamics (16) if vmin < vp <

vmax , that is, u∗
2 < ET < u∗

1. And accordingly, E p is
locally asymptotically stable.

Proof Ep is a pseudoequilibrium if it lies on the slid-
ing segment, that is, vmin < vp < vmax , which, by
complicated but trivial calculations, is equivalent to
u∗
2 < ET < u∗

1. Denote

W (v) = −δv + ηαu2(x, t − τ)v

β + u2(x, t − τ)

+ q

p
v

(
r

(
1 − ET

k

)
− αETv

β + ET2

)
.

Then,

W ′(v)
∣∣
Ep

= − qαETvp

p(β + ET2)
< 0,

Hence, the derivative of the slidingmode dynamics (16)
at the pseudoequilibrium Ep reads

W ′(v)
∣∣
Ep

− d2σn < 0,

for any n ≥ 0. It then follows that the pseudoequilib-
rium point Ep = (ET , vp) is locally asymptotically
stable.

As depicted in Fig. 1, the region colored in yellow
signifies the domain where the sliding mode exists,
while green line denotes the presence of a sole pseu-
doequilibrium.
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For further analyzing the bifurcation of the delay
reaction–diffusion Filippov system (1) with (2), we
introduce two distinct points referred to the boundary
equilibrium and the tangent point.

Tangent points According to Definition 2, the tan-
gent points can be calculated by the following equa-
tions,

ru
(
1 − u

k

)
− αu2v

β + u2
− εpu = 0, u = ET ,

with ε = 0, 1. Then the two tangent points are TΓ1 =
(ET , vmin) and TΓ2 = (ET , vmax) with vmin and vmax

defined in Theorem 2.
Boundary equilibria According to Definition 2, let

ru
(
1 − u

k

)
− αu2v

β + u2
− εpu = 0,

−δv + ηαu2(t − τ)

β + u2(t − τ)
+ εqv = 0, u = ET ,

with ε = 0, 1. Then the two boundary equilib-

ria are EB
1 = (ET ,

r(k−ET)(β+ET2)
αkET ) and EB

2 =
(ET ,

(r(k−ET)−kp)(β+ET2)
αkET ), provided that ET = u∗

1 or
ET = u∗

2.

5 Qualitative analysis of the delay
reaction–diffusion Filippov system (1) with (2)

We will explore the global dynamics of the system
with sequentially considering different values of the
threshold ET , namely, ET < u∗

2, u
∗
2 < ET < u∗

1, and
ET > u∗

1. Although the results are obtained numeri-
cally, here, we still state them by theorems.

5.1 Case 1: ET < u∗
2

In this case, E1 represents a virtual equilibrium point
(referred to as EV

1 ) and while E2 denotes a regular
equilibrium point (referred to as ER

2 ). The dynamics
of system (1) with (2) is determined by subsystem (4).
According to the discussion in Sect. 3, we have the
following results.

Theorem 4 Provided that ET < u∗
2,

(1) if condition (Π1) does not hold, then the delay
reaction–diffusion Filippov system (1) with (2)
admits a globally asymptotically stable periodic
solution which surrounds E R

2 for τ ∈ [0,+∞),
as can be seen in Fig. 2.

(2) if condition (Π1)holds, the delay reaction–diffusion
Filippov system (1) with (2) admits a globally
asymptotically stable equilibrium ER

2 for τ ∈
[0, τ (0)

n+ ), and a globally asymptotically stable peri-

odic solution surrounding E R
2 when τ ≥ τ

(0)
n+ , τ (0)

n+
is denoted by Eq. (12) with ε = 1, as shown in
Fig. 3.

From Fig. 2, one can read that for any τ ≥ 0, the
solution of the Filippov system (1) with (2) will con-
verge to a periodic solution that surrounds ER

2 . Fig-
ure 2(a2)–(a3) and (b2)–(b3) illustrates the changes of
prey u and predator v over time t and space x .

Figure 3 shows the occurrence of Hopf bifurcation.
By calculation, τ (0)

n+ = 0.9987.All solutions ultimately

converge towards ER
2 for τ = 0 < τ

(0)
n+ = 0.9987

[Fig. 3(a1)], when τ = 1.05 > τ
(0)
n+ , all solutions will

finally stabilize at a standard limit cycle [Fig. 3(b1)].
The variation diagrams of prey u and predator v with
time t and space x are shown in Fig. 3(a2), (a3), (b2),
(b3), respectively.

In this condition, the strategies are unable to achieve
the desired control aims as the pest population den-
sity eventually surpasses the acceptable thresholdwhen
ET < u∗

2.

5.2 Case 2: ET > u∗
1

In this case, E1 represents a regular equilibrium point
(referred to as ER

1 ) and while E2 denotes a virtual equi-
librium point (referred to as EV

2 ). The dynamics of
system (1) with (2) is determined by subsystem (3).
As analyzed in Sect. 3, the following results have been
obtained.

Theorem 5 Provided that ET > u∗
1, then

(1) If condition (Π1) is not satisfied, the delay reaction–
diffusion Filippov system (1)with (2) admits a glob-
ally asymptotically stable periodic solution sur-
rounding E R

1 for all τ ≥ 0, as can be seen in Fig. 4.
(2) if condition (Π1) is satisfied, the delay reaction–

diffusion Filippov system (1) with (2) has a glob-
ally asymptotically stable equilibrium ER

1 for τ ∈
[0, τ (0)

n+ ), and a globally asymptotically stable peri-

odic solution around ER
1 for τ ≥ τ

(0)
n+ , τ

(0)
n+ is

denoted as Eq. (12) with ε = 0, as shown in Fig. 5.
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Fig. 2 The phase portrait and density dynamics of system (1)
with (2) if ET < u∗

2 and ET = 0.8. d1 = 0.2, d2 = 0.3, r =
1, k = 6, α = 0.8, β = 0.6, δ = 2.1, η = 3, p = 0.2, q =

0.6. Initial values are (0.75, 1.6), (0.78, 1.8), (0.85, 1.65) and
(0.9, 2), EV

1 = (2.0493, 1.9277), ER
2 = (1.0000, 1.2667)
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Fig. 3 The phase portrait and density dynamics of system (1)
with (2) if ET < u∗

2 and ET = 2.5. d1 = 0.2, d2 = 0.3, r =
3, k = 8, α = 4, β = 3.5, δ = 3, η = 0.85, p = 0.5, q = 0.2.

Initial values are (2.37, 2.3), (2.6, 2.25), (2, 1.5) and (2.7, 1.9).
EV
1 = (5.1235, 1.5659), ER

2 = (4.0415, 1.2078), τ
(0)
n+ =

0.9987
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Fig. 4 The phase portrait and density dynamics of system (1)
with (2) if ET > u∗

1 and ET = 3.5. d1 = 0.2, d2 = 0.3, r =
3, k = 8, α = 4.5, β = 2.26, δ = 2.7, η = 0.833, p = 1.2, q =

0.2. Initial values are (3, 1), (3.2, 0.3), (3.8, 1.6) and (3.6, 0.8).
ER
1 = (2.4124, 1.5595), EV

2 = (2.1273, 0.7104)
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Fig. 5 The phase portrait and density dynamics of system
(1) with (2) if ET > u∗

1 and ET = 5.6. d1 = 0.2, d2 =
0.3, r = 3, k = 8, α = 4, β = 3.5, δ = 3, η = 0.85, p =

0.5, q = 0.2. Initial values are (5.4, 0.5), (5.2, 1), (6, 1.5) and
(5.8, 0.8). ER

1 = (5.1235, 1.5659), EV
2 = (4.0415, 1.2078),

τ
(0)
n+ = 1.7362
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Reading from Fig. 4, we can find that all solutions
eventually move towards a standard limit cycle around
ER
1 for τ=0 [Fig. 4(a1)], which is the same case when

τ = 0.2 [Fig. 4(b1)]. Figure 4(a2), (a3), (b2), (b3) illus-
trates the changes of prey u and predator v about time
t and space x .

Figure 5 indicates that all solutions ultimately tend
to ER

1 for τ = 0.7 < τ
(0)
n+ = 1.7362 [Fig. 5(a1)], when

τ = 2 > τ
(0)
n+ , the solutions eventually move towards a

standard limit cycle [Fig. 5(b1)].
Provided that ET > u∗

1, the density of pests can
ultimately reach a level that is lower than the specified
threshold value. This outcome signifies the successful
attainment of the integrated pest management goal.

5.3 Case 3: u∗
2 < ET < u∗

1

In this case, E1 and E2 are virtual equilibrium points,
referred to as EV

1 and EV
2 , respectively. The existence

of a pseudoequilibrium point can also be observed. By
combining Theorems 2 and 3, the following results can
be obtained.

Theorem 6 If u∗
2 < ET < u∗

1, the delay reaction–
diffusion Filippov system (1) with (2) admits a globally
asymptotically stable equilibrium Ep as depicted in
Fig. 6.

Figure 6(a1) illustrates that the trajectory of the
solution either directly enters the sliding segment Γs

and stabilizes to Ep, or crosses from region Γ1(Γ2) to
region Γ2(Γ1), and finally stabilizes to Ep. Hence, the
control objective is successfully accomplished in this
case.

Remark 2 In conclusion, in order to achieve the goal of
IPM, the economic threshold level should be prescribed
to satisfy ET > u∗

2, which on the other hand illustrates
the importance of the threshold level in designing a
successful pest control.

6 Sliding bifurcation analysis

6.1 Local sliding bifurcation analysis

Boundary node bifurcation occurs when a bifurcation
parameter exceeds some critical value, causing a regu-
lar node equilibrium, a pseudoequilibrium, and a tan-
gent point to collide simultaneously at the boundary

Fig. 6 The phase portrait and density dynamics of system (1)
with (2) if u∗

2 < ET < u∗
1 and ET = 4.5. d1 = 0.2, d2 =

0.3, r = 3, k = 8, α = 4, β = 3.5, δ = 3, η = 0.85, p =
0.5, q = 0.2, τ = 0.2. Initial values are (4.6, 1.3), (4.63, 1.9),
(4.2, 1.6) and (4.4, 0.8)

equilibrium. Reading from Fig. 7a–c, firstly, a stable
node equilibrium ER

2 coexists with tangent point TΓ2
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Fig. 7 Boundary node bifurcation. d1 = 0.2, d2 = 0.3, r =
3, k = 8, α = 4, β = 3.5, δ = 3, η = 0.85, p = 0.5, q = 0.2,
τ = 0.aET = 3.2, (2.3, 1.6), (2.8, 1.8), (3.4, 2.2) and (3.7, 1.7)
are initial values. The stable equilibrium ER

2 and TΓ2 coexist. b
ET = 4.0415, (4.3, 1.5), (4.2, 2), (3.5, 1.3) and (3.7, 1.7) are
initial values, the equilibrium ER

2 , pseudoequilibrium Ep and
tangent point TΓ2 collide together. c ET = 4.6, initial values are
(4.3, 1.4), (4.2, 1), (4.8, 1.9) and (4.9, 1.4), stable pseudoequi-
librium Ep occurs

when ET = 3.2 < u∗
2 = 4.0415. Then, with the bifur-

cation parameter ET passing through the critical value
ET = u∗

2, the regular node equilibrium ER
2 disappears

and is replaced by the visible tangent point TΓ2 , and the
boundary equilibrium EB

2 is an attractor. Finally, as ET

Fig. 8 Boundary focus bifurcation. d1 = 0.2, d2 = 0.3, r =
3, k = 8, α = 4, β = 3.5, δ = 3, η = 0.85, p = 0.5, q = 0.2,
and τ = 1. a The stable limit cycle and the tangent point TΓ2

coexist. ET = 3, initial values are (2.8, 5), (2.9, 8), (3.3, 10)
and (3.4, 9). b The equilibrium ER

2 , pseudoequilibrium Ep and
tangent point TΓ2 collide together. ET = 3.2274, initial values
are (2.8, 3.5), (2.95, 6), (3.3, 7) and (3.4, 5.5). c Stable pseu-
doequilibrium Ep occurs. ET = 3.5, initial values are (3.2, 2.5),
(3.35, 5.5), (3.7, 7) and (3.6, 5.5)

is further increased to ET = 4.6 > u∗
2, the pseudoequi-

librium Ep and tangent point TΓ2 appear and replace
the boundary equilibrium EB

2 .
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Boundary focus bifurcation occurs if a bifurcation
parameter passing though some critical value leads
to that a focus regular equilibrium point, a tangent
point and a pseudoequilibrium collide together simul-
taneously. According to the analysis in Sect. 3, the
stable node ER

2 transits into an unstable focus with
the bifurcation parameter τ increased from 0 to 1,
as shown in Figs. 7a and 8a. While in Fig. 8a when
ET = 3 < u∗

2 = 4.0415, a stable limit cycle coex-
ists with the tangent point TΓ2 . As the parameter ET
increased to ET = u∗

2, the stable limit cycle disap-
pears, resulting in the simultaneous collision of the
focus regular equilibrium point ER

2 , tangent point TΓ2

and pseudoequilibrium Ep at the boundary equilibrium
EB
2 , as shown in Fig. 8b. With ET is further increased

to ET = 4.6 > u∗
2, the pseudoequilibrium Ep appears

and focus regular equilibrium ER
2 transforms into a

focus virtual equilibrium EV
2 , as shown in Fig. 8c.

Remark 3 Thepresence of these two types of local slid-
ing bifurcations suggests that an ineffective pest control
strategy may be changed by slightly varying the given
threshold level to drive a stable limit cycle or a stable
regular equilibrium above the threshold to a pseudoe-
quilibrium point, so as to achieve the control aim.

6.2 Sliding mode bifurcation

According to the previous analysis, the delay reaction–
diffusion Filippov system (1) with (2) may have sliding
region and pseudoequilibrium, which depends on dif-
ferent parameters. Here, we explore the effect of α, the
maximum capture rate of the prey, and β, the search
rate of the predator on the sliding region and pseudoe-
quilibrium of the system, which leads to the appearing
of the sliding mode bifurcation.

Reading from Fig. 9, if the maximum capture rate of
the prey α is chosen to be located in interval [2.5 4.5],
or the search rate of the predator β is chosen to be
located in interval [1 3], then there exists a pseudoequi-
librium on the sliding region. Referring to Theorem 3,
in this case, the pseudoequilibrium is stable, biologi-
cally, which indicates that the density of pests is con-
trolled to be equal to the prescribed tolerable threshold
level, the control aim is realized.

Theorem 3 shows that the density of pests should be
controlled to be at a tolerable threshold level to ensure
the success of the control. As we can see from Fig. 9,

Fig. 9 Sliding mode bifurcation of the delay reaction–diffusion
Filippov system (1) with (2). d1 = 0.2, d2 = 0.3, r = 3, k =
8, δ = 3, η = 0.85, p = 0.5, q = 0.2,ET = 2.5 and τ = 3.
The red solid point represents EP , and the histogram represents
the sliding region. EP on the histogram indicates EP is a pseu-
doequilibrium. (Color figure online)

appropriately designing the maximum capture rate of
the prey and the search rate of the predator can success-
fully control the pest number and maintain the balance
of ecosystem.

6.3 Global sliding bifurcation analysis

The previous analysis show that for the system (1) with
(2), there is a possibility of the existence of periodic
solutions that are entirely situated within region Γ1 or
regionΓ2. In fact, the periodic solutionsmay also locate
in both regions Γ1 or Γ2 or include parts of the sliding
domain. In this part, we will demonstrate the global
sliding bifurcation to better illustrate the critical role
of delay τ in the delay reaction–diffusion Filippov sys-
tem (1) with (2). We will consider τ as a bifurcation
parameter and elaborate three kinds of global sliding
bifurcations subsequently.

Touching bifurcation Firstly, a standard limit cycle
locating totally inΓ1 orΓ2 may collide with the discon-
tinuity boundary with τ varying, as shown in Fig. 10a–
c. Reading from Fig. 10a with τ = 0.08, there exists
a limit cycle that is entirely locating in Γ1, which does
not intersect with the discontinuity boundary. While
with τ increased to τ = 0.0945 in Fig. 10b, the limit
cycle collidewith tangent point TΓ1 on the discontinuity
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Fig. 10 Global sliding
bifurcation. d1 = 0.2, d2 =
0.3, r = 3, k = 8, α =
4.5, β = 2.26, δ = 2.7, η =
0.833, p = 0.3, q = 0.2,
T = 5. Initial values are
(2.5, 1.6) and (5.5, 1.5).
ER
1 =

(2.4124, 1.5595), EV
2 =

(2.1273, 1.3484)

boundary, which indicates that a touching bifurcation
occurs. As the value of τ increased to τ = 0.104, part
of the limit cycle slides on the sliding domain and then
goes back to Γ1 such that the limit cycle turns into a
sliding limit cycle, seen in Fig. 10c.

Sliding switching bifurcation As the bifurcation
parameter τ is further increased, a sliding limit cycle
starts to intersect with the invisible quadratic tangent
point TΓ2 , shown in Fig. 10c–e. With τ = 0.124, the
limit cycle lies in region Γ1 and encompasses the entire

sliding domain, see Fig. 10d. With τ further increased
to τ = 0.18, see Fig. 10e, the limit cycle will pass
through Γ1 and enter into Γ2, after staying a little while
in Γ2, then return to slide along the sliding domain and
back to Γ1. A sliding switching bifurcation occurs sub-
sequently.

Crossing bifurcation As the bifurcation parameter
τ varies, a stable sliding switching limit cycle will
become a stable crossing limit cycle, see Fig. 10e–g.
Reading from Fig. 10e with τ = 0.18, there is a slid-
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ing switching limit cycle that lies in regions Γ1, Γ2

and a portion of the sliding domain Γs . While with
τ increased to τ = 0.216 in Fig. 10f, when the slid-
ing switching cycle returns to the sliding domain, it is
just tangent to TΓ1 and going back to Γ1, which then
becomes a sliding crossing cycle. Finally, the sliding
crossing cycle transforms into a crossing cycle without
containing any points of the sliding domain if τ = 0.3,
as shown in Fig. 10g.

Remark 4 As the value of parameter τ increased, the
delay reaction–diffusion Filippov system (1) with (2)
exhibits a series of bifurcations, including touching
bifurcation, sliding switching bifurcation and cross-
ing bifurcation. This suggests that mathematically time
delay can introduce greater complexity and richness
into the system dynamics. While, on the other side,
from a biological perspective, the presence of sliding
switching and crossing bifurcations due to delay can
pose a threat to integrated pest management, which
will induce the pest population exceeding the predeter-
mined threshold level, thereby rendering a previously
effective control strategy ineffective.

7 Conclusions

We investigate the dynamic behaviors of a delay Filip-
pov reaction–diffusion prey–predator model under the
Neumann boundary conditions. The time delay cor-
responds to the period of gestation or maturation of
predators. Following the principles of integrated pest
management, if the pest population stays under the eco-
nomic threshold, no controlmeasures are implemented.
However, when the pest population surpasses the eco-
nomic threshold, methods such as insecticide spraying
and natural enemy releases are employed to control the
pest population.

Firstly, the equilibrium points of the two subsys-
tems are examined, and their stability is assessed along
with investigating the conditions for Hopf bifurcation,
achieved by solving the characteristic equations. The
theoretical results indicate that if delay τ surpasses a
specific critical value τ

(0)
n+ , Hopf bifurcation occurs.

Then qualitative analysis is conducted. The results indi-
cate that economic thresholds play a crucial role in pest
control.

Too low prescribed thresholdET may lead to a dissi-
pation of manpower and material resources in spraying

pesticides and releasing natural enemies, as shown in
Figs. 2 and 3. If the pest control is implemented when
ET < u∗

2, the number of the pests may be transiently
reduced, however, finally stabilize at ER

2 or a limit cycle
around ER

2 above the threshold level. As the prescribed
threshold ET is increased to satisfy u∗

2 < ET < u∗
1,

the number of the pests can be eventually stabilize at
the pseudoequilibrium point Ep equal to the thresh-
old, see Fig. 6. With ET further increased to ET > u∗

1,
the threshold control strategy results in the quantity of
pests ultimately falling under economic threshold, thus
achieving the control goal as shown in Figs. 4 and 5.

Remark 5 The consequences highlight the importance
of selecting a suitable economic threshold, such as
ET > u∗

2, in order to achieve effective pest control.

Local and global bifurcations present the crucial sig-
nificance of the delay and economic threshold. Bound-
ary node or focus bifurcations cause a transition of the
equilibrium state from a stable regular equilibrium or
a stable limit cycle above the economic threshold to a
boundary equilibrium, and subsequently to a pseudoe-
quilibrium equal to the economic threshold. This indi-
cates that a failed control strategy can be made effec-
tive by a small adjustment in the threshold value.While
the objective of integrated control may not always be
attainable in the presence of sliding switching or cross-
ing bifurcations, which will pose additional challenges
for pest control. This further emphasizes the impor-
tance of considering delay in the control process.

In [5,8], filippov models with time delay are estab-
lished. The regular/virtual equilibrium, the sliding seg-
ment, sliding mode dynamics and pseudoequilibrium
are investigated. Furthermore, the results show that the
time delay plays a significant role in discontinuity-
induced bifurcations. Although the delay reaction–
diffusion Filippov system (1) with (2) exhibits similar
dynamics, the incorporation of reaction–diffusion term
does bring more challenge for the theoretical analysis,
such as the existence of the sliding domain and pseu-
doequilibrium.Meanwhile,we can explicitly obtain the
spatial transmission of the prey and predator in this
case. The similar results of the delay reaction–diffusion
Filippov system (1) with (2) with existing works [5,8]
indicates that the incorporation of reaction–diffusion
does not bring more effects on the dynamics, but com-
plicates the analysis. This also shows that time delay
plays amore significant role than the reaction–diffusion
term in resulting in complicated bifurcation phenom-
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ena and challenging the Filippov control such that a
successful control becomes failure for the appearance
of sliding switching and crossing bifurcations.

We here consider the delay which indicates the time
required for the predator population to become preg-
nant or mature. In fact, pests also need some time to
reproduce offsprings. Thus, themodel can be improved
to integrate both the delay for predator and delay for
pests, which will be our future study.
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