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Abstract This paper designs two novel event-
triggered control (ETC) schemes based on the critic
learning technique for constrained discrete-time non-
linear systems. First, starting from the stability of the
constrained system, a static ETC method is developed
to reduce the computational burden. Then, a nonnega-
tive dynamic variable is introduced into the static event-
triggered mechanism, so as to establish the dynamic
ETC method, which further improves the resource uti-
lization rate and possesses the anti-interference abil-
ity. Moreover, a speedy value iteration architecture is
designed to obtain an initially admissible optimal con-
trol policy, which can ensure the normal execution of
the designed ETC methods. Finally, two experimen-

L. Hu · D. Wang (B)· J. Qiao
Faculty of Information Technology, Beijing University of
Technology, Beijing 100124, China
e-mail: dingwang@bjut.edu.cn

L. Hu
e-mail: hulingzhi@emails.bjut.edu.cn

J. Qiao
e-mail: adqiao@bjut.edu.cn

L. Hu · D. Wang · J. Qiao
Beijing Key Laboratory of Computational Intelligence and
Intelligent System, Beijing University of Technology,
Beijing 100124, China

L. Hu · D. Wang · J. Qiao
Beijing Institute of Artificial Intelligence, Beijing
University of Technology, Beijing 100124, China

L. Hu · D. Wang · J. Qiao
Beijing Laboratory of Smart Environmental Protection, Beijing
University of Technology, Beijing 100124, China

tal examples are provided to illustrate the effectiveness
and superiority of the developed schemes.
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1 Introduction

With the rapid development of intelligent control [1–
4], adaptive dynamic programming (ADP) [5–20] is
regarded as a promising scheme to accomplish intelli-
gent optimization by introducing the evaluation com-
ponent. This is mainly because the numerical solutions
of Hamilton-Jacobi-Bellman (HJB) equations can be
approximately obtained by ADP algorithms. There-
fore, ADP algorithms are often used by researchers in
related fields to deal with complex nonlinear control
problems. In the iteration process, value iteration [9,10]
and policy iteration [11] are two main forms of ADP
algorithms.The essence of value iteration is to obtain an
approximately optimal control sequence through con-
tinuous iteration between policy evaluation and policy
improvement. Especially,Al-Tamimi et al. [10] proved
the convergence of the value iteration algorithm in the-
ory, which greatly promoted the development of ADP
algorithms. Compared with value iteration, the control
policy generated by policy iteration possesses stability
guarantee and requires an initial stable control law. In

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-024-09778-3&domain=pdf


14160 L. Hu et al.

order to improve the iteration convergence speed, Ha
et al. [12] constructed a new value iteration architec-
ture. So far, a lot of work has been conducted to solve
various control problems by using ADP methods, such
as trajectory tracking control [14–16], robust control
[17], networked control [18], event-triggered control
(ETC) [19], and constrained control [20]. This fully
demonstrates the applicability and great potential of
ADP algorithms.

In the control process, we often face the trouble
caused by actuator saturation. This may lead to sys-
tem performance degradation or even loss of stability
guarantee. A large number of studies have shown that
the control input constrained within a reasonable limit
can not only effectively solve the actuator saturation
problem but also ensure excellent control performance
[21]. In general, the constraint effect can be divided
into symmetric constraints [20] and asymmetric con-
straints [22]. In order to associate the ADP algorithm
with the control constraints, a dual ETC scheme with
critic learningwas developed to control the constrained
nonlinear system [19]. For constrained linear systems, a
feedback controller was designed to research the global
stability problem in [23]. Nevertheless, unlike the con-
strained linear system, the constrained nonlinear sys-
tem is more difficult to be solved in the controlled pro-
cess. Up to now, most of the previous work on con-
strained nonlinear systems has been focused on appli-
cation methods rather than the stability of the system,
which makes the theoretical support inadequate.

Due to the increasing scale of complex nonlinear
systems, the communication burden problem is becom-
ing increasingly serious. Therefore, some controlmeth-
ods that can reduce the computational burden have
received extensive attention, such as ETC [24–33]. The
essence of ETC is to determine a satisfactory triggering
condition, and the control law is updated onlywhen this
triggering condition is contravened, which improves
resource utilization. This is more advanced than the
time-triggered control that requires updating the con-
trol law at every moment. In addition, it is worth not-
ing that the stability of the controlled system needs to
be ensured, where the triggering condition is applied.
Hence, it is necessary to prove the stability of the sys-
tem with the ETC scheme when the event is not trig-
gered. This phased updating control mode is partic-
ularly suitable for embedded systems and networked
control systems [24]. Through in-depth study, ETC has
evolved into two kinds: static ETC [28] and dynamic

ETC [29]. Dynamic ETC is established by introducing
a dynamic variable under the static ETC architecture,
which further reduces the computational burden com-
pared with the static ETC. In addition, the triggering
condition in the dynamic event-triggered mechanism
(ETM) can realize self-adjustment when the interfer-
ence is encountered. This is something static ETC does
not have. However, the dynamic variable that needs to
be designed is usually related to the triggering condi-
tion in static ETM. This is not easy to do. Thus, up to
now, most of the relevant work is to study static ETC.
In [30], an ETC scheme was developed to deal with
the suboptimal tracking control problem for nonlinear
systems. In [28], Wang et al. developed an event based
iterative critic learning algorithm, and proved that the
controlled system was stable from the perspective of
input-to-state stability. With the further study of ETC,
relevant researchers have developed a dynamic ETC
method [29]. In this controlmethod, dynamic events are
monitored and identified, and corresponding control
strategies are adopted to maintain the stability and per-
formance of the controlled system. In [31], a dynamic
ETCmethod was designed for discrete-time linear sys-
tems. However, the dynamic ETCmethod for nonlinear
systems remains to be studied.

Based on the above background, in this paper, we
design two novel static and dynamic ETC schemes
under the critic learning architecture for discrete-time
nonlinear dynamics with control constraints. It is worth
noting that the triggering conditions in these two con-
trol schemes are established based on the premise that
the constrained controlled system is proved to be uni-
formly ultimately bounded (UUB). In iterative learn-
ing, by introducing an acceleration factor, a new speedy
value iteration algorithm is developed to accelerate the
iterative convergence rate. In addition, the convergence
of the speedy value iteration algorithm is proved. In
general, the main contributions are listed as follows.

(1) Starting from the stability of the nonlinear system
with control constraints, a novel static ETC scheme
under the ADP framework is exploited to address
the optimal regulation problem and realize the pur-
pose of improving resource utilization and avoiding
actuator saturation. Moreover, the closed-loop sys-
tem with control constraints under static ETM is
proved to be UUB through classified discussion.

(2) We introduce a reasonable dynamic variable into
the designed static ETC to build an advanced
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Table 1 Full name and corresponding abbreviation

Full name Abbreviations

Adaptive dynamic programming ADP

Event-triggered control ETC

Event-triggered mechanism ETM

Hamilton–Jacobi–Bellman HJB

Uniformly ultimately bounded UUB

Zero-order hold ZOH

dynamic ETM. The purpose is to further save
communication resources. On the other hand,
when there are fluctuations between two consec-
utive samples, the corresponding dynamic trigger-
ing condition can be self-regulating. Meanwhile,
according to the theoretical analysis of static ETC,
the stability of closed-loop system under dynamic
ETC is proved.

(3) In the iteration process, a new speedy value itera-
tion is developed to make the iterative cost func-
tion converge faster, and the corresponding conver-
gence is proved. This results can obtain an initially
admissible optimal control policy faster than tra-
ditional methods. Furthermore, the superiorities of
the designed schemes are illustrated by two exper-
imental simulations.

For ease of reading, all abbreviations in the paper
are listed in the Table 1.

Notations R, Rn , and Rn×m surrogate the set of real
numbers, the Euclidean space of all n-dimensional real
vectors, and the space of all n × m dimensional real
matrices, respectively. N denotes the set of nonnega-
tive integers. Ia denotes the a×a dimensional identity
matrix and “T” is the transpose operation. � ⊂ R

n

represents a compact set and f (·) ∈ Cn(�) represents
that the function f (·) is the continuous nth derivative
on �. λmin(Q) denotes the minimum eigenvalue of the
matrix Q.

2 Problem statement

The plant to be studied is described by the following
discrete-time nonlinear system:

xk+1 = F (xk, uk), k ∈ N, (1)

where xk ∈ � ⊂ R
n is the state vector, uk ∈ �u is

the control vector, �u = {uk ∈ R
m, |uik | ≤ Ū , i =

1, 2, . . . ,m} with the saturation constraint Ū > 0.
Assume that the system functionF (·):Rn×R

m → R
n

is continuous and differentiable on� ⊂ R
n . Moreover,

we set the corresponding feedback control law as u(xk).
In the time-triggered control process, the control law

u(xk) is updated at each time step k. This continuous
updating control method is easier to achieve system
stability. However, it is not optimistic in resource uti-
lization. Conversely, in the ETC process, u(xk) is gen-
erated only when the designed triggering condition is
violated. As such, u(xk) will be maintained constant in
the interval when the event is not triggered by introduc-
ing a zero-order hold (ZOH). Thismeans that compared
with the time-triggered control, the ETC can greatly
reduce the computational burden. Therefore, the stabil-
ity guarantee of the controlled system is essential under
the ETM. For clarity, we define {k j }∞j=0 (k0 = 0) as a
sequence consisting of event-based sampling instants.
It is worth noting that this sequence is monotonically
increasing, i.e., k0 < k1 · · · < k∞. Then, the event-
based control law μ(xk j ) satisfies

μ(xk j ) = u(xk),∀k ∈ [k j , k j+1), (2)

where xk and xk j represent the current state and sam-
pling state, respectively.

Remark 1 In general, the design of the ETC scheme
is likely to cause the Zeno phenomenon. However,
this phenomenonmainly occurs in continuous systems,
because we cannot guarantee that the next triggering
time must be after the previous triggering time. There-
fore, for the ETC of continuous systems, we usually
give a theoretical proof to avoid the Zeno phenomenon.
We consider that {k j }∞j=0 expresses a monotonically
increasing sequence of the triggering instant, which
means the next triggering time must be after the previ-
ous triggering time. Therefore, the Zeno phenomenon
will not occur in this paper.

Considering the existence of saturation constraint
Ū , it can be clearly concluded that

∣
∣μi (xk j )

∣
∣ ≤ Ū . We

introduce a variable σk as the triggered interval, which
is expressed as

σk = xk j − xk,∀k ∈ [k j , k j+1). (3)
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Then, system (1) can be redescribed as

xk+1 = F
(

xk, μ(σk + xk)
)

, k ∈ N. (4)

In order to address the optimal control problem of
nonlinear systems with infinite horizon effectively, we
need to design a feedback control sequence tominimize
the cost function, which is to be optimal. That is

J ∗(xk) = min
μ(·)

∞
∑

�=k

Z
(

x�, μ(σ� + x�)
)

= min
μ(·)

∞
∑

�=k

{

xT� Qx� + W
(

μ(xk j )
)}

= xTk Qxk + W
(

μ∗(xk j )
) + J ∗(xk+1), (5)

where Q is a positive definite matrix and Z(·, ·) ≥ 0
is the utility function. In order to overcome the actua-
tor saturation problem, inspired by [20], we define the
nonquadratic function W

(

μ(xk j )
)

as

W
(

μ(xk j )
) = 2Ū

∫ μ(xk j )

0
ψ−T(t/Ū )Rdt

= 2Ū
m

∑

i=1

∫ μi (xk j )

0
ϕ−1(ti/Ū )ridti , (6)

where ψ−1(μ(·)) = [ϕ−1(μ1(·)), ϕ−1(μ2(·)),
. . . , ϕ−1(μm(·))]T and ψ(·) ∈ R

m , R = diag
{r1, r2, . . . , rm} is a positive definite matrix, i =
1, 2, . . . ,m. In addition, it is worth noting that ϕ(·)
is a strictly monotonically increasing odd function and
bounded, |ϕ(·)| ≤ 1 and it also belongs to Cb(b ≥ 1)
and L2(�). Then, we can determine that the function
W

(

μ(xk j )
)

is positive definite. For simplicity, accord-
ing to the characteristics of ϕ(·), we choose ϕ(·) =
tanh(·). Without loss of generality, we assume that the
eigenvalues of the matrix R are the same number, i.e.,
r1 = r2 = · · · = rm = r > 0. Hence, the function
W

(

μ(xk j )
)

can be rewritten as

W
(

μ(xk j )
) = 2rŪ

m
∑

i=1

∫ μi (xk j )

0
tanh−1(ti/Ū )dti .

(7)

Then, the following partial derivative can be easily
obtained:

∂W
(

μ(xk j )
)

∂μ(xk j )

=
∂

(

2rŪ
m∑

i=1

∫ μi (xk j )

0
tanh−1(ti/Ū )dti

)

∂μ(xk j )

= 2rŪ tanh−1(μ(xk j )/Ū
)

. (8)

According to the optimality principle,we can obtain the
optimal control law μ∗(xk j ) by solving the following
equation:

∂Z
(

xk, μ(xk j )
)

∂μ(xk j )
+

[
∂xk+1

∂μ(xk j )

]T
∂J ∗(xk+1)

∂xk+1

= 2rŪ tanh−1(μ(xk j )/Ū
) +

[
∂xk+1

∂μ(xk j )

]T

∂J ∗(xk+1)

∂xk+1
= 0. (9)

Hence, μ∗(xk j ) is solved and expressed as

μ∗(xk j ) = −Ū tanh

(
1

2rŪ

[
∂xk+1

∂μ(xk j )

]T
∂J ∗(xk+1)

∂xk+1

)

.

(10)

Observing (5) and (10), we find that J ∗(xk) and
μ∗(xk j ) can be calculated concretely if the value of
J ∗(xk+1) is known. However, in fact, it is difficult for
nonlinear systems. In addition, in order to effectively
improve resource utilization and have favourable con-
trol performance, an event-based adaptive critic near-
optimal control algorithm is developed.

3 Static/dynamic ETC design

This section consists of two subsections. First sub-
section, a novel static triggering condition is designed
for discrete-time nonlinear systems with control con-
straints. This triggering condition can ensure the stabil-
ity of the controlled systemwhen the control constraint
is considered. The stability is uncommon for discrete-
time nonlinear systemswith control constraints. There-
fore, it makes sense for this static triggering condition
to be developed. Second subsection, we introduce a
dynamic variable based on the static triggering condi-
tion, and then design a dynamic ETC method.
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Fig. 1 The simple frame of the static ETC

3.1 Novel static ETC

The main purpose of designing a reasonable event-
triggering condition is to determine the sampling
instant k j+1, j ∈ N. In the static ETM, the selection
of sampling instants is related to the current state xk
and the event-triggered interval σk . Overall, the simple
frame of the static event-triggered control is displayed
in Fig. 1. More specifically, the static ETC scheme is
applied to deal with the optimal regulation problem of
the system (4). The control law μ(xk j ) is updated at
k j+1 that can be determined as follows:

k j+1 = inf
{

k > k j |C (xk, σk) > 0
}

, (11)

where C (xk, σk) is the static triggering threshold we
need to design next. Before proceeding, we introduce
a common lemma and an useful assumption with the
same property as it used in [32,34].

Lemma 1 For arbitrary vectorsA andB, and a pos-
itive constant 
, the inequality


A TA + 
−1BTB ≥ 2A TB (12)

is always true.

Assumption 1 Assume that the control law u∗(xk) is
Lipschitz continuous for all xk ∈ �. That is, there exists
a Lipschitz constant Ku > 0 such that

∥
∥u∗(xk) − μ∗(xk j )

∥
∥ ≤ Ku

∥
∥xk − xk j

∥
∥ = Ku ‖σk‖ .

(13)

Theorem 1 Let J ∗(xk) be the solution of the HJB
equation (5) while Assumption 1 holds. If the static
triggering threshold C (xk, σk) satisfies

C (xk, σk) = K 2
u

Ū 2
‖σk‖2 − (1 − β)λmin(Q) ‖xk‖2 ,

(14)

where 0 < β < 1 is an adjustable parameter. Then,
we can declare that the closed-loop system (4) to be
stable in the sense of UUB under the event-based opti-
mal control law μ∗(xk j ). According to (11), the static
triggering condition can be reexpressed as

‖σk‖2 ≤ Ū 2(1 − β)λmin(Q)

K 2
u

‖xk‖2 . (15)

Proof Observing (5), the first-order difference of the
optimal cost function J ∗(xk) satisfies

�J ∗(xk) = J ∗(xk+1) − J ∗(xk)
= − xTk Qxk − W

(

μ∗(xk j )
)

≤ −λmin(Q) ‖xk‖2 − W
(

μ∗(xk j )
)

.

(16)

According to (7), one has

−W
(

μ∗(xk j )
)=−2rŪ

m
∑

i=1

∫ μ∗
i (xk j )

0
tanh−1(ti/Ū )dti .

(17)

Let si = ti/Ū , i = 1, 2, . . . ,m. Then, according to
variable substitution methods, one has

− W
(

μ∗(xk j )
)

= −2rŪ 2
m

∑

i=1

∫
μ∗
i (xk j )

Ū
0

tanh−1(si )dsi

= −2rŪ 2
m

∑

i=1

{(

si tanh
−1(si )

+ ln

∣
∣1 − s2i

∣
∣

2

)∣
∣
∣
∣

μ∗
i (xk j )

Ū
0

}

= −2rŪ 2
m

∑

i=1

{
μ∗
i (xk j )

Ū
tanh−1

[
μ∗
i (xk j )

Ū

]
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+ ln

∣
∣
∣
∣
1 −

[μ∗
i (xk j )

Ū

]2
∣
∣
∣
∣

2
− ln

1

2

}

. (18)

We already know that
∣
∣μi (xk j )

∣
∣ < Ū and the expres-

sion of the inverse hyperbolic tangent function is

tanh−1(X) = 1

2
ln

(

(1 + X)/(1 − X)
)

. Therefore, by

simplifying (18), we can obtain

− W
(

μ∗(xk j )
)

= −2rŪ 2
m

∑

i=1

{[

1 + μ∗
i (xk j )

2Ū

]

ln
[

1 + μ∗
i (xk j )

Ū

]

+
[

1 − μ∗
i (xk j )

2Ū

]

ln
[

1 − μ∗
i (xk j )

Ū

]}

. (19)

Based on the range ofμ∗
i (xk j ), i = 1, 2, . . . ,m, for the

control law μ∗
i (xk j ) of the same dimension, we have

∣
∣μ∗

i (xk j )
∣
∣

2Ū
≤

∣
∣μ∗

i (xk j )
∣
∣

Ū
≤ 1, (20)

which implies

⎧

⎪⎪⎨

⎪⎪⎩

1 + μ∗
i (xk j )

2Ū
> 0

1 − μ∗
i (xk j )

2Ū
> 0

(21)

for every μ∗
i (xk j ). In addition, if μ∗

i (xk j ) < 0, we can
easily know that ln

(

1 + μ∗
i (xk j )/Ū

)

< 0. On the con-
trary, if μ∗

i (xk j ) ≥ 0, we have ln
(

1+μ∗
i (xk j )/Ū

) ≥ 0.
Then, in order to further analyze the stability of the
closed-loop system (4), we will discuss the following
three cases.

Case 1: In this case, we assume that κ elements
are less than 0 in the event-based optimal control law
μ∗(xk j ), where κ is a positive integer and satisfies
1 ≤ κ < m. This indicates that there are τ = m − κ

elements that are not less than 0. For clarity, we design
a set {h1, h2, . . . , hκ } to express the corresponding κ

elements and design a set {b1, b2, . . . , bτ } to express
the other τ elements. According to (19)–(21), one has

− W
(

μ∗(xk j )
)

= −2rŪ2
κ

∑

p=1

{[

1 +
μ∗
h p

(xk j )

2Ū

]

ln
[

1 +
μ∗
h p

(xk j )

Ū

]

+
[

1 −
μ∗
h p

(xk j )

2Ū

]

ln
[

1 −
μ∗
h p

(xk j )

Ū

]}

− 2rŪ2
τ

∑

q=1

{[

1 +
μ∗
bq

(xk j )

2Ū

]

ln
[

1 +
μ∗
bq

(xk j )

Ū

]

+
[

1 −
μ∗
bq

(xk j )

2Ū

]

ln
[

1 −
μ∗
bq

(xk j )

Ū

]}

≤−2rŪ2
κ

∑

p=1

{[

1 +
μ∗
h p

(xk j )

2Ū

]

ln
[

1 +
μ∗
h p

(xk j )

Ū

]}

− 2rŪ2
τ

∑

q=1

{[

1 −
μ∗
bq

(xk j )

2Ū

]

ln
[

1 −
μ∗
bq

(xk j )

Ū

]}

=−2rŪ2
κ

∑

p=1

{[

1 −
|μ∗

h p
(xk j )|
2Ū

]

ln
[

1 −
|μ∗

h p
(xk j )|
Ū

]}

− 2rŪ2
τ

∑

q=1

{[

1 −
|μ∗

bq
(xk j )|
2Ū

]

ln
[

1 −
|μ∗

bq
(xk j )|
Ū

]}

,

(22)

where p ∈ {1, 2, . . . , κ} and q ∈ {1, 2, . . . , τ }. In
addition, after the control input is constrained, the ele-
ment |μ∗

i (xk j )| cannot tend to Ū for all i . This means
that −ln

(

1− |μ∗
i (xk j )|/Ū

)

has an upper bound. Then,
we assume that there exists a boundary δM > 0 such
that −ln

(

1− |μ∗
i (xk j )|/Ū

) ≤ δM for any i . By further
derivation, one has

− W
(

μ∗(xk j )
)

≤ 2rδMŪ 2
( κ

∑

p=1

{

1 −
|μ∗

h p
(xk j )|
2Ū

}

+
τ

∑

q=1

{

1 −
|μ∗

bq
(xk j )|
2Ū

})

= 2rδMŪ 2
m

∑

i=1

{

1 −
∣
∣μ∗

i (xk j )
∣
∣

2Ū

}

. (23)

Case 2: In this case, we assume that μi (xk j ) < 0 for
all i . Then, the equation (19) can be evolved as

− W
(

μ∗(xk j )
)

≤ −2rŪ2
m

∑

i=1

{[

1 + μ∗
i (xk j )

2Ū

]

ln
[

1 + μ∗
i (xk j )

Ū

]}

= −2rŪ2
m

∑

i=1

{[

1 −
∣
∣μ∗

i (xk j )
∣
∣

2Ū

]

ln
[

1 −
∣
∣μ∗

i (xk j )
∣
∣

Ū

]}

≤ 2rδMŪ2
m

∑

i=1

{

1 −
∣
∣μ∗

i (xk j )
∣
∣

2Ū

}

. (24)
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Case 3: In this case, we assume that μi (xk j ) ≥ 0 for
all i . Similarly, we have

− W
(

μ∗(xk j )
)

≤ −2rŪ 2
m

∑

i=1

{[

1 − μ∗
i (xk j )

2Ū

]

ln
[

1 − μ∗
i (xk j )

Ū

]}

≤ 2rδMŪ 2
m

∑

i=1

{

1 −
∣
∣μ∗

i (xk j )
∣
∣

2Ū

}

. (25)

Combining the above three cases, we know that

−W
(

μ∗ (xk j )
) ≤ 2rδMŪ 2 ∑m

i=1

{

1 −
∣
∣μ∗

i (xk j )
∣
∣

2Ū

}

.

Then, according to Lemma 1, we have

2rδMŪ 2
m

∑

i=1

{

1 − |μ∗
i (xk j )|
2Ū

}

=
m

∑

i=1

{

2rδMŪ 2
(

1 − |μ∗
i (xk j )|
2Ū

)}

≤
m

∑

i=1

{

r2δ2MŪ 4 +
(

1 − |μ∗
i (xk j )|
2Ū

)2}

=
m

∑

i=1

{

r2δ2MŪ 4 + 1 − |μ∗
i (xk j )|
Ū

+
(

μ∗
i (xk j )

)2

4Ū 2

}

.

(26)

In addition, we can easily get

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

−|μ∗
i (xk j )|
Ū

< −
(

μ∗
i (xk j )

)2

Ū 2
(

μ∗
i (xk j )

)2

4Ū 2
<

Ū 2

4Ū 2
= 1

4
.

(27)

Substituting (27) into (26), one has

2rδMŪ 2
m

∑

i=1

{

1 − |μ∗
i (xk j )|
2Ū

}

<

m
∑

i=1

{

r2δ2MŪ 4 + 5

4
−

(

μ∗
i (xk j )

)2

Ū 2

}

= mr2δ2MŪ 4 + 5

4
m − μ∗T(xk j )μ

∗(xk j )
Ū 2

, (28)

which yields

�J ∗(xk) <−λmin(Q) ‖xk‖2 + mr2δ2MŪ 4 + 5

4
m

− μ∗T(xk j )μ
∗(xk j )

Ū 2
. (29)

By splitting, one has

− μ∗T(xk j )μ
∗(xk j )

= −
(

u∗(xk) − (

u∗(xk)

− μ∗(xk j )
))T(

u∗(xk) − (

u∗(xk) − μ∗(xk j )
))

= −u∗T(xk)u
∗(xk) + 2u∗T(xk)

(

u∗(xk) − μ∗(xk j )
)

− (

u∗(xk) − μ∗(xk j )
)T(

u∗(xk) − μ∗(xk j )
)

≤ 2u∗T(xk)
(

u∗(xk) − μ∗(xk j )
)

. (30)

By applying Assumption 1 and Lemma 1, we have

−μ∗T(xk j )μ
∗(xk j ) ≤ u∗T(xk)u

∗(xk) + (

u∗(xk) − μ∗(xk j )
)T

× (

u∗(xk) − μ∗(xk j )
)

< mŪ 2 + K 2
u ‖σk‖2 . (31)

Substituting (31) into (29), one has

�J ∗(xk) < −λmin(Q) ‖xk‖2 + mr2δ2MŪ 4 + 9

4
m

+ K 2
u

Ū 2
‖σk‖2 . (32)

By combining (15) and (32), we can obtain

�J ∗(xk) < −βλmin(Q) ‖xk‖2 + mr2δ2MŪ 4

+ 9

4
m + C (xk, σk)

≤ −βλmin(Q) ‖xk‖2 + D2
1, (33)

where

D1 =
√

mr2δ2MŪ 4 + 9

4
m. (34)

Due to Q is a positive definite matrix, which means
that λmin(Q) > 0. Thus, �J ∗(xk) < 0 holds only if
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Fig. 2 The simple frame of the dynamic ETC

the system state xk satisfies

‖xk‖ ≥ D1√
βλmin(Q)

. (35)

This verifies that the event-based closed-loop system
(4) is stable in the sense of UUB with the optimal con-
trol law μ∗(xk j ) in (10). This completes the proof. �

3.2 Evolved dynamic ETC

Different from the static ETM, the dynamic ETMneeds
to introduce a dynamic variable ζk . Overall, the simple
frame of the dynamic ETC is expressed in Fig. 2. Then,
the sampling instant k j+1 can be determined by

k j+1 = inf
{

k > k j |C (xk, σk, ζk) > 0
}

, (36)

where C (xk, σk, ζk) is the dynamic triggering thresh-
old. Similar to the static ETC method, the event is trig-
geredonlywhen the corresponding triggering threshold
is greater than zero. Inspired by [29], C (xk, σk, ζk) is
defined as

C (xk, σk, ζk) = ϑC (xk, σk) − ζk (37)

and the auxiliary dynamic variable ζk is specifically
defined as

ζk+1 = γ ζk − C (xk, σk) (38)

with the variable ζk j ≥ 0 during the event is not trig-
gered, i.e., k ∈ [k j , k j+1), where γ ∈ (0, 1) and
ϑ ≥ 1/γ are two positive scalars. This means that
when the event is not triggered, the dynamic variable
ζk is updated through equation (38), and when the trig-
gering condition is violated, the dynamic variable is
reassigned.

Lemma 2 Let C (xk, σk, ζk) and ζk satisfy (37) and
(38), respectively. Then, the dynamic variable ζk satis-
fies

ζk ≥ 0, (39)

for all k ∈ N.

Proof According to the dynamic triggering condition
designed above, during k ∈ [k j , k j+1), we have

ϑC (xk, σk) − ζk ≤ 0, (40)

which implies

C (xk, σk) ≤ 1

ϑ
ζk . (41)

Combining (38) and (41) yields

γ ζk − ζk+1 ≤ 1

ϑ
ζk, (42)

which leads to

ζk ≥
(

γ − 1

ϑ

)k−k j
ζk j ≥ 0. (43)

This completes the proof. �
It follows from Lemma 2 that the dynamic variable

ζk is nonnegative for all k ∈ N. Thus, the system state

is sampled only when C (xk, σk) >
1

ϑ
ζk holds, which

is more strict than C (xk, σk) > 0 in the static ETM.
This means that when the static triggering condition
is violated, i.e., C (xk, σk) > 0, the dynamic triggering
condition is not necessarily violated. Then,we can infer
that the number of events released in the dynamic ETM
is less than that in the static ETM.

Theorem 2 Assume that the dynamic variable ζk has
an upper bound, i.e., ζk ≤ ζM for all k. Then, according
to the event-based optimal control law μ∗(xk j ) from

123



Static/dynamic event-triggered learning control 14167

the closed-loop system (4) with the dynamic triggering
condition C (xk, σk, ζk) ≤ 0, we can deduce that the
controlled system (4) is UUB.

Proof According to the theoretical proof in the static
ETM, then (33) can be further expressed as

�J ∗(xk) < −βλmin(Q) ‖xk‖2 + mr2δ2MŪ 4 + 9

4
m

+ C (xk, σk, ζk) + (1 − ϑ)C (xk, σk) + ζk

≤ −βλmin(Q) ‖xk‖2 + mr2δ2MŪ 4 + 9

4
m

+ (1 − ϑ)C (xk, σk) + ζk

≤ −βλmin(Q) ‖xk‖2 + mr2δ2MŪ 4 + 9

4
m

+
(

1 + 1

ϑ

)

ζk − ϑC (xk, σk). (44)

According to the value range of ϑ and γ , we have

−ϑC (xk, σk) = ϑζk+1 − ϑγ ζk

≤ ϑζk+1 − ζk . (45)

Combining (44) and (45), one has

�J ∗(xk) < −βλmin(Q) ‖xk‖2 + mr2δ2MŪ 4 + 9

4
m

+ ϑζk+1 + 1

ϑ
ζk

≤ −βλmin(Q) ‖xk‖2 + mr2δ2MŪ 4 + 9

4
m

+
(

ϑ + 1

ϑ

)

ζM

= −βλmin(Q) ‖xk‖2 + D2
2, (46)

where

D2 =
√

D2
1 +

(

ϑ + 1

ϑ

)

ζM . (47)

Similar to the static ETM, �J ∗(xk) < 0 holds only
if the system state xk satisfies

‖xk‖ ≥ Dm2√
βλmin(Q)

. (48)

This completes the proof. �
Remark 2 It can be seen from Theorems 1 and 2 that
if the controlled system (4) is stable, the condition

(48) under the dynamic ETM is more strict than the
condition (35) under the static ETM. This is mainly
because the introduction of the dynamic variable ζk in
the dynamic ETM further expands the triggered inter-
val and can also prevent interference. In addition, the
static and dynamic triggering conditions developed in
this paper are not unique, which will change with the
change of the adjustable parameter β. On the premise
that the controlled system is stable, the triggered inter-
val increases with the increase of β. However, if the
choice of β is too large, the static/dynamic triggering
condition will be difficult to violate and the control law
will not be updated for a long time, thus affecting the
stability of the system. Therefore, the selection of the
adjustable parameter β is very important. To make it
easier to implement the developed algorithm, the selec-
tion value of β is small during simulation verification
in Section V.

4 Algorithm implementation

The introduction of ETM affects the controlled per-
formance of the system to a certain extent. Therefore,
we adopt an integrated idea: (1) a speedy value itera-
tion algorithm under the time-triggered mechanism is
used to obtain an acceptable approximate optimal con-
trol policy u∗(xk). In this algorithm, an acceleration
factor α is introduced to greatly reduce the number
of iterations compared with the traditional value itera-
tion method [10]. Then, we treat the obtained u∗(xk) as
an initial admissible control policy for the controlled
system, which aims is to ensure the normal operation
of the ETC algorithm. (2) In the time steps, we take
the obtained admissible control policy as the starting
point, and then build the static/dynamic ETC scheme
to reduce the update times of the control law. There-
fore, the algorithm we developed possesses high effi-
ciency in terms of the iteration steps and the time
steps.

In order to facilitate the research of the speedy value
iteration algorithm, the optimal cost function V ∗(xk)
under the time-triggered mechanism is defined as

V ∗(xk) = xTk Qxk + W
(

u∗(xk)
) + V ∗(xk+1). (49)
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Then, the corresponding optimal control policy u∗(xk)
satisfies

u∗(xk)= argmin
u

{

xTk Qxk+W
(

u∗(xk)
)+V ∗(xk+1)

}

.

(50)

4.1 Traditional value iteration

Before analyzing the traditional value iteration algo-
rithm with constrained control, we set a parameter
l ∈ N as the iteration index. Particularly, when l = 0,
the initial cost function V̆ (0)(·) is not less than 0 [9].
Hence, the entire traditional value iteration scheme is
carried out between the policy improvement

ŭ(l)(xk) = argmin
ŭ

{

xTk Qxk + W
(

ŭ(xk)
)

+ V̆ (l)(xk+1)
}

. (51)

and the cost function

V̆ (l+1)(xk) = xTk Qxk + W
(

ŭ(l)(xk)
) + V̆ (l)(xk+1).

(52)

Observing (51) and (52), we find that ŭ(l)(0) = 0 and
V̆ (l+1)(0) = 0 for any l. By using the similar conver-
gence analysis process as [12], we can easily deduce
that when l tends to infinity, V̆ (l)(xk) = V ∗(xk) and
ŭ(l)(xk) = u∗(xk).

4.2 Speedy value iteration

In order to achieve faster convergence of the iterative
cost function, we design a parameter α ≥ 1 as the
acceleration factor. Then, inspired by [12], the speedy
value iteration scheme with constrained control is per-
formed in Algorithm 1. It is worth noting that the entire
iterative process is carried out under the time-triggered
mechanism.

Remark 3 Observing the above two iteration schemes,
we can see that when α = 1, the speedy value itera-
tion scheme is equivalent to the traditional value itera-
tion scheme. Therefore, by appropriately increasing the
acceleration factor α, the number of iteration steps is
greatly reducedwhen the iterative cost function reaches
convergence. However, α should also not be chosen too

Algorithm 1: Speedy value iteration scheme with
constrained control in iteration steps

1 Initialize the iteration index as l = 0 and the cost function
Ṽ (0)(·). Set the maximum iteration index lmax, the
stopping error ε, and the acceleration factor α;

2 while l ≤ lmax do
3 The iterative control function ũ(l)(xk) is obtained by

ũ(l)(xk)= argmin
ũ

{

xTk Qxk+W
(

ũ(xk)
)+Ṽ (l)(xk+1)

}

.

(53)

4 The iterative cost function Ṽ (l+1)(xk) is updated by

Ṽ (l+1)(xk) = αmin
ũ

{

xTk Qxk+W
(

ũ(xk)
)+Ṽ (l)(xk+1)

}

− (α − 1)Ṽ (l)(xk)

= α
(

xTk Qxk + W
(

ũ(l)(xk)
) + Ṽ (l)(xk+1)

)

− (α − 1)Ṽ (l)(xk). (54)5

6 if |Ṽ (l+1)(xk) − Ṽ (l)(xk)| ≤ ε then
7 Iteration stop;

8 Let l ← l + 1;

large, so that the iterative cost function can converge to
the optimal value and not be diverge.

In the following, the convergence of the iterative
cost function sequence {Ṽ (l)(xk)} is analyzed through
a theorem.

Theorem 3 Let the iterative control function ũ(l)(xk)
and the iterative cost function Ṽ (l)(xk) be obtained
by (53) and (54), respectively. Then, suppose there
exist scalars η, ξ1, and ξ2 such that 0 ≤ V ∗(xk+1) ≤
η
(

xTk Qxk +W (u(xk))
)

and 0 ≤ ξ1V ∗(xk) ≤ Ṽ (0)(xk)
≤ ξ2V ∗(xk), where 0 < η < ∞ and 0 ≤ ξ1 ≤ 1 <

ξ2 < ∞. If the acceleration factor α satisfies

1 ≤ α ≤ 1 + T Lmin

(1 + η)(ξ2 − ξ1)
, (55)

where 0 < T < 1 is a positive scalar and Lmin =
min{1 − ξ1, ξ2 − 1}, then the iterative cost function
Ṽ (l)(xk) can approximate the optimal cost function
V ∗(xk) by

[

1−
(

1 − α − T

1 + η

)l

(1 − ξ1)

]

V ∗(xk) ≤ Ṽ (l)(xk)
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[

1 +
(

1 − α − T

1 + η

)l

(ξ2 − 1)

]

V ∗(xk).

(56)

Proof According to (56), one has

⎧

⎪⎪⎨

⎪⎪⎩

α ≤ 1 + T (1 − ξ1)

(1 + η)(ξ2 − ξ1)

α ≤ 1 + T (ξ2 − 1)

(1 + η)(ξ2 − ξ1)
,

(57)

which implies

⎧

⎪⎪⎨

⎪⎪⎩

ξ2(α − 1) ≤ ξ1(α − 1) + T (1 − ξ1)

1 + η

ξ1(α − 1) ≥ ξ2(α − 1) − T (ξ2 − 1)

1 + η
.

(58)

Next, according to themathematical induction, the left-
hand side of (56) can be proved. Letting l = 1, we have

Ṽ (1)(xk) ≥ α
1 + ηξ1

1 + η
min
ũ

{

xTk Qxk+W
(

ũ(xk)
)

+ V ∗(xk+1)
}

− ξ2(α − 1)V ∗(xk)

=
(

α
1 + ηξ1

1 + η
− ξ2(α − 1)

)

V ∗(xk). (59)

Substituting (58) into (59) leads to

Ṽ (1)(xk) ≥
(

α
1 + ηξ1

1 + η
− ξ1(α − 1)

− T (1 − ξ1)

1 + η

)

V ∗(xk)

=
[(

1 − α − T

1 + η

)

ξ1 + α − T

1 + η

]

V ∗(xk).

(60)

Same idea as [12], by recursing l−1 times, the iterative
cost function Ṽ (l)(xk) satisfies

Ṽ (l)(xk) ≥
[(

1 − α − T

1 + η

)l

ξ1 +
l−1
∑

ρ=0
(

1 − α − T

1 + η

)ρ
α − T

1 + η

]

V ∗(xk)

=
[

1 −
(

1 − α − T

1 + η

)l

(1 − ξ1)

]

V ∗(xk).

(61)

Similarly, the right half of (56) can be proved by the
samemethod. In particular, when l tends to infinity, one
has

lim
l→∞

[

1 −
(

1 − α − T

1 + η

)l

(1 − ξ1)

]

V ∗(xk)

= lim
l→∞

[

1 +
(

1 − α − T

1 + η

)l

(ξ2 − 1)

]

V ∗(xk)

= V ∗(xk), (62)

which leads to Ṽ (∞)(xk) = V ∗(xk). This completes
the proof. �

According to the speedy value iteration algorithm,
the optimal cost function V ∗(xk) and the correspond-
ing optimal control law u∗(xk) can be easily obtained
with fewer iteration steps. In order to further reduce the
computational burden in time steps, the static/dynamic
ETCmethod is introduced and performed in Algorithm
2.

Algorithm 2: Static/dynamic ETC in time steps

1 Initialize the time index as k = 0, the sampling signal as
k0 = 0, and the state variable x0. Set the maximum time
index Nmax;

2 Set the control law μ(xk j ) = u∗(xk) according to the data
in Algorithm 1;

3 Set the dynamic variable ζk = 0;
4 while k ≤ Nmax do
5 The event-based cost function J (xk) is output by

structuring a critic network;
6 Compute the static and dynamic triggering conditions;
7 The static ETC:
8 if C (xk , σk) > 0 then
9 Go to Step 13.

10 The dynamic ETC:
11 if C (xk , σk , ζk) > 0 then
12 Reset the dynamic variable ζk = 0;
13 Set k j = k and update the control law μ(xk j ) by

structuring an action network;

14 else
15 Maintain the control law μ(xk j ) unchanged by

ZOH;

16 Let k ← k + 1.
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5 Simulation studies

In order to shore up the previous theoretical analysis
and further demonstrate the progressiveness of the pro-
posed algorithm, two experimental examples are sup-
plied in this section.

5.1 Example 1

Consider the following inverted pendulum plant:

⎧

⎪⎨

⎪⎩

π̇ = �

�̇ P=−Mg�k
�1

sin(π)−�2

�1
π̇ + �3

�1

(

tanh(uk) + uk
)

,

(63)

where the system parameters are provided in Table 2.
We set the sampling interval �t = 0.1s, and then the
inverted pendulum plant can be discretized into

xk+1

=
[

x1k + 0.1x2k
−0.6125 sin(x1k) + 0.975x2k + 0.125

(

uk + tanh(uk)
)

]

,

(64)

where the system state xk = [x1k, x2k]T = [πk,�k]T
and x0 = [−1, 1]T. Considering that the system model
is unknown, inspired by [19,28], we build a model
network to identify the system dynamics. In addition,
some important control parameters are listed in Table
3. In this paper, we can get an acceptable control pol-
icy through the offline iterative method, which aims to
ensure the controlled performance of the system. Then,
in order to verify the influence of the acceleration fac-
tor on the iterative convergence speed, we choose three
different acceleration factors for the experiment, that is,
α = 1, α = 1.5, and α = 2. The corresponding evolu-
tion curves of the iterative cost function are displayed
in Fig. 3. When α = 1, the developed speedy itera-
tive algorithm is equivalent to the traditional method.
Hence, it can be easily seen that with the increase of
acceleration factor, the convergence speed of the itera-
tive cost function also increases.

According to the parameter values given in Table 3,
the static triggering condition can be specifically con-

Table 2 Parameter values of the inverted pendulum plant

Symbols Meaning Value

M The mass of the pendulum bar 0.5 kg

g The gravitational acceleration 9.8 m/s2

�k The length of the pendulum bar 1 m

�1 The rotary inertia 0.8 kgm2

�2 The frictional factor 0.2

�3 The parameter of the control input 1

π The current angle x1k

� The angular velocity x2k

structed as

‖σk‖2 ≤ 2.52 × (1 − 0.3) × 0.1

0.62
‖xk‖2 . (65)

Similarly, the dynamic triggering condition can be
specifically constructed as

‖σk‖2 ≤ 2.52 × (1 − 0.3) × 0.1

0.62
‖xk‖2 + 2.52

0.62 × 5
ζk .

(66)

Note that the control law can be updated only when
the corresponding triggering condition is violated. The
dynamic variable ζk is nonnegative, which means that
the dynamic triggering condition is more difficult to be
violated than the static triggering condition. Then, the
state responses under three control schemes are shown
in Fig. 4, which implies that all system states can con-
verge to zero preeminently. The control curves under
the static ETM and the dynamic ETM are shown in
Figs. 5 and 6, respectively. It can be observed that
the control curves under these two mechanisms are
ladder shaped and the triggered interval under the
dynamic ETM is larger than that under the static ETM.
In addition, the control inputs are constrained within
[−2.5, 2.5]. Comparing the designed control schemes
with the traditional time-triggered control method, the
traditional method can not even ensure the stability of
the controlled system under the same control param-
eters. Then, the corresponding sampling numbers are
given in Fig. 7. The control input under the static ETM
is updated 34 times in 100 time steps. However, it has
only been updated 14 times under the dynamic ETM.
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Table 3 Control parameters of two examples

Experiment Q R Ū Ku β ϑ γ lmax Nmax

Example 1 0.1I2 0.01I 2.5 0.6 0.3 5 0.8 100 100

Example 2 0.1I3 0.01I2 1 1 0.1 1.2 0.9 200 500

Fig. 3 The iterative cost function (Example 1)

Fig. 4 (a) System states under the static ETM; (b) system states
under the dynamic ETM (Example 1)

5.2 Example 2

Consider the following third-order nonlinear dynamics:

xk+1 =
⎡

⎣

x1k + 0.1x2k
−0.17 sin(x1k) + 0.98x2k

0.1x1k + 0.2x2k

⎤

⎦

Fig. 5 Control input under the static ETM (Example 1)

Fig. 6 Control input under the dynamic ETM (Example 1)

+
⎡

⎣

0
0.1u1k

x3k cos(u2k)

⎤

⎦ , (67)

where the system state xk = [x1k, x2k, x3k]T with x0 =
[0.5, 0.5, 0.5]T, the control variable uk = [u1k, u2k]T.
Similar toExample 1, some important parameter values
of this system are listed in Table 3. We also choose
three acceleration factors, that is, α = 1, α = 1.2,
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Fig. 7 Sampling numbers (Example 1)

Fig. 8 The iterative cost function (Example 2)

and α = 1.5, which aims to verify the effectiveness
of the speedy iteration algorithm. The corresponding
evolution curves of the iterative cost function are shown
in Fig. 8.

According to the parameter values given in Table
3, the static and dynamic triggering conditions can be
constructed as

‖σk‖2 ≤ (1 − 0.1) × 0.1

1
‖xk‖2 (68)

and

‖σk‖2 ≤ (1 − 0.1) × 0.1

1
‖xk‖2 + 1

1 × 1.2
ζk, (69)

Fig. 9 (a) System states under the static ETM; (b) system states
under the dynamic ETM (Example 2)

Fig. 10 Control input under the static ETM (Example 2)

Fig. 11 Control input under the dynamic ETM (Example 2)
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Fig. 12 Sampling numbers (Example 2)

respectively. Then, the state responses under three con-
trol schemes are displayed in Fig. 9. Compared with
the traditional time-triggered control scheme, the ETC
schemedesigned byus also possesses a positive conver-
gence effect. The control curves under the static ETM
and the dynamic ETM are given in Figs. 10 and 11,
respectively. The control inputs under these two con-
trol schemes are constrained within [−1, 1]. Then, the
corresponding sampling numbers are shown in Fig. 12.
The control inputs under the static ETM is updated 224
times in 500 time steps. In addition, under the dynamic
ETM, the control inputs is updated 199 times in 500
time steps.All the experimental results verify the excel-
lent performance of the proposed control methods.

6 Conclusion

In this paper, in order to address the optimal control
problem of discrete-time nonlinear dynamics with con-
trol constraints and improve the resource utilization
rate effectively, we develop two control schemes: static
ETCanddynamicETC. First, a satisfying static trigger-
ing condition is designed from the perspective of stabil-
ity. Then, on this basis, a dynamic variable is introduced
to design a dynamic triggering condition. Note that
control laws under different control mechanisms are
updated only when the corresponding triggering con-
dition is violated.Moreover, under iterative learning, an
acceleration factor is introduced to make the iterative
convergence speed faster. Finally, the effectiveness and
superiority of the developed schemes are illustrated by

two experimental examples. The experimental results
show that the reduction in computation load varies
with different controlled systems and tuning param-
eters when the same control method is applied, and the
dynamic ETCmethod can further enhance resource uti-
lization compared to the static ETC method. However,
the disadvantage of the two ETC methods designed in
this paper is that the corresponding triggering condi-
tions need to be judged continuously. Therefore, in the
future work, we will study the self-triggered control
methods of nonlinear systems.
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