
Nonlinear Dyn
https://doi.org/10.1007/s11071-024-09768-5

RESEARCH

Stochastic dynamics of a nonlinear tumor-immune
competitive system

Mrinmoy Sardar · Subhas Khajanchi ·
Santosh Biswas

Received: 17 January 2024 / Accepted: 14 May 2024
© The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract The paper uses nine coupled ordinary dif-
ferential equations (ODEs) to describe a tumor-immune
competitive system. The model is then reduced to
four nonlinear coupled ODEs, encompassing tumor
cells, cytotoxic T-lymphocytes, macrophages, and den-
dritic cells by utilizing quasi-steady-state approxima-
tions. We explore the dynamics of biologically feasi-
ble steady states and their local stability analysis. We
introduce stochastic fluctuation terms into the deter-
ministic system to account for uncertainty and vari-
ability in the tumor-immune interaction system. The
uniqueness and existence of our stochastic system is
established by applying Itô’s lemma. Additionally, it
is demonstrated that the solution of the stochastic sys-
tem is both stochastically ultimately bounded and per-
manent. We established the criteria for determining
the extinction of tumor cell population, and conditions
under which our stochastic system exhibits asymptotic
stability in a mean square sense are derived. Numerical
illustrations are performed to validate both determin-
istic and stochastic models under different intensities
of population fluctuation. Our model explores that in
the absence of intensity fluctuations, the determinis-
tic model remains stable around a high tumor-presence
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steady state. Additionally, the tumor cell population
quickly approaches zero for sufficiently small values of
intensity fluctuation parameters. If the intensity value
of population fluctuations is increased, then the cell
populations aremorefluctuated.Moreover, the stochas-
tic mean solution confirms the influence of stochastic
noise on the cell population.

Keywords Standard Wiener process · Gaussian white
noise · Itô’s lemma · Stochastically permanence ·
Mean square stable

1 Introduction

Over the past few decades, malignant tumors or can-
cers have emerged as one of the deadliest global health
challenges. The tumors consist of uncontrolled growth
of abnormal tissues and cells, leading to the invasion
of nearby body parts and the spread to surrounding
organs. Various risk factors, such as obesity, unhealthy
lifestyle, alcohol consumption, and smoking have been
linked to the increased incidence of cancer [1]. In the
field of medical science, a pivotal question in oncology
revolves around understanding how our immune sys-
tem can effectively combat tumor proliferation [2,3].
Immune responses play a crucial role in regulating
tumor growth and progression, posing a significant
challenge in the quest for effective cancer treatment
strategies.
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Our immune system is an intricate network com-
prising various types of cells, proteins, and cytokines
that work collaboratively to safeguard our body against
external invaders. The primary components of our
immune system consist of cytotoxic T-lymphocytes
(CD8+ T cells), B cells, NK cells or natural killer cells,
Helper T cells, macrophages, and specific immune-
stimulatory cytokines such as IL-10 or interleukin-
10, IL-12 or interleukin-12 and IFN-γ or interferon-
gamma, etc. Macrophages, NK cells, and CD8+ T cells
are commonly referred to as effector cells [4]. Their
main function is to eliminate or destroy tumor cells,
thereby playing pivotal roles in the immune response
against cancer cells [5]. On the other hand, immuno-
stimulatory cytokines, while unable to directly elim-
inate tumor cells, play an important role in enhanc-
ing the functions of effector cells. They stimulate these
cells to inhibit the proliferation of tumor cells. A vital
link between the innate and adaptive immune system
is formed by antigen-presenting dendritic cells. These
specialized cells act as messengers and are responsible
for producing IL-12, a cytokine that plays a crucial role
in promoting CD8+T cells. Regulatory T-cells or Tregs
and transforming growth factor-β (TGF-β) play critical
role in the tumor-immune interaction system, primar-
ily contributing to the immuno-suppressive component.
However, in the tumor-immune interaction system, the
dynamics are more complex. This interplay between
the tumor cells and immune system can be likened to
a prey-predator relationship, where tumor cells act as
prey and effector cells take on the role of predators
[6,7].

The balance between effector cells (like cytotoxic
T cells, macrophages and natural killer cells) and
immune-suppressive components such as regulatory T
cells (Tregs) and TGF-β plays a crucial role in shap-
ing the outcome of the ‘prey-predator’ relationship
between tumor cells and effector cells. When there are
more effector cells than immune-suppressive compo-
nents, they can effectively identify and remove tumor
cells, resulting in tumor control or regression. In this sit-
uation, the immune systems like a predator, effectively
managing the population of tumor cells. On the other
hand, when immune-suppressive components domi-
nate the immune cells, they can suppress the activity of
effector cells. This allows tumor cells to evade immune
surveillance. In this scenario, the imbalance favors
tumor cells, resembling a ‘prey-predator’ dynamic
where the tumor cells act as predators, taking advan-

tage of the weakened immune response. An exces-
sive presence of immune-suppressive components can
also promote tumor progression. Tregs and TGF-β
have the capability to suppress effector cell function,
which diminishes the immune response against the
tumor cells. In summary, the balance between effec-
tor cells and immune-suppressive components signifi-
cantly impacts the outcome of the interaction between
the immune system and tumor cells.

Biologically, our deterministic system faces certain
limitations. The parameters governing the system such
as activation rate, growth rate, death rate, and carrying
capacity are subject to fluctuations induced by various
environmental factors including bodyweight, air pollu-
tion, temperature, etc. Environmental fluctuations are
a crucial phenomena in the tumor-immune interaction
model. In most of the cases, equilibrium points of the
deterministic system oscillate randomly and determin-
istic equilibrium points are no longer in a fixed state.
As a result, the deterministic system may not accu-
rately predict the future of the biological system. To
address these challenges and achieve a more realistic
representation of natural phenomena, stochastic sys-
tems offer a promising alternative. Unlike determin-
istic systems, stochastic models consider randomness
and uncertainty observed in biological systems. Two
approaches exist for developing stochastic models that
correspond to deterministic systems. The first method
involves introducing stochastic perturbation terms of
Gaussian white noise type into important parameters,
thereby formulating the system as an Itô stochastic
differential equation. In the second approach, random
fluctuating terms are directly added into the determin-
istic system without changing any parameters. In this
manuscript, we explain the impact of randomly fluc-
tuating terms on our system and investigate its effects
around the interior fixed point of the deterministic sys-
tem. As a result, the stochastic system offers a valuable
framework for studying andunderstanding the dynamic
behavior of biological populations in response to envi-
ronmental fluctuations and uncertainties.

The introduction of stochastic perturbation terms
can enhance the accuracy of predictions about the
future of a biological system by accounting for envi-
ronmental fluctuations and uncertainties. These per-
turbation terms simulate the inherent randomness and
variability in biological processes, allowing models
to capture the unpredictable nature of environmental
influences. By incorporating stochasticity, predictions

123



Stochastic dynamics of a nonlinear tumor-immune

can better reflect real-world dynamics, where environ-
mental factors can vary widely and unpredictably over
time. In the absence of stochastic fluctuations, the sys-
tem may still exhibit stability under certain conditions.
While stability may be observed in the absence of fluc-
tuations, incorporating stochasticity provides a more
accurate representation of the system’s dynamics and
enhances the predictive capability of the model in the
face of environmental uncertainties. Inmany cases, ran-
dom environmental fluctuations can indeed contribute
to the stability of competitive systems. The introduc-
tion of stochastic perturbation terms may not necessar-
ily lead to enhanced stability. Random fluctuations in
our system can perturb the balance by disturbing the
interactions between tumor cells, immune cells, and
other components of the microenvironment. In simply,
although random fluctuations can sometimes help sta-
bilize competitive systems, their effects on biological
systems such as tumor-immune interactions are more
complex. They can lead to unpredictable outcomes,
unlike the stabilizing effects seen in other competitive
systems. Therefore, we need to thoroughly study and
understand the impact of stochastic perturbations in this
context, as they may not always produce the same sta-
bilizing effects.

Introducing stochastic fluctuations into a mathe-
matical model of tumor-immune interactions can help
understand the role of lifestyle factors such as obe-
sity and smoking in tumor proliferation by accounting
for the inherent randomness and variability in biologi-
cal systems. Lifestyle factors like obesity and smok-
ing can influence the immune response and tumor
growth through various mechanisms, including inflam-
mation, oxidative stress, and immune suppression. By
incorporating stochastic fluctuations into the model,
researchers can simulate the unpredictable nature of
these lifestyle factors’ effects on immune cell dynam-
ics, tumor growth rates, and treatment responses. This
stochastic approach allows for a more realistic repre-
sentation of the complex interplay between lifestyle
factors, immune function, and tumor development,
helping to identify critical points where interventions
may be most effective in preventing or treating malig-
nant tumors in individuals with specific lifestyle risk
factors.

Many research articles on the tumor-immune com-
petitive system can be found in [4–6,8–19], but there
are few articles published on stochastic cancer models.
Kloeden & Platen [20] introduced a stochastic system

to study the limitations of appropriate overlap in a ran-
domly fluctuating environment. Li et al. [21] studied
a cancer growth model using a stochastic system and
observed extinction in the presence of the immune sys-
tem. Lefever et al. [22] explored that when the variance
of population fluctuations is increased around a mean
value, a transition exists in the bifurcation diagram,
which eventually disappears. Li et al. [23] observed
stochastic fluctuation-induced tumor extinction and
recurrence in a tumor growthmodel based on a catalytic
Michaelis-Menten reaction. The authors found that at
a certain level, environmental fluctuations facilitate
tumor extinction. Oroji et al. [24] introduced a stochas-
tic cancer model and this model has been categorized
into three subpopulations for radiotherapy. They cal-
culated the entire lifespan of tumor cells and observed
the behavior of tumor cells under the application of two
different treatment strategies. A tumor-immune inter-
action system was considered as a deterministic prey-
predator system in [25]. In this paper, the authors tried
to control the tumor cells by applying stochastic fluc-
tuations in their deterministic system. Sardar et al. [26]
introduced a deterministic model of tumor cell growth
with the Allee effect. The authors extended the deter-
ministic system into a stochastic systemby applying the
parameter perturbationmethod.Additionally, they con-
ducted numerical simulations of the stochastic system
corresponding to the Allee effect, weak Allee effect,
and strong Allee effect. Kim et al. [27] developed a
stochastic tumor model with virotherapy. To determine
the probability of tumor extinction, the authors altered
the parameter values. Additionally, they revealed that
high infection rate viruses and optimal cytotoxicity are
more effective for cancer treatment. Caravanga et al.
[28] presented a hybrid-stochastic version of the tumor-
immune interaction model in presence of cytokine IL-
2, which is introduced by Kirschner and Panetta [4].
In their study, the researchers demonstrated that tumor
growth can be reduced through random environmental
fluctuations. Tumor-immune competitive systems with
immunotherapeutic drug has played an important role
to eradicate the tumor cell population [29,30].

Parameter perturbation methods involve systemati-
cally varying model parameters to observe their impact
on tumor growth and response to treatment. This
approach allows researchers to identify critical param-
eters that strongly influence tumor dynamics and treat-
ment outcomes. By perturbing parameters related to
factors such as tumor growth rate, immune cell activ-
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ity, and treatment efficacy, researchers can gain insights
into which factors are most important in determin-
ing tumor behavior and response to therapy. Addition-
ally, studying phenomena like the Allee effect, which
describes how populationsmay struggle to grow or sur-
vive at low densities, can provide valuable insights into
tumor growth dynamics. In the context of cancer, the
Allee effect suggests that tumorsmay face challenges in
proliferating and spreading when their population den-
sity is low. Understanding how the Allee effect influ-
ences tumor growth dynamics can help predict the like-
lihood of tumor eradication and inform the design of
more effective treatment strategies. Overall, the com-
bined use of parameter perturbation methods and the
examination of phenomena like the Allee effect can
enhance our comprehension of tumor growth dynam-
ics and improve our ability to predict and achieve tumor
eradication in cancer patients. These approaches pro-
vide valuable tools for refining mathematical models
of cancer progression and guiding the development of
more targeted and personalized treatment approaches.

The rest of this researchpaper is delineated in the fol-
lowing manner. In Sect. 2, we introduce a determinis-
tic system of four nonlinear coupled ordinary differen-
tial equations (ODEs) and conduct a stability analysis
around singular points. In Sect. 3, we convert our deter-
ministic system into a stochastic system by introduc-
ing a random fluctuating term. Some basic properties,
that is, existence, uniqueness, stochastically ultimate
bounded, stochastically permanence, and extinction of
our stochasticmodel for the initial density are studied in
Sect. 4. Section5 investigates the asymptotically mean
square stable of our stochastic system. In Sect. 6, we
have estimated the values of some parameters. Sect. 7
deals with numerical analysis of both the determinis-
tic and stochastic system. Finally, our research paper
concludes with a summary in Sect. 8.

2 Deterministic model

In this section, we introduced a mathematical model
using a system of nine coupled ordinary differential
equations (ODEs), namely tumor cells (T ), cytotoxicT-
lymphocytes or CD8+ T cells (T8), macrophages (M),
dendritic cells (D), Tregs or regulatory T-cells (Tg),
interleukin-10 or IL-10 (I10), transforming growth
factor-β or TGF-β (Tβ), interleukin-12 or IL-12 (I12)
and interferon-γ or IFN-γ (Iγ ). Then, our determinis-

tic model is stated as follows

dT

dt
= rT T (1 − bT T ) − (α

′
T M + γ

′
T T8)T

g
′
T + I10

,

dT8
dt

= α
′
8 I12

g
′
8 + Tg

− δ8T8,

dM

dt
= sm + α

′
m Iγ

(g′
m + Iγ )

· 1

(g
′
m1 + Tβ)

−γmMT − δmM,

dD

dt
= sd + αdT

gd + T
− δd D,

dTg
dt

= αgT8 − δgTg,

d I10
dt

= α10M − δ10 I10,

dTβ

dt
= sβ + αβT − δβTβ,

d I12
dt

= α12D − δ12 I12,

d Iγ
dt

= αγ T8 − δγ Iγ . (1)

• The first equation in (1) represents the tumor cell
density at any given time t . Initial term rT T (1 −
bT T ) describes the logistic growth of tumor cells in
the absence of any immune response [12]. Here, rT
stands for the intrinsic growth rate, and 1

bT
denotes

the maximum carrying capacity of tumor cells.
The next component describes the elimination of
tumor cells through interactions with macrophages
[2] and CD8+ T cells [5], each with elimination
rates denoted by α

′
T and γ

′
T , respectively. The

term g
′
T represents the half-saturation constant,

where 1
g

′
T +I10

serves as a immunosuppressive factor

affecting both macrophages and CD8+ T cells.
• The second equation in (1) refers the density of
CD8+ T cells. The first term represents the activa-
tion of CD8+ T cells at a rate α

′
8. This activation

relies on the presence of CD4+T cells, which are
boosted by the cytokine IL-12 [31]. However, the
activation of CD8+ T cells is countered by regula-
tory T-cells [32] at a suppressive rate g

′
8. The decay

rate of CD8+ T cells is denoted by δ8.
• The third equation in (1) describes to the den-
sity of macrophages, where sm denotes the con-
stant influx rate of macrophages [33]. The recruit-
ment of macrophages (α

′
m) is directly affected by

the presence of IFN-γ [2,33], with g
′
m indicat-
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ing the half-saturation constant. Additionally, the
term 1

g
′
m1+Tβ

serves as an immunosuppressive fac-

tor formacrophages, where g
′
m1 represents the half-

saturation constant. The third component highlights
the deactivation of macrophages resulting from
their interactions with tumor cells at a rate denoted
by γm [2]. Additionally, δm represents the decay
rate of macrophages.

• The fourth equation in (1) elaborates on the density
of antigen-presenting dendritic cells. The term sd
denotes the constant source rate of dendritic cells
[34]. The coefficient αd signifies the activation rate
of dendritic cells induced by the direct presence
of tumor cells, with gd acting as the half-saturation
constant followingMichaelis-Mentenkinetics [35].
The death rate of dendritic cells is represented by
δd .

• The fifth equation in (1) clarifies the behavior of
regulatory T-cells (Tregs). Tregs are produced from
activated CD8+ T cells [36] with an activation term
αg , while their natural degradation rate is denoted
by δg .

• The sixth equation in the model (1) illustrates the
density of the anti-inflammatory cytokine IL-10.
IL-10 is activated by macrophages [33] with a rate
denoted by α10, while decay rate is represented by
δ10.

• The seventh equation in the model (1) depicts the
level of TGF-β. The term sβ signifies the constant
production rate of TGF-β [2]. The second term rep-
resents the contribution from tumor cells, which is
directly proportional to their size, with αβ denoting
the release rate per tumor cell [37]. The final term
represents the degradation of the immunosuppres-
sive cytokine TGF-β at a constant rate of δβ .

• The eighth equation in the model (1) describes the
concentration of IL-12. IL-12 is produced by den-
dritic cells, with α12 indicating the release rate per
antigen-specific dendritic cell [31]. The degrada-
tion rate of IL-12 is denoted by δ12.

• The ninth equation in the system (1) outlines the
behavior of IFN-γ . We hypothesize that IFN-γ is
produced by CD8+ T cells [2,37] with a production
rate αγ . The final term represents the degradation
of IFN-γ at a constant rate of δγ .

Tumor growth encompasses multiple time scales.
The expansion of the tumor cell population spanning
over periods ranging from months to years, as well

as weeks to months depends on their characteristics.
According to the clinical observations, the activation
of CD8+ T cells, macrophages, and dendritic cells
(antigen-presenting) occurs in shorter time frames, like
days to weeks. On the other hand, the degradation and
secretion of both immuno-suppressive and immuno-
stimulatory cytokines occur on shorter time scales (for
example, seconds to hours). To enhance our compre-
hension of the intricate dynamics involved in the inter-
action between tumors and the immune system, we
apply the quasi-steady-state approximations [38] in our
mathematical model for the cytokines concentration.
Then, from the cytokine equations of (1), we have

Tg = αg

δg
T8, I10 = α10

δ10
M,

Tβ = sβ
δβ

+ αβ

δβ

T,

I12 = α12

δ12
D, Iγ = αγ

δγ

T8.

After substituting these cytokine expressions into
the first to fourth equations of the deterministic system
(1),weget the following four nonlinearODEsof tumor-
immune interaction system

dT

dt
= rT T (1 − bT T ) − (αT M + γT T8)T

gT + M
,

dT8
dt

= α8D

g8 + T8
− δ8T8,

dM

dt
= sm + αmT8

(gm + T8)
· 1

(gm1 + T )
− γmMT − δmM,

dD

dt
= sd + αdT

gd + T
− δd D, (2)

with the given following initial densities:

T (0) = T0 > 0, T8(0) = T80 > 0,

M(0) = M0 > 0, D(0) = D0 > 0,

where

αT = δ10

α10
α

′
T , γT = δ10

α10
γ

′
T ,

gT = δ10

α10
g

′
T , α8 = δg

αg

α12

δ12
α

′
8,

g8 = δg

αg
g

′
8, αm = δβ

αβ

α
′
m,

gm = δγ

αγ

g
′
m, gm1 = δβ

αβ

g
′
m1 + sβ

αβ

.

Here,
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• The first term of the first equation of (2) represents
the logistic growth of tumor cell population with no
immune response, where rT is the intrinsic growth
rate of tumor cells and 1

bT
is the maximum popula-

tion size of tumor cells.
• The function (αT M+γT T8)T

gT +M represents the deacti-
vation term of tumor cells due to interaction with
macrophages and cytotoxicT-lymphocyteswith the
deactivation rate αT and γT , respectively. 1

gT +M
represents themajor immuno-suppressive factor for
both macrophages and CD8+ T cells, where gT is
the half-saturation constant.

• α8 designates the activation rate of CD8+ T cells
due to the direct presence of dendritic cells and the
half-saturation constant of CD8+ T cells is g8.

• The natural death rate of CD8+ T cells is δ8.
• sm signifies the constant influx rate ofmacrophages.
• The function αmT8

(gm+T8)
· 1
(gm1+T )

describes the activa-
tion term of macrophages. αm is the activation rate
of macrophages due to the direct presence of CD8+
T cells, where gm is the half-saturation constant.

1
(gm1+T )

is the major immuno-suppressive factor of
macrophages and gm1 is the suppressive parameter.

• γm is the decay rate ofmacrophages due to the inter-
action with tumor cells.

• δm is the natural death rate of macrophages.
• The constant source rate of dendritic cells is sd .
• The activation rate of dendritic cells due to the
direct presence of tumor cells is represented by
the coefficient αd , with gd being the half-saturation
constant.

• δd is natural death rate of dendritic cells.

2.1 Equilibria

The deterministic model (2) has two feasible singular
points, namely

(i) tumor-free singular point E1≡(T 1, T 1
8 , M1, D1)

=
(
0, T 1

8 ,
smgm1(gm+T 1

8 )+αmT 1
8

δmgm1(gm+T 1
8 )

,
sd
δd

)
, where T 1

8 is the

unique positive root of the given equation

(T 1
8 )2 + g8T

1
8 − α8sd

δ8δd
= 0. (3)

From the above equation, we have the following posi-
tive root

T 1
8 =

−g8 +
√(

g28 + 4α8sd
δ8δd

)

2
.

To study the stability analysis of (2), we evalu-
ate the variational matrix around the singular point
E(T, T8, M, D) is

J (E) =

⎡
⎢⎢⎢⎢⎣

rT − 2rT bT T − (αT M+γT T8)
gT +M − γT T

gT +M − (gT αT −γT T8)T
(gT +M)2

0

0 − α8D
(g8+T8)2

− δ8 0 α8
g8+T8

− αmT8
(gm+T8)(gm1+T )2

− γmM
αmgm

(gm+T8)2(gm1+T )
−γmT − δm 0

gdαd
(gd+T )2

0 0 −δd

⎤
⎥⎥⎥⎥⎦

.

At the tumor-free singular point E1, the variational
matrix J (E1) of (2) has the following eigenvalues:

λ11 = rT − αT M1 + γT T 1
8

gT + M1 ,

λ12 = − α8D1

(g8 + T 1
8 )2

− δ8,

λ13 = −δm,

λ14 = −δd .

It is observing that when λ11 < 0, all eigenvalues
of J(E1) are negative.. Therefore, the tumor-free sin-
gular point is locally asymptotically stable if rT <
αT M1+γT T 1

8
gT +M1 , otherwise unstable. Then, we have the fol-

lowing theorem.

Theorem 1 The tumor-free steady state E1 of the
deterministic system (2) will be locally asymptotically

stable if rT − αT M1+γT T 1
8

gT +M1 < 0, otherwise unstable.

(ii) The interior singular point is E∗(T ∗, T ∗
8 , M∗,

D∗), where (T ∗, T ∗
8 , M∗, D∗) is the positive root of

the equations dT
dt = dT8

dt = dM
dt = dD

dt = 0. From an
analytical perspective, determining the explicit form
of the interior singular point E∗ proves to be highly
challenging. Hence, we investigate its existence and
stability by numerical simulation.
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3 Stochastic model

So far we have discussed the suggested tumor-immune
interaction model in a deterministic setting. We aim to
explore the dynamics of the changed system influenced
by white noise, offering a more realistic representation
compared to its deterministic counterpart. Although
the deterministic tumor-immune interactionmodel pro-
vides significant insight into the dynamics of tumor
growth, it does not describe the disease’s likelihood of
extinction. Due to the presence of some environmen-
tal fluctuations, our parameters such as the growth rate,
death rate, and activation rate of our cell population also
fluctuated. In this case, we introduce stochastic pertur-
bations into our deterministic system to study the effect
of environmental fluctuation. To study environmental
fluctuation, there aremainly two processes to develop a
stochastic perturbation of a deterministic model. In the
first type, some important parameters are perturbed by
the Gaussian white-noise type in the stochastic differ-
ential equation [26]. On the other hand, we introduce
a randomly fluctuating term directly into the determin-
istic system without changing any parameter [25]. In
the present paper, we consider the randomly fluctuat-
ing effects in our system and aim to investigate their
impact around the interior fixed point of the determin-
istic system (2).

In real-life scenarios, biological systems exhibit
inherent variability due to factors such as genetic diver-
sity, environmental fluctuations. This variability can
show up as stochastic fluctuations in cell populations,
cytokine concentrations, and immune responses within
tumor microenvironments. Environmental factors can
impact tumor growth and immune system function. The
environmental perturbations introduce stochasticity
into the system, leading to unpredictable fluctuations
in tumor progression and immune response dynamics.
Clinical studies have highlighted the stochastic nature
of cancer progression and treatment response. Despite
similar initial conditions and treatments, patients with
the same type and stage of cancer may exhibit vary-
ing outcomes, including differences in tumor growth
rates, immune responses. This variability underscores
the importance of considering stochastic fluctuations
in cancer modeling. Experimental studies using in
the models of cancer have demonstrated the presence
of stochastic fluctuations including proliferation, acti-
vation, death. These stochastic fluctuations can arise
from inherent biological noise, randommolecular inter-

actions, and environmental variability. By providing
a comprehensive overview of these biological and
medical considerations, we justify the application of
white noise for stochastic perturbations in the tumor-
immune interaction model. This background informa-
tion helps establish the biological relevance of incorpo-
rating stochasticity into the model and underscores the
importance of capturing real-life variability in cancer
biology.

The motivation behind introducing stochastic equa-
tions in the tumor-immune interaction model lies in
capturing the inherent randomness and uncertainty
observed in biological systems. In real-world scenar-
ios, biological processes are influenced by environmen-
tal factors such as fluctuations in temperature, oxygen
levels, and nutrient availability can impact both tumor
growth and immune cell function. These environmental
fluctuations can introduce randomness into the system,
affecting the dynamics of tumor-immune interactions.
By incorporating stochasticity into the model, we aim
to create a more realistic representation that accounts
for the unpredictable nature of these processes. Over-
all, the motivation for using stochastic equations in the
tumor-immune interaction model is to develop a more
comprehensive understanding of the complex, inher-
ently stochastic nature of biological systems and their
responses to environmental fluctuations. This enables
us to generate more realistic predictions and insights
that can inform the development of effective cancer
treatment strategies.

In the system (2), we consider that the stochastic
random perturbations of the state variables around inte-
rior singular point E∗(T ∗, T ∗

8 , M∗, D∗) are white
noise type, which are directly proportional to the dis-
tances of singular point, that is, T ∗, T ∗

8 , M∗, D∗
from T (t), T8(t), M(t), D(t). Therefore, our model
has stochastic nature with following form

dT =
[
rT T (1 − bT T ) − (αT M+γT T8)T

gT +M

]
dt

+ρ1(T − T ∗)dB1(t),

dT8 =
[

α8D
g8+T8

− δ8T8

]
dt + ρ2(T8 − T ∗

8 )dB2(t),

dM =
[
sm + αmT8

(gm+T8)
· 1

(gm1+T )
− γmMT − δmM

]
dt

+ρ3(M − M∗)dB3(t),

dD =
[
sd + αd T

gd+T − δd D

]
dt + ρ4(D − D∗)dB4(t).

(4)
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ρi (i = 1, 2, 3, 4) are positive real constants, which
are known as intensity of white noise. Bi (t) (i =
1, 2, 3, 4) represents a 4-dimensional indepen-
dent standard Wiener process [20]. We investigate the
asymptotic stochastic stability behavior around the sin-
gular point E∗ for the stochastic system (4) and com-
paring the results with the deterministic system (2). In
our stochastic model (4), we used the Ito stochastic
differential process in the following form

dXt = h(t, Xt )dt + n(t, Xt )dB(t),

Xt0 = X0, t ∈ [t0, t f ], (5)

where the solution {Xt , t ∈ [t0, t f ](t > 0)} is an Ito
process, h is the slowly varying continuous compo-
nent or drift coefficient, n represents the rapidly vary-
ing continuous random component or diffusion matrix
[20]. Also, B(t) denotes a 4-dimensional random pro-
cess which have scalarWiener process with increments
�Bi (t) = Bi (t + �t) − Bi (t), (i = 1, 2, 3, 4) are
independent of Gaussian random variables N (0, �t).
After stochastic integration, the equation (5) can be
written in the following form

Xt = X (t) = X0 +
∫ t

t0
h(s, Xs)ds

+
∫ t

t0
n(s, Xs)dB(s), (6)

where second termof the right hand side of (6) is known
as Riemann-Stieltjes integral and last term is known as
an Itô integral. Comparing (4) and (5), we have

Xt = (T, T8, M, D)T ,

B(t) = (B1(t), B2(t), B3(t), B4(t))
T , (7)

h =

⎡
⎢⎢⎢⎢⎣

rT T (1 − bT T ) − (αT M+γT T8)T
gT +M

α8D
g8+T8

− δ8T8

sm + αmT8
(gm+T8)

· 1
(gm1+T )

− γmMT − δmM

sd + αd T
gd+T − δd D

⎤
⎥⎥⎥⎥⎦

,(8)

and

n =⎡
⎢⎢⎣

ρ1(T − T ∗) 0 0 0
0 ρ2(T8 − T ∗

8 ) 0 0
0 0 ρ3(M − M∗) 0
0 0 0 ρ4(D − D∗)

⎤
⎥⎥⎦ .

(9)

The system characterized by the stochastic equation (4)
is described as having multiplicative noise, given that
the diffusion matrix (9) varies based on the solution

Xt = (T, T8, M, D)T . Also, the stochastic system (4)
is said to have a diagonal noise, since there is a diagonal
form in the diffusion matrix n.

3.1 Preliminaries

We consider a complete probability space
(�, {Ft }t≥0, P)with filtration {Ft }t≥0 satisfies X (t) =
(T (t), T8(t), M(t), D(t)), |X (t)| = (T 2(t)+T 2

8 (t)+
M2(t) + D2(t))

1
2 and R

c+ = {x ∈ R
c : ϕ j > 0, j =

1, 2, 3, ..., c}. To study our stochastic system (4), we
need some definitions which are very important in our
case.

Definition 3.1 [39] Let us assume that (T (0),
T8(0), M(0), D(0)) ∈ R

4+ be the initial densities
of the cell populations, then the solution X (t) =
(T (t), T8(t),
M(t), D(t)) of the stochastic system (4) is said to be
stochastically ultimate bounded (SUB), if for every
κ ∈ (0, 1), there is a constant μ = μ(κ) > 0, such
that

lim sup
t→+∞

P{|X (t)| > μ} < κ.

Definition 3.2 [39] Let us assume that
(T (0), T8(0), M(0), D(0)) ∈ R

4+ be the initial den-
sities of cell populations, then the solution X (t) =
(T (t), T8(t), M(t), D(t)) of the stochastic system
(4) is said to be stochastically permanence (SP), if for
every κ ∈ (0, 1), there is a constant μ = μ(κ) > 0,
such that

lim inf
t→+∞ P{|X (t)| ≤ μ} > 1 − κ,

lim inf
t→+∞ P{|X (t)| ≥ ϕ} > 1 − κ,

where ϕ = ϕ(κ).

4 Basic properties of the stochastic model (4)

In this section, we perform some fundamental prop-
erties of our stochastic model (4) including existence
& uniqueness, stochastically ultimate bounded (SUB)
and stochastically permanence (SP) with respect to the
initial densities. To show these properties, we have con-
structed some suitable C2-function [39].

Theorem 2 The solution Xt = X (t) = (T (t), T8(t),
M(t), D(t)) of stochastic model (4) is unique on t ≥

123



Stochastic dynamics of a nonlinear tumor-immune

0 for any given initial densities X0 = (T (0), T8(0),
M(0), D(0)) ∈ R

4+ and the solution will remain inR+
with P{T (t), T8(t), M(t), D(t) ∈ R+, ∀ t ≥ 0} = 1,
that is, probability 1 almost surely.

Proof For given any initial densities X0 = (T (0),
T8(0), M(0), D(0)), coefficients which are to be used
in the stochastic system (4) are continuous and sat-
isfy the locally Lipschtiz condition. If te be the explo-
sion time [39], then there must exists a unique solution
Xt = X (t) = (T (t), T8(t), M(t), D(t)) ∈ R

4+ of
the stochastic system (4) for t ∈ [0, te). To prove the
nature of the solution is globally, we will must show
that te = ∞ almost surely.We assume that all of the ini-
tial densities (T (0), T8(0), M(0), D(0)) lies between

the interval

[
1
p0

, p0

]
, where p0 > 0 be a sufficiently

large constant. We consider final time tp as

tp =
{
t ∈ [0, te) : min{T (t), T8(t), M(t), D(t)} ≤ 1

p
or max{T (t), T8(t), M(t), D(t)} ≥ p

}
,

and inf φ = ∞, where φ is the void set. It is clear
that, if p tends to ∞, then the function tp is increased.
We have t∞ = lim

p→+∞ tp implies that t∞ ≤ te almost

surely.
Therefore, in order to show that te = ∞, we have must
to prove that t∞ = ∞ almost surely. If possible, let us
assume that t∞ < ∞ almost surely. Then, there exists
two constants tT > 0 and ε ∈ (0, 1) in such a way
that P{t∞ ≤ tT } > ε. Hence, there exists an integer
p1 ≥ p0 such that

P{tp ≤ tT } ≥ ε ∀ p ≥ p1. (10)

We define a C2-function V : R4+ → R+ such that
V (T, T8, M, D) = (T +1−ln T )+(T8+1−ln T8)+
(M +1− lnM)+ (D+1− ln D). Using Itô’s formula,
we get

dV (T, T8, M, D)

= LV (T, T8, M, D)dt + ρ1(T − T ∗)
(
1 − 1

T

)
dB1

+ρ2(T8 − T ∗
8 )

(
1 − 1

T8

)
dB2

+ρ3(M − M∗)
(
1 − 1

M

)
dB3

+ρ4(D − D∗)
(
1 − 1

D

)
dB4,

where

LV (T, T8, M, D)

=
(
1 − 1

T

)[
rT T (1 − bT T ) − (αT M + γT T8)T

gT + M

]

+ρ21
2

(
1 − T ∗

T

)2

+
(
1 − 1

T8

)[
α8D

g8 + T8
− δ8T8

]
+ ρ22

2

(
1 − T ∗

8
T8

)2

+
(
1 − 1

M

)[
sm + αmT8

(gm + T8)
· 1

(gm1 + T )

−γmMT − δmM

]
+ ρ23

2

(
1 − M∗

M

)2

+
(
1 − 1

D

)[
sd + αdT

gd + T
− δd D

]
+ ρ24

2

(
1 − D∗

D

)2
.

Positiveness of T, T8, M, D implies that

LV (T, T8, M, D)

≤ δ8 + sm + δm + sd + δd

+ρ2
1

2

(
1 +

(
T ∗

T

)2)
+ ρ2

2

2

(
1 +

(
T ∗
8

T8

)2)

+ρ2
3

2

(
1 +

(
M∗

M

)2)
+ ρ2

4

2

(
1 +

(
D∗

D

)2)

+T (rT + rT bT + γm)

+ (αT M + γT T8)

gT + M
+ α8D

g8 + T8

+ αmT8
(gm + T8)

· 1

(gm1 + T )
+ αdT

gd + T
.

We define positive constants are as follows

k1 = δ8 + sm + δm + sd + δd

+ρ2
1

2

(
1 +

(
T ∗

T

)2)
+ ρ2

2

2

(
1 +

(
T ∗
8

T8

)2)

+ρ2
3

2

(
1 +

(
M∗

M

)2)

+ρ2
4

2

(
1 +

(
D∗

D

)2)
,

k2 = rT + rT bT + γm .

After some algebraic manipulation, we have

LV (T, T8, M, D) ≤ k1 + k2T + (αT M + γT T8)

gT + M

+ α8D

g8 + T8
+ αmT8

(gm + T8)

· 1

(gm1 + T )
+ αdT

gd + T
.
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If we take superior of the coefficients of the above
inequality, then there exists a positive constant G such
that

LV ≤ G.

LV is a diffusion operator of Itô’s process with C
2-

function V and if x be Itô’s process with

dx = f dt + ρdB,

then we get

dV (T, T8, M, D)

≤ Gdt + ρ1(T − T ∗)
(
1 − 1

T

)
dB1

+ρ2(T8 − T ∗
8 )

(
1 − 1

T8

)
dB2

+ρ3(M − M∗)
(
1 − 1

M

)
dB3

+ρ4(D − D∗)
(
1 − 1

D

)
dB4.

By taking t1 ≤ tT , we obtain∫ tp∧t1

0
dV (T, T8, M, D)

≤
∫ tp∧t1

0
Gdt +

∫ tp∧t1

0
ρ1(T − T ∗)

(
1 − 1

T

)
dB1

+
∫ tp∧t1

0
ρ2(T8 − T ∗

8 )
(
1 − 1

T8

)
dB2

+
∫ tp∧t1

0
ρ3(M − M∗)

(
1 − 1

M

)
dB3

+
∫ tp∧t1

0
ρ4(D − D∗)

(
1 − 1

D

)
dB4,

where tp ∧ t1 = min(tp, t1). This leads to

V (T (tp ∧ t1), T8(tp ∧ t1), M(tp ∧ t1), D(tp ∧ t1))

≤ V (T0, T80 , M0, D0) +
∫ tp∧t1

0
Gdt

+
∫ tp∧t1

0
ρ1(T − T ∗)

(
1 − 1

T

)
dB1

+
∫ tp∧t1

0
ρ2(T8 − T ∗

8 )
(
1 − 1

T8

)
dB2

+
∫ tp∧t1

0
ρ3(M − M∗)

(
1 − 1

M

)
dB3

+
∫ tp∧t1

0
ρ4(D − D∗)

(
1 − 1

D

)
dB4.

At first, we take the expectation on both sides, followed
by the application of Fubini’s theorem [40] and the
properties of Itô’s integral, we have

EV (T (tp ∧ t1), T8(tp ∧ t1), M(tp ∧ t1), D(tp ∧ t1))

≤ V (T0, T80 , M0, D0) + GE(tp ∧ t1).

Let us assume that �p = {tp ≤ tT }, for p ≥ p1. Then,
from equation (10), we have P(�p) ≥ ε.

Now, for every ω ∈ �p, there is at least one of
(T (tp, ω), T8(tp, ω), M(tp, ω), D(tp, ω)) is equal to
either p or 1

p and V (T (tp), T8(tp), M(tp), D(tp))
is also not less than the smallest of min{(p + 1 −
log p),

(
1
p + 1 + log p

)
}. Consequently,

V (T0, T80 , M0, D0)

≥ ε max[(p + 1 − log p) ∧
( 1

p
+ 1 + log p

)
max].

Indicator function of �p is 1�p (ω) defined as

1�p (ω) =
{

1 , i f ω ∈ �p,

0 , i f ω /∈ �p.

If p → ∞, we have ∞ > V (T0, T80 , M0, D0) +
GtT = ∞, which resulting in a contradiction. So, we
have t∞ = ∞. Hence, the proof of the theorem. 
�
Theorem 3 The solution of the stochastic system (4)
is stochastically ultimate bounded for initial densities
(T (0), T8(0), M(0), D(0)) ∈ R

4+.

Proof In the previous theorem, we prove that there is a
unique solution inR4+ for all t ≥ 0 almost surely. Now,
we define a C2-function V : R4+ → R+ such that

V (T, T8, M, D) = et (T θ + T θ
8 + Mθ + Dθ ), (11)

where (T, T8, M, D) ∈ R
4+ and θ ∈ (0, 1). Differen-

tiating equation (11) by Itô’s formula, we get

dV (T, T8, M, D) = et
[
(T θ + T θ

8 + Mθ + Dθ )

+θT θ−1
(
rT T (1 − bT T ) − (αT M + γT T8)T

gT + M

)

+θT θ−1
8

(
α8D

g8 + T8
− δ8T8

)

+θMθ−1
(
sm + αmT8

(gm + T8)
· 1

(gm1 + T )
− γmMT − δmM

)

+θDθ−1
(
sd + αdT

gd + T
− δd D

)

+θ(θ − 1)

2

{
ρ2
1T

θ

(
1 − T ∗

T

)2

+ ρ2
2T

θ
8

(
1 − T ∗

8

T8

)2

+ρ2
3M

θ

(
1 − M∗

M

)2

+ ρ2
4D

θ

(
1 − D∗

D

)2}]
dt
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+etθ

[
ρ1T

θ

(
1 − T ∗

T

)
dB1

+ρ2T
θ
8

(
1 − T ∗

8

T8

)
dB2

+ρ3M
θ

(
1 − M∗

M

)
dB3

+ρ4D
θ

(
1 − D∗

D

)
dB4

]

≤ et
[
G + θ(θ − 1)

2

{
ρ2
1T

θ

(
1 − T ∗

T

)2

+ρ2
2T

θ
8

(
1 − T ∗

8

T8

)2

+ρ2
3M

θ

(
1 − M∗

M

)2

+ρ2
4D

θ

(
1 − D∗

D

)2}]
dt

+etθ

[
ρ1T

θ

(
1 − T ∗

T

)
dB1 + ρ2T

θ
8

(
1 − T ∗

8

T8

)
dB2

+ρ3M
θ

(
1 − M∗

M

)
dB3 + ρ4D

θ

(
1 − D∗

D

)
dB4

]
,

(taking superior of the coefficient of the inequality)

≤ Getdt + etθ

[
ρ1T

θ

(
1 − T ∗

T

)
dB1

+ρ2T
θ
8

(
1 − T ∗

8

T8

)
dB2

+ρ3M
θ

(
1 − M∗

M

)
dB3

+ρ4D
θ

(
1 − D∗

D

)
dB4

]
, [since, (θ − 1) < 0].

Integrating both sides of the above inequality from 0
to tp ∧ t and taking expectation leads to the following
inequality

EV (T (tp ∧ t), T8(tp ∧ t), M(tp ∧ t), D(tp ∧ t))

≤ V (T (0), T8(0), M(0), D(0))

+GE

∫ tp∧t

0
epdp.

If we take p → +∞, then we have

EV (T (t), T8(t), M(t), D(t))

≤ V (T (0), T8(0), M(0), D(0)) + G(et − 1),

which implies that

e−t
EV (T (t), T8(t), M(t), D(t))

≤ e−t V (T (0), T8(0), M(0), D(0)) + G.

Now, we can express that

|X (t)|θ = (T 2(t) + T 2
8 (t) + M2(t) + D2(t))

θ
2

≤ 4
θ
2 max{T θ (t), T θ

8 (t), Mθ (t), Dθ (t)}
≤ 2θ {T θ (t) + T θ

8 (t) + Mθ (t) + Dθ (t)}.
Now, the equation (11) leads to the following form

T θ + T θ
8 + Mθ + Dθ = e−t V (T, T8, M, D)

⇒ |X (t)|θ ≤ 2θ (e−t V (T, T8, M, D))

⇒ E|X (t)|θ
≤ E[2θ (e−t V (T, T8, M, D))]
⇒ E|X (t)|θ
≤ 2θ (e−t V (T (0), T8(0), M(0), D(0)) + G),

which gives

lim
t→+∞E|X (t)|θ ≤ 2θG < +∞.

We choose θ = 1
2 , then there exists a constant μ1 > 0,

such that

lim sup
t→+∞

E|X (t)| 12 ≤ μ1.

Using Chebyshev’s inequality and taking μ = μ2
1

κ2
, we

get

P{|X (t)| > μ} ≤ E|X (t)| 12
μ

1
2

⇒ lim sup
t→+∞

P{|X (t)| > μ}

≤ μ1

μ
1
2

= κ.

Therefore, the solution of stochastic model (4) is
stochastically ultimate bounded with the given initial
densities. 
�
Theorem 4 For any initial densities (T (0), T8(0),
M(0), D(0)) ∈ R

4+, the solution of the stochastic
model (4) is stochastically permanence.

Proof Let us assume that aC2-function V : R4+ → R+
such that

V (T, T8, M, D) = 1

T + T8 + M + D
. (12)

Using by Itô’s formula, we have

dV = LVdt − V 2[ρ1(T − T ∗)dB1 + ρ2(T8 − T ∗
8 )dB2

+ρ3(M − M∗)dB3 + ρ4(D − D∗)dB4],
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where

LV = −V 2
[
rT T (1 − bT T ) − (αT M + γT T8)T

gT + M

+ α8D

g8 + T8
− δ8T8 + sm

+ αmT8
(gm + T8)

· 1

(gm1 + T )
− γmMT

−δmM + sd + αdT

gd + T
− δd D

]

+V 3[ρ2
1 (T − T ∗)2 + ρ2

2 (T8 − T ∗
8 )2

+ρ2
3 (M − M∗)2 + ρ2

4 (D − D∗)2].
We take a positive constant ψ , such that ψ < 1 and
define

U (T, T8, M, D) = (1 + V (T, T8, M, D))ψ .

Applying Itô’s formula, we get

LU = ψ(1 + V )ψ−1
[

− V 2
{
rT T (1 − bT T )

− (αT M + γT T8)T

gT + M
+ α8D

g8 + T8
− δ8T8

+sm + αmT8
(gm + T8)

· 1

(gm1 + T )

−γmMT − δmM + sd + αdT

gd + T
− δd D

}

+V 3[ρ2
1 (T − T ∗)2 + ρ2

2 (T8 − T ∗
8 )2

+ρ2
3 (M − M∗)2 + ρ2

4 (D − D∗)2]
]

+1

2
ψ(ψ − 1)(1 + V )ψ−2V 4[ρ2

1 (T − T ∗)2

+ρ2
2 (T8 − T ∗

8 )2 + ρ2
3 (M − M∗)2

+ρ2
4 (D − D∗)2]

= ψ(1 + V )ψ−1LV

+1

2
ψ(ψ − 1)(1 + V )ψ−2V 4[ρ2

1 (T − T ∗)2

+ρ2
2 (T8 − T ∗

8 )2 + ρ2
3 (M − M∗)2

+ρ2
4 (D − D∗)2].

Again, we choose very small positive constant, denoted
as n, such that

W (T, T8, M, D) = ent (1 + V (T, T8, M, D))ψ .

Using Itô’s formula, we get

LW = nent (1 + V )ψ + ent L(1 + V )ψ

= ent (1 + V )ψ−2
[
n(1 + V )2 − ψ(1 + V )V 2

{
rT T (1 − bT T )

− (αT M + γT T8)T

gT + M
+ α8D

g8 + T8
− δ8T8

+sm + αmT8
(gm + T8)

· 1

(gm1 + T )
− γmMT − δmM

+sd + αdT

gd + T
− δd D

}
+ ψ(1 + V )V 3[ρ21 (T − T ∗)2

+ρ22 (T8 − T ∗
8 )2 + ρ33 (M − M∗)2 + ρ24 (D − D∗)2]

+1

2
ψ(ψ − 1)V 4[ρ21 (T − T ∗)2 + ρ22 (T8 − T ∗

8 )2

+ρ23 (M − M∗)2 + ρ24 (D − D∗)2]
]

≤ ent (1 + V )ψ−2
[
n(1 + V )2 + ψ(1 + V )V 2

{
rT bT T

2

+ (αT M + γT T 8)T

gT + M
+ δ8T8 + γmMT

+δmM + δd D

}
+ ψ(1 + V )V 3

{
ρ21 (T − T ∗)2

+ρ22 (T8 − T ∗
8 )2 + ρ23 (M − M∗)2 + ρ24 (D − D∗)2

}

+1

2
ψ(ψ − 1)V 4[ρ21 (T − T ∗)2 + ρ22 (T8 − T ∗

8 )2

+ρ23 (M − M∗)2 + ρ24 (D − D∗)2]
]

≤ ent (1 + V )ψ−2
[
n(1 + V )2 + ψ(1 + V )V 2

{
rT bT T

2

+ (αT M + γT T 8)T

gT + M
+ δ8T8 + γmMT

+δmM + δd D

}
+ ψ(1 + V )V 3

{
ρ21 (T − T ∗)2

+ρ22 (T8 − T ∗
8 )2+ρ23 (M − M∗)2+ρ24 (D − D∗)2

}]
,

(since (ψ − 1) < 0).

We takeG is the superior of the coefficient and we have
an expression as

ψ(1 + V )V 3[ρ2
1 (T − T ∗)2 + ρ2

2 (T8 − T ∗
8 )2

+ρ2
3 (M − M∗)2 + ρ2

4 (D − D∗)2]
≤ ψ(1 + V )V (2 max

i=1,2,3,4
{ρ2

i }).

Therefore,

LW ≤ ment ,

where

m = (1 + V )ψ−2[n + V {2n + ψ(2 max
i=1,2,3,4

{ρ2
i })}
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+V 2(n + Gψ + ψ(2 max
i=1,2,3,4

{ρ2
i })) + V 3Gψ].

Thus, we have

L[ent (1 + V )ψ ] ≤ ment

⇒ E[ent (1 + V )ψ ]
≤ (1 + V (0))ψ + m

n
(ent − 1).

Therefore, we get

lim sup
t→∞

E(V (t)ψ)

≤ lim sup
t→∞

E((1 + V (t))ψ)

≤ m

n
.

Since

(T + T8 + M + D)ψ ≤ 4ψ(T 2 + T 2
8 + M2 + D2)

ψ
2

= 4ψ |X (t)|ψ,

then

lim sup
t→∞

E|X (t)|−ψ

≤ 4ψ lim sup
t→∞

E(V (t)ψ)

≤ 4ψm

n
= K (constant).

By previous theorem, we have

lim sup
t→+∞

P{|X (t)| > μ} ≤ κ

⇒ lim sup
t→+∞

P{|X (t)| ≤ μ} ≥ 1 − κ.

Also, we have

lim sup
t→+∞

E|X (t)|−ψ ≤ K .

For any κ > 0 and ϕ = (
κ
K

) 1
θ , we get

P{|X (t)| < μ} = P

{
1

|X (t)| >
1

ϕ

}

≤ ϕψ
E|X (t)|−ψ = κ,

which means that

lim inf
t→+∞ P{|X (t)| ≥ ϕ} ≥ 1 − κ.

Therefore, solution of the stochastic model (4) is
stochastically permanence. 
�
Theorem 5 Let (T (t), T8(t), M(t), D(t)) be the
solution of the stochastic system (4) initiating for any
value (T (0), T8(0), M(0), D(0)) ∈ R

4+. Then, the
tumor cells extinct exponentially with probability one,
that is, lim

t→∞ T (t) = 0almost surely if rT ≤ ρ2
1 (

1
2−T ∗).

Proof Let us assume that u = ln T . Applying Itô’s
formula, we get

du =
[
rT (1 − bT T ) − (αT M + γT T8)

gT + M

−1

2
ρ2
1

(
1 − T ∗

T

)2]
dt

+ρ1

(
1 − T ∗

T

)
dB1.

After somealgebraic calculations, above equation leads
to

d(ln T ) ≤ [rT (1 − bT T ) − 1

2
ρ2
1 + ρ2

1T
∗]dt

+ρ1

(
1 − T ∗

T

)
dB1. (13)

Now, we take P(T ) = rT (1 − bT T ) − 1
2ρ

2
1 + ρ2

1T
∗.

Here, we intend to get the supremum value of P(T ),
we get P

′
(T ) = −rT bT < 0. Therefore, P(T ) is a

decreasing function of T (t) on the interval [0, ∞) and
hence, supremum value of P(T ) is

P(T )sup t≥0 = P(0) = rT − 1

2
ρ2
1 + ρ2

1T
∗.

From equation (13), we get

d(ln T ) ≤ [rT − 1

2
ρ2
1 + ρ2

1T
∗]dt

+ρ1

(
1 − T ∗

T

)
dB1

⇒ ln T ≤ ln T0 + [rT − 1

2
ρ2
1 + ρ2

1T
∗]t

+ρ1

(
1 − T ∗

T

)
B1.

From strong law of large numbers for local martingles,
it follows that

lim
t→∞ sup

ln T (t)

t

≤ lim
t→∞ sup

[
ln T0
t

+ (rT − 1

2
ρ2
1 + ρ2

1T
∗)

+ρ1

t

(
1 − T ∗

T

)
B1

]

= rT − 1

2
ρ2
1 + ρ2

1T
∗.

Now, using the condition rT ≤ ρ2
1

( 1
2 − T ∗), we get

lim
t→∞ sup

ln T (t)

t
≤ 0

⇒ lim
t→∞ T (t) = 0, almost surely.

Therefore, tumor cells become extinct. 
�
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5 Stochastic stability of the singular point

By introducing new variables v1 = T − T ∗, v2 =
T8 −T ∗

8 , v3 = M −M∗, v4 = D− D∗, the stochastic
differential system (4) can be centered around its inte-
rior singular point E∗ = (T ∗, T ∗

8 , M∗, D∗). As the
system (4) consists of nonlinear equations, then it is
very difficult to derive asymptotically stability in mean
square sense (with probability 1) by constructing Lya-
punov function method. We find out a set of stochastic
differential equation by linearizing the drift coefficient
h around the singular point E∗ = (T ∗, T ∗

8 , M∗, D∗).
Then, the linearized system leads to

dv(t) = h(v(t))dt + n(v(t))dB, (14)

where

v(t) = col(v1(t), v2(t), v3(t), v4(t)),

and

h(v(t)) =

⎡
⎢⎢⎣

h11v1 h12v2 h13v3 h14v4
h21v1 h22v2 h23v3 h24v4
h31v1 h32v2 h33v3 h34v4
h41v1 h42v2 h43v3 h44v4

⎤
⎥⎥⎦ ,

n(v(t)) =

⎡
⎢⎢⎣

ρ1v1 0 0 0
0 ρ2v2 0 0
0 0 ρ3v3 0
0 0 0 ρ4v4

⎤
⎥⎥⎦ ,

with

h11 = rT − 2rT bT T
∗ − (αT M∗ + γT T ∗

8 )

gT + M∗ ,

h12 = − γT T ∗

gT + M∗ ,

h13 = − (gTαT − γT T ∗
8 )T ∗

(gT + M∗)2
,

h14 = 0,

h21 = 0,

h22 = − α8D∗

(g8 + T ∗
8 )2

− δ8,

h23 = 0,

h24 = α8

g8 + T ∗
8

,

h31 = − αmT ∗
8

(gm + T ∗
8 )(gm1 + T ∗)2

− γmM
∗,

h32 = αmgm
(gm + T ∗

8 )2(gm1 + T ∗)
,

h33 = −γmT
∗ − δm,

h34 = 0,

h41 = gdαd

(gd + T ∗)2
,

h42 = 0,

h43 = 0,

h44 = −δd .

It is to be observed that, in equation (14) the interior sin-
gular point E∗ = (T ∗, T ∗

8 , M∗, D∗) corresponds to
the trivial solution (v1, v2, v3, v4) = (0, 0, 0, 0). Let
us consider that the set

∑ = {R4×(t ≥ t0), t0 ∈ R
+}.

IfW ∈ C
2(

∑
) is a continuous function with respect to

t and a twice continuously differentiable function with
respect to v, then we can assert the following lemma as
presented by Gard T.C. [40].

Lemma 1 Consider a function W (v, t) ∈ C
2(

∑
) sat-

isfying the inequalities

c1|v|π ≤ W (v, t) ≤ c2|v|π , (15)

and

LW (v, t) ≤ −c3|v|π , ci > 0, π > 0 (i = 1, 2, 3).

(16)

Then, the trivial solution of (14) is exponentially π -
stable, for all t ≥ 0.

The trivial solution of (14) is said to be exponentially
mean square stability ifπ = 2. Furthermore, this trivial
solution exhibits globally asymptotically stable in the
sense of probability. With reference to (14), LW (v, t)
is given by the following expression:

LW (v, t) = ∂W (v, t)

∂t
+ hT (v(t))

∂W (v, t)

∂v

+1

2
Tr

[
nT (v(t))

∂2W (v, t)

∂v2
n(v(t))

]
, (17)

where

∂W

∂v
= col

(
∂W

∂v1
,

∂W

∂v2
,

∂W

∂v3
,
∂W

∂v4

)
,

∂2W (v, t)

∂v2
=

(
∂2W

∂vi∂v j

)

i, j=1,2,3,4
.

Now, we shall investigate our main result in the follow-
ing theorem.
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Theorem 6 If the following conditions

(i) ρ2
1 < 2(
− rT + 2rT bT T ∗ + (αT M∗+γT T ∗

8 )

gT +M∗ − 1
4(η∗

1+η∗
2)

)
,

(i i) ρ2
2 < 2

(
γT T ∗

gT +M∗ + α8D∗
(g8+T ∗

8 )2
+ δ8 − 1

4η∗
2

)
,

(i i i) ρ2
3 < 2(γmT ∗ + δm),

(iv) ρ2
4 < 2(δd − A2 − B2), with

A = η∗
2

α8
g8+T ∗

8
+ gdαd

(gd+T ∗)2 , B = η∗
2

α8
g8+T ∗

8
,

hold, then the zero solution of stochastic differential
system (4) is asymptotically mean square stable.

Proof To prove the theorem, we consider the positive
definite Lyapunov function

W (v(t), t) = 1

2
[η1v21 + η2(v1 + v2)

2 + η3v
2
3 + v24],

(18)

where ηi (i = 1, 2, 3) are real positive constants to be
selected later. It is easy to prove that the equations (15)
and (16) hold for π = 2. Using equation (17) to the
stochastic system (4), we have

LW (v, t) = (h11v1 + h12v2 + h13v3 + h14v4)η1v1
+(

(h11 + h21)v1 + (h12 + h22)v2
+(h13 + h23)v3 + (h14 + h24)v4

)
η2(v1 + v2)

+(h31v1 + h32v2 + h33v3 + h34v4)η3v3
+(h41v1 + h42v2 + h43v3 + h44v4)v4

+ 1
2Tr

[
nT (v(t)) ∂2W (v, t)

∂v2
n(v(t))

]
.

After some algebraic calculations, we have

LW (v, t) = η1v1

[(
rT − 2rT bT T

∗ − (αT M∗+γT T ∗
8 )

gT +M∗
)

v1

− γT T ∗
gT +M∗ v2 − (gT αT −γT T ∗

8 )T ∗
(gT +M∗)2 v3

]

+η2(v1 + v2)

[(
rT − 2rT bT T

∗ − (αT M∗+γT T ∗
8 )

gT +M∗
)

v1

−
(

γT T ∗
gT +M∗ + α8D∗

(g8+T ∗
8 )2

+ δ8

)
v2

− (gT αT −γT T ∗
8 )T ∗

(gT +M∗)2 v3 + α8
g8+T ∗

8
v4

]

+η3v3

[
−

(
αmT ∗

8
(gm+T ∗

8 )(gm1+T ∗)2 + γmM∗
)

v1

+ αmgm
(gm+T ∗

8 )2(gm1+T ∗) v2 − (γmT ∗ + δm)v3

]

+v4

[
gdαd

(gd+T ∗)2 v1 − δdv4

]

+ 1
2Tr

[
nT (v(t)) ∂2W (v, t)

∂v2
n(v(t))

]
.

(19)

Also, we can write

∂2W

∂v2
=

⎡
⎢⎢⎣

η1 + η2 η2 0 0
η2 η2 0 0
0 0 η3 0
0 0 0 1

⎤
⎥⎥⎦ ,

which implies

nT (v(t))
∂2W (v, t)

∂v2
n(v(t))

=

⎡
⎢⎢⎣

(η1 + η2)ρ
2
1v

2
1 η2ρ1ρ2v1v2 0 0

η2ρ1ρ2v1v2 η2ρ
2
2v

2
2 0 0

0 0 η3ρ
2
3v

2
3 0

0 0 0 ρ2
4v

2
4

⎤
⎥⎥⎦ .

Then, we have

1

2
Tr

[
nT (v(t))

∂2W (v, t)

∂v2
n(v(t))

]

= 1

2
[(η1 + η2)ρ

2
1v

2
1 + η2ρ

2
2v

2
2

+η3ρ
2
3v

2
3 + ρ2

4v
2
4]. (20)

Therefore, the expression (19) leads to

LW (v, t) = −(η1 + η2)
[

− rT + 2rT bT T
∗ + (αT M

∗ + γT T
∗
8 )

gT + M∗ − ρ21
2

]
v21

+
[(

rT − 2rT bT T
∗ − αT M

∗ + γT T
∗
8

gT + M∗

−
(

γT T
∗

gT + M∗ + α8D
∗

(g8 + T ∗
8 )2

+ δ8

))
η2

− γT T
∗

gT + M∗ η1

]
v1v2

+
[

(γT T
∗
8 − gT αT )T ∗

(gT + M∗)2
(η1 + η2)

−
(

αmT ∗
8

(gm + T ∗
8 )(gm1 + T ∗)2

+ γmM∗
)

η3

]
v1v3

+
[
η2

α8

g8 + T ∗
8

+ gdαd

(gd + T ∗)2

]
v1v4

− η2

[
γT T

∗
gT + M∗ + α8D

∗
(g8 + T ∗

8 )2
+ δ8 − ρ22

2

]
v22

+
[
η3

αmgm
(gm + T ∗

8 )2(gm1 + T ∗)
− η2

(gT αT − γT T
∗
8 )T ∗

(gT + M∗)2

]
v2v3

+
[
η2

α8

g8 + T ∗
8

]
v2v4

− η3

[
γmT ∗ + δm − ρ23

2

]
v23 −

[
δd − ρ24

2

]
v24 .

(21)

123



M. Sardar et al.

If we choose η∗
1, η∗

2 and η∗
3 in such way that

(
rT − 2rT bT T

∗ − αT M∗ + γT T ∗
8

gT + M∗

−
(

γT T ∗

gT + M∗ + α8D∗

(g8 + T ∗
8 )2

+ δ8

))
η∗
2

− γT T ∗

gT + M∗ η∗
1 = 0,

(γT T ∗
8 − gTαT )T ∗

(gT + M∗)2
(η∗

1 + η∗
2)

−
(

αmT ∗
8

(gm + T ∗
8 )(gm1 + T ∗)2

+ γmM
∗
)

η∗
3 = 0,

and

η∗
3

αmgm
(gm + T ∗

8 )2(gm1 + T ∗)
− η∗

2
(gT αT − γT T

∗
8 )T ∗

(gT + M∗)2

= 0.

Then, the expression (21) becomes

LW (v, t) = −(η∗
1 + η∗

2)[
− rT + 2rT bT T

∗ + (αT M
∗ + γT T

∗
8 )

gT + M∗ − ρ21
2

]
v21

+ Av1v4 − η∗
2

[
γT T

∗
gT + M∗ + α8D

∗
(g8 + T ∗

8 )2

+ δ8 − ρ22
2

]
v22 + Bv2v4

− η∗
3

[
γmT ∗ + δm − ρ23

2

]
v23 −

[
δd − ρ24

2

]
v24 ,

(22)

where

A = η∗
2

α8
g8+T ∗

8
+ gdαd

(gd+T ∗)2 ,

B = η∗
2

α8
g8+T ∗

8
.

Using standard inequality, we have

Av1v4 ≤ 1
4v

2
1 + A2v24,

Bv2v4 ≤ 1
4v

2
2 + B2v24 .

Thus, the expression (22) leads to

LW (v, t) ≤ −
[
(η∗

1 + η∗
2)

(
− rT + 2rT bT T

∗

+ (αT M
∗ + γT T

∗
8 )

gT + M∗ − ρ21
2

)
− 1

4

]
v21

−
[
η∗
2

(
γT T

∗
gT + M∗ + α8D

∗
(g8 + T ∗

8 )2
+ δ8 − ρ22

2

)
− 1

4

]
v22

− η∗
3

[
γmT ∗ + δm − ρ23

2

]
v23

−
[
δd − ρ24

2
− A2 − B2

]
v24 . (23)

Then, it can be expressed as

LW (v, t) ≤ −vT Qv, (24)

where

Q =

⎡
⎢⎢⎣

q11 q12 q13 q14
q21 q22 q23 q24
q31 q32 q33 q34
q41 q42 q43 q44

⎤
⎥⎥⎦ ,

with

q11 = (η∗
1 + η∗

2)

(
− rT + 2rT bT T

∗

+ (αT M∗ + γT T ∗
8 )

gT + M∗ − ρ2
1

2

)
− 1

4
,

q12 = q21 = 0,

q13 = q31 = 0,

q14 = q41 = 0,

q22 = η∗
2

(
γT T ∗

gT + M∗ + α8D∗

(g8 + T ∗
8 )2

+ δ8 − ρ2
2

2

)
− 1

4
,

q23 = q32 = 0,

q24 = q42 = 0,

q33 = η∗
3

[
γmT

∗ + δm − ρ2
3

2

]
,

q34 = q43 = 0,

q44 = δd − ρ2
4

2
− A2 − B2.

Therefore, we have all qi j ≥ 0; (i, j = 1, 2, 3, 4)
for q11 > 0, q22 > 0, q33 > 0 and q44 > 0. Thus,
from the previous inequalities, we get

ρ2
1 < 2

(
− rT + 2rT bT T

∗ + (αT M∗ + γT T ∗
8 )

gT + M∗

− 1

4(η∗
1 + η∗

2)

)
, (25)

ρ2
2 < 2

(
γT T ∗

gT + M∗ + α8D∗

(g8 + T ∗
8 )2

+ δ8 − 1

4η∗
2

)
, (26)

ρ2
3 < 2(γmT

∗ + δm), (27)

ρ2
4 < 2(δd − A2 − B2). (28)

Therefore, Q is real symmetric and positive definite
matrix and hence, its eigenvalues λ1, λ2, λ3 and λ4 will
be positive real quantities if the conditions (25), (26),
(27) and (28) hold. Ifλm is themin{λ1, λ2, λ3, λ4}, then
we have LW (v, t) ≤ −λm |v(t)|2 and we calculate that
the zero solution of stochastic differential system (4) is
an asymptotic mean square stable. 
�
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6 Parameter estimation

The system parameters play a crucial role in deter-
mining the behavior and analysis of the mathematical
model. In this section,wewill elaborate on howwe esti-
mated specific parameters of our system (1) using infor-
mation available from existing literature. Our method-
ology for parameter estimation is delineated as follows.
Decay rate of CD8+ T cells, symbolized as δ8: The
calculated half-life of CD8+ T cells, represented as δ8,
is around 3.9 days as per the research in [41,42]. We
can derive the death rate δ8 of CD8+ T cells using the
equation

1

2
T8(0) = T8(0)e

(−δ8t
T8
1/2).

This equation yields the value of δ8 as

δ8 = ln 2

3.9
day−1

≈ 0.178 day−1.

Decay rate of macrophages, symbolized as δm : The
parameter δm canbe computedutilizing the information
presented by Wacker et al. [43] & Khajanchi S. [44],
who reported a half-life of 12.4 days for macrophages.
This can be formulated as

δm = ln 2

12.4 day

≈ 0.056 day−1.

Decay rate of dendritic cells, labeled as δd : Holt et
al. [45] suggest that the half-life of dendritic cells is 3
to 4 days. We take a median half-life of 4 days for our
computations. Consequently, the decay rate δd can be
determined as follows

δd = ln 2

4 day

≈ 0.17 day−1.

Activation rate of dendritic cells, denoted as αd :
The parameter denoting the half-saturation constant for
tumor cells is denoted as gd . This can be mathemati-
cally represented as

T

gd + T
= 1

2
.

From the research paper conducted by Coventry et al.
[46], which observed the density of dendritic cells in
breast cancer patients as D = 4 × 10−4 cells, and by

incorporating the equilibrium state of the fourth equa-
tion in (1), we can deduce the equation

αd
T

gd + T
= δd D,

which implies

αd = 1.36 × 10−4 cell/day.

Constant source rate of dendritic cells, denoted as
sd : The constant source rate sd is influenced by the
presence of tumor cells. In a healthy individual, the
presence of tumor cells results in the absence of den-
dritic cell production. Therefore, at a steady state, we
can express this relation as

sd = δd D

= 0.68 × 10−4 cell/day.

Natural degradation rate of Tregs, denoted as δg:
According to Q. Tang [47], the half-life of regulatory
T-cells is 32h, approximately equivalent to 1.3 days.
Therefore, we can calculate the death rate δg as follows

δg = ln 2

1.3
day−1

≈ 0.53 day−1.

Activation rate of Tregs, denoted as αg: As reported
by Q. Tang [47], the estimated average count of circu-
lating regulatory T-cells in an adult human is approxi-
mately 0.25 × 109 pg · ml−1. Additionally, assuming
a density of 2 × 107 CD8+ T cells/ml, we derive the
following equation by considering the steady state of
the fifth equation in (1)

αgT8 − δgTg = 0,

which implies

αg = δgTg
T8

.

Substituting the values, we get

αg = 0.53 × 0.25 × 109(day−1.pg.ml−1)

2 × 107(cell.ml−1)
.

This simplifies to

αg = 6.62 pg.day−1.cell−1.

Degradation rate of interleukin-10, denoted as δ10:
Huhn et al. [48] reported the half-life of interleukin-10
(IL-10) as 4.5h, approximately equivalent to 0.1875
days. Hence, we can calculate the degradation rate δ10
as follows

δ10 = ln 2

0.1875
day−1 ≈ 3.696 day−1.
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Activation rate of interleukin-10, denoted as α10:
Toossi et al. [49] observed that 106 alveolarmacrophages
produced 3,200 pg/mL of interleukin-10 (I10). By uti-
lizing the steady-state equation from the sixth equation
in (1), we can express this as

α10M − δ10 I10 = 0,

which implies

α10 = 3.696 × 3200

106
(day−1.pg.ml−1)/(cell.ml−1).

Simplifying the above expression, we get

α10 = 0.01182 pg.day−1.cell−1.

Death rate of TGF-β,denoted as δβ : Assuming the
estimated median half-life of TGF-β is approximately
20h, equivalent to 0.83 days, we can calculate the death
rate of TGF-β as follows

δβ = ln 2

0.83
day−1 ≈ 0.832 day−1.

Source rate of TGF-β,denoted as sβ : Peterson et al.
[50] reported a TGF-β (Tβ) density of 609 pg/ml. It is
observed that in a healthy person the concentration of
TGF-β is 10 times less than a cancer patient. Assuming
a cerebral spinal fluid volume of 150ml, in the absence
of cancer-induced TGF-β production, we can observe
at steady state that

sβ = δβTβ

= 0.832 day−1 × 150 ml × 60.9 pg · ml−1

= 7.6 × 103 pg · day−1.

Release rate of TGF-β by tumor cells, denoted
as αβ : The average concentration of the immuno-
suppressive cytokine TGF-β (Tβ ) is determined to be
609 pg/ml×150 ml = 91350 pg based on the findings
by Peterson et al. [50], which pertains to high-grade
glioblastoma patients. By applying the seventh equa-
tion from the system (1) at an equilibrium state, we can
derive that

αβ = δβTβ − sβ
T

= 91350 pg × 0.832 day−1 − 7.6 × 103 pg · day−1

106 cell

= 0.0684 pg.day−1.cell−1.

Decay rate of interleukin-12, denoted as δ12: The
half-life of interleukin-12 (I12) is 30h, equivalent to
1.25 days, which is reported by Carreno et al. [51].
Therefore, the decay rate of interleukin-12 (I12) is

δ12 = 0.693

1.25 day

≈ 0.55 day−1.

Release rate of IL-12 by dendritic cells, denoted as
α12: In a breast cancer patient, the concentration of
interleukin-12 in the blood serum is about 1.5× 10−10

pg/ml [52]. Meanwhile, the concentration of dendritic
cells is 4× 10−4 cell/ml [46]. Thus, at the steady state
of the eighth equation of (1), we can derive that

α12 = δ12 I12
D

= 1.5 × 10−10 pg · ml−1 × 0.55 day−1

4 × 10−4 cell · ml−1

= 2.06 × 10−7pg.day−1.cell−1.

Decay rate of IFN-γ ,denoted as δγ : The median half-
life of IFN-γ is calculated to be 6.8h≈ 0.283 days [53].
Therefore, the decay rate of IFN-γ is

δγ = ln 2

0.283
day−1

≈ 2.45 day−1.

Activation rate of IFN-γ by CD8+ T cells, denoted
asαγ : Kim et al. [54] reported that CD8+ T cells pro-
duce 200 pg/ml of IFN-γ . Based on this data, we
assume that the concentration of CD8+ T cells is
2 × 107 cell/ml. Therefore, by using the steady state
of the ninth equation in (1), we can calculate

αγ = δγ Iγ
T8

= 200 pg · ml−1 × 2.45 day−1

2 × 107cell · ml−1

= 2.45 × 10−5 pg.day−1.cell−1.

Table 1presents a summaryof all themodel parameters.

7 Numerical results

This section provides extensive numerical illustrations
of the theoretical analysis obtained fromboth determin-
istic and stochastic tumor-immune interaction mod-
els under various situations. We illustrate our tumor-
immune interaction model numerically using MAT-
LAB by selecting appropriate parameter values, which
are given in Table 1.

7.1 Numerical results for deterministic model

To perform local stability analysis of the determinis-
tic model (2), we run our simulation for 150 days and
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Table 1 The parameter values employed for simulating the tumor-immune interaction model are as follows

Par. Description Value Units Source

rT Intrinsic growth rate of tumor cells 0.5822 day−1 [56]

bT 1/bT is carrying capacity of tumor cells 1.25 × 10−6 cell−1 Fit to data

α
′
T Tumor cells elimination rate by macrophages 1.5 pgday−1 cell−1 [2]

γ
′
T Tumor cells elimination rate by CD8+ T cells 2.4 pgday−1 cell−1 [57]

g
′
T Half-saturation constant 104 pg [58]

α
′
l CD8+ T cells activation due IL-12 3.5 cell day−1 [59]

g
′
l Tregs reduce parameter for CD8+ T cell production 102 pg [60]

δl CD8+ T cells death rate 0.178 day−1 Est.

sm Constant source rate of macrophages 5.42 × 102 cell day−1 [61]

α
′
m Recruitment rate of macrophage by IFN-γ 0.69 pgcell day−1 [62]

g
′
m Half-saturation constant of IFN-γ 1.05 × 104 pg [2]

g
′
m1 TGF-β reduce parameter for macrophages 104 pg [2,50]

γm Macrophages inactivation rate due to tumor cells 0.4656 cell−1 day−1 [2]

δm Natural death rate of macrophages 0.056 day−1 Est.

sd Constant source rate of dendritic cells 0.68 × 10−4 cell day−1 Est.

αd Dendritic cells activation rate 1.36 × 10−4 cell day−1 Est.

gd Half-saturation constant 106 cell [4,5]

δd Dendritic cells death rate 0.17 day−1 Est.

αg Activation rate of Tregs due to CD8+ T cells 6.62 pgday−1 cell−1 Est.

δg Tregs degradation rate 0.53 day−1 Est.

α10 Activation rate of IL-10 due to macrophages 0.01182 pgday−1 cell−1 Est.

δ10 IL-10 degradation rate 3.696 day−1 Est.

sβ Constant source rate of TGF-β 7.6 × 103 pgday−1 Est.

αβ Release rate of TGF-β by tumor cells 0.0684 pgday−1 cell−1 Est.

δβ TGF-β decay rate 0.832 day−1 Est.

α12 Release rate of IL-12 by dendritic cells 2.06 × 10−7 pgday−1 cell−1 Est.

δ12 IL-12 degradation rate 0.55 day−1 Est.

αγ Activation rate of IFN-γ due to CD8+ T cells 2.45 × 10−5 pgday−1 cell−1 Est.

δγ IFN-γ decay rate 2.45 day−1 Est.

take different initial values. Using parameters value
fromTable 1, we obtained the tumor-free singular point
E1 (0, 2.94586 × 10−11, 9678.57, 0.0004) and the
corresponding eigenvalues are −0.865106, − 0.178,
−0.17, −0.056.Weobserve that all the eigenvalues are
real and have negative real part. Thus, our determinis-
tic system (2) is stable around the tumor-free singular
point E1 (see the Fig. 1). Numerically, we have also
checked the condition(s) for the Theorem 1 and calcu-

lated that rT − αT M1+γT T 1
8

gT +M1 = −0.865108 < 0, which
assured the local asymptotic stability of the tumor-free

steady state E1. Theorem 2.1 has significant implica-
tions for understanding the dynamics of tumor growth
and immune response in biological systems. If the con-
ditions outlined in the theorem are satisfied, indicating
that the tumor-free steady state is locally asymptoti-
cally stable, it suggests that in the absence of tumors,
the biological system tends to remain in a stable equi-
librium state. This stability implies that the immune
response is effective in controlling of tumor growth.We
obtained two interior steady states, namely low tumor-
presence singular point E2(0.179273, 2.94586 ×
10−11, 3886.16, 0.0004) andhigh tumor-presence sin-
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Fig. 1 Time series evolution for tumor-free singular point E1 of deterministic system (2) shows stable behavior with respect to the
initial value (0.0001, 2.94 × 10−9, 3000.57, 0.00038) and parameters value are taken from Table 1

gular point E3(800000, 5.56441×10−11, 0.00145511,
0.00075). The eigenvalues around the low tumor-
presence singular point E2 are−0.300816, −0.178, −
0.17, 0.161346, which depicts that the our determin-
istic system (2) is unstable around E2 (see the Fig. 2).
Also, −372480, − 0.5822, − 0.178, − 0.17 are
the eigenvalues around the high tumor-presence singu-
lar point E3. It can be noticed that all of the eigen-
values are real and have negative real part. Therefore,
our deterministic system (2) is stable around the high
tumor-presence singular point E3 (see the Fig. 3).

7.2 Numerical results for stochastic model

Now, we investigate extensive numerical results
obtained from the stochastic tumor-immune interac-
tion system (4). We employ Milstein’s scheme [55]
to evaluate the strong approximation solution of (4)
with an initial condition based on the Itô process. This

scheme is derived from the Euler-Maruyama technique
and involves incorporating a corrective component into
the stochastic increment. For numerical illustrations,
we only change the values of ρ1, ρ2, ρ3 and ρ4 to inves-
tigate their influence on the dynamics of the tumor-
immune interaction model system (4). Now, we dis-
cretized the time interval [t0, t f ] as follows:
t0 = 0 < t1 = t2 < ........ < tN < tN+1 = t f .

We apply the Milstein’s scheme in our stochastic sys-
tem (4) as follows

T ( j + 1) = T ( j) +
[
rT T ( j)(1 − bT T ( j))

−αT M( j) + γT T8( j))T ( j)

gT + M( j)

]
�t

+ρ1(T ( j) − T ∗)I1, j
√

�t

+1

2
ρ2
1 (T ( j) − T ∗)(I 21, j − 1)�t,
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Fig. 2 Time series evolution for low tumor-presence singular point E2 of deterministic system (2) shows unstable behavior with respect
to the initial value (0.12, 2 × 10−10, 3000, 0.0002) and parameters value are taken from table 1

T8( j + 1) = T8( j) +
[

α8D( j)

g8 + T8( j)

−δ8T8( j)

]
�t + ρ2(T8( j) − T ∗

8 )I2, j
√

�t

+1

2
ρ2
2 (T8( j) − T ∗

8 )(I 22, j − 1)�t,

M( j + 1) = M( j)

+
[
sm + αmT8( j)

(gm + T8( j))(gm1 + T ( j))

−γmM( j)T ( j) − δm( j)

]
�t

+ρ3(M( j) − M∗)I3, j
√

�t

+1

2
ρ2
3 (M( j) − M∗)(I 23, j − 1)�t,

D( j + 1) = D( j) +
[
sd + αdT ( j)

gd + T ( j)
− δd D( j)

]
�t

+ρ4(D( j) − D∗)I4, j
√

�t

+1

2
ρ2
4 (D( j) − D∗)(I 24, j − 1)�t,

where Ii, j (i, j=1, 2, 3, 4) is the j-th realization of Ii
and Ii is Gaussian random variable N (0, 1).

A suitable Lyapunov function is considered to
demonstrate that the tumor-presence singular point is
asymptotically mean square stable. Positive fluctua-
tions ρ1, ρ2, ρ3 and ρ4 are depended upon in our
stochastic system. For this, ρ1 = ρ2 = ρ3 = ρ4 = 0.1
are chosen and the real positive constants η1 = η2 =
η3 = 0.5 are set. Now, we have calculated 2

(
− rT +

2rT bT T ∗+ (αT M∗+γT T ∗
8 )

gT +M∗ − 1
4(η∗

1+η∗
2)

)
= 0.6644 > ρ2

1 ,

2

(
γT T ∗

gT +M∗ + α8D∗
(g8+T ∗

8 )2
+ δ8 − 1

4η∗
2

)
= 383.357 > ρ2

2 ,

2(γmT ∗+δm) = 744.960 > ρ2
3 and 2(δd−A2−B2) =

0.34 > ρ2
4 . Therefore, all conditions of Theorem6have

been numerically verified. In Fig. 4, we present a time
series evolution of our stochastic system (4) with fluc-
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Fig. 3 Time series evolution for high tumor-presence singular point E3 of deterministic system (2) shows stable behavior with respect
to the initial value (400000, 5.56441 × 10−9, 0.005, 0.001) and parameters value are taken from table 1

tuation density ρ1 = ρ2 = ρ3 = ρ4 = 0.1 and the
other parameters value are obtained from Table 1. It is
observed that the tumor population reaches zero after
20 days. Again, it is observed that the tumor cell pop-
ulation becomes extinct after 30 days due to the high
intensity of fluctuation (see Fig. 5). It is to be noted that
the extinction criterion, as stated in Theorem 5, is sat-

isfied as rT = 0.5822 < 0.601425 = ρ2
1

(
1
2 − T ∗

)
,

which provides numerical verification for our analyti-
cal results. For this, we consider ρ1 = 1.4, ρ2 = ρ3 =
ρ4 = 0.5 and T ∗ = 0.179273 (low tumor density),
while other parameters value are taken from Table 1.
After carefully analyzing the results and observations,
we conclude that when the intensity of fluctuation den-
sity is small, the tumor cells become extinct, reach-
ing zero in a relatively short time. This deduction is
based on the findings obtained from our analysis and
serves to highlight the significant impact of fluctua-
tion intensity on the dynamics of tumor cells. In Fig. 6,

we present a comparison of our stochastic differential
equation (4) under different values of fluctuation inten-
sity. The red curve corresponds to the fluctuation value
ρ1 = ρ2 = ρ3 = ρ4 = 0.001, the blue curve represents
ρ1 = ρ2 = ρ3 = ρ4 = 0.03, the green curve depicts
ρ1 = ρ2 = ρ3 = ρ4 = 0.07 and the black curve
indicates ρ1 = ρ2 = ρ3 = ρ4 = 0.15. We observe
that increasing the intensity value of population fluctu-
ation leads to greater fluctuations in our cell population.
Therefore, the behavior of our stochastic system (4)
depends on the intensity value of cell population fluctu-
ations.By adjusting the intensity of fluctuations,we can
modulate the level of variability and randomness exhib-
ited by the cell populations, thereby influencing the
overall behavior of the system. The dependence of our
stochastic system on fluctuation intensity underscores
the importance of considering this parameter in the
study of tumor growth dynamics and other stochastic
processes. Furthermore, we have constructed a three-
dimensional phase portrait diagram of the stochastic
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Fig. 4 Time series evolution of the stochastic system (4) for ρ1 = ρ2 = ρ3 = ρ4 = 0.1 with initial density T (0) = 0.001, T8(0) =
2.94 × 10−12, M(0) = 3000, D(0) = 0.0003 and other parameters value are taken from table 1

system (4) (see Fig. 7) for ρ1 = ρ2 = ρ3 = ρ4 = 0.1,
considering initial densities T (0) = 0.001, T8(0) =
2.94 × 10−12, M(0) = 3000, D(0) = 0.0003 and
utilizing other parameters value from Table 1. By ana-
lyzing this phase portrait, we can better understand the
underlying dynamics and make informed interpreta-
tions about tumor growth and its response to varying
environmental conditions.

Over the course of 200 days and through approxi-
mately 5000 simulations, the mean (μXi ) and the stan-
dard deviation (σXi ) of the cell populations are

μT = 0.000144587, μT8 = 2.657 × 10−10,

μM = 9575.98, μD = 0.00398225

and

σT = 0.00101432, σT8 = 7.17345 × 10−11,

σM = 1954.66, σD = 0.000893139.

Weobserve that the stochastic mean closely aligns with
its deterministic low tumor-presence singular point E2.
This observation indicates that the dynamics of cell

populations are notably influenced by stochastic fluc-
tuations. To further investigate the behavior of our
stochastic system (4), we conduct relative frequency
density and normal distribution analysis, as illustrated
in Fig. 8. The study of relative frequency density and
normal distribution provides valuable insights into the
probabilistic nature of the stochastic system. These
analyses allow us to better comprehend the probability
distribution of cell population values and assess how
stochastic fluctuations contribute to the overall vari-
ability observed in the dynamics of the system.

8 Conclusion

This section provides a concise overview of the
research and emphasizes its significant contributions
to the field of tumor-immune interaction models using
a stochastic system. In this study, amathematicalmodel
based on biology is introduced to elucidate the dynam-
ics of the tumor-immune interaction system. Themodel
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Fig. 5 Time series evolution of the stochastic system (4) for ρ1 = 1.4, ρ2 = ρ3 = ρ4 = 0.5with initial density T (0) = 0.001, T8(0) =
2.94 × 10−12, M(0) = 3000, D(0) = 0.0003 and other parameters value are taken from Table 1

incorporates various cell types including tumor cells,
CD8+Tcells,macrophages, dendritic cells, and several
cytokines such as Tregs or regulatory T-cells, TGF-
β, IL-10, IL-12, and IFN-γ . To develop the model,
we utilized a system of coupled ordinary differential
equations. To get a better understanding of the tumor-
immune interaction system, we simplified the model
using quasi-steady-state approximations for the con-
centration of cytokines. This reducedmodel effectively
captures the detailed interactions between tumor cells,
CD8+ T cells, macrophages, and dendritic cells.

Deterministic models often lead to inaccurate pre-
dictions of biological systems due to the influence
of environmental fluctuations. Consequently, to study
the effects of these fluctuations, we expanded our
deterministic system into a stochastic system. In this
study, we introduced randomly fluctuating terms with-
out altering any parameters in the original deterministic
model. These stochastic random perturbations follow
a white noise type which is directly proportional to the

distances of the interior singular point from the cell
population. In this study, we demonstrate the existence
and uniqueness of the solution for our stochastic sys-
tem (4). Through this analysis, we establish the foun-
dation for exploring the dynamic behavior of the sys-
temunder stochastic conditions. To further characterize
the behavior of the system, we construct the appropri-
ate Lyapunov function. By Itô’s lemma, we establish
both the stochastically ultimate bounded and stochas-
tically permanence of our stochastic system (4). This
key finding highlights the system’s ability to remain
within certain bounded regions over time and persist in
the presence of environmental fluctuations. Moreover,
our investigation leads to the identification of an extinc-
tion criterion for the tumor cell population. We derive
some conditions, as stated in Theorem 6, to ensure the
asymptotic mean-square stability of the zero solution
in the stochastic system (4). Also, we present several
figures of the stochastic system (4) for different val-
ues of the intensity of population fluctuation. Through
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Fig. 6 Time series evolution of the stochastic system (4) for different values of intensity of population fluctuation with initial density
T (0) = 0.001, T8(0) = 2.94 × 10−12, M(0) = 3000, D(0) = 0.0003 and other parameters value taken from Table 1

our observations, we have noticed that when the inten-
sity fluctuation parameters in the stochastic system (4)
are set to sufficiently small values, the tumor cell pop-
ulation ultimately reaches zero. The observed behav-
ior emphasizes the sensitivity of tumor cell population
dynamics to stochastic influences. Even small random
fluctuations in the environment can significantly impact
the trajectory of the tumor cell population, driving it

toward extinction. Furthermore, as we increase the val-
ues of population fluctuations, we notice that the nature
of the cell population becomes more fluctuated. Com-
paring the stochastic mean solution to its deterministic
solution, we find that it closely aligns with the deter-
ministic low tumor-presence singular point E2. This
observation indicates that stochastic noise has a signif-
icant impact on the behavior of the cell populations.
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Fig. 7 Three dimensional phase portrait diagram of the stochastic system (4) with initial density T (0) = 0.001, T8(0) = 2.94 ×
10−12, M(0) = 3000, D(0) = 0.0003 and other parameters value taken from Table 1

Overall, this research contributes to a deeper under-
standing of tumor-immune interaction dynamics and
the intricate interplaybetweendeterministic and stochas-
tic components in biological system. The stochastic
model allowed us to capture the inherent randomness
and uncertainty present in these interactions, leading to
a more accurate representation of real-world scenarios.
We demonstrated that stochasticity plays a crucial role
in shaping the outcome of these interactions, affect-
ing both tumor progression and the effectiveness of
immune responses. Our findings have significant impli-
cations for cancer research, where environmental fluc-
tuation plays a crucial role. We are hopeful that our
mathematical findings will prove beneficial for future
researchers working in this field. The insights gained

from our study can serve as a valuable contribution to
the advancement of knowledge in this area of research.
In the future, researchers can integrate stochastic fluc-
tuations into their deterministic models without alter-
ing any parameters or introduce stochastic perturba-
tions to key parameters identified in this research paper.
Additionally, they can utilize parameter values derived
from the findings of this study to ensure consistency
and comparability across different investigations. This
approach allows for a more comprehensive exploration
of the impact of stochasticity on tumor-immune inter-
action dynamics, facilitating a deeper understanding of
the underlying mechanisms and improving the predic-
tive accuracy of mathematical models in this field.
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Fig. 8 Relative frequency density of tumor cells, CD8+ T cells, macrophages and dendritic cells of stochastic system (4) for ρ1 =
ρ2 = ρ3 = ρ4 = 0.1 and other parameters value taken from Table 1
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