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Abstract This study aims to thoroughly investi-
gate the dynamics of a predator–prey model with
a Beddington-De Angelis functional response. We
assume that the prey refuge is proportional to both
species. We establish the standard properties of bound-
edness, permanence, and local stability. We show that
under certain parameter conditions, transcritical bifur-
cation and Hopf bifurcation occur. To understand the
nature of the limit cycle, we determine the direction of
theHopf bifurcation.We focus on the significant ranges
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of the predators’ prey capturing rate and examine how
the level of prey fear and the predator’s mutual inter-
ference affect the system’s stability. Through numer-
ical analysis, we study the behavior of the Lyapunov
exponent and observe multiple self-repeating shrimp-
shaped patterns that indicate periodic attractors in
discrete-time predator–prey system. These structures
appear across a broad region associated with chaotic
dynamics. Additionally, if the intensity of white noise
is kept belowa specific threshold, the deterministic con-
trol approach is equally effective in environmental fluc-
tuation. Numerical simulations support these findings.

Keywords Fear · Refuge · Bifurcation · Global
sensitivity analysis · Stochastic
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1 Introduction

One main objective of ecology is understanding the
dynamic relationship between predator and prey. There
are two methods for capturing the impact of the preda-
tor on the prey in a predator–prey system. Predators use
their initial approach path to hunt and eat their prey,
as observed in nature. In the second strategy, the pres-
ence of a predatormay drastically change the behaviour
of the prey because of their fear of predation. A rela-
tively novel perspective states that indirect impact can
similarly affect a predator–prey system’s dynamics [1].
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When predation is a concern, prey populations may
change their grazing zones to a safer area, renouncing
their areas of highest intake; they can increase their
alertness, change their reproductive strategies, and so
on. This type of survival tactic results in a decrease in
the reproductive capacity of the prey subject to predator
pressure [2].

Although the fear effect has been investigated for a
long time, it is reported in [3] that in 2016, prey pop-
ulations’ birth rates decreased due to fear of preda-
tors. While the level of fear has no effect on the
dynamical behaviour, expressed by the Holling I func-
tional response, it can instead stabilise the entire sys-
tem by preventing periodic solutions when the Holling
II response function is adopted in the model formu-
lation. Following this discovery, many predator–prey
models incorporating the“level of fear” term in the
growth function of the prey have been investigated. In
[4], a predator–prey model is proposed and the impact
of level of fear is examined to show how it stabilises
the dynamics at high predator density. Two alternative
“level of fear” terms in the growth function of prey
and middle predator in a three species food chain are
presented in [2]. Their findings suggest that fear can
stabilise a chaotic system.

In addition to the level of fear, dynamic system
behavior is significantly influenced by several other
crucial factors, including prey refuge [5,6], Allee
effect, harvesting and the availability of additional food
[7].

The study of a prey-predator systemwith prey refuge
has been a hot topic in biomathematics, numerous
achievements and essential advancements are being
attained in this field [8–11]. In their analyses, themajor-
ity of authors see, for instance [12–14], assumed that
the prey refuge is either constant or related to the prey
volume.

Our starting point here is much different. Indeed,
we assume that the prey refuge size is directly propor-
tional to both prey and predator densities [15–17]. This
scheme is more adherent to reality than previous refuge
schemes. According to [8], in a food chain model, the
prey refuge threshold can impact all species’ chances
for long-term survival. The findings of the predator–
prey model incorporating a prey refuge and additional
food for the predator explored in [18] indicate that
somewhat higher prey refuge values allow sustained

species coexistence. However, the predator becomes
extinct when the prey refuge attains a significant level.

The primary factor in the prey-predator relationship
is the predator’s rate of prey consumption, sometimes
referred to as the predator’s functional response [19].
The dynamics of interacting populations in ecology
contain various response functions. The Beddington-
DeAngelis response function, a variation of theHolling
type II functional response was proposed in [20–22] to
describe interference among predators in the prey hunt-
ing process.

In biology, however, the deterministic approach has
some drawbacks. It is hard to precisely foresee the sys-
tem’s future. In comparison to its deterministic counter-
part, a stochastic model reflects a natural system more
accurately. In some studies, Gaussian white noise is
included in a model of environmental fluctuations to
assess the impact of noise on dynamical systems. To
our knowledge, no one has explored such amodel using
Gaussianwhite noises, and color noisewhich have been
shown to be particularly beneficial in modelling fast
fluctuating phenomena in the presence of refuge, fear
factor and mutual predator interference in system. In
this paper, following Wiener processes, these fluctua-
tions are expressed as white noises [20]. Recently, a
stochastic delay predator–prey model with fear effect
and diffusion for prey explored in [23–25].

This study examines the combined effects of hunt-
ing, fear effect, and predator interference. To our
knowledge, no previous research incorporates the joint
impact of the three above factors. The salient features
of the model are as follows. Fear of predator hunting
is here assumed to decrease the prey birth rate. Prey
refuge and predator interference are incorporated into
the proposed model.

Specifically, the goal of this work is to investigate
the following biological question: What impact does
the prey capture rate have on the dynamics of the prey-
predator system?

The paper is organized as follows. The construc-
tion of a mathematical model based on the above set of
assumptions is performed in Sect. 2. The main analyt-
ical findings and mathematical details are summarized
in the next section. In Sect. 4, existence of stochastic
stability and some properties are explained in presence
of white noise. Sections5 and 6 contain the numerical
simulations and briefly summarize discussions.
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2 Basic assumptions and model formulation

We develop a predator–prey model with the following
characteristics:

1. The response function of Beddington-De Angelis
[26].

2. The prey grows logistically.
3. The prey refuge is a function of both prey (x) and

predator (y) population sizes.
4. The prey exhibits fear, according to the anti-

predator behavior.

The intrinsic growth rate and the intra-species com-
petition rate of prey are denoted by r and r1, respec-
tively. When a predator is present, the prey’s intrin-
sic growth rate depends on the density of the predator,
F(y; K ); where y represents the density of the predator
population, and K denotes the level of prey fear due to
anti-predator reaction.

Based on ecological grounds the assumptions for
F(y; K ) are

1. F(y; 0) = r : the prey reproduction rate remains
unchanged without the fear effect.

2. F(0; K ) = r : the prey reproductive rate remains
unchanged without predators.

3. lim
K→∞ F(y; K ) = 0: fearful prey under strong fear

pressure cannot reproduce.
4. lim

y→∞ F(y; K ) = 0: prey cannot reproduce when

predator density is exceedingly high.
5. with a high level of fear, the prey reproduction rate

decreases:
∂F(y; K )

∂K
< 0.

6. with a high predator density, the prey reproduction
rate decreases.
∂F(y; K )

∂y
< 0.

Denoting by K the level of prey fear due to anti-
predator reaction; we can explicitly write

F(y; K ) = r

1 + Ky
.

The function F(y; K ) = r
1+Ky has been selected to

depict the adverse effect of predator density on the prey
population’s growth rate. With an increase in predator
density denoted by (1 + Ky), the fraction’s denom-
inator rises accordingly. Consequently, the value of
F(y; K ) = r

1+Ky decreases, causing a reduction in the

growth rate of the prey population. The parameter r is
a fixed value associated with the inherent growth rate
of the prey population when not influenced by preda-
tion. This function F(y; K ) elucidates how changes
in the growth rate of the prey population are influ-
enced by both predator density (y) and the level of
prey fear (K ). Higher values of K indicate heightened
prey apprehension towards predators, intensifying the
negative impact on their growth rate.

Inwhat follows, let δ1 be the refuge coefficient. Then
δ1xy represents the amount of prey that finds refuge.
We only consider values of δ1 that satisfy the inequality
1 − δ1y ≥ 0. Realistic ecosystem allowable ranges of
refuge are 0 ≤ δ1 ≤ 1 and 0 ≤ 1 − δ1y ≤ 1, [16,17].
Thus there is an upper bound for which this amount
should be sufficiently small, i.e., δ1 ≤ 1

y . In view of (3)
below, the inequality that δ1 must ultimately satisfy is

δ1 <
ζ

� + ζ
. (1)

Therefore, the remaining x − δ1xy prey species are
exposed to predation by predators.

Here, m1, a1, b1, c1 respectively represent the rates
of prey capture by the predator, the half-saturation con-
stant for prey, the handling time on the feeding rate
effort, the mutual interference among the predators,
while e1 is the conversion coefficients for turning prey
into new predators, and d1 is the predator’s natural
mortality. Nonnegative initial conditions are naturally
assumed. By incorporating intra-species competition
of prey and prey fear in [17], the model takes the form

dx

dt
= r x

1 + Ky
− r1x

2 − m1(x − δ1xy)y

a1 + b1(x − δ1xy) + c1y

≡ G1(x, y)

dy

dt
= e1m1(x − δ1xy)y

a1 + b1(x − δ1xy) + c1y
− d1y ≡ G2(x, y).

(2)

The predator–prey model presented incorporates var-
ious ecological dynamics, including prey response to
predator presence, logistic prey growth, prey refuge as
a function of both prey and predator populations, and
anti-predator behavior. Themodel’s applicability stems
from its ability to capture these complex interactions
and dynamics within ecological systems.

Key features contributing to its applicability include:

• Beddington-De Angelis Response Function: This
response function accounts for the impact of preda-
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tor density on prey growth rate, reflecting realistic
predator–prey interactions.

• Logistic Prey Growth: The model integrates logis-
tic growth dynamics for prey populations, acknowl-
edging carrying capacity constraints within ecosys-
tems.

• Prey Refuge Mechanism: By incorporating prey
refuge as a function of both prey and predator popu-
lations, the model considers spatial and behavioral
strategies adopted by prey to avoid predation.

• Anti-predator Behavior: The model incorporates
prey fear as an adaptive response to predator pres-
ence, influencing prey reproduction rates.

Additionally, parametrization of the model includes
ecological relevance, such as prey capture rates, han-
dling time, mutual interference among predators, con-
version coefficients, and predator natural mortality,
enhancing its applicability to real-world ecosystems.

In summary, themodel’s comprehensive representa-
tion of predator–prey dynamics, incorporating biolog-
ical and ecological principles, underpins its applicabil-
ity in understanding and predicting dynamics within
ecological systems.
In the next section, we summarize the mathematical
findings.

The results that we outline below are preliminary
in that they assess properties that are needed from the
biological viewpoint.

3 System analysis and preliminary results

3.1 Boundedness

Proposition 3.1 All nonnegative solutions (x(t), y(t))
of the system (2) initiating in R2+ −{0, 0} are uniformly
bounded.

Proof Let us choose the total system population � =
x + y. Therefore,

d�

dt
= dx

dt
+ dy

dt
= r x

1 + Ky
− r1x

2

− m1(x − δ1xy)y

a1 + b1(x − δ1xy) + c1y

+ e1m1(x − δ1xy)y

a1 + b1(x − δ1xy) + c1y
− d1y.

Let us consider a positive constant ζ such that ζ ≤
d1. It follows

d�

dt
+ ζ� ≤ r x − r1x

2 + ζ x

− m1(1 − e1)(x − δ1xy)y

a1 + b1(x − δ1xy) + c1y
−y(d1 − ζ )

≤ (r + ζ )x − r1x
2 ≤ (r + ζ )2

4r1
.

By choosing � = (r+ζ )2

4r1
, we obtain

0 ≤ �(x(t), y(t)) ≤ �

ζ
(1 − e−ζ t )

+�(x(0), y(0))e−ζ t ,

which indicates that 0 ≤ �(x(t), y(t)) ≤ �
ζ
as t →

∞. Therefore, all nonnegative solutions of the system
(2) originating in R2+ −{0, 0} will be restricted to lie in
the region ∇ = {(x, y) ∈ R2+ : x(t) + y(t) ≤ �

ζ
+ ε}.

	

Boundedness is crucial because it indicates that the
ecological system has reasonable behaviour. Indeed
boundedness of the system implies that none of the
two interacting species undergoes an unexpected or
long-term exponential growth, which, given limited
resources, would not be ecologically sustainable. In
particular, using the boundedness result shown above,
namely

y(t) ≤ �

ζ
+ ε, ε < 1,

we have immediately

1

y
>

ζ

� + ζ
. (3)

3.2 Persistence of the system (2)

It is necessary to demonstrate the positivity of the sys-
tem (2) since it suggests that the population will thrive
in the long run. The system is said to be persistent if a
compact set D1 ⊂ �1 = {(x, y) : x > 0, y > 0} exists
inwhich the solutions of the system (2) ultimately enter
and remain in the region.

Proposition 3.2 The system (2) is persistent if the fol-
lowing conditions hold

r > d1, (4)

m1 >
1

e1

[
a1d1r1

r
+ b1d1

]
. (5)
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Proof We follow the approach of [16] to demon-
strate persistence. Take a Lyapunov function candidate
V1(x, y) = xζ1 yζ2 where ζ1 and ζ2 are real constants.
As a result, the average Lyapunov function looks as
follows:

�(x, y) = V̇1
V1

= ζ1
ẋ

x
+ ζ2

ẏ

y

= ζ1

(
r

1 + Ky
− r1x

− m1(1 − δ1y)y

a1 + b1(x − δ1xy) + c1y

)

+ ζ2

(
e1m1(x − δ1xy)

a1 + b1(x − δ1xy) + c1y
− d1

)
.

Now, we have to show that the function is positive at
each boundary equilibrium.

At E0, the trivial equilibrium, we find the value
�(0, 0) = ζ1r − ζ2d1. Let ζ1 = ζ2 = ζ , then
�(0, 0) = ζ(r − d1) > 0 if the condition (4) holds.

Similarly, at the predator-free equilibrium E1, we
have

�

(
r

r1
, 0

)
= ζ

(
e1m1r

ar1 + b1r
− d1

)
> 0

if the condition (5) is satisfied. These findings show that
�(x, y) is positive at each boundary equilibrium. Thus
the system (2) is persistent. As the system is uniformly
persistent there exist ρ1 > 0 and t > t1 such that
x(t) > ρ1 and y(t) > ρ1 ∀t > t1. 	


3.3 Nonexistence of periodic solution

Let us write the system (2) as Ẋ = G(X), where X =
(x, y) and G = (G1,G2). Here, G1,G2 ∈ C∞(R2+),

where G1 = r x
1+Ky − r1x2 − m1(x−δ1xy)y

a1+b1(x−δ1xy)+c1y
and

G2 = e1m1(x−δ1xy)y
a1+b1(x−δ1xy)+c1y

−d1y. Let us explore a contin-

uously differentiable function, denoted as Ĥ(x, y) =
1
xy , defined over the domain (x, y) ∈ 
. Here,

∇.(ĤG)

= ∂

∂x

( r
1+Ky − r1x

y
− m1(1 − δ1y)y

a1 + b1(x − δ1xy) + c1y

)

+ ∂

∂y

(
e1m1(x − δ1xy)y

a1 + b1(x − δ1xy) + c1y
− d1y

)

= −
(
r1
y

+ m1[e1(c1 + a1δ) − b1(1 − δ1y)2]
[a1 + b1(x − δ1xy) + c1y]2

)

< 0,∀y ∈
(

1

δ1
(1 −

√
e1(c1 + a1δ1)

b1
,
1

δ1

)
(6)

where e1(c1 + a1δ1) > b1. Hence, we can deduce that
∇.(ĤG) < within the subdomain D̂ of 
, defined by

D̂=
{
(x, y) ∈ 
 : 1

δ1

(
1−

√
e1(c1+a1δ1)

b1

)
< y < 1

δ1

}
.

Applying Bendixson-Dulac’s criterion, as outlined in
[27], we can infer that no periodic orbits exist in the
specified subdomain D̂ for the present system.

3.4 Equilibria: feasibility and stability

Here, all possible equilibria have been determined.
The system (2) allows only three possible equilibrium
states. The system disappearance is expressed by the
point E0 = (0, 0). Then we find the predator-free equi-
librium E1 = (rr−1

1 , 0) and finally the coexistence
equilibrium E∗ = (x∗, y∗). In it, we have

y∗ = (e1m1 − b1d1)x∗ − a1d1
δ1(e1m1 − b1d1)x∗ + c1d1

.

The value of x∗ is obtained by solving the quartic alge-
braic equation

4∑
n=0

BnX
n = 0 (7)

whose coefficients are:

B4 = r1e1δ1(e1m1 − b1d1)
2(δ1 + K ),

B3 = d1(e1m1 − b1d1){δ1(c1δ1 − Ka1)

+c1(δ1 + K )}r1e1 − e1rδ
2
1(e1m1 − b1d1)

2,

B2 = (e1m1 − b1d1)
2(δ1 + K )d1

+r1e1c1d
2
1 (c1δ1 − Ka1)

−2δ1(e1m1 − b1d1)c1d1e1r,

B1 = (e1m1 − b1d1)[c1δ1 − 2Ka1 − a1δ1]d21
−c21d

2
1e1r,

B0 = −a1d
3
1 (c1δ1 − Ka1).

Now, this algebraic equation is investigated, and the
conditions for the roots being positive are assessed
under some parameter restrictions. Figure 1 shows that
the coexistence equilibrium can indeed be achieved.

To assess the coexistence equilibrium, we must find
at least one positive root of the equation (7). In general,
the equation (7) has at most four complex roots. Let us
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Fig. 1 Mutual position of prey-nullclines (green) and predator-
nullclines (red) of the system for the reference parameter values
given in Table 1

assume that one pair of complex roots exists, namely α̂

and its conjugate α̂∗. The following quadratic equation
X2 + θ̂1X + θ̂2 = (X − α̂)(X − α̂∗)

= X2 − 2Re(̂α)X + |̂α|2

is formed by a conjugate pair in which θ̂1 =
−2Re(̂α), θ̂2 = |̂α|2. Assuming that there are two real
roots x∗

1 and x∗
2 of x∗ of the equation (7) such that

(x∗
1 + x∗

2 ) = − p̂r , and x∗
1 x

∗
2 = q̂s . Consequently, the

factorization of equation (7) becomes:
4∑

n=0

BnX
n = B4(X

2 + θ̂1X + θ̂2)(X
2 + p̂r X + q̂s)

= B4

[
X4 + ( p̂r + θ̂1)X

3 + (θ̂2 + q̂s + θ̂1 p̂r )X
2

+(θ̂1q̂s + θ̂2 p̂r )X + θ̂2q̂s
]
. (8)

Comparing coefficients on both sides, we discover that

p̂r = B3

B4
+ 2Re(̂α), q̂s = B0

B4 |̂α|2 .

We now discuss the two cases that can arise.

Case 1: If q̂s > 0,, i.e., if c1 < Ka1
δ1

then both real
roots are positive if satisfy the following conditions
p̂r < 0 and p̂2r − 4q̂s > 0. Therefore, there exist two
positive real roots

x∗
1 = − p̂r + √

p̂2r − 4q̂s
2

, x∗
2 = − p̂r − √

p̂2r − 4q̂s
2

,

only if p̂2r − 4q̂s > 0 holds since as B3 < 0.
Case 2: If q̂s < 0, i.e. if c1 > Ka1

δ1
then one root

is obviously positive satisfying the above conditions.
Thus the condition for the existence of the coexistence
equilibrium point E∗(x∗, y∗) is given by,

(a) : x∗ >
a1d1

e1m1 − b1d1
, (b) : m1 >

b1d1
e1

,

(c) : p̂2r − 4q̂s > 0, (d) : c1 >
Ka1
δ1

. (9)

As for stability, we need the general form of the
Jacobian matrix at E = (x, y). It is explicitly defined
as

J =
[
a11 a12
a21 a22

]
(10)

where

a11 = r

(1 + K y)
− 2r1x − m1(a1 + c1y)(1 − δ1y)y

[a1 + b1(x − δ1x y) + c1y]2 ,

a12 = − r xK

(1 + K y)2
− mx[(a1 + c1y)(1 − 2δ1y) + (1 − δ1y)(b1x − b1δ1x y − c1y)]

[a1 + b1((x − δ1x y) + c1y]2
,

a21 = e1m1(a1 + c1y)(1 − δ1y)y

[a1 + b1(x − δ1x y) + c1y]2 ,

a22 = e1m1x[(a1 + c1y)(1 − 2δ1y) + (1 − δ1y)(b1x − b1δ1x y − c1y)]
[a1 + b1(x − δ1x y) + c1y]2 − d1.

The trivial equilibrium E0 of the system (2) is always
unstable since one eigenvalue of (10) is here r > 0. The
system (2) at E1 is unstable if R1 = e1m1r

d1(a1r1+b1r)
> 1.

Note that the Jacobian at E∗ has one simplification,

â11 = −r1x
∗ + m1b1x∗y∗(1 − δ1y∗)2

[a1 + b1(x∗ − δ1x∗y∗) + c1y∗]2 .

Its eigenvalues, in this case, are obtained as roots of the
quadratic λ2 − tr(J ∗) + det(J ∗) = 0, with

tr(J ∗) = −(̂a11 + â22), det(J ∗) = â11â22 − â12â21.

Now if tr(J ∗) < 0 as well as det(J ∗) > 0 then
according to the Routh-Hurwitz criterion E∗ is locally
asymptotically stable. This result depends upon system
parameters. Therefore, we investigate the above condi-
tions by numerical simulations.
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Fig. 2 (a, b) The system exhibits transcritical bifurcation at m1 = 0.1529.

Thus, the stability of the above equilibrium points is
investigated, showing that both E1 and E∗ are condi-
tionally stable. Local bifurcation analysis shows a tran-
scritical bifurcation between these points. Figure 2a,
b illustrates our analytical results at m1 = mTC

1 =
0.1529.

Further, we observe the onset of persistent oscilla-
tions. These limit cycles arise in view of a Hopf bifur-
cation, whose direction is also assessed.

3.5 Hopf-Bifurcation

Proposition 3.3 The necessary and sufficient condi-
tions for Hopf bifurcation of (2) at E∗ for m1 = mc

1
are

[tr(J ∗)]m1=mc
1

= 0, [det(J ∗)]m1=mc
1

> 0,
d

dm1
[tr(J ∗)]m1=mc

1
�= 0.

Proof Annihilating the Jacobian trace gives

e1m1x∗[(a1 + c1y∗)(1 − 2δ1y∗) + (1 − δ1y∗)(b1x∗ − b1δ1x∗y∗ − c1y∗)]
[a1 + b1(x∗ − δ1x∗y∗) + c1y∗]2

+ m1b1x∗y∗(1 − δ1y∗)2

[a1 + b1(x∗ − δ1x∗y∗) + c1y∗]2 = d1 + r1x
∗.

Now [det(J ∗)]m1=mc
1

> 0 is equivalent to the charac-

teristic equation λ2+[det(J ∗)]m1=mc
1

= 0 whose roots
are purely imaginary. For m1 = mc

1, the characteristic
equation can indeed be written as

χ2 + ω = 0, ω = [det(J ∗)]m1=mc
1

> 0. (11)

Therefore, the above equation has two roots, χ1 =
+i

√
ω and χ2 = −i

√
ω. At any neighboring point

m1 of mc
1, we can express the above roots in general

form as χ1,2 = λ1(m1) + ±iλ2(m1), where

λ1(m1) = tr(J ∗)
2

, λ2(m1) =
√
det (J ∗) − tr(J ∗)

4
.
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Now the transversality condition

d

dm1
(Re(χ j (m1)))m1=mc

1
�= 0, j = 1, 2,

needs to be verified. Substituting χ1 = λ1(m1) +
iλ2(m1) in (11) and calculating the derivative, we have

2λ1(m1)λ
′
1(m1) − 2λ2(m1)λ

′
2(m1) + ω′ = 0,

2λ2(m1)λ
′
1(m1) + 2λ1(m1)λ

′
2(m1) = 0. (12)

Solving (12), we get

d

dm1
(Re(χ j (m1)))m1=mc

1
= −2λ1ω′

2(λ21 + λ22)
�= 0,

i.e.

d

dm1
[tr(J ∗)]m1=mc

1
�= 0,

which satisfies the transversality condition.This implies
that the system undergoes a Hopf-bifurcation at m1 =
mc

1. Figures 11a, b show the sign switching of the eigen-
values and the verification of the condition for Hopf
bifurcation at H∗ when m1 = mc

1. 	

The bifurcation analysis, in particular, indicates an

important finding:When the prey capture rates are high,
there is a risk that both species oscillate. However, even
with a predator’s high rate of prey capture, there is no
chance for oscillations if the fear level is low. A similar
situation occurs when the refuge coefficient is high.

3.6 Direction of Hopf Bifurcation

By taking m1 as a bifurcation parameter, the previous
theorem indicates that the system (2) exhibits a Hopf
bifurcation. The direction and stability aspects of bifur-
cating periodic solutions arising from the coexisting
equilibrium point, E∗ via this Hopf bifurcation is now
discussed.

We first calculate the Lyapunov coefficient and
explore the stability and direction of the Hopf bifur-
cation.

First, we translate the coexistence equilibrium of (2)
E∗(x∗, y∗) into the origin by setting ẑ1 = x − x∗,
ẑ2 = y − y∗. Then the system (2) becomes

dẑ1
dt

= r (̂z1 + x∗)
1 + K (̂z2 + y∗)

− r1 (̂z1 + x∗)2

− m1 (̂z1 + x∗)(1 − δ1 (̂z2 + y∗))(̂z2 + y∗)
a1 + b1 (̂z1 + x∗)(1 − δ1 (̂z2 + y∗)) + c1 (̂z2 + y∗)

,

dẑ2
dt

= e1m1 (̂z1 + x∗)(1 − δ1 (̂z2 + y∗))(̂z2 + y∗)
a1 + b1 (̂z1 + x∗)(1 − δ1 (̂z2 + y∗)) + c1 (̂z2 + y∗)
−d1 (̂z2 + y∗).

The following system is obtained by expanding on Tay-
lor’s series up to terms of order 3 at (̂z1, ẑ2) = (0, 0)
the above system:

˙̂z1 = c10̂z1 + c01̂z2 + c20̂z
2
1 + c11̂z1̂z2 + c02̂z

2
2 + c30̂z

3
1

+c21̂z
2
1̂z2 + c12̂z1̂z

2
2 + c03̂z

3
2 + O(|̂z|4),

˙̂z2 = d10̂z1 + d01̂z2 + d20̂z
2
1 + d11̂z1̂z2 + d02̂z

2
2 + d30̂z

3
1

+d21̂z
2
1̂z2 + d12̂z1̂z

2
2 + d03̂z

3
2 + O(|̂z|4), (13)

where

c10 = r

1 + Ky∗ − 2r1x
∗ − m1c11y∗

A

+m1c211b1x
∗y∗

A2 ,

c01 = m1c11x∗y∗(c1 − b1δ1x∗)
A2 − r K x∗

(1 + Ky∗)2

−m1(c11x∗ − δ1x∗y∗)
A

,

c20 = −r1 + m1c211b1y
∗

A2 − m1A11c11x∗y∗

A3 ,

c11 = m1c11σ11
A2 − r K

(1 + Ky∗)2

−m1(c11 − δ1y∗)
A

− m1c11A12x∗y∗

A3 ,

c02 = r K 2x∗

(1 + Ky∗)3
+ m1δ1x∗

A

+m1(c11x∗ − δ1x∗y∗)(c1 − b1δ1x∗)
A2

− A22m1c11x∗y∗

A3 ,

c30 = −m1c11y∗A11

A3 + m1b1c211x
∗y∗

A4 ,

c21 = m1c11b1(c11 − 2δ1y∗)
A2 + m1c11 p23x∗y∗

A4

−m1σ12

A3 ,

c12 = r K 2

(1 + Ky∗)3
+ m1c11 p24x∗y∗

A4

+m1δ1

A
+ m1σ13

A2 − m1σ14

A3 ,

c03 = − r K 3x∗

(1 + Ky∗)3
+ m1δ1x∗(c1 − b1δ1x∗)

A2

−m1(c11x∗ − δ1x∗y∗)A22

A3 + m1c11 p22x∗y∗

A4 ,
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d10 = e1m1c11y∗

A

[
1 − b1c1x∗

A

]
,

d01 = e1m1

[
c11x∗ − δ1x∗y∗

A

− c11x∗y∗(c1 − b1δ1x∗)
A2 − d1

e1m1

]
,

d20 = e1m1c11

[
A11x∗y∗

A3 − b1c11y∗

A2

]
,

d11 = e1m1

[
c11A12x∗y∗

A3 + c11 − δ1y∗

A
− σ15

A2

]
,

d02 = e1m1

[
− δ1x∗

A
− (c11x∗ − δ1x∗y∗)(c1 − b1δ1x∗)

A2

+ c11A22x∗y∗

A3

]
,

d30 = e1m1

[
c11y∗A11

A3 − b1c211x
∗y∗

A4

]
,

d21 = e1m1

[
−σ16

A2

+ (c11x∗ − δ1x∗y∗)A11 + c11y∗A12 − 2b21δ1C
2
11x

∗y∗

A3

− c11 p23x∗y∗

A4

]
,

d12 = e1m1

[
−σ17

A2 − δ1

A

+ c11A22y∗ + A32c11x∗y∗ + A12(c11x∗ − δ1x∗y∗)
A3

− c11P24x∗y∗

A4

]
,

d03 = e1m1[− δ1x∗(c1 − b1δ1x∗)
A2 + (c11x∗ − δ1x∗y∗)A22

A3

− c11 p22x∗y∗

A4 ],
σ11 = b1(c11x

∗ − b1x
∗y∗) + y∗(c1 − b1δ1x

∗)
−b1δ1x

∗y∗,
σ12 = (c11x

∗ − δ1x
∗y∗)A11 + c11y

∗A12 − 2b21δ1c
2
11x

∗y∗,
σ13 = (c11 − δ1y

∗)(c1−b1δ1x
∗)−2c11b1δ1x

∗+b1δ
2
1x

∗y∗,
σ14 = c11A22y

∗ + A32c11x
∗y∗ + (c11x

∗ − δ1x
∗y∗)A12,

σ15 = b1c11(c11x
∗ − b1x

∗y∗) + c11y
∗(c1 − b1δ1x

∗)
−c11b1d1x

∗y∗,
σ16 = b1c11(c11 − δ1y

∗) − b1δ1c1y
∗,

σ17 = (1 − 2δ1y
∗)(c1 − b1δ1x

∗) − b1δ1c1x
∗

−b1δ1(c11x
∗ − δ1x

∗y∗)
A = a1 + b1x

∗ − b1δ1x
∗y∗ + c1y

∗,
c11 = 1 − δ1y

∗,
A11 = b21 + b21δ

2
1 y

∗ − 2b21δ1y
∗,

A12 = 2b21δ
2
1x

∗y∗ − 2b21δ1x
∗ − 2b1δ1c1y

∗ + 2b1c1,

A22 = b21δ
2
1x

∗2 + c21 − 2b1δ1c1x
∗,

A32 = 2b21δ
2
1x

∗ − 2b1δ1c1, p22 = (c1 − b1δ1x
∗)3,

p23 = 3b21c
2
11(c1 − b1δ1x

∗),
p24 = 3b1c11(c1 − b1δ1x

∗).

If the higher-order terms are ignored, system (13) can
be restated in the following form:

˙̂Z = J ∗
E Ẑ + Ĥ(Ẑ), Ẑ =

(
ẑ1
ẑ2

)
, (14)

where

Ĥ =
(
Ĥ1

Ĥ2

)
=

(
c20̂z21 + c11̂z1̂z2 + c02̂z22 + c30̂z31 + c21̂z21̂z2 + c12̂z1̂z22 + c03̂z32

d11̂z1̂z2 + d02̂z22 + d30̂z31 + d21̂z21̂z2 + d12̂z1̂z22 + d03̂z32

)
.

The eigenvector v̂ of the community matrix J ∗
E cor-

responding to the eigenvalues iω0 at m1 = mc
1 is

v̂ = (c01, iω0 − c10)T . Now, let us define

S = (Re(̂v),−Im (̂v)) =
(

c01 0
−c10 −ω0

)
.

Let Ẑ = SY or Y = S−1 Ẑ ,where Y = (y1, y2)T . As a
result of this transformation, the system (14) becomes
Ẏ = (S−1 J ∗

E S)Y + S−1 Ĥ(SY ). This can be written as(
ẏ1
ẏ2

)
=

(
0 −ω0

ω0 0

)(
y1
y2

)

+
(
Q̂1(y1, y2;m1 = mc

1)

Q̂2(y1, y2;m1 = mc
1)

)
,

where Q̂1 and Q̂2 are nonlinear functions in y1 and y2.
Explicitly, they are given by

Q̂1(y1, y2;m1 = mc
1) = 1

c01
Ĥ1,

Q̂2(y1, y2;m1 = mc
1)

= − 1

ω0c01
(c10 Ĥ1 + c01 Ĥ2),

with

Ĥ1 = (c20c
2
01 − c11c01c10 + c02c

2
10)y

2
1

+ω0(2c02c10 − c11c01)y1y2 + ω2
0c02y

2
2
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+(c12c01c
2
10 − c03c

3
10 + c30c

3
01 − c21c

2
01c10)y

3
1

−ω3
0c03y

3
2 + ω0(2c12c10c01

−c21c
2
01 − 3c03c

2
10)y

2
1 y2 + ω2

0(c12c01

−3c03c10)y1y
2
2 ,

and

Ĥ2 = (d20c
2
01 − d11c01c10 + d02c

2
10)y

2
1

+ω0(2d02c10 − d11c01)y1y2 + ω2
0d02y

2
2

+(d12c01c
2
10 − d03c

3
10

+d30c
3
01 − d21c

2
01c10)y

3
1 − ω3

0d03y
3
2

+ω0(2d12c10c01 − d21c
2
01 − 3d03c

2
10)y

2
1 y2

+ω2
0(d12c01 − 3d03c10)y1y

2
2 .

Toevaluate the stability anddirection of a periodic solu-
tion, we compute the first Lyapunov coefficient:

l1 = 1

16

[
Q̂1

111 + Q̂1
122 + Q̂2

112 + Q̂2
222

]

+ 1

16ω0

[
Q̂1

12(Q̂
1
11 + Q̂1

22) − Q̂2
12(Q̂

2
11 + Q̂2

22)

−Q̂1
11 Q̂

2
11 + Q̂1

22 Q̂
2
22

]
,

where

Q̂k
i j = ∂2 Q̂k

∂yi∂y j
|(y1,y2;m1)=(0,0;mc

1)
,

Q̂k
i jl = ∂3 Q̂k

∂yi∂y j∂yl
|(y1,y2;m1)=(0,0;mc

1)
,

i, j, k, l ∈ {1, 2}.
If l1 < 0, theHopf bifurcation is supercritical; if l1 > 0,
it is subcritical.

3.6.1 A normal form of the Bogdanov-Takens
bifurcation

We consider a planar vector field described as follows:

ẋ = f (x, μ̂), x ∈ R
2, μ̂ ∈ R

2, (15)

where f is smooth a smooth function. Assuming that
the origin x = 0 in (15) corresponds to an equilibrium
with two zero eigenvalues, i.e., λ1,2 = 0 at μ̂ = 0, and
the Jacobian Jx f (0, 0) is both nilpotent and different
from the null matrix. We can express equation (15) at
μ̂ = 0 as:

ẋ = Ĵx f (0, 0)x + F̂(x), (16)

where the function F̂(x) includes all terms of quadratic
and higher order, denoted as O(||x||2).

The matrix Ĵx f (0, 0) has one linearly indepen-
dent eigenvector, denoted as v̂1, corresponding to the
repeated eigenvalue of 0. Furthermore, it is possible to
identify a generalized eigenvector v̂2 that satisfies the
equation Ĵx f (0, 0)v̂2 = v̂1. Let V̂ = [v̂1, v̂2] denote
the matrix with columns v̂1 and v̂2, both being linearly
independent vectors.

Therefore, by utilizing the change of coordinates
defined as:

y = V̂
−1

x (17)

the vector field f undergoes a transformation to a C∞
-conjugated system, defined as

g = V̂
−1

of oV̂. (18)

In particular, at μ̂ = 0, system (16) undergoes a trans-
formation to the following form, as illustrated:

ẏ = Ĵyg(0, 0)y + (V̂
−1

oF̂oV̂)(y), (19)

where

Ĵyg(0, 0) =
(
0 1
0 0

)
.

Expanding (18) in a Taylor series around (y1, y2) =
(0, 0) with respect to y = (y1, y2) yields the following
expressions:

ẏ1 = y2 + â00(μ̂) + â10(μ̂)y1 + â01(μ̂)y2

+1

2
â20(μ̂)y21 + â11(μ̂)y1y2

+1

2
â02(μ̂)y22 + O(||y||3),

ẏ2 = b̂00(μ̂) + b̂10(μ̂)y1 + b̂01(μ̂)y2

+1

2
b̂20(μ̂)y21 + b̂11(μ̂)y1y2

+1

2
b̂02(μ̂)y22 + O(||y||3),

where the coefficients âi j(μ̂) and b̂i j(μ̂) are smooth
functions that can be determined using (15), (17), and
(18). Specifically, at μ̂ = 0, derived from (16) and (19),
we obtain â00(0) = â10(0) = â01(0) = b̂00(0) =
b̂10(0) = b̂01(0) = 0.With this context, we proceed to
establish the subsequent outcome regarding the normal
form of the Bogdanov-Takens bifurcation.

Proposition 3.4 Consider the planar system (15) and
suppose, μ̂ = 0, let the system have an equilibrium
at the origin denoted as x = 0, with a double zero
eigenvalue λ1,2(0) = 0. We further assume the validity
of the following genericity conditions:
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1. The Jacobian Jx f (0, 0) is not the null matrix;
2. â20(0) + b̂11(0) �= 0;
3. b̂20(0) �= 0;
4. The map (x, μ̂) �→

( f (x, μ̂), trJx f (x, μ̂), detJx f (x, μ̂)) is regular at
(x, μ̂) = (0, 0) ∈ R

4. In this scenario, a smooth
and invertible change of parameters can be made
such that, within a sufficiently small neighborhood
of (x, μ̂) = (0, 0), the vector field f is topolog-
ically equivalent to one of the prescribed normal
forms:

ζ̇1 =ζ2,

ζ̇2 =α1 + α2ζ2 + ζ 2
2 + ŝζ1ζ2,

}
(20)

where ŝ = b̂20(0)(â20(0) + b̂11(0)) = ±1.

The normal form (20) was initially devised by Bog-
danov, while an equivalent form was concurrently
introduced by Takens. Further details and the proof
of this theorem can be found in [28].

Due to space constraints, we omit the detailed cal-
culation for proving the existence of a germ of a
Bogdanov-Takens bifurcation in system (2). However,
it’s important to note that the specified conditions (1)-
(4) guarantee local topological equivalence to the nor-
mal form of the Bogdanov-Takens bifurcation. Numer-
ical verification is also conducted to ensure satisfaction
of the Bogdanov-Takens bifurcation (cf. Figure 10).

Therefore, a smooth, invertible coordinate transfor-
mation, an orientation-preserving time rescaling, and
a reparametrization can be applied. This ensures that
within a sufficiently small neighborhood of (x, y,m1,

d1) = (0, 0,m∗
1, d

∗
1 ), system (2) is topologically

equivalent to one of the specified normal forms of a
Bogdanov-Takens bifurcation, represented by (21):

ζ̇1 =ζ2,

ζ̇2 =α1 + α2ζ2 + ζ 2
2 ± ζ1ζ2.

}
(21)

In (21), the sign of the term ζ1ζ2 is determined by the
sign of b̂20(0)(â20(0) + b̂11(0)).

3.7 Transcritical bifurcation

Proposition 3.5 When the system bifurcation param-
eter m1 crosses the critical threshold m1 = mTC

1 , the
system (2) undergoes a transcritical bifurcation.

Proof The Jacobian matrix J1 of the system (2) at E1

has one vanishing eigenvalue for m1 = mTC
1 . Let U1

and V1, respectively, be the eigenvectors of thematrices
J1 and (J1)T corresponding to zero eigenvalues. As a
result, we get

U1 =
(

−(
r K

r1
+ m1

a1r1 + b1r
1

)T

, V1 = (0 1)T .

We have then

Fm1 (x, y) =
(

− (x−δ1xy)y
a1+b1(x−δ1xy)+c1 y

e1(x−δ1xy)y
a1+b1(x−δ1xy)+c1 y

)T
,

Fm1

(
E1;m1 = mTC

1

)
= (

0 0
)T

,

and

(V1)
T Fk1

(
E1;m1 = mTC

1

)
= 0.

Also,

DFm1

(
E1;m1 = mTC

1

)
U1 = (0 − 1)T .

We therefore obtain

(V1)
T

[
DFm1

(
E1;m1 = mTC

1

)
(U1)

]
= e1r

a1 + b1r
.

Further,

(V1)
T D2F

(
E1;m1 = mTC

1

)
(U1,U1)

= − e1m1r21
(a1r1 + b1r)2

[
2a1r K

r1
+ 2a1m1

a1r1 + b1r

+ (2δ1a1 + c1)r

r1

]
< 0.

By applying Sotomayor’s theorem [29], we may con-
clude that the system experiences a transcritical bifur-
cation at E1 when m1 crosses the threshold mTC

1 . 	


3.8 Global sensitivity analysis

We used global sensitivity analysis (GSA) employing
Latin Hypercube Sampling (LHS) with partial rank
correlation coefficient (PRCC) sensitivity analysis to
examine the sensitivity of each parameter. Each param-
eter’s sensitivity is represented in a bar graph and
assessed regarding bar length. If a parameter’s PRCC
value is larger than ±0.3, it is considered sensitive to a
variable. The parameters r , K , m1 and d1 are all found
to be sensitive for the system (2), as shown in Fig. 3.
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Prey
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Fig. 3 Sensitivity analysis of various estimated parameters respectively for prey (left) and predators (right)

4 The stochastic model with white noise

We analyze our system by studying environmental
characteristics and their fluctuations. Throughout time
t , we treat all parameters as constants. Specifically, we
explore the stochastic stability of the coexistence equi-
librium.

There are two approaches to introduce stochastic-
ity into a deterministic system. First, by substituting
one of the environmental characteristics with random
parameters. Second, by integrating a randomly fluctu-
ating driving force into deterministic equations, while
keeping the parameters unchanged [30]. In this present
study, we choose the second strategy. Utilizing Gaus-
sian white noise-type stochastic perturbations on state
variables around their stable values Ê∗ proves to be
an effective approach for modeling rapid fluctuations.
These fluctuations are directly related to the distances
between each population’s equilibrium values, x∗ and
y∗ [31]. The deterministic system (2) can be expanded
to the stochastic model below based on the aforemen-
tioned assumption.

dx = G1(x, y)dt + σ1(x − x∗)dξ1t ,

dy = G2(x, y)dt + σ2(y − y∗)dξ2t , (22)

where the real constant parameters σ1, σ2 are the inten-
sities of environmental fluctuations and ξ it = ξi (t),
i = 1, 2 are the standard Wiener processes that are
independent of each other [32].

The stochastic system (22) can be expressed as an
Itō stochastic differential system in a compact form

dXt = G(t, Xt )dt + g(t, Xt )dξt , Xt0 = X0, (23)

The Itō process is the solution of the preceding equation
Xt = (x, y)T for t > 0. The drift coefficient, denoted
as G, can be described as a slowly varying continu-
ous component. Here, g = diag[σ1(x − x∗), σ2(y −
y∗)] denotes the diffusion coefficient, representing the
rapidly fluctuating continuous random component in
the diagonal matrix. Here, ξt = (ξ1t , ξ2t )T is a two-
dimensional stochastic process with scalarWiener pro-
cess components that have increments �ξ

j
t = ξ j (t +

�t) − ξ j (t) which are free Gaussian random variables
N(0,�t). The system (22) is classified as a multiplica-
tive noise system due to the dependence of the diffusion
matrix g on the solution of Xt .

4.1 Stochastic stability of the coexistence equilibrium

The coexistence equilibrium in the stochastic dif-
ferential system (22) acts as a central point. Ê∗ is
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derived by introducing the perturbation vector u(t) =
(u1(t), u2(t))T , where u1 = x − x∗ and u2 = y − y∗.

To establish mean square asymptotic stability using
Lyapunov functions in the context of the complete non-
linear equations (22), we can follow the approach out-
lined in [33]. However, for simplicity, we focus on the
stochastic differential equations obtained by lineariz-
ing (22) around the coexistence equilibrium E∗. The
linearized version of (23) around E∗ is given by

du(t) = FL(u(t))dt + g(u(t))dξ(t), (24)

where now g(u(t)) = diag[σ1u1, σ2u2] and FL(u(t))

=
[−a11u1 − a12u2

a21u1 − a22u2

]
= Mu,

a11 = −â11 = r1x
∗ − m1b1x∗y∗(1 − δ1y∗)2

[a1 + b1(x∗ − δ1x∗y∗) + c1y∗]2 ,

a12 = −â12 = r x∗K
(1 + Ky∗)2

+ m1x∗[(a1 + c1y∗)(1 − 2δ1y∗) + (1 − δ1y∗)(b1x∗ − b1δ1x∗y∗ − c1y∗)]
[a1 + b1(x∗ − δ1x∗y∗) + c1y∗]2 ,

a21 = −â21 = e1m1(a1 + c1y∗)(1 − δ1y∗)y∗

a1 + b1(x∗ − δ1x∗y∗) + c1y∗]2 ,

a22 = −â22 = d1 − e1m1x∗[(a1 + c1y∗)(1 − 2δ1y∗) + (1 − δ1y∗)(b1x∗ − b1δ1x∗y∗ − c1y∗)]
[a1 + b1(x∗ − δ1x∗y∗) + c1y∗]2 .

and the coexistence equilibrium corresponds now to the
origin (u1, u2 = (0, 0). Let 
 = [

(t ≥ t0) × R3, t0
∈ R+]

and let �(t, X) ∈ C (1,2)(
) be a differentiable
function of time t and twice differentiable function of
X . Let further

L�(t, u) = ∂�(t, u(t))

∂t
+ f T (u(t))

∂�(t, u)

∂u

+1

2
tr

[
gT (u(t))

∂2�(t, u)

∂u2
g(u(t))

]
, (25)

where

∂�

∂u
=

(
∂�

∂u1
,

∂�

∂u2

)T

,
∂2�(t, u)

∂u2

=
(

∂2�

∂u j∂ui

)
i, j=1,2

.

With these positions, we now recall the following
result, [34].

Proposition 4.1 Assume that the functions �(u, t) ∈
C2(
) and L� satisfy the inequalities

r̂1|u|β ≤ �(u, t) ≤ r̂2|u|β, (26)

L�(u, t) ≤ −r̂3|u|β, r̂i > 0, i = 1, 2, 3, β > 0.

(27)

Then the trivial solution of (24) is exponentially β-
stable for all time t ≥ 0.

Remark 1 For β = 2 in (26) and (27), the trivial solu-
tion of (24) is exponentially mean square stable; fur-
thermore, the trivial solution of (24) is globally asymp-
totically stable in probability, [34].

Proposition 4.2 Assume ai j < 0, i, j = 1, 2, and
that for some positive real values of ω1, the following
inequality holds. Then if σ 2

1 < 2a11, it follows that

σ 2
2 < 2a22, (28)

where

ω1 = a12
a21

, a11 > 0, a22 > 0. (29)

and the zero solution of system (22) is asymptotically
mean square stable.

Proof We consider the Lyapunov function

�(u(t)) = 1

2

[
u21 + ω1u

2
2

]
, (30)

where real positive constants ω1 to be define later. Ver-
ifying the validity of inequalities (26) for β = 2 is a
straightforward process. Moreover,

L�(u(t)) = (−a11u1 − a12u2)u1

+(a21u1 − a22u2)ω1u2

+1

2
tr

[
gT (u(t))

∂2�

∂u2
g(u(t))

]
. (31)

Now we evaluate that
∂2�

∂u2
=

[
1 0
0 ω1

]

and gT (u(t)) ∂2�
∂u2

g(u(t)) =
[

σ 2
1 u

2
1 0

0 ω1σ
2
2 u

2
2

]
so that

we can estimate the trace term as

tr

[
gT (u(t))

∂2�

∂u2
g(u(t))

]
= σ 2

1 u1
2 + ω1σ

2u2
2.
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Table 1 Description of the parameters, used in the model system (2) with their units/dimensions: V stands for volume of the species
and T for time

Parameters Biological meaning Values Dimension/ Reference
Unit

r Prey intrinsic growth rate 3 T−1 [16,36]

r1 Intra-species competition rate of prey 0.07 T−1V−1 –

K Level of prey fear due to 2 V−1 [36]

anti-predator reaction

m1 Prey capturing rate by the predator 0.49 T−1 [37]

e1 Conversion factor of predator on prey 0.2 Unit less [14,17]

δ1 Prey refuge coefficient 0.05 V−1 –

a1 Half-saturation constant for prey 0.05 V [17]

b1 Handling time on the feeding rate effort 0.06 Unit less [17]

c1 Mutual interference among the predators 0.26 Unit less [17]

d1 Natural mortality rate of predator 0.5 T−1 [17,20,21]

Hence from (31), we obtain L�(u(t)) = −(a11 −
σ 2
1
2 )u21 − (a12 − a21ω1)u1u2 − (a22 − σ 2

2
2 )ω1u22. If we

choose ω1 = a12
a21

, then we get

L�(u(t)) = −(a11 − σ 2
1

2
)u21

−(a22 − σ 2
2

2
)ω1u

2
2 = −uT Qu, (32)

where Q = diag[(a11 − σ 2
1
2 ), (a22 − σ 2

2
2 )ω1] and the

diagonal matrix Q is a real symmetric positive definite
matrix and hence its eigenvaluesλ1 andλ2 becomepos-
itive real quantities if the following conditions holds:
σ 2
1 < 2a11 with a11 > 0 and σ 2

2 < 2a22 and a22 > 0. If
λm stands for the minimum of two positive eigenvalues
λ1 and λ2 for the diagonal matrix. Then the previous
inequality for L�(u(t)) we thus get

L�(u(t)) ≤ −λm |u(t)|2,

thus completing the proof. 	


Remark 2 Proposition 4.2 provides the necessary con-
ditions for the stochastic stability of the coexistence
equilibrium Ê∗ in the presence of environmental fluctu-
ations, as discussed in [35]. Consequently, the model’s
internal parameters, combined with the intensities of
environmental fluctuations, contribute to upholding the
stability of the stochastic system.

5 Numerical simulations

UtilizingMATLAB,we runnumerical simulations over
the parametric value set to visualize the analytical find-
ings, see Table 1.

In particular, it is found that the system (2) exhibits a
stable behaviour around E∗ = (1.98, 0.80), seeFig. 4a.

5.1 Effect of m1

When thepredator’s hunting ratem1 is high, the dynam-
ical system switches to unstable behavior, specifically
for m1 = 0.96. This is illustrated in Fig. 4b. For
the parameter m1, the behaviour of the coexistence
equilibrium is shown in Fig. 5a, b. The Hopf bifur-
cation point (H) is found at m1 = 0.946987 with
eigenvalue ±0.770711i and a branch point (BP) at
m1 = 0.152917, with eigenvalue (0,−3).

Figure 5c shows that the system undergoes a super-
critical bifurcation after a sequence of stable limit
cycles from the Hopf point, the first Lyapunov expo-
nent is −3.208284e−02. The results above prove that
increasing m1 can reduce both prey and predator den-
sities and that when m1 = 0.946987, the system (2)
switches from being stable to limit cycles.

The symbol (BP) shows a transcritical bifurcation
at the branch point.
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Fig. 4 a The plot is generated for the values of the reference
parameters given in Table 1 showing the stability of the coexis-
tence equilibrium. b The plot is obtained withm1 = 0.97 and the

other values of the reference parameters in Table 1 giving rise to
a stable limit cycle

5.2 Combined effect of K and m1

As noted above, when m1 = 0.97 and K = 2, the
system exhibits a persistent oscillatory behavior around
E∗. The system trajectories settle to the coexistence
equilibrium E∗ for low values of K , such as K = 0.2,
see Fig. 6a.

5.3 Combined effect of δ1 and m1

As reported in Fig. 4b, when m1 = 0.97 and δ =
.05, the system attains oscillatory behavior near E∗.
Taking the higher value of the prey refuge, δ1 = 0.5, the
system trajectories settle to the coexistence equilibrium
E∗ once more (cf. Figure 6b).

5.4 Effect of c1

The mutual interference among predators c1 is a key
factor in switching the prey and predator behaviors,
as shown in Fig. 8a, b. We have a Hopf point at
c1 = 0.201944with eigenvalues±0.770711i . The sys-
tem undergoes a supercritical bifurcation with the first

Lyapunov exponent −1.442495e−02 at that point, and
each population starts to oscillate persistently. A family
of stable limit cycles is thus created from the H point
in the c1 − x − y parameter space (cf. Figure 8c).

5.5 Bifurcations

The bifurcation diagrams of Figs. 5d, 7a, b and 8d
fully describe the whole dynamic nature of the system
(2) in terms of the parametersm1 and c1 respectively. To
visualise the relationship between the predator capture
rate with prey fear level and refuge size separately, we
have respectively plotted bifurcation diagrams withm1

as the bifurcation parameter for K = 2 and K = 0.2,
Fig. 5d and 7a and for δ1 = 0.05 as well as δ1 = 0.5,
Figs. 5d and 7b.

Figure 9a–d display the two parameters bifurcation
diagram for m1 − K , m1 − d1, m1 − c1, and m1 − δ1
respectively. A Bogdanov-Takens bifurcation is shown
in the dynamical system (2) arising at the critical values
of the bifurcation parameters as m1[bt] = 0.729046
and d1[bt] = 0, at which both eigenvalues vanish (cf.
Fig. 10). Table 2 provides a summary of the nature of
equilibrium points as discussed in the above study.
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Fig. 5 a, b Form1, the trajectory illustrates the various dynami-
cal behaviours of prey (left) and predator (right). c The trajectory
shows a set of stable limit cycles generated from the Hopf (H)

point, taking m1 as the bifurcation parameter. d Bifurcation dia-
gram as function of the bifurcation parameter m1 for the prey
(left) and predators (right)

5.6 Environmental fluctuations

Following that, we will look at the system’s dynamical
behaviour in the presence of environmental perturba-
tions. We employ the Euler Maruyama (EM) method
using MATLAB software to numerically simulate the

stochastic differential Eq. (22). Using a suitable Lya-
punov function (30), we established the condition for
asymptotic stability of Ê∗ in mean square sense for the
system (22). These conditions are determined byσ1 and
σ2 andmodel systemparameters. Using, σ1 = 0.01 and
σ2 = 0.015, as the intensities of environmental pertur-
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Fig. 6 a Whenm1 = 0.97, the figure shows oscillatory behavior
around E∗ (continuous line) for K = 2 and a stable behaviour for
K = 0.2 (bold continuous line). b When m1 = 0.97, the picture

displays oscillatory behaviour around E∗ (continuous line) for
δ1 = 0.05 and a stable behaviour for δ1 = 0.5 (bold continuous
line)
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Fig. 7 a Bifurcation diagram for m1 when K = 0.2. b Bifurcation diagram for m1 when δ1 = 0.5. In both frames, the prey is on the
left, and the predators are on the right
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Fig. 8 a, b For c1, the trajectory illustrates the various dynami-
cal behaviours respectively of prey (left) and predators (right). c
The trajectory depicts a set of stable limit cycles generated from

the Hopf (H) point in the c1 − x − y bifurcation space taking c1
as bifurcation parameter. d Bifurcation diagram in terms of c1:
prey (left), predators (right)

bations with parameters set as apply in deterministic
system, each species coexist and stochastically stable
((cf. Figure 12)a). Next, we set the environmental fluc-
tuation values to σ1 = 0.08 and σ2 = 0.08, coexistence
equilibrium becomes unstable ((cf. Figure 12)b).

5.7 Two parameters, Lyapunov exponent and basin of
attractions

In this section, the system (2) can be transform into
the following discrete-time system by using Euler’s
method
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Fig. 9 a–d Two parameters bifurcation diagram in the m1 − K , m1 − d1, m1 − c1, and m1 − δ1 parameter spaces, respectively

Table 2 Natures of
equilibrium points

Parameters Values Eigenvalues Equilibrium points

m1 0.152917 (−3, 0) Branch Point (BP)

0.946987 (±0.770711i) Hopf (H)

c1 0.201944 (±0.614977i) Hopf (H)

(m1, d1) (0.7290, 0.0000) (≈ ±0.00) Bogdanov-Takens (BT)

123



13686 A. Chatterjee et al.

0.2 0.4 0.6 0.8 1
m1

0

0.5

1

1.5

2

2.5

d
1

BT

Fig. 10 Two parameters Bogdanov-Takens bifurcation diagram
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xn+1 = xn + h

[
r xn

1 + Kyn
− r1x

2
n

− m1(xn − δ1xn yn)yn
a1 + b1(xn − δ1xn yn) + c1yn

]
,

yn+1 = yn + h

[
e1m1(xn − δ1xn yn)yn

a1 + b1(xn − δ1xn yn) + c1yn
− d1yn

]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(33)

where h is the step size. Here, we delve into the numeri-
cal exploration of the two-parameter dynamics outlined
in model (33), specifically emphasizing stability and
chaos. We bypass the analytical examination of local
stability, deeming it self-evident.Our primary focus lies
on the investigation of stability and chaos in the con-
text of the two-parameter dynamics and the numerical
exploration of the basin of attraction. We use Python
for this purpose. Since they enable us to examine stable
periodic patterns embedded in the chaotic zone, the bi-
parameter dynamics are essential to our understanding.
By doing this, we can then ascertain the complex transi-
tional patterns underlying their dispersion in the chaotic
sea. Moreover, the bi-parameter dynamics can show
how multistability has emerged in the system. First,
we will discuss the Lyapunov exponent (LE). Recently,
many scholars have addressed this type of behavior in
different models (see [38]). We choose the step size
h = 0.01. We chose two parameters for this: the prey
reproduction rate (r) and the level of fear (K ). Through

constructing the LE between these two parameters, we
can dynamically analyze how the fear level affects the
reproduction rate of the prey species. In Fig. 13, the LE
is plotted between these two parameters. The LE can be
calculated from the eigenvalues of the Jacobian matrix.

The Jacobian matrix of model (2) has two different
eigenvalues. The average of the real part of the eigen-
values determines the LE. For simplicity, we use var-
ious Python libraries to calculate the LE numerically.
In Fig. 13a, the multiple values of the LE have been
labeled in the color bar, which is represented by differ-
ent colors in the plot. The white color in the plot rep-
resents the non-existence of the solution. The positive
values of the LE represent a chaotic regime, the neg-
ative values represent stable or stable periodic behav-
ior, and the Lyapunov value equal to zero means the
bifurcation in the system (2). For the LE diagrams in
Fig. 13a, we examined model (2) dynamics by adjust-
ing K and r while keeping other parameters constant
at r1 = 0.01,m1 = 0.96, δ1 = 0.03, a1 = 0.05,
b1 = 0.07, c1 = 0.24, e1 = 0.21, d1 = 0.54. Here, we
fixed the initial conditions as (0.6, 0.8). We explored
1000 combinations of K and r , resulting in a grid of
1000 equispacedpoints in K×r = [0.01, 4]×[0.01, 8].
At each of these 1000 parameter points, we computed
the LE and periodicity of the orbit by iterating model
(2) for 100 iterations. Since there is no positive value in
the plot, the system is not chaotic for this bi-parameter
space with other fixed parameter values. The color
scheme changing from −35 to −5 represents the com-
bined behavior of stable and stable periodic behavior,
whereas the brown color in the plot represents the bifur-
cation regime in the system (2). From plot Fig. 13a, we
conclude that when the prey reproduction rate is low,
the fear effect causes bifurcation in the system. In con-
trast, the high reproduction rate demands a high level
of fear to maintain the stability of the ecosystem. A
similar discussion can be had for the LE in plot 13b.
Plot 13b represents the logarithmic LE with parameter
values:

{r1 = 0.04,m1 = 0.99, δ1 = 0.05, a1 = 0.08,

b1 = 0.08, c1 = 0.28, e1 = 0.23, d1 = 0.94}
and initial conditions (0.9, 0.9). We choose K × r =
[0.01, 10]×[0.01, 10] for plot 13b. The basin of attrac-
tion of model (2) is examined in a prey-predator model.
It speaks of the starting points (sets of population val-
ues) fromwhich the system develops to reach a specific
stable equilibrium or limit cycle. The period of the sys-
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Fig. 11 The figures depict the change of sign of real part (left column) and imaginary part (right column) of λ1 (top frames) and λ2
(bottom frames) respectively

tem is determined iteratively for a range of initial con-
dition combinations, offering insights into the stability
and periodicity of the ecological dynamics. A Fig. 14 is
used to depict the complex dynamics. The graph illus-
trates how changes in x0 and y0 affect the predator–
prey model’s periods. To distinguish different periods,
a custom colormap is utilized, assigning distinct col-
ors to each period. We fix r = 3, r1 = 0.22,m1 =
0.97, δ1 = 0.01, a1 = 2.0, b1 = 0.1, c1 = 0.02, e1 =
0.01, d1 = 0.02, and K = 0.5.

6 Discussion

This paper incorporates the features of prey refuge and
the fear effect in an ecosystem. We study their impact
on a predator–prey interaction model.
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Fig. 12 a The figures depict solution of system is stochastically stable for σ1 = 0.01 and σ2 = 0.015. b The figures depict solution of
system is stochastically unstable for σ1 = 0.08 and σ2 = 0.08

In this study, we have considered the concepts pre-
sented in the earlier paper [1,16], but with a modifica-
tion to the functional response form. Instead of using
the Holling types II counterparts utilized in their work,
we incorporate the Beddington-De Angelis functional
response model. Further, we consider fear terms built
directly into the growth equations of prey, according to
anti-predator behavior.

Prey populations grow logistically but are preyed
upon by predators, interfering among them. This phe-
nomenon is modeled via a Beddington-De Angelis
response function. The equilibria’ feasibility and sta-
bility are assessed after showing the boundedness of
the solution trajectories. There are three possible fea-
sible equilibrium points for the system (2), trivial E0,
prey-only E1 and coexistence E∗, ofwhich only the last
two are conditionally stable, a transcritical bifurcation
relating them.

To address the first question stated in the Introduc-
tion, we concentrate on the effects of changing the
parameter m1 expressing the predator’s rate of prey
capture. It is crucial to show the onset of theHopf bifur-
cation and the stability switching behaviour. The sys-
tem exhibits oscillatory behaviour when m1 > m1c =
0.946987, but it settles to stable coexistence in the range
0.152917 < m1 < 0.946987. When m1 crosses the

value 0.152917, the predator vanishes and the coexis-
tence equilibrium E∗ migrates into the predator-free
equilibrium E1.

Our focus lies on the refuge coefficient, which deter-
mines how the changes influence the system dynam-
ics in the refuge function. From a mathematical per-
spective, our observations revealed that the character-
istics of the behavioral policy regarding prey refuge
have a stabilizing impact on the dynamics of predator–
prey interactions [16]. When the predation process fol-
lows theBeddington-DeAngelis response function, our
observation reveals an opposing relationship between
the fear factor and prey capture by the predator, signif-
icantly influencing the system’s stability. However, the
study above did not address in [1,16,26]. The compari-
son of our results indicates that the distinct assumptions
regarding the response functions lead to significantly
contrasting behaviors of the system.

The switching phenomenon of both populations
has also been observed under the influence of mutual
interference coefficient among predators. Similar phe-
nomena have been identified in [26]. A pair of two-
parameter bifurcations are shown in two different
parameter spaces. Each exhibits different stability char-
acteristics. Based on the findings, we can deduce that
the predator’s prey capture rate and the mutual inter-
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Fig. 13 a The maximum
Lyapunov exponent plot is
in the parameter space
K×r ∈ [0.01, 4]×[0.01, 8].
The other parameter values
are:
r1 = 0.01,m1 = 0.96, δ1 = 0.03, a1 = 0.05, b1 = 0.07, c1 = 0.24, e1 = 0.21, d1 = 0.54.
bThe logarithmic lyapunov
exponent plot for r × K ∈
[0.01, 10] × [0.01, 10] with
{r1 = 0.04,m1 =
0.99, δ1 = 0.05, a1 =
0.08, b1 = 0.08, c1 =
0.28, e1 = 0.23, d1 = 0.94}

ference coefficient’s influence, as well as fear level and
prey refuge should be kept within a certain range to
avoid either predator extinction and possible system
instability. This in case the predators are considered
as a population to be preserved. In case instead they
represent a threat for the ecosystem, e.g. as invasive

alien species, the mathematical and numerical findings
should be reversed in order to ensure their eradication.

Environmental noise has a profound impact on eco-
logical systems, introducing randomness and unpre-
dictability to the dynamics. In the predator–prey model
context, noise reflects the unpredictable variations in
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Fig. 14 a The basin of attraction in the space [0.5, 9.5]×[0.5, 9.5]. The different color boxes in the color bar represent different periods
in the chosen space. Plot b and c are the local amplifications of plot (a)

environmental factors like resource availability, pre-
dation pressure, or habitat quality. These fluctuations
affect the growth rates of predator and prey popula-
tions, leading to unpredictable changes in population
sizes over time.

By accounting for noise effects, we acknowledge
the inherent uncertainty in ecological processes. Deter-
ministic models may overlook this complexity, but
stochastic simulations offer amore realistic portrayal of

ecosystem dynamics. They enable us to explore a spec-
trum of possible outcomes and evaluate the resilience
of model predictions to environmental variability.

When the model incorporates environmental noise
with low intensity, it can lead to stochastic asymp-
totic stability. High-intensity noise, on the other hand,
has the potential to induce oscillations with significant
amplitudes, leading to unpredictable behavior in the
system. When meeting defined constraints on random
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variations in the environment and model parameters,
the model achieves stochastic stability.

By exploring two distinct parameter sets, the study
presents numerical results for a dissipative standard
map in discrete-time predator–prey system. The intro-
duction of dissipation induces a modification in the
phase space structure, leading to the replacement of
elliptic fixed points with attracting fixed points. Exam-
ining the Lyapunov exponent reveals a highly diverse
parameter space (K , r) containing numerous self-
similar shrimp-shaped structures. These structures, cor-
responding to periodic attractors, emerge within a large
region associated with chaotic dynamics.

The study introduces innovative elements in several
key areas:

• Integration of Prey Refuge and Fear: This study
innovatively incorporates prey refuge and fear
effects into the predator–prey model, diverging
from traditional approaches. By considering these
elements, the model reflects subtle prey responses
to predators, ultimately improving predictive pre-
cision.

• AdoptionofBeddington-DeAngelisModel:Unlike
conventional Holling type II models, this research
adopts the Beddington-De Angelis functional
response model. This selection provides a more
detailed depiction of predator–prey interactions,
enhancing the model’s realism.

• Analysis of Stability and Equilibrium: Through a
comprehensive examination of stability and equi-
librium points, this study offers insights into sys-
tem dynamics. Pinpointing critical thresholds and
bifurcations illuminates conditions for stable coex-
istence and the factors contributing to instability.

• Exploration of Parameter Sensitivity and Bifurca-
tion: This research delves into the system’s sensi-
tivity to crucial parameters, such as the predator’s
prey capture rate. Investigation of bifurcation phe-
nomena reveals pivotal thresholds that govern pop-
ulation dynamics and ecosystem stability.

• Consideration of Environmental Noise: Further-
more, this study evaluates the impact of environ-
mental noise on system stability. Through the anal-
ysis of stochastic processes, it provides valuable
insights into the resilience of ecological systems to
external disturbances.

The study of dissipative structures holds great impor-
tance in modern theoretical biology. These structures

encompass temporal or spatial anomalies that can arise
in systems solely influenced by dissipation under cer-
tain conditions.Wewill specifically delve into the anal-
ysis of spatial dissipative patterns. Furthermore, the dis-
sipative elements being studied in this scenario primar-
ily arise from the effects of diffusion, positioning this
research as an exploration of dissipative structure. The
manuscript also discusses predator–prey models with
quadratic interactions and weak dissipation, showing
that with seasonal forcing, these models can coexist
withmultiple periodic attractors. It highlights that these
dynamics aremost evident in the conservative casewith
zero dissipation, where a mix of regular and chaotic
motions is observed. Moving away from the conser-
vative scenario leads to transient chaos, the destruc-
tion of invariant tori, and a shift to stable limit cycles.
This change results in complex basins of attraction that
can be influenced by stochastic perturbations, causing
shifts in system behavior. Biologically, weak dissipa-
tion signifies predators effectively controlling prey den-
sity below carrying capacity. The potential existence
of dissipative structures in ecological systems akin to
those observed in chemical interactions. It references
prior studies on slime mold aggregation as an exam-
ple of such structures in ecological contexts. While
these studies initially suggested instability due to noise.
The current paper then describes attempts to identify
purely dissipative structures by modifying predator–
prey equations with noise terms to simulate random
motion effects. The focus shifts to exploring scenar-
ios where uneven geographic distributions of preda-
tors and prey could be mutually beneficial, highlight-
ing that cooperative prey behaviors could lead to faster
reproduction rates, benefiting both prey and preda-
tors through increased prey populations ”diffusing”
into predator-concentrated areas. This analysis seeks
to understand the dynamics of predator–prey systems
and the potential for cooperative interactions to influ-
ence population dynamics in ecological settings.

In essence, this study propels the comprehension
of predator–prey interactions by integrating innovative
components like prey refuge and fear effects, utilizing
novel functional responsemodels, and conducting thor-
ough stability and sensitivity analyses. These advance-
ments enhance ecological models’ precision and pre-
dictive capabilities, aiding in ecosystem management
and conservation initiatives.

Ecologically, random disturbances can significantly
impact population dynamics, potentially leading to the
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extinction of both prey and predator populations, espe-
cially when the disturbance is significant. Simulations
show that increasing the fear effect (K) reduces preda-
tor density, while the impact on prey density is unclear.
Furthermore, increasing the amount of refuge (m) ben-
efits prey populations but is detrimental to the persis-
tence of predator populations. These findings highlight
the complex interplay between various ecological fac-
tors such as disturbance, fear effects, and refuge avail-
ability in shaping population dynamics in predator–
prey systems.

The current paper discusses the impacts of environ-
mental fluctuations on a predator–prey system, high-
lighting that lower intensities of environmental noises
lead to fluctuations near deterministic system trajec-
tories. However, as noise intensities increase, so do
fluctuations, with very high amplitudes occurring at
larger intensities. Lowering noise intensity could min-
imize fluctuations in prey and predator densities, pro-
moting system stability. The text also explores stochas-
tic dynamics in systems exhibiting bistability behav-
ior, noting that increased noise intensity can induce
transitions rarely seen in stochastic predator–prey sys-
tems. The study underscores the importance of con-
trolling environmental disturbances for species sur-
vival. It introduces future research directions examin-
ing the combined effects of seasonality and stochas-
ticity on predator–prey systems with fear effects and
Beddington-functional response. Overall, the research
demonstrates the reliability of the proposed predator–
prey models in ecological contexts, emphasizing the
interplay between noise, system dynamics, and envi-
ronmental stability.

These are compelling areas for future research. One
aspect involves integrating additional environmental
noises like colored noise, Poisson noise, and more into
themodel. Additionally, exploring the impact of impul-
sive perturbations and delays can enhance the model’s
realism. These aspects are reserved for future explo-
ration.
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