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Abstract Memristor has been extensively employed

to emulate neuron/synapse-inspired behaviors and to

characterize the electromagnetic induction generated

by ionic flowing. A link between memristive features

and neural electrical activities is significantly neces-

sary to be investigated. Thus, we propose a new

neuron model with a locally active threshold flux-

controlled (LTF) memristor, which depicts the elec-

tromagnetic induction. The LTF memristive neuron

model can exhibit a regular evolution and transition of

various firing patterns dependent upon the negative

different conductance of the memristor, through

performing the corresponding numerical simulations.

It is demonstrated that due to the locally active

threshold effect, the obtained model has complex

firing behaviors. The memristive neural network is

connected via chemical synapses. The memristive

neural network under the modulation of excitatory and

inhibitory chemical synapses shows different

synchronous patterns. The captured results reveal that

the locally active threshold effect is crucial for the

generation of complex firing modes and the emer-

gence of synchronization behaviors.

Keywords Memristor � Neural model � Dynamics �
Bifurcation � Synchronization

1 Introduction

Memristive systems have been investigated inten-

sively since the fourth fundamental passive circuit

element in addition to resistor, capacitor, and inductor

was postulated by Chua [1]. The memristor is able to

store information in different resistances because the

resistance of memristive systems can be modulated by

the history of its external stimuli. Memristive devices

with non-volatile memory are obtained through mate-

rials engineering and circuit theory and can maintain

their resistance state after the externally applied

voltage is removed [2]. The stable resistance state is

used to denote stored information. Therefore, mem-

ristive systems are suitable for signal storage applica-

tions and are employed to mimic neural systems [2–5].

For emulating biological synapses and neurons,

many nonlinear systems as memristive systems offer-

ing desirable dynamics have been proposed to clarify

intrinsic biophysical mechanism [6–10]. A nanoscale

silicon-based memristive system has shown the spike
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timing-dependent plasticity of biological synapses

[11]. A kind of memristive system can reveal rich

dynamics of biological neurons, such as excitability,

spiking, bursting, and mixed modes [12–14]. The

photo/thermosensitive neuron models coupled by the

memristive synapse exhibit multistability and phase

synchronization [15, 16]. Memristive Josephson junc-

tion circuits have the ability to reproduce neuron-like

excitability, bursting with the same bifurcation mech-

anism, and synchronous behaviors [17–19]. In addi-

tion, there are many systems composed of memristors

and neural models based on energy perspectives

[20–22]. On the one hand, a flux-controlled memris-

tor-based neuron model is considered to characterize

the electromagnetic induction effect triggered by ionic

transmission in cell membranes [23]. Subsequently,

the neural systems with flux-controlled memristors are

exploited to not only exhibit dynamical and collective

behaviors, but also reveal abundant biophysical

mechanisms [24–29]. A Wilson neuron model with

electromagnetic induction effects can display rich

electrical activities dependent upon initial conditions

and the coexisting electrical activities are verified by

implementing an analog circuit on a hardware level

[30]. A discrete memristive Rulkov neuron model is

able to emulate the electromagnetic induction effects

and to better produce the firing activities through a

hardware platform [31]. A memristive neural system

with an excitatory effect can produce bursting with

deceased firing rates [32]. The inhibitory current from

the flux-controlled memristor enhances firing rates in

the form of bursting, and the bifurcation mechanism is

demonstrated by the fast-slow decomposition method

[33]. Pattern formation and synchronization stability

in the neuron-like network are related to the local

kinetics and coupling schemes [34–36]. A coupled

network with a thermistor can detect the fluctuation of

environment temperature and exhibit the phase syn-

chronization [37, 38]. The neural model coupled with

the memristor has many rich dynamics such as the

wondrous offset-control plane coexisting behaviors,

complete synchronizations, coexisting multi-

stable patterns, and extreme events [39–42].

On the other hand, a locally active memristor is

used to build a new biophysical system. The locally

active memristor has a distinct feature as a negative

differential conductance or resistance by observing

DC current–voltage curves [43, 44]. Two neurons

involving a locally active memristor exhibit coexisting

position symmetry for different attractors [45]. The

nonlinear systems containing locally-active memris-

tors have more probability to generate complex

dynamical behaviors [46–48]. Mott memristors with

locally active features are suitably useful in certain

types of neural-inspired computation [49]. A Hopfield

neural network model is constructed by replacing one

of the synaptic couplings with a tri-stable locally

active memristor [50]. Rulkov neurons coupled with a

locally active discrete memristor present multi-stabil-

ity and phase synchronization [51]. A locally active

memristor is proposed to describe electromagnetic

induction triggered by action potentials and the

memristive neuronal model reveals different threshold

values dependent upon the induction effect based on

the current-frequency curve [52].

Consequently, memristive systems have attracted

significant attention in the past decade as a major

enabler of new biophysical paradigms to reproduce

abundant brain-inspired behaviors and functions. For

instance, an electromagnetic induction current

described by a threshold flux-controlled memristor is

used to replace the external current in the Hindmarsh-

Rose neuron model [53]. The obtained memristive

neural model exhibits hidden bursting firing patterns.

A coupled FitzHugh-Nagumo model with a local

active flux-controlled memristor can reproduce com-

plex firing transitions similar to that of the model with

a chemical synapse [54]. However, a combination of

threshold and local active features needs to be further

reconsidered from the neurodynamics point of view.

Thus, we propose a locally-active threshold flux-

controlled memristor. The relation between neuronal

electrical activity and locally-active threshold feature

is explored by bifurcation analysis. Collective behav-

iors in the memristive neural network are exhibited by

modulating excitatory and inhibitory chemical synap-

tic models.

The rest of the present paper is organized as

follows. In Sect. 2, a new memristive neuron model is

proposed by introducing a locally threshold electro-

magnetic induction effect. Meanwhile, the neural

network composed of the models and chemical

synapses is constructed. In Sect. 3, we analyze the

dynamical behaviors in the model based on the

bifurcation. Then corresponding collective behaviors

have further been demonstrated in the neural network.

The conclusion is given in Sect. 4.
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2 Model description and method

2.1 Hindmarsh-Rose-type neuron models

Dynamical models that can emphasize important

features and downplay the inessential details have

been proposed and developed in neuroscience and

neurodynamics. For instance, Hindmarsh and Rose

reported a second-order neuron model to reduce the

complexity of these equations such as the Hodgkin-

Huxley model of the nerve impulse composed of four

complex nonlinear differential equations, six func-

tions, and seven constants. The second-order Hind-

marsh-Rose (labeled as 2D HR) neuron model has few

parameters but can predict the frequency-current

relationship and may be useful for exploring detailed

interactions in small neuronal networks [55]. The

mathematical description of the generalized 2D HR

neuron model is

_x ¼ y� ax3 þ bx2 þ Iext;

_y ¼ c� dx2 � y;

(
ð1Þ

where x denotes the membrane potential on neuronal

cells, and y is the recovery variable relative to the

inward current. While parameters (a, b, c, and d) are

the positive constants. And Iext represents external

stimulus current. To explore the complex electrical

activities of neurons, modified mathematical models

have been proposed to reproduce different bursting

and chaotic oscillations dependent upon a variety of

bifurcations.

2.2 Modelling of LTF memristor

Neuromorphic circuits are inspired by neurons and

synapses in the brain. The circuits have been devel-

oped from the physical and mathematical point of

view. Novelty, neurons and synapses may be emulated

by flux-controlled, charge-controlled, current-con-

trolled, and voltage-controlled memristors. According

to the state-dependent Ohm’s law and Chua’s theorem

[1, 56], a generic flux-controlled memristor is

expressed as follows:

IM ¼ Wð/ÞVM;

d/
ds

¼ gðVM ;/Þ;

8<
: ð2Þ

where VM and IM denote the voltage and current of the

memristor, respectively. W(u) is the memductance

function. The state variable / is magnetic flux. The

function g(VM, /) is associated with the device

materials and its physical operating mechanism.

Flux-controlled memristors have been used to

mimic and describe synapses and neurons with

electromagnetic induction. In particular, a threshold

flux-controlled memristor was introduced into the 2D

HR neuron model, which can generate new firing

patterns [53]. A locally-active memristor was intro-

duced into the 2D FHN neuron model to reproduce

biophysical functions similar to chemical synapses

[54]. Thus, a Locally-active Threshold Flux-con-

trolled memristor (simplified as LTF memristor) is

worth proposing and exploring towards its physical

realization. The specific forms of LTF memristor are

rewritten as follows:

IM ¼ p tanhð/ÞVM;

d/
ds

¼ 1

n
ð1� p1

/
VM

� p2/ÞVM;

8><
>: ð3Þ

where p and n are gain to control the magnitude of the

memristive current. The inductive potential with

linear and nonlinear factors is dependent upon the

magnetic flux, due to the existence of complex media

in a cell. Two coefficients p1 and p2 are deemed as the

modulated parameters of the locally-active memristor.

Note that the coefficients are able to be chosen, which

can be tuned based on the modeling requirement of

researchers. For example, when the parameters p1 and

p2 are set as zero, the model in Eq. (3) is a Threshold

Flux-controlled (simplified as TF) memristor.

2.3 Modelling of LTF memristive neuron

From the physical point of view, the 2D HR neuron

model is regarded as a parallel circuit composed of a

capacitor, an inductor with internal resistor and

voltage source, and two voltage-controlled current

sources, as shown in the light-yellow box of Fig. 1a.

The two voltage-controlled current sources are defined

as

IN1
ðVMÞ ¼ V2

M � kV3
M; IN2

ðVMÞ ¼ V2
M: ð4Þ

Inspired by the aforementioned modelling mind, a

novel 3Dmemristive neuron model is reported in here.

To better emulate complex dynamical behaviors of the
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neuronal firings, the 3D HR neuron model was

obtained by adding a memristive current. The LTF

memristor is employed to emulate the electromagnetic

induction. When the memristive current IM of the LTF

memristor is parallel with the neuron model, the new

memristive neuron circuit as shown in Fig. 1a.

According to Kirchhoff’s laws, the following

equations are described as

C
dVM

ds
¼ I þ IN1

ðVMÞ þ IM;

L
dI

ds
¼ V0 � rI � RIN2

ðVMÞ;
d/
ds

¼ 1

n
ð1� p1

/
VM

� p2/ÞVM :

8>>>>><
>>>>>:

ð5Þ

By using the dimensionless scale transformation,

s
L=r

¼t;
I

I0
¼ y; VM ¼ LI0

rC
x;

/
LI0

¼ u;

k0 ¼
pr

L
; k1 ¼ LI0p2; k2 ¼ rCp1; n ¼ L

Cr2
;

a ¼ kL3I20
r3C3

; b ¼ L2I0
r2C2

; c ¼ V0

rI0
; d ¼ RL2I0

r3C2
;

ð6Þ

when I0 = 1/L, the dynamical equation can be simpli-

fied and expressed as

dx

dt
¼ y� ax3 þ bx2 þ k0 tanhðuÞx;

dy

dt
¼ c� dx2 � y;

du
dt

¼ ð1� k1uÞx� k2u;

8>>>>><
>>>>>:

ð7Þ

where u is regarded as the magnetic flux variable

associated with the membrane potential x (instead of

VM) in a cell, and the memductance k0tanh(u) is used
to reflect the electromagnetic induction effect with

threshold feature.

The equilibrium point of Eq. (7) isE* = (x*, y*,u*).

In order to get the equilibrium point E*, we let the right

of Eq. (7) is equal to zero, i.e.

y� � ax�3 þ bx�2 þ k0 tanhðu�Þx� ¼ 0;

c� dx�2 � y� ¼ 0;

ð1� k1u
�Þx� � k2u

� ¼ 0.

8>><
>>: ð8Þ

We obtain

y� ¼ c� dx�2;u� ¼ x�

k1x� þ k2
;

and x* can be derived from the following equation

�ax�3 þ ðb� dÞx�2 þ k0 tanh
x�

k1x� þ k2

� �
x� þ c

¼ 0:

ð9Þ

In the appendix, the real roots of Eq. (9) are

calculated in detail.

Next, we compute the Jacobian matrix J at E*,

which can be expressed as follows.

J ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

0
@

1
A; ð10Þ

(b)(a)

L

r
C

R
IM IN1

IN2

V0

VM

Fig. 1 a Schematic diagram of LTF memristive neuron circuit

composed of the LTF memristor, capacitor, inductor, and

voltage-controlled current sources. b Schematic of neuronal

network by using the chemical synapse coupling. The yellow

circle, blue line, and red line represent neuron, inhibitory and

excitatory chemical synapse, respectively
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where a11 = –3ax*2 ? 2bx* ? k0tanh(u
*), a12 = 1,

a13 = k0x
*(1–tanh2(u*)), a21 = –2dx*, a22 = –1,

a23 = 0, a31 = 1–k1u
*, a32 = 0, a33 = –k1x

*–k2. The

characteristic equation of J is given by

k� a11 �a12 �a13
�a21 k� a22 �a23
�a31 �a32 k� a33

������
������ ¼ 0: ð11Þ

By algebraic simplification, we obtain

k3 þ b2k
2 þ b1kþ b0 ¼ 0; ð12Þ

where,

b2 ¼3ax�2 þ ðk1 � 2bÞx� � k0 tanhðu�Þ þ k2 þ 1;

b1 ¼ð3ax�2 � 2bx� � k0 tanhðu�Þ þ 1Þðk1x� þ k2Þ
þ ðk1u� � 1Þk0x�ð1� tanh2ðu�ÞÞ þ 2dx�;

b0 ¼ 3ax�2þ2ðd � bÞx� � k0 tanhðu�Þ
� �

k1x
� þ k2ð Þ

þ ðk1u� � 1Þk0x�ð1� tanh2ðu�ÞÞ:

Then the Routh-Hurwitz criteria is used to deter-

mine the stability of E* = (x*, y*,u*) and the following

theorem is obtained.

Theorem 1 If b0, b1, b2[ 0, and b2b1–b0[ 0, then

the equilibrium point E* = (x*, y*, u*) is local

asymptotic stability.

For instance, if the parameters are fixed at a = 1,

b = 3, c = 1, d = 1, k0 = 0.2, k1 = 0.01 and k2 = 2,

then the equilibrium point E* = (2.2660, –1.2660,

1.1203). Correspondingly, the characteristic equation

is derived as

k3þ4.6694k2þ9.7296kþ12.3417 = 0, ð13Þ

and the eigenvalues of Eq. (13) are solved as.

k1 = –2.76484, k2 = –0.952279–1.88599i, k3 = –

0.952279 ? 1.88599i.

Therefore, the real parts of the characteristic roots

are all negative, indicating that the equilibrium point

E* is a stable equilibrium point. Meanwhile, it is

evident that b0, b1, b2[ 0, and b2b1–

b0 = 33.0899[ 0 are satisfied, which is used to prove

the correct of Theorem 1.

2.4 Modelling of LTF memristive neural network

with chemical synapses

To better emulate the collective dynamical behaviors

of neural systems, we construct a neural network

consisting of the LTF memristive HR neurons and

chemical synapses. A synaptic coupled model with

fast threshold modulation is adopted to characterize

the chemical synapse. Thus, corresponding dynamical

equations of the LTF memristive neural network as

shown in the schematic of Fig. 1b are rewritten as

_xi ¼ yi � ax3i þ bx2i þ k0 tanhðuiÞxi þ gcðE � xiÞC;
_yi ¼ c� dx2i � yi;
_ui ¼ ð1� k1uiÞxi � k2ui;

C ¼
Pn
j¼1

kij
1

1þ e�ðxj�hÞ ;

8>>>><
>>>>:

ð14Þ

here, the LTF memristive neurons are identical. The

gain gc is the coupling strength between the ith neuron

and neighbor other neurons j. kij is the n 9 n connec-

tivity matrix. The n is the total number of neurons as

n = 20. The sigmoidal function in Eq. (14) is used to

describe the chemical synaptic model with a fast

threshold h. For the reversal potential E[ x, the

synapse is excitatory such as E = 2; while E\ x, the

synapse is inhibitory such as E = - 1.

2.5 Method

The bifurcation is used to assess the dynamical

behaviors and transition mechanisms of different

firing patterns in the LTF memristive neuron model.

The numerical integrations to the equations are carried

out by using a Brain Dynamics Toolbox in Matlab

software [57]. The memristive parameters k0, k1, and

k2 can be tamed within a certain range. For convenient

numerical simulation, other parameters are fixed at

a = 1, b = 3, c = 1, d = 5, based on the consideration

in Refs. [32, 33, 58].

3 Results

3.1 Dynamics of the LTF memristor

When the LTF memristor is subjected to a sinusoidal

periodic voltage (AC) source as V = Asin(2pft) with
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changing frequency f while the fixed amplitude A = 1,

the voltage-current curves (labeled as AC V-IM
characteristics) are shown in Fig. 2a. It is found that

the LTF memristor is able to exhibit a pinched

hysteresis loop on the voltage-current plane. The

pinched hysteresis loop trends to a linear behavior

when the frequency is increased, while to a nonlinear

behavior when the frequency is decreased. That is, the

memristor becomes a usual (typically linear) resistor

at very high frequencies; while a nonlinear resistor at

very low frequencies. In addition, when the amplitude

is changing and the frequency is fixed at f = 0.02, the

voltage-current characteristics are shown in Fig. 2b. It

is observed that the pinched hysteresis loop is shrunk

in size as the amplitude decreases.

Figure 3 shows distinct differences between the

Threshold Flux-controlled (LF) as k1 = k2 = 0 and the

Locally-active Threshold Flux-controlled (LTF)

memristor in the AC and DC voltage-current planes.

When the two memristors are driven by a sinusoidal

periodic voltage source V = sin(0.04pt), the pinched

hysteresis loop is symmetric for the LF memristor as

shown in the blue curve of Fig. 3a, while asymmetric

for the LTF memristor as shown in the red curve of

Fig. 3a. DC voltage-current plot is used to measure the

local activity of a memristor. Thus, when the voltage

source is selected as direct current, combined Eqs. (3)

and (6), the relationship between voltage and current is

rewritten as

IM ¼ k0 tanhðucÞV ;
uc ¼

V

k1V þ k2
:

(
ð15Þ

If the V in the above equation is a set of constants, a

DC voltage-current plane is formed in Fig. 3b. It is

found that the V-IM plane is a point at k1 = k2 = 0.

However, when k1 = 1 and k2 = 0.2, there exists

jumping behavior from Q1 to Q2. Then, the slope or

differential conductance between Q2 and Q3 is

negative as shown in the yellow branches of Fig. 3b.

Thus, the modified (LTF) memristor model is a

locally-active memristor. Importantly, a kind of circuit

with the locally-active memristor may give rise to

complex oscillations such as chaotic modes.

Fig. 2 AC V-IM characteristics of the LTF memristor. a The

pinched hysteresis loops at f = 0.002 (green), 0.02 (red), 0.2

(cyan), and 2 (blue), respectively, while fixed amplitude A = 1;

b The pinched hysteresis loops at A = 0.1 (green), 1 (red), and 2

(blue), respectively, while fixed frequency f = 0.02. Other

parameters are set as k0 = 1, k1 = 1, and k2 = 0.2, respectively

Fig. 3 Difference of the TF

and LTFmemristor. aAC V-
IM characteristics of the TF

(blue k1 = k2 = 0) and LTF

(red) memristor at f = 0.02,

A = 1. b DC V-IM
characteristics of the LTF

(red) memristor. Other

parameters are set as k0 = 1,

k1 = 1, and k2 = 0.2,

respectively
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3.2 Dynamics of the LTF memristive neuron

To unfold the mechanism of behavioral generation of

LTF memristive neurons, complex electrical activities

are obtained in the systems by modulating two

parameters k1 and k2. Based on the parameter mod-

ulation in the LTF memristor, it is found that the

complex transitions of the model are different by

changing k1 while k2 is fixed, and vice versa. Thus, we

choose two cases: firstly changing k1 while k2 = 0.2;

secondly changing k2 while k1 = 1.

Figure 4 provides the two resulting DC V-IM curves

of the LTF memristor when the above condition is

applied, respectively. It is found that the length (L) of

the appearance of the negative differential conduc-

tance is curtate when k1 is increased and k2 = 0.2.

While the L becomes long when k2 is increased and

k1 = 1. For the sake of contrastive analysis, the

increasing tendency of parameter k1 or k2 is in

agreement with that of L1 to L3. Further, dynamical

behaviors of the LTF memristive neuron are obtained

by modulating parameters k1 and k2, as shown in

Fig. 5.

In Fig. 5a, b, we present different phase orbits of

the TF (k1 = 0, k2 = 0) and LTF (k1 = 1, k2 = 0.2)

memristive neuron. The former is curly blue chaotic

attractors while the latter is incompact red chaotic

attractors. Using the phasing orbit in Fig. 5b as a

reference, the red chaotic attractor is chaotic and

extended along the negative u-axis shown in Fig. 5c

when the parameter k1 is enlarged to 2. Nevertheless,

the red chaotic attractor becomes a cyan periodical

attractor shown in Fig. 5d when the parameter k1 is

diminished to 0.2. At fixed k1 = 1, by increasing k2
from 0.2 to 0.4, the red chaotic attractor becomes a

green periodical attractor in Fig. 5e. However, by

decreasing k2 from 0.2 to 0.1, the red chaotic attractor

is chaotic and extended along the negative u-axis
shown in Fig. 5f. Based on comparisons of Case I

shown in Figs. 4a and 5(b–d) and Case II shown in

Fig. 4b and Fig. 5b, e, f, it is found that the chaotic

feature of the modified neuronal model is associated

with the length of negative differential conductance of

memristor. That is, the two parameters can control

transitions between different dynamical behaviors of

the LTF memristive neuron.

In Fig. 6a, b, we compare the bifurcation diagrams

(obtained by statistical peak values of negative

magnetic flux) with increasing k1 and k2. When the

parameter k1 is enhanced, a transition route from

simple periodical oscillations into complex chaotic

firings is triggered in the LTF memristive neuron.

When the parameter k2 is enhanced, a transition route

from complex chaotic firings into simple periodical

oscillations occurs. Therefore, increasing k1 is able to

boost the generation of chaotic firings while increasing

k2 can inhibit the occurrence of chaotic oscillations.

The largest Lyapunov Exponential curve as shown in

the red curve of Fig. 6c, d can also confirm the

modulating scheme with increasing k1 and k2. Recall-

ing Fig. 4, increasing k1 for curtate L can enhance

firing patterns while increasing k2 for growing L can

inhibit firing patterns of the LTF memristive neuron.

Figure 7 provides a potential relation diagram

between the firing patterns and the changing two

parameters (k1 and k2), based on the Largest Lyapunov

Fig. 4 Current–voltage curves of the LTF memristor under DC

situation. a Case I: changing k1 is selected as 0.8 (solid-cyan), 1
(solid-red), 2 (dashed-cyan) while k2 = 0.2; b Case II: changing

k2 is selected as 0.4 (solid-cyan), 0.2 (solid-red), 0.1 (dashed-

cyan) while k1 = 1. The length of negative differential

conductance is marked as L & distance between Q2 and Q3

in Fig. 3b. Other parameters are set as k0 = 1 and b = 3
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Exponential (LLE) and average frequency (f) diagram.

The LLE is greater than zero, indicating that the LTF

memristive neuron can produce chaotic behaviors.

Thus, the faint yellow district similar to the laminar

flow aero-foil profile in Fig. 7a and the starry red

district in Fig. 7b are chaotic states.

Next, we explore a new two-parameter problem

using the internal parameter b of the 2D HRmodel and

the gain k0 of the LTF memristor as two controllable

parameters. The goal is to generate different firing

patterns in an adaptive way. To achieve this, the

bifurcation diagram and Lyapunov Exponential dia-

gram are calculated by increasing the gain k0 at b = 3

and 2, respectively.

Figure 8a, b illustrate that the LTF memristive

neuron has various firing patterns by modulating the

gain k0. It is found that the transition from period-1 to

period-2 to period-doubling to chaotic firings can

appear. By comparison of Fig. 8a, b, different param-

eter b leads to different transition routes. Without

control at k0 = 0, the neuron is spiking or resting state.

When being controlled as k0 = 0, the LTFmemristive

neuron reliably switches to a variety of periodical

oscillations involving bursting and chaos. As shown in

Fig. 8c, d, when the red largest Lyapunov Exponential

is greater than zero, the system pertains to chaotic

behaviors. While the red largest Lyapunov Exponen-

tial value is close to zero, suggesting that the LTF

memristive neuron has multiple periodical oscillation

Fig. 5 Phase orbits of the

LTF memristive neuron.

a k1 = 0, k2 = 0; b k1 = 1,

k2 = 0.2; c k1 = 2, k2 = 0.2;

d k1 = 0.2, k2 = 0.2;

e k1 = 1, k2 = 0.4; f k1 = 1,

k2 = 0.1. Other parameters

are set as k0 = 1 and b = 3
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behaviors. By observing time sequences and phase

trajectories of the model, Fig. 9 exemplifies three

cases involving the periodical, bursting-liking and

chaotic firing modes.

Figure 10 portrays a relevancy diagram between

the firing patterns and the changing two parameters (k0
and b), based on the Largest Lyapunov Exponents

(LLE) and average frequency (f) diagram. When the

LLE is greater than zero, the chaotic behaviors are

triggered in the LTF memristive neuron. Thus, the

butterfly-wing-like district in Fig. 10a, b involves

chaotic firing states.

3.3 Synchronization of the LTF memristive

neuronal network with chemical synapses

Synchronized neural electrical activities have been

considered particularly relevant for neuronal signal

transmission and coding. Neural systems with various

firing patterns can present different forms of syn-

chrony. In this subsection, we concentrate on neural

networks of the LTF memristive neurons exhibiting

neuron-like bursting patterns. Under the excitatory or

inhibitory chemical synaptic effect, the collective

dynamical behaviors are explored when the coupling

function is activated. The LTF memristive neurons are

Fig. 6 Bifurcation (upper

half panel) and Lyapunov

Exponential (lower half

panel) diagram of the LTF

memristive neuron. a and

c Case I: increasing k1 while
k2 = 0.2; b and d Case II:

increasing k2 while k1 = 1.

Other parameters are set as

k0 = 1 and b = 3. Inserting

diagram is a local

enlargement of the

bifurcation diagram

Fig. 7 Two-parameter

panels with changing k1 and
k2. a Largest Lyapunov

Exponential diagram

b Average frequency

diagram. Other parameters

are set as k0 = 1 and b = 3
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identical and their initial values are selected as

random.

Figure 11 shows a sequence of spatiotemporal and

time series diagrams of the neural network (n = 20)

with chain-coupling matrix when the excitatory

chemical synapses are activated from gc = 0, to

gc = 0.2, and to gc = 1.0. The spatiotemporal dia-

grams exhibit a transition from disorderly and unsys-

tematic states into orderly and vertical stripy states,

suggesting that the neural network becomes

Fig. 8 Bifurcation (upper

half panel) and Lyapunov

Exponential (lower half

panel) diagram of the LTF

memristive neuron. a and

c Case I: increasing k0 at
b = 2.5; b and d Case II:

increasing k0 at b = 2. Other

parameters are set as k1 = 1

and k2 = 0.2

Fig. 9 Time series (upper half panel) and Phase orbits (lower half panel) of the LTF memristive neuron. a and d k0 = 1.5, k1 = 0.1;

b and e k0 = 1, k1 = 0.1; c and f k0 = 1, k1 = 0.2. Other parameters are selected as k2 = 0.1, and b = 3
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Fig. 10 Two-parameter

panels with changing k0 and
b. a Largest Lyapunov

Exponential diagram

b Average frequency

diagram. Other parameters

are set as k1 = 1 and k2 = 0.2

Fig. 11 Spatiotemporal diagrams (upper half plane) and Time

sequences of membrane potentials (lower half plane) in a chain-

coupled LTF memristive neural network when the chemical

synapses are excitatory as E = 2. a and d gc = 0, b and

e gc = 0.2, c and f gc = 1.0, respectively. Other parameters are

set as h = - 0.25, k0 = 1, k1 = 1 and k2 = 0.2

Fig. 12 Standard deviation\ S[with increasing the cou-

pling strength gc for the chain LTF memristive neural network

when the chemical synapses are excitatory as E = 2. a k1 = 0.3;

b k1 = 1; k1 = 3. Other parameters are set as follows:

h = - 0.25, k0 = 1, and k2 = 0.2
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periodically synchronized when the excitatory chem-

ical synapses are introduced. Moreover, the desyn-

chronized neural network exhibiting neuron-like

bursting with random initial values is triggered as

complete synchronization states with period-2 burst-

ing and period-1 spiking patterns. Further, a statistical

indicator is employed to evaluate the synchronized

degree of neural networks. The statistical indicator is

calculated by S = std(X(1:n) - X(1)), here X is a

vector of x, y, andu; while the std denotes the standard
deviation index based on the Matlab platform. Then,

the S is averaged and it is marked as\ S[ .

Figure 12 provides a synchronized degree of the

neural network by modulating the coupling strength

gc. The standard deviation\ S[ is the average

amount of variability of spatiotemporal electrical

activities in the neural network. It is found that on

average, how far each neuron at time and space lies

from the mean firing level. A high standard deviation

such as gc = 0 implies that the neural network is

synchronized, while a low standard deviation that is

close to zero when gc C 0.2 indicates that the neural

network achieves complete synchronization with

periodical firing under the excitatory effect, as shown

in Fig. 12b. Therefore, the synchronization behaviors

are identified by the scheme. When the key parameter

k1 to control the locally active effect of the LTF

memristive model is increased, the threshold of

synchronization is different.

Figure 13 presents a sequence of spatiotemporal

and time series diagrams of the neural network

(n = 20) with a random-coupling matrix when the

excitatory chemical synapses are activated from

gc = 0, to gc = 0.1, to gc = 0.5, and to gc = 1.0. The

spatiotemporal diagrams exhibit a transition from

disorderly states into larger partly orderly states,

cluster states, and complete orderly states, suggesting

that the neural network becomes synchronized when

the excitatory chemical synapses are introduced. It is

worth pointing out that in Fig. 13b, c, the partial

cluster phase synchronization is triggered. Meanwhile,

the spindle-shaped wave is found in Fig. 13g. Further,

the standard deviation\ S[ has a short increasing

phase, rapidly lowers to 0.2, and enlarges to an

extreme value, and then decreases when gc[ 0.2,

lastly becomes zero when the coupling strength

gc[ 0.8, 0.72, and 0.65, as shown in Fig. 14a–c.

Therefore, the neural network can reach resting

multiple states under excitatory effect. When the key

parameter k1 for the LTF memristive model is

increased, the threshold of synchronization becomes

lower.

In Fig. 15, a sequence of spatiotemporal and time

series diagrams of the neural network (n = 20) with

the chain-coupling matrix is depicted when the

inhibitory chemical synapses are activated from

gc = 0, to gc = 0.5, and to gc = 1.0, respectively. The

spatiotemporal behaviors change from partly bursting

into chaotic mode and finally tend to a resting mode,

Fig. 13 Spatiotemporal diagrams (upper half plane) and Time

sequences of membrane potentials (lower half plane) in the

random-coupled LTF memristive neural network when the

chemical synapses are excitatory as E = 2. a and e gc = 0, b and

f gc = 0.1, c and g gc = 0.5, d and h gc = 1.0, respectively. Other

parameters are set as h = - 0.25, k0 = 1, k1 = 1 and k2 = 0.2
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Fig. 14 Standard deviation\ S[with increasing the coupling strength gc for the LTF memristive neural network when the chemical

synapses are excitatory as E = 2. a k1 = 0.3; b k1 = 1; b k1 = 3. Other parameters are set as h = - 0.25, k0 = 1, and k2 = 0.2

Fig. 15 Spatiotemporal diagrams (upper half plane) and Time

sequences of membrane potentials (lower half plane) in the

chain-coupled LTF memristive neural network when the

chemical synapses are inhibitory as E = - 1. a and d gc = 0,

b and e gc = 0.5, c and f gc = 1.0, respectively. Other parameters

are set as h = - 0.25, k0 = 1, k1 = 1 and k2 = 0.2

Fig. 16 Standard deviation\ S[with increasing the cou-

pling strength gc for the chain-coupled LTF memristive neural

network when the chemical synapses are inhibitory as E = - 1.

a k1 = 0.3; b k1 = 1; c k1 = 3. Other parameters are set as

h = - 0.25, k0 = 1, and k2 = 0.2
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suggesting that the neural network becomes a resting

synchronization when the inhibitory chemical synapse

effect is increased. Moreover, the first and last neurons

in the neural network exhibit the same resting states as

shown in Fig. 15f. In Fig. 16a–c, the standard devi-

ation\ S[ is reduced to zero when the coupling

strength gc[ 0.72, 0.7, and 0.63, suggesting that the

chain-coupled neural network becomes a quiescent

state under the inhibitory effect. When the key

parameter k1 of the LTF memristive model is

increased, the threshold of synchronization becomes

smaller.

Figure 17 illustrates collective behaviors of the

neural network (n = 20) with a random-coupling

matrix when the inhibitory chemical synapses are

activated from gc = 0, to gc = 0.1, and to gc = 0.5, via

a sequence of spatiotemporal and time series dia-

grams. The spatiotemporal diagrams exhibit a transi-

tion from disorderly states into partly orderly cluster

states and horizontal stripy states, suggesting that the

neural network becomes multi-resting synchroniza-

tion when the inhibitory chemical synapses are

introduced. Moreover, the first and last neurons in

the neural network have different resting states as

Fig. 17 Spatiotemporal diagrams (upper half plane) and Time

sequences of membrane potentials (lower half plane) in the

random-coupled LTF memristive neural network when the

chemical synapses are inhibitory as E = - 1. a and d gc = 0,

b and e gc = 0.1, c and f gc = 0.5, respectively. Other parameters

are set as h = - 0.25, k0 = 1, k1 = 1 and k2 = 0.2

Fig. 18 Standard deviation\ S[with increasing the cou-

pling strength gc for the random-coupled LTFmemristive neural

network when the chemical synapses are inhibitory as E = - 1.

a k1 = 0.1; b k1 = 0.5; c k1 = 1. Other parameters are set as

h = - 0.25, k0 = 1, and k2 = 0.2
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shown in Fig. 17f. In Fig. 18a–c, the average standard

deviation is decreased and lowered to zero when the

coupling strength gc[ 0.38, 0.36, and 0.35. Thus, the

random-coupled neural network becomes multiple

quiescent states under the inhibitory effect. When the

key parameter k1 for the LTF memristive model is

increased, the threshold of synchronization is

decreased.

3.4 Circuit implementation and simulation

of the LTF memristive neuron

In this subsection, the LTF memristive neuron model

is physically implemented by an analog electronic

circuit via employing commercially available compo-

nents such as resistors, capacitors, operational ampli-

fiers, and analog multipliers. Based on the circuit

theory, the implementation circuit of the memristive

neuron model is designed in Fig. 19.

The electronic circuit is simulated by the electronic

simulation software Multisim. It is possible to repro-

duce the same dynamical behaviors from the LTF

memristive neuron model in Eq. (4). In order to

demonstrate this assertion, we provide two cases.

First, R24 is selected as 100 kX, corresponding to

k1 = 0.1 in the model. Figure 20a, c illustrate the time

sequences and phase orbits of bursting firing, consis-

tent with the Fig. 9b, e. Second, R24 is set as 50 kX,
corresponding to k1 = 0.2 in the model. For numerical

results Fig. 9c, f, the time sequence and phase

trajectories of chaotic firing are experimentally cap-

tured and shown in Fig. 20b, d.

In summary, the numerical and experimental

results can exhibit complex dynamical behaviors in

the LTF memristive neuron model. And synchronous

and collective behaviors can occur in the LTF

memristive neural network regardless of excitatory

or inhibitory chemical synapses. These collective

behaviors have the interesting feature that the different

coupling effects can cause major changes in their

dynamics. For the excitatory chemical synapses, the

transition from neuron-like bursting into periodical

firing is triggered in the chain-coupled neural network.

For the inhibitory chemical synapses, the electrical

activities of the neural network are depressed as

resting states. Thus, using the neuron-inspired models,

Fig. 19 Electronic circuit of the LTF memristive neuron model
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we are able to make distinct predictions about the

behaviors of complex biological and artificial neural

systems.

4 Conclusions

We report the synchronizations and complex dynam-

ical behaviors of the LTF memristive neural network

through chemical synapses. The LTF memristive

neuron can exhibit various electrical activities includ-

ing neuron-like bursting and chaotic firing. The

transition between periodical and chaotic firing is

dependent upon the negative different conductance.

That is, the short occurrence of negative different

conductance will be more liable to generate complex

firing patterns. In summary, controlling parameters of

the LTF memristor is able to obtain different firing

patterns in the memristive neuronal model. Mean-

while, the rich dynamical behaviors are identified by

calculating the largest Lyapunov Exponential spec-

trum and two-parameter panel. Further, we focus on

the investigation of coupled LTF memristive neurons

exhibiting neuron-like bursting. The chemical synapse

can be adjusted for complete synchronization with

different firing patterns. While oscillation behaviors

disappear under the inhibitory chemical synapse in the

memristive neural network. The synchronization

behaviors and the transitions among them are explored

in the LTF memristive neural network with excitatory

and inhibitory chemical synapses using the numeri-

cally computed approaches.
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Appendix

In this section, we calculate in detail the real roots of

Eq. (9). Assuming that x� 6¼ � k2
k1
, based on Taylor’s

expansion, we can get that.

tanh x�

k1x�þk2

� �
� x�

k1x�þk2
.

Therefore, Eq. (9) can be rewritten as

ak1x
�4 � ððb� dÞk1 � ak2Þx�3 � ððb� dÞk2 þ k0Þx�2

� ck1x
� � ck2

¼ 0:

ð16Þ

Let

D ¼3ððb� dÞk1 � ak2Þ2 þ 8ak1ððb� dÞk2 þ k0Þ;
E ¼ððb� dÞk1 � ak2Þ3

þ4ak1ððb� dÞk1 � ak2Þððb� dÞk2 þ k0Þ
þ8a2ck31;F ¼ 3ððb� dÞk1 � ak2Þ4 þ16a2k21ððb�
dÞk2 þ k0Þ2 þ 16ak1 ððb� dÞk1 � ak2Þ2ððb� dÞk2 þ
k0Þ þ16a2ck31ððb� dÞk1 � ak2Þ þ64a3ck31k2; A ¼
D2 � 3F; B ¼ DF � 9E2; C ¼ F2 � 3DE; D ¼
B2 � 4AC: Then we have seven conditions as

following.

(i) When D = E = F, Eq. (16) exhibits a fourfold

real root

x�1 ¼ x�2 ¼ x�3 ¼ x�4 ¼
ðb� dÞk1 � ak2

4ak1

In this condition, we have.

E� ¼ ðb� dÞk1 � ak2
4ak1

;
16a2ck21 � dððb� dÞk1 � ak2Þ2

16a2k21
;

ðb� dÞk1 � ak2
k1ððb� dÞk1 þ 3ak2Þ

 !
:

(ii) When DEF 6¼ 0; A ¼ B ¼ C ¼ 0, Eq. Equa-

tion (16) will have a triple root as well as another real

root

x�1 ¼
ððb� dÞk1 � ak2ÞDþ 9E

4ak1D
; x�2 ¼ x�3 ¼ x�4

¼ ððb� dÞk1 � ak2ÞD� 3E

4ak1D
:

At this moment, it is obvious that.

E�
1 ¼ x�1; c� dx�21 ;

x�
1

k1x
�
1
þk2

� �
; E�

2

¼ x�2; c� dx�22 ;
x�
2

k1x
�
2
þk2

� �
.

(iii) When D = F = 0, D[ 0, Eq. (16) has two

double roots

x�1 ¼ x�2 ¼
ðb� dÞk1 � ak2 þ

ffiffiffiffi
D

p

4ak1
; x�3 ¼ x�4

¼ ðb� dÞk1 � ak2 �
ffiffiffiffi
D

p

4ak1
:

In this context, it can be gotten that.

E�
1 ¼ x�1; c� dx�21 ;

x�
1

k1x
�
1
þk2

� �
; E�

2

¼ x�3; c� dx�23 ;
x�
3

k1x
�
3
þk2

� �
.

(iv) When ABC 6¼ 0; D ¼ 0; AB[ 0, Eq. (16)

will have a double root and another two real roots

x�1;2 ¼
ðb� dÞk1 � ak2 þ 2AE

B �
ffiffiffiffi
2B
A

q
4ak1

; x�3 ¼ x�4

¼
ðb� dÞk1 � ak2 � 2AE

B

4ak1
:

Therefore, we can get

E�
1 ¼ x�1; c� dx�21 ;

x�1
k1x

�
1 þ k2

� �
;

E�
2 ¼ x�2; c� dx�22 ;

x�2
k1x

�
2 þ k2

� �
;

E�
3 ¼ x�3; c� dx�23 ;

x�3
k1x

�
3 þ k2

� �
:

(v) When ABC 6¼ 0; D ¼ 0; AB\0, Eq. (16) will

have a double real root

x�1 ¼ x�2 ¼
ðb� dÞk1 � ak2 � 2AE

B

4ak1
:

Meanwhile, it is obtained that

E� ¼
ðb� dÞk1 � ak2 � 2AE

B

4ak1
;
16a2ck21 � d ðb� dÞk1 � ak2 � 2AE

B

� �
16a2k21

;
ðb� dÞk1 � ak2 � 2AE

B

k1 ðb� dÞk1 þ 3ak2 � 2AE
B

� �
 !

(vi) When D[ 0, Eq. (16) has two real roots.

Assuming that
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z1;2 ¼ ADþ 3
�B�

ffiffiffiffi
D

p

2

 !
; z

¼ D2 � Dð ffiffiffiffi
z13

p þ ffiffiffiffi
z23

p Þ þ ð ffiffiffiffi
z13

p þ ffiffiffiffi
z23

p Þ2 � 3A;

then it is obtained

x1;2 ¼
ðb� dÞk1 � ak2 þ sgnðEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ ffiffiffi

z13
p þ ffiffiffi

z23
p

3

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dð ffiffiffiz13

p þ ffiffiffi
z23

p Þþ2
ffiffi
z

p

3

q
4ak1

:

In this condition, we have

E�
1 ¼ x�1; c� dx�21 ;

x�1
k1x

�
1 þ k2

� �
; E�

2

¼ x�2; c� dx�22 ;
x�2

k1x
�
2 þ k2

� �

(vii) When D\0; D[ 0; F[ 0, Eq. (16) has four

real roots.

Assuming that

h ¼ arccos
3B� 2AD

2A
ffiffiffi
A

p ; x1 ¼
D� 2

ffiffiffi
A

p
cos h

3

3
; x2;3

¼
D� 2

ffiffiffi
A

p
cos h

3
� 2p

3

� �
3

;

If E = 0, then we obtain

x1;2 ¼
ðb� dÞk1 � ak2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ 2

ffiffiffiffi
F

pp
4ak1

; x3;4

¼ ðb� dÞk1 � ak2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

ffiffiffiffi
F

pp
4ak1

:

Thus we can get

E�
1 ¼ x�1; c� dx�21 ;

x�1
k1x

�
1 þ k2

� �
; E�

2 ¼ x�2; c� dx�22 ;
x�2

k1x
�
2 þ k2

� �
;

E�
3 ¼ x�3; c� dx�23 ;

x�3
k1x

�
3 þ k2

� �
; E�

4 ¼ x�4; c� dx�24 ;
x�4

k1x
�
4 þ k2

� �
:

If E = 0, then we obtain

x1;2 ¼
ðb� dÞk1 � ak2 þ sgnðEÞ ffiffiffiffiffiffi

x1
p � ð ffiffiffiffiffiffi

x2
p þ ffiffiffiffiffiffi

x3
p Þ

4ak1
;

x3;4 ¼
ðb� dÞk1 � ak2 þ sgnðEÞ ffiffiffiffiffiffi

x1
p � ð ffiffiffiffiffiffi

x2
p � ffiffiffiffiffiffi

x3
p Þ

4ak1
:
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