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Abstract Nonlinear energy sink (NES) is a passive

control device that can absorb a wide band, and it has

the advantages of lightweight and strong robustness,

which can play a very important role in vibration

suppression. In this paper, the dynamic modeling and

research on vibration suppression of NES with linear

damping and geometrically nonlinear damping are

carried out, and the effects of NES parameters on the

vibration reduction effect are investigated. For the

study of dynamic bifurcation, the slowly varying

equation of the system is obtained by using the

complex variable average method, and the effects of

NES parameters on the number of fixed points and

stability of the system are analyzed according to the

slowly varying equation. At the same time, the effects

of excitation amplitude and excitation frequency on

the system response amplitude are also investigated.

For the study of strongly modulated response (SMR),

the slowly varying equation is further analyzed by

using the multi-scale method, and the conditions for

SMR phenomenon in the system are described by slow

invariant manifold and phase portraits. By studying

the slow manifold, the detuned parameter interval for

the system to appear SMR is derived. For vibration

reduction performance analysis, the effects of NES

parameters on vibration reduction performance are

analyzed from the perspectives of energy and ampli-

tude-frequency response, and the influence laws of

various parameters on vibration suppression are

revealed. The vibration reduction performance of

different NES is compared and analyzed, and it is

concluded that the new NES proposed in this paper has

better vibration reduction performance.

Keywords Nonlinear energy sink � Complex

variable average method � Strongly modulated

response � Vibration suppression

1 Introduction

There are many harmful vibration problems in the

fields of building structures, aviation devices and

precision machinery [1, 2], which will seriously affect

the use and stability of system structures, so in recent

decades, scholars have been exploring methods that

can effectively suppress vibrations [3–5]. At present,

the structural vibration suppression methods mainly

include active control, semi-active control, hybrid

control and passive control. Passive control has

attracted wide attention because of its low cost and

simple structure in practical applications [6–8]. As a
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classical passive control method, NES was first

proposed by Roberson, who introduced nonlinear

stiffness into the traditional linear vibration absorber

to form a nonlinear vibration absorber with wider

vibration reduction bandwidth and better robustness

[9]. The traditional NES structure is composed of

viscous damping, nonlinear spring and lightweight

mass block. In practical application, it can provide a

special energy transfer mechanism, which is called

target energy transfer (TET). TET has high energy

transfer efficiency and the transfer process is unidi-

rectional and irreversible [10, 11]. With the deepening

of research, scholars have proposed more and more

abundant forms of NES, such as track NES, bi-

stable NES, lever-type NES and non-smooth NES

[12–15]. Due to the complexity of both the structures

for vibration reduction and the environments in which

they are located, most scholars often simplify the main

system into a mathematical model composed of mass

block, linear damping and linear stiffness in their

analysis, and on this basis, add NES to be studied for

theoretical analysis [16–18]. In this paper, the main

system is simplified by this method, and a dynamic

model of coupled geometrically nonlinear damping

NES is established.

The researchers have found that the vibration reduc-

tion performance ofNES is different when the system is

subjected to different excitation forms.Wang et al. [19]

analyzed the vibration reduction performance of NES

under impulsive excitation through experiments, while

Remick et al. [20, 21] analyzed the influence of NES on

system vibration suppression under impulsive excita-

tion from the numerical aspect. Both found that NES

provided good vibration reduction effect when the main

systemwas under impulsive excitation.Zhang et al. [22]

analyzed the influence of different impulsive excitation

intensities on the vibration reduction performance of

NES, and found that under low impulsive excitation

intensities, the vibration reduction performance of

traditional NES was better than that of nonlinear

damping NES. Although scholars have done a lot of

research on nonlinear systems under impulsive excita-

tion, the influence law of NES parameters on vibration

suppression has not been revealed.

When the system is subjected to harmonic excita-

tion, NES will show a special steady-state response,

and the amplitude of the main system will be greatly

modulated. Gendelman et al. [23–25] analyzed this

special response by using the complex variable average

method, and found that this special response is formed

when the main system and NES have 1:1 resonance, he

defined this special response as strongly modulated

response. Then scholars try to use various methods to

analyze whether SMR occurs in the system and the

conditions that generate SMR. Starosvetsky et al.

[26–28] used the multi-scale method to further analyze

and used SIM to predict whether a nonlinear system

would generate SMR, and found that SMR could only

be generated if the system included nonlinear compo-

nents. Some scholars have also found that the existence

of SMR is affected by frequency detuning parameters,

but the influence law has not been revealed. Kong et al.

[29–31] used the main structure energy spectrum to

study the vibration reduction effect of NES under

harmonic excitation, focusing on the comparative

analysis of the effects of different NES on the system

vibration suppression. It is pointed out that NES has

better vibration reduction performance than linear

vibration absorber, but the effects of NES parameters

on vibration suppression is not analyzed.

Previous scholars mainly focused on the effect of

stiffness on the vibration reduction effect of NES,

ignoring the influence of damping, so there were few

studies on the analysis of NES damping [19, 32, 33].

Al-shudeifat et AL. [34] studied NES with nonlinear

damping and found that under high-intensity impul-

sive excitation, the vibration reduction performance of

NES with nonlinear damping is better than that of

traditional NES, and also pointed out that nonlinear

damping can improve the effective stiffness and

damping of the system. Jing et al. [35] studied the

effect of cubic damping NES on the vibration reduc-

tion of the main system and found that cubic damping

can effectively suppress the peak value near the

resonance frequency. Guo et al. [36] analyzed the

effect of nonlinear damping NES on the system force

transmissibility and found that nonlinear damping can

expand the effective bandwidth of NES. The above

results indicate that damping plays an important role in

the vibration reduction effect of NES.

Although researchers have conducted a lot of

research on NES systems, most of these research

results are on the NES stiffness, lack of research on

NES damping, and lack of analytical solution verifi-

cation analysis when analyzing vibration reduction

applications. Based on the shortcomings of the existing

research results, the model of combined damping NES

is established in this paper. Firstly, the slowly varying
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equations of the system are derived by using the

complex variable average method. The bifurcation

characteristics of the system and the effects of exci-

tation amplitude and frequency on the response

amplitude are analyzed by the slowly varying equa-

tions. Secondly, the effects of the detuning parameters

on the existence of SMR are studied by analyzing the

phase portrait and the slow manifold. Finally, the

vibration suppression effect of NES system under

impulsive excitation is analyzed according to energy

change, and the vibration suppression effect of NES

system under harmonic excitation is studied according

to the energy spectrum and amplitude-frequency

response curve, and the optimal parameter range of

NES is pointed out. The structure of this paper is as

follows: the second part analyzes the bifurcation

characteristics of the NES system, the third part

analyzes the SMR existence interval of the NES

system, the fourth part analyzes the vibration reduction

effect of the NES system under impulsive excitation

and harmonic excitation, and the last part summarizes

the main research results of this paper.

2 Dynamic bifurcation research

The schematic diagram of geometrically nonlinear

damping is shown below:

The two linear damping c horizontally are arranged

symmetrically, with one end fixed and the other end

connected to a small mass block m. When the mass

block is moved vertically by an external force, the

force generated by the linear damping of the symmet-

rical arrangement is nonlinear. The specific derivation

process is as follows:

Let the travel distance of c under external force be

d, then the force generated by each damping can be

expressed as

F1 ¼ F2 ¼ c _d ð1Þ

From Fig. 1, the following geometric relationship

can be obtained

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ l2
p

; sin h ¼ x

d
¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ l2
p ð2Þ

So we can get

Fc ¼ 2c _d sin h ¼ 2c _x sin2 h ð3Þ

Considering that the Angle between c and the

horizontal direction is particularly small, there are

sin h � tan h ¼ x

l
ð4Þ

Put Eq. (4) into Eq. (3), we have

Fc ¼
2c

l2
x2 _x ð5Þ

Thus, the general form of geometrically nonlinear

damping can be obtained as x2 _x. It is important to note

that the d should be small enough.

In this paper, a dynamic model of combined

damping NES system, as shown in Fig. 2, is estab-

lished. The model consists of two parts. The main

system is composed of mass block m1, linear damping

c1 and linear stiffness spring k1. The nonlinear energy

sink contains a smaller mass block m2, linear damping

c2, geometrically nonlinear damping c3[37, 38] and

cubic stiffness k2. FðtÞ is the external excitation of the
system, x1 and x2 are the displacements of the main

system and the nonlinear energy sink, respectively.

Fig. 1 Schematic diagram of geometrically nonlinear damping

Fig. 2 The system model of NES with linear damping and

geometrically nonlinear damping
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According to Newton’s second law, the corre-

sponding dynamic equation is established as follows

m1 €x1 þ c1 _x1 þ k1x1 þ c2ð _x1 � _x2Þ þ c3ðx1 � x2Þ2

ð _x1 � _x2Þ þ k2ðx1 � x2Þ3 ¼ F cosðxtÞ
m2 €x2 þ c2ð _x2 � _x1Þ þ c3ðx2 � x1Þ2ð _x2 � _x1Þ

þ k2ðx2 � x1Þ3 ¼ 0

8

>

>

>

>

>

<

>

>

>

>

>

:

ð6Þ

For the convenience of calculation, the following

parameter transformations are introduced

x1 ¼
x1
l
; x2 ¼

x2
l
;

x0 ¼
ffiffiffiffiffiffi

k1
m1

r

; t ¼ tx0; x ¼ x
x0

;

e ¼ m2

m1

\\1; ek2 ¼
c2

m1x0

;

ek3 ¼
c3

m1x0

; ek ¼ k2
m1x2

0

; ef ¼ F

lk1

ð7Þ

Substituting Eq. (7) into Eq. (6), and setting

c1 ¼ 0. At the same time, for the convenience of

subsequent writing, the overlines of x1, x2, t and x are

omitted, and Eq. (1) is transformed into

€x1 þ x1 þ ek2ð _x1 � _x2Þ þ ek3ðx1 � x2Þ2ð _x1 � _x2Þ
þ ekðx1 � x2Þ3 ¼ ef cosðxtÞ

€x2 þ k2ð _x2 � _x1Þ þ k3ðx2 � x1Þ2ð _x2 � _x1Þ
þ kðx2 � x1Þ3 ¼ 0

8

>

>

>

>

>

<

>

>

>

>

>

:

ð8Þ

This paper studies the case where the ratio of

external excitation frequency to the natural frequency

of the system is 1:1, expressed as x ¼ 1þ er, where
the detuning parameter r can be used to describe the

closeness between the external excitation frequency

and the natural frequency of the system. Meanwhile,

variable substitution is introduced into Eq. (8):

u ¼ x1 þ ex2, v ¼ x1 � x2, u represents the mass

center motion and v represents the relative motion

between the NES and main system.

Then the equation is transformed into

€uþ uþ ev
1þ e

¼ ef cos½ð1þ erÞt�

€vþ ð1þ eÞk2 _vþ ð1þ eÞk3v2 _vþ ð1þ eÞkv3

þ uþ ev
1þ e

¼ ef cos½ð1þ erÞt�

8

>

>

>

>

<

>

>

>

>

:

ð9Þ

It is not convenient to solve Eq. (9) directly,

according to references [25, 30, 40], the Complex

variable average method is used to solve the equation.

Introduce the following complex variable

transformations.

/1e
ið1þerÞt ¼ _uþ iu;

/2e
ið1þerÞt ¼ _vþ iv

ð10Þ

where.

eið1þerÞt indicates the fast vibrating part,/i indicates

the slow modulation part.

According to Eq. (10), we have

u ¼ /1e
ið1þerÞt � /1e

�ið1þerÞt

2ið1þ erÞ ; _u ¼ /1e
ið1þerÞt þ /1e

�ið1þerÞt

2
;

€u ¼ _/1e
ið1þerÞt þ ið1þ erÞ/1e

ið1þerÞt � /1e
�ið1þerÞt

2

v ¼ /2e
ið1þerÞt � /2e

�ið1þerÞt

2ið1þ erÞ ; _v ¼ /2e
ið1þerÞt þ /2e

�ið1þerÞt

2
;

€v ¼ _/2e
ið1þerÞt þ ið1þ erÞ/2e

ið1þerÞt � /2e
�ið1þerÞt

2

Substitute the parameter transformation into

Eq. (9) and omit the fast variable part of the equation

eið1þerÞt, the slowly varying equation of the system can

be obtained as

_/1 þ ier/1 þ
ieð/1 � /2Þ
2ð1þ eÞ ¼ ef

2

_/2 þ ier/2 þ
ið/2 � /1Þ
2ð1þ eÞ þ ð1þ eÞ/2

8

ð4k2 þ k3 /2j j2�3ik /2j j2Þ ¼ ef
2

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð11Þ

In order to obtain the fixed points equation of the

system, the derivative term in Eq. (11) is equal to 0,

which can be obtained

ier/10 þ
ieð/10 � /20Þ

2ð1þ eÞ ¼ ef
2

ier/20 þ
ið/20 � /10Þ
2ð1þ eÞ þ ð1þ eÞ/20

8
ð4k2 þ k3 /20j j2

� 3ik /20j j2Þ ¼ ef
2

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð12Þ

The /10 and /20 in the formula represent the fixed

points of the system and the solution of Eq. (12) can be

expressed as
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/10 ¼
/20 � ið1þ eÞf
2ð1þ eÞrþ 1

9k2 þ k23
16

/20j j6þ k2k3 � 6kMr
2

/20j j4

þ ðk22 þ 4M2r2Þ /20j j2¼ M2f 2

8

>

>

>

>

>

<

>

>

>

>

>

:

ð13Þ

where M ¼ ð2erþ 1Þ=ð2erþ 2rþ 1Þ. The second

equation in Eq. (13) is simplified as

a1Z
3 þ a2Z

2 þ a3Z ¼ f 2 ð14Þ

where

a1 ¼
9k2 þ k23
16M2

;

a2 ¼
k2k3 � 6kMr

2M2
;

a3 ¼
k22 þ 4M2r2

M2
;

Z ¼ /20j j2

Taking the derivative of Eq. (14) yields

3a1Z
2 þ 2a2Z þ a3 ¼ 0 ð15Þ

Equation (14) and Eq. (15) are combined to obtain

the saddle-node(SN) bifurcation boundary equation of

the system as follows

f 2 ¼ a1
�a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a22 � 3a1a3
p

3a1

 !3

þa2
�a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a22 � 3a1a3
p

3a1

 !2

a3
�a2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a22 � 3a1a3
p

3a1

 !

ð16Þ

According to Eq. (16), the SN bifurcation of the

system is drawn, as shown in Fig. 3. Where the

parameters are selected as: e ¼ 0:1, k ¼ 4=3, k2 ¼ 0:1

[25, 30, 40].

As can be seen from Fig. 3, the SN bifurcation

boundary curve of the combined damping NES system

divides the plane ½k3; f � into two parts, and the shape

of the curve is approximately triangular. As shown in

the figure above, taking points inside and outside the

triangle, it can be found that there are three real roots

inside the triangle and only one real root outside the

triangle, indicating that there are three fixed points

inside the triangle and only one fixed point outside the

triangle. According to the analysis of the points taken,

When f is fixed, changing the value of k3 can get a

different number of fixed points. Similarly, when k3 is

fixed, changing the value of f can also obtain a

different number of fixed points.

Next, the effects of linear damping coefficient k2,
mass ratio e and detuning parameter r on the SN

bifurcation boundary curve of the system were stud-

ied. On the premise that other parameters remained

unchanged, the SN bifurcation diagram of different

combined damping NES parameters was obtained by

changing the values of combined damping NES

parameters, as shown in Fig. 4.

In Fig. 4a, the area of the SN bifurcation curve

gradually decreases with the increase of the k2 value.

In Fig. 4b, with the increase of the e value, the area of
the SN bifurcation curve gradually increases. In

Fig. 4c and d, the area of the SN bifurcation curve

increases with the increase of r, regardless of whether
the detuning parameter r is greater than or less than 0.

According to the above analysis, changing the linear

damping coefficient k2, mass ratio e and detuning

parameter r can affect the number of fixed points.

SN bifurcation can only analyze the number of

fixed points, and the stability of fixed points needs to

be studied through Hopf bifurcation. Then Hopf

bifurcation is used to analyze the stability of fixed

points in the combined damping NES system. A small

disturbance is applied to the combined damping NES

system near the fixed points. Letting

/1 ¼ /10 þ D1; /2 ¼ /20 þ D2 ð17Þ

Then Eq. (12) can be simplified to

Fig. 3 SN bifurcation diagram (r ¼ 3)
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_D 1 ¼ �ierD1 �
ie

2ð1þ eÞ ðD1 � D2Þ _D�
1 ¼ ierD�

1 þ
ie

2ð1þ eÞ ðD
�
1 � D�

2Þ

_D2 ¼ �ierD2 �
iðD2 � D1Þ
2ð1þ eÞ � ð1þ eÞ

2
k2D2 �

ð1þ eÞ
4

k3 /20j j2D2

þ 3ikð1þ eÞ
4

/20j j2D2 �
ð1þ eÞ

8
k3/

2
20D

�
2 þ

3ikð1þ eÞ
8

/2
20D

�
2

_D�
2 ¼ ierD�

2 þ
iðD�

2 � D�
1Þ

2ð1þ eÞ � ð1þ eÞ
2

k2D
�
2 �

ð1þ eÞ
4

k3 /20j j2D�
2

� 3ikð1þ eÞ
4

/20j j2D�
2 �

ð1þ eÞ
8

k3/
�2
20D2 �

3ikð1þ eÞ
8

/�2
20D2

ð18Þ

The characteristic polynomial of the above equa-

tion can be expressed as

l4 þ c1l
3 þ c2l

2 þ c3lþ c4 ¼ 0 ð19Þ

where

c1 ¼
ð1þ eÞ

2
ð2k2 þ k3ZÞ c2 ¼

3ð1þ eÞ2ð9k2 þ k23Þ
64

Z2

þ�3ð1þ 2rþ 2e2rÞk þ ð1þ eÞ2k2k3
4

Z

1þ 4erþ 8e2r2 þ ð1þ eÞ2k22
4

c3 ¼
e
8
ð2k2 þ k3ZÞð1þ 4erþ 4er2 þ 4e2r2Þ

c4 ¼
3e2ð1þ 2rþ 2erÞ2ð9k2 þ k23Þ

256
Z2

þ e2ð1þ 2rþ 2erÞ2

16
k2k3�

"

3ke2rð1þ 2erÞð1þ 2rþ 2erÞ
8

�

Z

þ e2
4r2ð1þ 2erÞ2 þ k22ð1þ 2rþ 2erÞ2

16
Z ¼ /20j j2

ð20Þ

Fig. 4 SN bifurcation with combined damping NES parameters change
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When the stability of the fixed points changes, the

eigenvalues of the system cross the imaginary part of

the complex plane, so there is the following condition.

l ¼ �iX ð21Þ

Substituting Eq. (21) into Eq. (19), we get

v1Z
2 þ v2Z þ v3 ¼ 0 ð22Þ

where

v1 ¼ 3ð1þ eÞ2ð9k2 þ k23Þ
v2 ¼ 16ð1þ eÞ½ð1þ eÞk2k3 � 3kð1þ 4erÞ�
v3 ¼ 16½ð1þ 4erÞ2 þ k22ð1þ eÞ2�

ð23Þ

By solving Eq. (22), we can obtain

Z1;2 ¼
�v2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v22 � 4v1v3
p

2v1
ð24Þ

Combined with Eq. (14), the Hopf bifurcation

boundary equation of the system is obtained as follows

f 2 ¼ a1
�v2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v22 � 4v1v3
p

2v1

 !3

þa2
�v2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v22 � 4v1v3
p

2v1

 !2

a3
�v2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v22 � 4v1v3
p

2v1

 !

ð25Þ

According to Eq. (16) and (25), the bifurcation

diagrams of the combined damping NES system are

presented in Fig. 5.

In Fig. 5, the solid line represents the SNbifurcation

curve and the dashed line represents the Hopf bifur-

cation curve. The region enclosed by the Hopf

bifurcation curve of the system and the Y-axis is the

unstable region of the fixed points, and the external

region is the stable region. As can be seen from Fig. 5,

the regionwhere the SNbifurcation curve of the system

intersects with the Hopf bifurcation curve, shows that

the system is affected by two kinds of bifurcation in

some areas. When the selected parameters are located

outside the two bifurcation curves, only a single

stable fixed point can appear in the system.

At the same time, this paper studies the effects of

linear damping coefficient k2, mass ratio e and

detuning parameter r on the Hopf bifurcation curve

of the system. On the premise that other parameters

remain unchanged, the Hopf bifurcation diagram of

different combined damping NES parameters is

obtained by changing the values of combined damping

NES parameters, as shown in Fig. 6.

It can be seen from Fig. 6 that changes in the linear

damping coefficient k2, mass ratio e and the detuning
parameter r will result in changes in the Hopf

bifurcation curve of the system similar to that of the

SN bifurcation, indicating that the effects of changing

combined damping NES parameters on the number

and stability of fixed points is similar.

Figure 7 plots the effects of external excitation

amplitude change and frequency change on the system

response amplitude, respectively.

It can be seen from Fig. 7 that no matter whether the

excitation frequency changes or the excitation ampli-

tude changes, the state of the system changes from a

stable state to an unstable state, and finally returns to a

stable state, representing that the number of fixed points

changes from a single to three stages, and finally returns

to a single stage. In Fig. 7a, the response amplitude of

the system has a high-amplitude response loop in the

frequency range of (-1.14, -0.51), which is caused bySN

bifurcation. SN bifurcation also occurs in the frequency

range (0.77, 1.15), and Hopf bifurcation occurs in the

frequency range (-0.48, 1.15). This diagram is a good

validation of the bifurcation in Figs. 4 and 6.

Through the analysis of the bifurcation character-

istics of the system, it can be seen that adjusting

combined damping NES parameters can make the

system in an unstable state and smaller response

amplitude of the system, which is important for

suppressing the system vibration.

Fig. 5 SN bifurcation and Hopf bifurcation diagrams of the

system
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3 Strongly modulated response analysis

The current research results show that SMR occurs at

the resonance frequency of the system, and when SMR

occurs, the vibration suppression effect of combined

damping NES on the system can be greatly improved.

The purpose of this section is to determine the

frequency interval inwhich the system generates SMR.

According to Eq. (11), this system is a four-

dimensional phase space ð/1;
_/1;/2;

_/2Þ, slow con-

verter consists of 4 variables, where /2 and _/2 are

fast variables,/1 and _/1 are slow variables. In order

to facilitate subsequent calculation, Eq. (11) is pro-

cessed to reduce the number of variables in the phase

plane of the equation. The reduced equation of this

system is obtained as follows

€/2 þ
d

dt

ið1þ 4erÞ
2

/2 þ
ð1þ eÞ/2

8

�

4k2 þ k3 /2j j2�3ik /2j j2
� �i

þ /2 � er
2
ð1þ 2erÞ þ ieð1þ 2rþ 2erÞ

16

�

4k2 þ k3 /2j j2�3ik /2j j2
� �i

� ief
4
ð1þ 2erÞ ¼ 0

ð26Þ

We use the multi-scale method to solve Eq. (11).

Defining

Fig. 6 Hopf bifurcation with combined damping NES parameters change
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/2 ¼ /2ðt0; t1; � � �Þ; tn ¼ ent; n ¼ 0; 1; � � �

D ¼ D0 þ eD1 þ � � � ¼ o

os0
þ e

o

ot1
þ � � �

ð27Þ

The Eq. (26) can be converted to

e0 : D2
0/2 þ

D0/2

8
4iþ 4k2 þ k3 /2j j2�3ik /2j j2
� �

¼ 0

e1 : 2D0D1/2 þ
D0/2

8
16irþ 4k2 þ k3 /2j j2�3ik /2j j2
� �

þ D1/2

8
4iþ 4k2 þ k3 /2j j2�3ik /2j j2
� �

� r
2
/2

þ ið1þ 2rÞ/2

16
4k2 þ k3 /2j j2�3ik /2j j2
� �

� if

4
¼ 0

ð28Þ

By integrating the first formula of the above

equation, we can get

D0/2 þ
/2

8
4iþ 4k2 þ k3 /2j j2�3ik /2j j2
� �

¼ Cðt1; :::Þ ð29Þ

Setting D0/2 ¼ 0, the equation of the system at the

fixed point can be obtained as

/2

8
4iþ 4k2 þ k3 /2j j2�3ik /2j j2
� �

¼ Cðt1Þ ð30Þ

Since /2 is only related to t1, introduce:

/2ðt1Þ ¼ Nðt1Þeihðt1Þ, put it into (30), there is

9k2 þ k23
16

N6 þ k2k3 � 3k

2
N4 þ ð1þ k22ÞN2 ¼ 4 Cj j2 ð31Þ

Letting Z ¼ N2, substituting it into (31) and

derivation, one obtains

27k2 þ 3k23
16

Z2 þ k2k3 � 3kð ÞZ þ k22 þ 1 ¼ 0 ð32Þ

The solutions of Eq. (32) are as follows

Z1;2 ¼
4ð6k � 2k2k3Þ � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ð9� 27k22Þ � 24kk2k3 þ k23ð�3þ k22Þ
q

3ð9k2 þ k23Þ
)

N1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð6k � 2k2k3Þ � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ð9� 27k22Þ � 24kk2k3 þ k23ð�3þ k22Þ
q

3ð9k2 þ k23Þ

v

u

u

t

ð33Þ

According to the solutions of Eqs. (31) and (33), the

corresponding coordinate equation of the starting and

landing point of the system where the jump phe-

nomenon occurs can be obtained as follows

9k2 þ k23
16

Z3
1;2 þ

k2k3 � 3k

2
Z2
1;2 þ ð1þ k22ÞZ1;2

¼ 9k2 þ k23
16

Z3
u;d þ

k2k3 � 3k

2
Z2
u;d þ ð1þ k22ÞZu;d

ð34Þ

The solutions of Eq. (34) are as follows

Zu;d ¼
4ð6k � 2k2k3Þ � 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ð9� 27k22Þ � 24kk2k3 þ k23ð�3þ k22Þ
q

3ð9k2 þ k23Þ
)

Nu;d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð6k � 2k2k3Þ � 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ð9� 27k22Þ � 24kk2k3 þ k23ð�3þ k22Þ
q

3ð9k2 þ k23Þ

v

u

u

t

ð35Þ

Fig. 7 System response amplitude
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N1;2 indicate the extreme value point of the SIM of

the system, which represents the return point of the

SIM, and determines the position where the SIM of the

system may jump. Combined with Eq. (31), select

k ¼ 4=3, k2 ¼ k3 ¼ 0:2 [19], and draw the SIM of the

system as shown.

In Fig. 8, the dotted line with an arrow represents the

jump trajectory between the left and right stable parts of

the system. Since the slow-varying amplitude of the

system is affected by manifold invariance, it can only

move along the SIM curve. When the slow-varying

amplitudemoves along the curve of the left stable part to

N1, because the dotted line between the two return

points is the unstable part, the system will not move

along the SIM to N2, but directly jump from N1 to Nu,

and then continue to move along the right stable part.

When moving to N2, for the same reason, the slow-

varying amplitude of the system jumps directly to

point Nd, and then continues along the left stable part.

This process creates a continuous jump, the jumping

process is manifested as: N1 ! Nu ! N2 ! Nd! N1.

This continuous jumping process makes it possible for

SMR to appear in the system.

Next, the first-order equation in Eq. (31) is further

analyzed to study the dynamic characteristics of the

system tending to stability on time scale t0. When

t0 ! 1, the first order equation can be converted to

D1/2

8
4iþ 4k2 þ k3 /2j j2�3ik /2j j2
� �

¼ T ð36Þ

where

T ¼ if

4
þ r

2
/2 �

ið1þ 2rÞ/2

16
4k2 þ k3 /2j j2�3ik /2j j2
� �

ð37Þ

Take complex conjugation of Eq. (36) and combine

Eq. (34), we can get

o/2

ot1
¼

T �2iþ 2k2 þ ðk3 þ 3ikÞ /2j j2
h i

� T�

2
ðk3 � 3ikÞ/2

2

27k2þ3k23
16

/2j j4þðk2k3 � 3kÞ /2j j2þk22 þ 1
ð38Þ

Introducing complex variables to Eq. (37) and

Eq. (38), one has

GðNÞ oN
ot1

¼ � k3N3

4
þ fN2

4
ðk3 sin h� 3k cos hÞ

þ k2ðf sin h� NÞ þ f cos h

GðNÞ oh
ot1

¼ � 3N4

16
ð9k2 þ k23Þð1þ 2rÞ

þ 3k

4
ð1þ 8rÞ � ð1þ 2rÞk2k3

� �

N2þ

3fN

4
ðk3 cos hþ 3k sin hÞ þ f

N
ðk2 cos h� sin hÞ

� k22ð1þ 2rÞ þ 2r
� �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð39Þ

where

GðNÞ ¼ 2
27k2 þ 3k23

16
N4 þ ðk2k3 � 3kÞN2 þ k22 þ 1

� �

ð40Þ

When jumping occurs, fold line will appear in the

system. In order to avoid singularity in the system,

Eq. (39) is simplified as

N 0 ¼ � k3N3

4
þ fN2

4
ðk3 sin h� 3k cos hÞ

þ k2ðf sin h� NÞ þ f cos h

h0 ¼ � 3N4

16
ð9k2 þ k23Þð1þ 2rÞ

þ 3k

4
ð1þ 8rÞ � ð1þ 2rÞk2k3

� �

N2þ

3fN

4
ðk3 cos hþ 3k sin hÞ þ f

N
ðk2 cos h� sin hÞ

� k22ð1þ 2rÞ þ 2r
� �

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð41Þ

Equation (41) defines the phase portrait of the

system on plane ½h;N�, the parameters are selected as:

k ¼ 4=3, k2 ¼ k3 ¼ 0:2, f ¼ 1, integrates the above

equation, and draws the phase portraits of the system

under different r , as shown in Fig. 9. The two vertical
lines in Fig. 9 define the initial phase angle interval for

the SIM to jump, which is called the phase jump

interval. h1 and h2 represent the initial phase angle of

the N1 and N2. The two horizontal lines correspond to

the jump trajectory of the two return points in Fig. 8,

and the blank area between them corresponds to the

Fig. 8 SIM projection
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unstable part in Fig. 8. The arrow represents the future

direction of the phase portrait motion.

As can be seen from Fig. 9, the motion path of the

phase portraits starts from N1 within the jump interval,

moves down along the arrow, and returns to N1

outside the jump interval. However, a part of the phase

portraits cannot return to N1 due to the presence of

attractors, as shown in Fig. 9a and c, which will

converge this part of the phase portraits. Those that

return to N1 produce a jump, crossing the unstable part

between the two horizontal lines to N2, then moving

up the phase portrait and back to N2 within the jump

interval, and finally jumping from N2 to N1, forming a

complete jump process, which corresponds to the

change in Fig. 8. The continuous motion process of

the above phase portraits provide the possibility for

SMR to occur in the system, but whether the system

occur SMR needs further analysis.

Since the phase portraits cannot clearly indicate

whether the system generates SMR, and the jumping

process of the phase portrait is extremely complex and

unstable, one-dimensional mapping is often used to

analyze the detuning parameter interval of the system

where SMR occurs [39]. However, one-dimensional

mapping cannot intuitively distinguish the mapping

lines that generate SMR phenomenon. At the same

time, it is easy to produce errors when calculating

jump points, so the slow manifold is used in this paper

to intuitively study the detuning parameter interval of

the system that generates SMR phenomenon.

Considering the first two orders of the time scale,

setting

Fig. 9 Phase portraits with r change
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/1ðtÞ ¼ a1ðtÞ þ ib1ðtÞ; /2ðtÞ ¼ a2ðtÞ þ ib2ðtÞ ð42Þ

By substituting Eq. (42) into Eq. (11) and taking e0

to separate the real and imaginary parts, the system of

ordinary differential equations can be obtained as

_a1 ¼ erb1 þ
eðb1 � b2Þ
2ð1þ eÞ þ ef

2

_b1 ¼ �era1 �
eða1 � a2Þ
2ð1þ eÞ

_a2 ¼ erb2 þ
ðb2 � b1Þ
2ð1þ eÞ � ð1þ eÞ½4k2 þ k3ða22 þ b22Þ�a2

8

� 3kð1þ eÞða22 þ b22Þb2
8

þ ef
2

_b2 ¼ �era2 �
ða2 � a1Þ
2ð1þ eÞ � ð1þ eÞ½4k2 þ k3ða22 þ b22Þ�b2

8

þ 3kð1þ eÞða22 þ b22Þa2
8

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð43Þ

Using Matlab to solve Eqs. (43), parameters are

selected as k ¼ 4=3, k2 ¼ k3 ¼ 0:2, f ¼ 1, and the

slow manifolds of the system response are drawn, as

shown in Fig. 10.

As can be seen from Fig. 10, when r ¼ �2,

although the slow manifold of the system increases

from 0 to N1, it does not jump to N2. Instead, after

experiencing several periodic changes, it is attracted

by the lower attractor to the lower stable branch,

forming a local cycle. At this time, the system was

unable to generate SMR. When r ¼ �0:9, although

the slow manifold of the system can reach N1 and

jump to N2, it does not return from N2 to N1, but is

attracted by the attractor above and cannot form a

complete cycle. At this time, the system is also unable

to generate a complete SMR. When r ¼ 1, the slow

manifold of the system can form a complete jump loop

between N1 and N2, and at this time, the system can

exhibit stable SMR. When r ¼ 2:1, the changes of the

slow manifold of the system, as shown in Fig. 10a, are

all attracted to the lower stable branch by the lower

attractor, which cannot form a complete jump loop, so

the system cannot generate SMR.

In order to verify the correctness of using the slow

manifold to analyze SMR in the system, this paper

uses the time response diagram for comparison and

verification. Under the premise of ensuring the same

parameter selection, the time response diagrams of the

main system under different r are drawn, as shown in

Fig. 11.

The time response diagram in Fig. 11 corresponds

to the slow manifold diagram in Fig. 10. Observing

the above figure, it can be seen that it is reliable to

analyze the occurrence of SMR in the system through

the slow manifold. Because the calculation of the slow

manifold is simpler and the observation of the slow

manifold is easier than one-dimensional mapping, it is

easy to determine the detuning parameter interval of

SMR in the system by the slow manifold. After

calculation, the interval of SMR in this example is

½�0:19; 1:52�.
Figure 12 plots the slow manifold diagrams of the

system response under different e.
As can be seen from Fig. 12, when e changes, the

shape of the slow manifold of the system basically

does not change, and with the decrease of e, the

numerical solution of the slow manifold corresponds

better with the analytical solution, with a higher

degree of agreement. This indicates that it is easier to

determine whether SMR occurs in the system by

selecting a small e.

4 Vibration reduction performance analysis

4.1 Energy analysis

This section will study the vibration suppression effect

of combined damping NES on the main system

through the numerical solution, and the vibration

reduction analysis and comparison will be carried out

from the perspective of energy, further explaining the

vibration reduction effect of the proposed combined

damping NES in this paper. Firstly, the energy

variation of a system containing combined damping

NES under impulsive excitation is studied. According

to Eq. (6), the dynamic equation under impulsive

excitation can be obtained as

€x1 þ x1 þ ek2ð _x1 � _x2Þ þ ek3ðx1 � x2Þ2ð _x1 � _x2Þ
þ ekðx1 � x2Þ3 ¼ eAdðtÞ

€x2 þ k2ð _x2 � _x1Þ þ k3ðx2 � x1Þ2ð _x2 � _x1Þ
þ kðx2 � x1Þ3 ¼ 0

8

>

>

>

>

>

<

>

>

>

>

>

:

ð44Þ
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According to the momentum theorem, applying

impulsive excitation to the system is equivalent to an

initial velocity provided to the main system, then the

initial conditions of the combined damping NES

system are x1ð0Þ ¼ x2ð0Þ ¼ _x2ð0Þ ¼ 0, _x1ð0Þ ¼ Am=s.

The energy of the main system is denoted by E1

and is defined as

E1 ¼
1

2
_x21 þ

1

2
x21 ð45Þ

The energy of combined damping NES is denoted

by E2 and is defined as

E2 ¼
1

2
e _x22 þ

1

4
ekðx1 � x2Þ4 ð46Þ

The total energy E of the system consists of E1 and

E2. The expression is as

E ¼ E1 þ E2

¼ 1

2
ð _x21 þ e _x22Þ þ

1

2
x21 þ

1

2
ekðx1 � x2Þ4

� �

ð47Þ

By substituting the initial conditions into E, the

initial energy E0 of the system under impulsive

excitation can be obtained as

E0 ¼
1

2
_x21 ¼

1

2
A2 ð48Þ

System parameters are selected as: k ¼ 4=3,

k2 ¼ k3 ¼ 0:3, e ¼ 0:1 [19]. The time response and

Fig. 10 Slow manifolds of the system response with r change
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energy of the main system with different damping

NES under different impulsive excitation intensities

are shown in Fig. 13.

In the figure above, L-NES represents linear

damping NES, G-NES represents geometrically non-

linear damping NES, and LG-NES is a combined

damping NES studied in this paper. As can be seen

from Fig. 13, when the impulsive excitation intensity

A remains constant, the dissipation time of E1 with

additional combined damping NES is the shortest, and

the vibration attenuation of the main system is the

fastest, indicating that the vibration reduction perfor-

mance of combined damping NES is better than that of

L-NES and G-NES. It is worth noting that with the

increase of the impulsive excitation intensity A, the

vibration reduction performance of G-NES gradually

exceeds that of L-NES. It shows that L-NES is

suitable for use in environments with lower impulsive

excitation intensity, and G-NES is suitable for use in

environments with higher impulsive excitation inten-

sity. But overall, the vibration reduction performance

of combined damping NES is the best.

Next, analyze the effects of cubic stiffness coeffi-

cient k, linear damping coefficient k2, and geometri-

cally nonlinear damping coefficient k3 on the

vibration reduction performance of combined damp-

ing NES. Firstly, study the vibration reduction

performances under different k, and select the param-

eters as shown in the table below.

Fig. 11 Time response diagrams with r change
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According to the parameters selected in Table 1,

the energy variation curves of the main system and

combined damping NES when A = 1 m/s are drawn,

as shown in Fig. 14.

As can be seen from Fig. 14a, when k is small, the

energy transferred by the main system to combined

damping NES is very low, and almost no energy

transfer occurs. With the increase of k, the energy

transferred by the main system to combined damping

NES gradually increases, and the dissipation time of

E1 gradually becomes shorter, indicating that the

vibration reduction performance of combined damp-

ing NES is gradually improved. However, when k is

too large, as shown in Fig. 13d, the energy transferred

by the main system to combined damping NES will

decrease, and the dissipation speed of E1 will slow

down, indicating that the vibration reduction perfor-

mance of combined damping NES on the main system

is deteriorating. Therefore, in order to make combined

damping NES produce a good vibration suppression

effect, it is necessary to select the appropriate k.

To verify the conclusion of Fig. 14, define the

energy proportion g of the main system as follows

g ¼ E1

E0

	 100% ¼ ð _x21 þ x21Þ
A2

	 100% ð49Þ

The energy proportion diagram of the main system

under different k is drawn as shown in the

figure below.

Fig. 12 Slow manifolds of the system response with e change
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Fig. 13 The time response and energy of the main system with different damping NES under different impulsive excitation intensities
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In Fig. 15, with the increase of k, the energy

proportion curve of the main system shows a trend of

first decreasing and then increasing, indicating that

when k is too small or too large, the energy

transmitted by the main system to combined damping

NES is less, and the energy dissipation speed of the

main system is slower. At this time, combined

damping NES does not have a good vibration reduc-

tion effect.

Secondly, the effects of different linear damping

coefficients k2 on the vibration reduction performance

of combined damping NES are studied, and the

parameters selection is shown in the table below.

According to the parameters selected in Table 2,

the energy variation curves of the main system and

combined damping NES when A = 1 m/s are drawn,

as shown in the figure below.

As can be seen from Fig. 16a, when k2 is small,

although the main system can transfer more energy to

combined damping NES, combined damping NES

will return energy to the main system, resulting in a

longer energy dissipation time of the main system,

which makes the main system unable to obtain good

vibration reduction performance. With the increase of

k2, as shown in Fig. 15c, when the value is 0.3, the

energy transmitted by the main system to combined

damping NES is rarely returned to the main system by

combined damping NES, and the energy of the main

system will rapidly decrease. At this time, the main

system can obtain a good vibration suppression effect.

When the value of k2 is too large, as shown in

Fig. 15d, the energy of the main system can hardly be

transferred to combined damping NES, resulting in

combined damping NES can not have a good vibration

suppression effect.

Figure 17 plots the energy proportion of the main

system under different linear damping coefficients.

As can be seen from Fig. 17, as k2 increases, the

degree of rebound in the energy proportion curve of

the main system decreases, and the dissipation time of

the energy proportion curve is shorter and shorter. This

indicates that the energy returned to the main system

by combined damping NES is gradually decreasing,

and the vibration reduction effect of combined damp-

ing NES is getting better and better. When k2 is too

large, the energy proportion curve changes more

gently and the dissipation time becomes longer,

indicating that the main system almost does not

transfer energy to combined damping NES, and the

combined damping NES does not provide a good

reduction effect on the main system.

Finally, the effects of different geometrically

nonlinear damping coefficients k3 on the vibration

reduction performance of combined damping NES are

studied, and the parameters selected are shown in the

following table.

According to the parameters selected in Table 3,

the energy variation curves of the main system and

combined damping NES when the A = 1 m/s are

drawn, as shown in Fig. 18.

In Fig. 18, as k3 increases, the energy variation

curve of the main system becomes more gentle and the

dissipation time becomes shorter, indicating that the

energy returned by combined damping NES to the

main system is less and less, and the vibration

reduction effect of combined damping NES is getting

better and better. However, when k3 is too large, as

shown in Fig. 18d, the dissipation time of the main

system energy increases, and the energy transmitted to

combined damping NES decreases to a certain extent,

indicating that the combined damping NES’s vibration

reduction effect has decreased. Therefore, it is neces-

sary to select an appropriate k3 to make the main

system obtain a good vibration reduction effect.

Figure 19 shows the energy proportion of the main

system under different geometrically nonlinear damp-

ing coefficients.

It can be seen from Fig. 19 that the change of k3 has
a small impact on the energy proportion curve of the

main system. By enlarging the figure, it is found that

the energy proportion curve of the main system

becomes more gentle with the increase of k3, indicat-
ing that the energy returned by combined damping

NES to the main system gradually decreases. When k3
reaches 1.5, the dissipation rate of the energy propor-

tion curve decreases to a certain extent. This figure can

effectively validate the conclusion of Fig. 18.

In order to analyze the vibration reduction effect of

combined damping NES under harmonic excitation,

Table 1 Parameter value table

Serial number k k2 k3 e

a 1/3 0.3 0.3 0.1

b 2/3 0.3 0.3 0.1

c 4/3 0.3 0.3 0.1

d 8/3 0.3 0.3 0.1
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the energy spectrum is used for comparative study in

this part. According to Eq. (8), the average energy Ea

of the main system can be expressed as:

Ea ¼
1

2
_x21 þ

1

2
x21

	 


t

ð50Þ

Fig. 14 E1 and E2 with different k

Fig. 15 Energy proportion of the main system with different k

Table 2 Parameter value table

Serial number k k2 k3 e

a 4/3 0.01 0.3 0.1

b 4/3 0.1 0.3 0.1

c 4/3 0.3 0.3 0.1

d 4/3 0.8 0.3 0.1
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This equation means the average value of E1 over

time period t, and t must be greater than the period T

of harmonic excitation. According to the above

equation, when the value of Ea is the smallest, the

Fig. 16 E1 and E2 with different k2

Fig. 17 Energy proportion of the main system with different k2

Table 3 Parameter value table

Serial number k k2 k3 e

a 4/3 0.3 0.15 0.1

b 4/3 0.3 0.3 0.1

c 4/3 0.3 0.6 0.1

d 4/3 0.3 1.5 0.1
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combined damping NES has the best vibration

suppression effect on the main system. For the

convenience of comparing the vibration reduction

effect of different damping NES, the parameter

selection should be consistent with the literature

results [19], and the values are: t 2 ½2000; 3000�,
f ¼ 0:3.

Next, analyze the influence of mass ratio e,
damping ratio k3=k2 and cubic stiffness coefficient k

on the vibration reduction effect of combined damping

NES. Firstly, draw the energy spectrum of the main

system with different e and k3=k2 as shown in the

following figure.

As can be seen from Fig. 20, when e and k3=k2
remain constant, the energy spectrum area of the main

Fig. 18 E1 and E2 with different k3

Fig. 19 Energy proportion of the main system with different k3
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system does not decrease with the increase of the

damping coefficient of combined damping NES,

indicating that the vibration reduction effect of

combined damping NES does not develop in a good

direction. On the contrary, when the damping coeffi-

cient of combined damping NES is smaller, the energy

spectrum area of the main system is smaller, and the

vibration reduction effect of combined damping NES

is better. As shown in Fig. 21, near the resonance

frequency, when the value of k3 is 0.3, the SMR

phenomenon occurs in the system, and the amplitude

of the main system is greatly modulated. At this time,

combined damping NES has a better vibration

reduction effect on the main system. When the value

is 0.5, the system exhibits a weak modulation

phenomenon, and the amplitude of the main system

is subject to a certain degree of small modulation.

When the value is 0.8, the main system presents a

steady periodic response, which is not conducive to the

vibration suppression of the main system. When e
remains constant, the energy spectrum area of the

main system decreases with the increase of k3=k2 ,
indicating that the greater the difference between the

linear damping coefficient and the geometrically

damping coefficient, the better the vibration reduction

effect of combined damping NES. When k3=k2

Fig. 20 Energy spectrum of the main system with e and k3 k2 change
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Fig. 21 Poincare map and time response of different k3

Fig. 22 Energy spectrum of the main system with e and k change
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remains constant, increasing e will increase the energy
spectrum area and bandwidth of the main system,

which is not conducive to the vibration reduction of

the main system by combined damping NES.

According to the previous analysis, the greater the

k3=k2, the better the vibration reduction effect of

combined damping NES on the main system. Based on

this, the damping ratio is taken as 5, and the energy

spectrum of the main system with different e and k is

plotted as shown in the following figure.

According to Fig. 22, when e remains constant, as

k continues to increase, the energy spectrum area of

the main system gradually decreases, and the band-

width of vibration reduction continues to increase. At

this time, the main system will generate SMR

phenomenon, and its amplitude will be greatly mod-

ulated, as shown in Fig. 23a and b. However, when k

is too large, the energy spectrum of the main system

will appear a resonance peak near the resonance

frequency, causing the energy spectrum area to

become very large. Drawing the Poincare map and

time response here, as shown in Fig. 23c, it can be

found that the main system presents a steady periodic

response without occuring SMR phenomenon, in

which case the vibration reduction effect of combined

damping NES is poor. The effect of e change is the

same as above, and increasing e is not conducive to the
vibration reduction effect of combined damping NES.

Fig. 23 Poincare map and time response of different k and r
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In summary, when designing combined damping

NES parameters, it is necessary to select appropriately

large stiffness coefficient k, smaller mass ratio e and

larger damping ratio k3=k2 to obtain smaller energy

spectrum area and bandwidth, so as to achieve the

optimal vibration reduction effect of combined damp-

ing NES on the main system.

In this paper, there are two standards to evaluate the

vibration reduction effect of combined damping NES,

the main standard is the energy spectrum area of the

main system, and the secondary standard is the peak

value at each position of the energy spectrum.

According to these two standards, the parameters of

combined damping NES are optimized. In the opti-

mization process, considering that the energy spectrum

of the main system is mainly concentrated near the

resonance frequency, the frequency range is selected as

x ¼ ½0:8; 1:2�, the weight allocation ratio is 80% of

the energy spectrum area and 20% of the peak variance

of the energy spectrum. After optimization, the

optimal parameters are obtained as: k2 ¼ 0:05,

k3 ¼ 1:7, k ¼ 5:31, and compared with NES studied

in the literature [40], the comparison diagram of the

optimal energy spectrum is shown in Fig. 24.

In the figure, LN-NES represents NES with linear

damping and cubic damping, while LG-NES repre-

sents NES with combined damping studied in this

paper. As shown in Fig. 23, the energy spectrum area

of the main system of LG-NES is smaller than that of

LN-NES, and the peak in most positions is lower than

that of LN-NES. Therefore, it can be concluded that

the vibration reduction effect of LG-NES is better than

that of LN-NES.

4.2 Amplitude-frequency response analysis

This section studies the vibration reduction effect of

combined damping NES on the main system from the

perspective of analytical solution, and analyzes the

influence of NES parameters on the vibration reduc-

tion performance by using the amplitude-frequency

response curve. Introduce a new complex variable to

Eq. (9).

c1e
ixt ¼ _uþ ixu; c2e

ixt ¼ _vþ ixv ð51Þ

Then Eq. (9) is transformed into

_c1 þ i
½�1þ ð1þ eÞx2�c1 � ec2

2ð1þ eÞx ¼ ef
2

_c2 þ
1

2
ðixþ k2 þ ek2Þc2 þ

1þ e
8x2

k3 c2j j2c2

� 3ikð1þ eÞ
8

c2j j2c2 �
iðc1 þ ec2Þ
2ð1þ eÞx ¼ ef

2

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð52Þ

In order to obtain the steady solution of the system,

letting _c1 ¼ _c2 ¼ 0, and perform the following trans-

formations on c1 and c2.

c1 ¼ b1e
ia1 ; c2 ¼ b2e

ia2 ð53Þ

By substituting Eqs. (53) into (52), we can yield

½�1þ ð1þ eÞx2�b1 sin a1 � eb2 sin a2 þ ef ð1þ eÞx
2ð1þ eÞx ¼ 0

½�1þ ð1þ eÞx2�b1 cos a1 � eb2 cos a2
2ð1þ eÞx ¼ 0

1

8
�4ef þ ð1þ eÞk3

x2
b32 cos a2 þ

3kð1þ eÞ
x3

b32 sin a2

�

þ 4b1 sin a1
ð1þ eÞx

�

þ ð1þ eÞ2k2xb2 cos a2 þ ½e� ð1þ eÞx2�b2 sin a2
2ð1þ eÞx ¼ 0

1

8

ð1þ eÞk3
x2

b32 sin a2 �
3kð1þ eÞ

x3
b32 cos a2 �

4b1 cos a1
ð1þ eÞx

� �

þ ð1þ eÞ2k2xb2 sin a2 þ ½ð1þ eÞx2 � e�b2 cos a2
2ð1þ eÞx ¼ 0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð54Þ

According to the paper studied by Fang et al. [41], it

can be obtained

uðtÞ � b1
x

sinðxt þ a1Þ; vðtÞ � b2
x

sinðxt þ a2Þ

ð55Þ

Fig. 24 Optimal energy spectrum comparison diagram
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The steady-state response of the system is obtained

as

x1ðtÞ �
1

1þ e
b1
x

sinðxt þ a1Þ þ e
b2
x

sinðxt þ a2Þ
� �

x2ðtÞ �
1

1þ e
b1
x

sinðxt þ a1Þ �
b2
x

sinðxt þ a2Þ
� �

8

>

>

>

<

>

>

>

:

ð56Þ

Solve Eq. (54) and bring the results into Eq. (56) to

obtain the analytical solution of the response ampli-

tude. Meanwhile, using the Runge Kutta method to

solve Eq. (8) to obtain the numerical solution of the

response amplitude. Draw the amplitude-frequency

response curves of the main system and combined

damping NES, as shown in Fig. 25.

It can be seen from Fig. 25 that the analytical

solution and the numerical solution agree well, which

verifies the correctness of the complex variable

average method to solve the response amplitude.

Figure 26 shows the amplitude-frequency response

curves of the main system for different NES under

different external excitation amplitudes. From Fig. 26,

it can be seen that when the two NES selected the same

parameters, the resonance amplitude of LG-NES is

lower than that of LN-NES. Moreover, when the

external excitation amplitude increases, the difference

in resonance amplitude between LG-NES and LN-

NES is more significant, indicating that the vibration

reduction effect of LG-NES is better than that of LN-

NES. Moreover, when the external excitation ampli-

tude is larger, the vibration reduction advantage of

LG-NES is more obvious.

Next, analyze the influence of NES parameter

changes on the vibration reduction performance of

combined damping NES. Firstly, analyze the influence

of mass ratio e, damping ratio k3=k2 and damping

coefficient on the vibration reduction effect.

Fig. 25 Comparison of the amplitude-frequency response curves

Fig. 26 Amplitude-frequency response curves of different NES at different f
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Parameters selected as: k ¼ 4=3, f ¼ 0:3 [31], and

draw the amplitude-frequency response curves of the

main system with different e and k3=k2 as shown in

the following figure.

As can be seen from Fig. 27, when e and k3=k2
remain constant, the steady-state response amplitude

near the resonance frequency of the main system

increases with the increase of the damping coefficient,

which indicates that the vibration reduction perfor-

mance of combined damping NES gradually decreases

with the increase of the damping coefficient. There-

fore, when choosing the damping coefficient, we

should choose a smaller damping coefficient to make

the main system get a good vibration reduction effect.

When the damping coefficient and e remain constant,

with the increase of k3=k2, although the steady-state

response amplitude of the main system near the

resonance frequency increases to a certain extent, the

frequency band of resonance becomes narrower.

Therefore, when selecting the damping ratio, it is

necessary to choose an appropriately large damping

ratio. When the damping coefficient and k3=k2 remain

constant, both the resonant frequency band and steady-

state response amplitude of the main system increase

with the increase of e, indicating that the vibration

reduction performance of combined damping NES is

Fig. 27 Amplitude-frequency response curves with e and k3 k2 change

123

12746 X. Qi et al.



gradually declining. Therefore, it is necessary to

choose a smaller e.
In order to further study the optimal range of the

above parameters, 3D and 2D contour maps with

different k3=k2 and e are drawn, as shown in Figs. 28

and 29. The parameter selection is the same as above.

As can be seen from Fig. 28, when k3=k2 is about
3.5, the amplitude-frequency response curve of the

main system not only does not show a high steady-

state response amplitude, but also has a narrow

resonance frequency band. Therefore, in the subse-

quent analysis, the damping ratio is selected as 3.5.

Figure 29 shows the amplitude-frequency response

curves of the main system with different e.
It can be observed from Fig. 29 that when e is 0.21,

there is obviously a large response amplitude near the

main resonance frequency, which is not conducive to

the vibration reduction of the main system. Mean-

while, it is also found that the larger e, the wider the

frequency range of the system resonance. Therefore, a

smaller e should be selected to obtain a good vibration
reduction effect for the main system.

According to the conclusions of Figs. 28 and 29, the

damping ratio k3=k2 is 3.5 and the mass ratio e is 0.1.
The amplitude-frequency response curves of the main

Fig. 28 Amplitude-frequency response curves with k3 change

Fig. 29 Amplitude-frequency response curves with e change
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system with different e and stiffness coefficient k are

drawn, as shown in Fig. 30:

It can be seen from Fig. 30 that the influence of e is
the same as above, and it will not be repeated here.

When e is unchanged, the steady-state response

amplitude of the main system gradually decreases

with the increase of k. However, when k is too large, a

resonance peak will appear near the resonance

frequency, which is not conducive to LN-NES to

reduce the vibration of the main system.

In order to further determine the range of k, 3D and

2D contour maps of different k are drawn in Fig. 31.

According to the figure below, when the value of k is

greater than 6.9, the steady-state response amplitude

of the main system is relatively small, basically at the

same height. When the value exceeds 11.8, a reso-

nance peak begins to appear near the resonance

frequency, which is not conducive to the system

vibration reduction. Therefore, under this set of

parameters, the value range of k is ð6:9; 11:8Þ.

5 Conclusion

In this study, the bifurcation characteristics and

strongly modulated response of the combined damp-

ing NES are studied, and the vibration suppression

effect of the combined damping NES under different

excitation is analyzed.

For the study of bifurcation characteristics, by

analyzing the influence of NES parameters on SN

bifurcation and Hopf bifurcation, it is found that the

smaller the linear damping coefficient k2, the larger

the mass ratio e and the detuning parameter r, the
larger the area of the system to obtain the three

unstable fixed points. Meanwhile, by analyzing the

Fig. 30 Amplitude-frequency response curves with e and k change

Fig. 31 Amplitude-frequency response curves with k change
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influence of excitation amplitude and excitation

frequency on the system response amplitude, It is

found that the system is unstable only in the vicinity of

f ¼ 3:2 and r ¼ 0.

For the study of strongly modulated response, by

analyzing the slow invariant manifold and phase

portrait of the system, it is found that continuous

jumps can provide the possibility for the system to

have SMR phenomenon. Then, the slow manifold is

used to analyze the detuning parameter range of SMR

in the system from a numerical perspective, and it is

concluded that the detuning parameter interval for the

occurrence of SMR in the system is ½�0.19,1.52].

For the analysis of vibration reduction performance,

On the one hand, the damping effect of the combined

damping NES under pulse excitation and harmonic

excitation is studied. By analyzing the amplitude and

energy spectrum of the main system, it is found that the

vibration suppression effect of the combined damping

NES is better than that of the linear damping NES and

the geometrically nonlinear damping NES. On the

other hand, the parameters of the system are optimized

by the amplitude-frequency response and the maxi-

mum amplitude, and the optimal parameters of the

combined damping NES are pointed out.
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