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Abstract We consider flow patterns for exact solu-

tions of the (3 ? 1)-dimensional nonlinear nondissi-

pative quasi-geostrophic potential vorticity equation,

also known as the Charney–Obukhov equation, for

Rossby vortices in the ocean propagating along the

zonal direction with a constant velocity V. The

following results are obtained: (a) For a given value

of V the vortices are localized in the vicinity of one or

several planes z ¼ zci; i ¼ 1; 2; :::L, where 0� zci �H

and L is the number of such planes, which are

determined by the zonal flow included in the exact

solution of the Charney-Obukhov equation; (b) Heton-

like model of a baroclinic dipole, whose vortices are

localized in two horizontal XY-planes, located one

above the other. The heton can propagate both to the

west and to the east with a velocity significantly

exceeding the Rossby wave speed, this heton model is

realized both in cylindrically symmetric solutions and

in spherically symmetric solutions; (c) We consider a

non-central ‘‘collision’’ of vortex monopoles and

dipoles localized in the horizontal XY-plane, depend-

ing on their polarization and orientation in space. The

‘‘collision’’ of vortices is described as a sequence of

stationary states, each of which is an exact solution to

the Charney-Obukhov equation. The result of a non-

central ‘‘collision’’: two unipolar vortices merge, two

oppositely polarized vortices form a dipole, two

oppositely directed dipoles form a tripole upon

‘‘collision’’.

Keywords Charney—Obukhov equation � Ocean �
Flow patterns � Hetons � Collision of vortices, �
Collision of dipolar vortices

1 Introduction

It is well known that a large number of mesoscale

circulations of the Earth’s atmosphere and ocean are

described by the nonlinear non-dissipative quasi-

geostrophic potential vorticity equation [1, 2], also

known as the Charney–Obukhov equation. Let us

immediately note that equations of the Charney-

Obukhov type are found not only in problems of

geophysics, but also in problems of plasma physics

(where it is known as the Charney-Hasegawa-Mima

equation) [2, 3], mechanics of biological fluids [4] and,

finally, in problems of astrophysics in connection with

the description of the dynamics of astrophysical disks

(e.g., [5]).

Until recently, it was believed (see, for example,

[2]) that the Charney—Obukhov equation cannot be

integrated by the inverse scattering transformation

method [6] and therefore does not have N—soliton

solutions that would make it possible to analytically

study the formation and interaction of Rossby waves
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and vortices. The recently discovered Lax Represen-

tation of the Charney–Obukhov Equation [7] has not

yet led to the appearance of publications with new

analytical solutions.

Research efforts were aimed at finding exact

solutions to the Charney–Obukhov equation in the

form of single localized vortices in the absence of a

background zonal flow. The number of found 3D

solutions of this kind is very limited. These include:

Berestov’s solution [2] in the form of a solitary

spherical dipole Rossby vortex, Kaladze’s solution [8]

in the form of a solitary cylindrical monopole Rossby

vortex. In addition, in many works to obtain multi-

wave solutions, the potential vorticity equation is

reduced by the perturbation methods into one of the

known integrable equations (that is the Korteweg–de

Vries equation, modified Korteveg–de Vries equation,

Boussinesq equation and so on) modeling Rossby

waves amplitude (a more detailed review of these

works can be found in articles [9–11]).

The purpose of this work is to analyze and interpret

the flow structures of exact solutions of the (3 ? 1)-

dimensional nonlinear Charney–Obukhov equation

for Rossby waves and vortices in the ocean propagat-

ing along the zonal direction at a constant velocity.

These solutions were found by us in recent works

[12–14].

The article is organized as follows. Section 2

considers exact solutions of the (3 ? 1)-dimensional

nonlinear Charney–Obukhov equation. We introduce

the concept of planes of localization of vortex

solutions. We show that the exact solutions found

include heton-like vortices. Note that a heton is the

simplest model of a baroclinic vortex capable of

transferring heat in the ocean, so much attention is

paid to their study (see, for example, [15–20]).

Section 3 provides analysis and visualization of

heton-like patterns for cylindrical and spherically

symmetric solutions. Section 4 considers the collision

of two vortices of the same and opposite polarity,

localized in the horizontal XY-plane. The non-central

collision of two vortex dipoles with the formation of a

tripole is also considered. Conclusions are drawn in

Sect. 5.

2 Exact solutions of the Charney-Obukhov

equation

We have considered the (3 ? 1)-dimensional nonlin-

ear Charney–Obukhov equation in the b-plane
approximation

o

ot
ðDwÞ þ J w;Dwð Þ þ b

o

ox
w ¼ 0 ð1Þ

Equation (1) is written in dimensionless variables

in the standard way [1]. In Eq. (1) w is the dimen-

sionless geostrophic stream function, bearing the

sense of relative pressure perturbation; b is the

dimensionless meridional (northern) gradient of Cori-

olis parameter; D ¼ o2

ox2
þ o2

oy2
þ o

oz
1
S
o
oz

� �
and J a; bð Þ ¼

oa
ox

ob
oy � oa

oy
ob
ox is the two-dimensional Jacobian. We

assume that the stratification parameter S is a constant,

which can be set to S ¼ 1 without loss of generality.

As usual, we assume that the x-coordinate is east, the

y-coordinate is north, and the z-coordinate is up. We

have taken the boundary conditions [1] with a flat

bottom and a rigid lid as

d0
dt

ow
oz

¼ 0 at z ¼ 0 and z ¼ H ð2Þ

where H – the ocean depth (0� z�H) and
d0
dt ¼ o

ot þ Vx
o
ox þ Vy

o
oy, Vx ¼ � o

oyw, Vy ¼ o
oxw. Bound-

ary conditions (2) mean that the vertical velocity is

zero at z ¼ 0 and z ¼ H.

All exact solutions we found [12–14] of Eq. (1)

with boundary conditions (2) have the form

wðx� Vt; y; zÞ ¼ C/ðx� Vt; y; zÞ þWðy; zÞ ð3Þ

whereWðy; zÞ ¼ �Uðz;VÞy, Uðz;VÞ—the velocity of

the steady zonal background flow which depends on

the drift velocity V and other constants included in the

solution, and C– arbitrary constant. Note that the

second term on the right side Wðy; zÞ in (1) is itself a

solution of the Charney–Obukhov equation corre-

sponding to the case C = 0, but the first term C/ðx�
Vt; y; zÞ is not. As was shown in [14], the solutions

found have the property of partial superposition: the

first term on the right side of (3) can be a superposition

of trigonometric functions and cylindrically symmet-

ric Bessel functions in the horizontal plane, or a

superposition of spherically symmetric functions

along the vertical coordinate. That is, the solutions

found [14] represent a partial superposition of
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‘‘elementary solutions’’, having the same background

flow, which we obtained earlier in [12] and [13]. From

the found solutions to Eq. (1) with boundary condi-

tions (2), we can select those that have a’’separation’’

of variables. They have the form

w ¼ f zð Þ � Fðx� Vt; yÞ � Uðz;VÞy ð4Þ

The function F in (4) satisfies the equation.

o2

os2
Fðs; yÞ þ o2

oy2
Fðs; yÞ þ K2

r Fðs; yÞ ¼ 0 ð5Þ

We will consider the following particular solution

to Eq. (5)

Fðx�Vt;yÞ¼
XN1

i¼1

Cisinðkiðx�xi�VtÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
r �k2i

q
ðy�yiÞÞ

þ
XN2

j¼1

C0
jJ0 Kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0j�VtÞ2þðy�y0jÞ

2
q� �

ð6Þ

where J0ð�Þ is the Bessel function of the first kind of

order zero; N1 C 1 and N2 C 1 – arbitrary positive

integers; Kr;ki;Ci;C
0
j; xi; x

0
j; yi; y

0
j- arbitrary constants,

K2
r � k2i . The second sum on the right side of (6) is a

linear superposition of cylindrically symmetric

Rossby vortices, localized in one or several planes

and propagating at a constant velocity V without

changing the shape of the function w.
For a given value of the velocity parameter V,

vortices and waves are localized in z—neighborhood

of the plane z = zc, which is defined [14] as a solution

to the equation

U zc;Vð Þ ¼ 0; 0� zc �H ð7Þ

Equation (7) may have no solutions or have one,

two or more solutions depending on V and other

parameters included inU. As an example, consider the

dependences zc(V) for solution (11), obtained from the

equation

Uðzc;VÞ � V � bðsinðKzcÞM þ cosðKzcÞ � 1Þ
K2

¼ 0

ð8Þ

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
r þ k2z

p
and parameter M (12) depends

on parameters H, K and kz. Thus, Eq. (8) gives the

dependence of zc on the velocity V for various values

of parameters H, b, Kr and kz. The choice of the last

two parameters makes it possible to effectively control

the dependence of the location of the localization

plane z = zc(V) on the drift velocity of the vortices V in

this plane.

Figure 1a shows the dependence zcðVÞ for the

values of the parameters H = b = 1, Kr = 1.75,

kz = 1.5. It can be seen that for these parameter values

the dependence zcðVÞ has one branch with accept-

able velocity values -0.446 B V B 0.0, that is,

depending on the value of the velocity V, the solution

to Eq. (8) can describe a vortex flow in one localiza-

tion plane or not describe any vortex flow.

Figure 1b shows the dependence zcðVÞ for param-

eter valuesH = b = 1, Kr = 2p, kz = 1.575p. It can be
seen that for these parameter values the dependence

zcðVÞ has three reversals and four segments, that is,

depending on the value of the velocity V, the solution

to Eq. (8) can describe up to 4 localization planes with

a vortex flow or not describe any vortex flow.

Acceptable velocity values V lie between Vmin-

= - 4.66 (zc = 0.595)—reversal B and Vmax = 4.627

(zc = 0.981 or 0.196) – reversals A andC. The turning-

points in Fig. 1b are critical points: when passing these

points, two oppositely polarized vortices, having the

same speed V and a common vertical axis of symme-

try, are born (or disappear) as V changes. Supercritical

solutions (11–13) in the vicinity of turning points A,

B and C are baroclinic dipoles, they are discussed in

Sect. 3 of the article. In accordance with the accepted

terminology (see, for example, [15, 16]), we will

further call such baroclinic dipoles hetons.

For the case presented in Fig. 1b, at velocities

Vmin\V B 0 there is a solution in the form of a heton

with two vortices localized in 2 different horizontal

planes z = zciðVÞ; i ¼ 1; 2; where zciðVÞ are defined

as solutions to Eq. (8), for example, at points B1 and

B2. At velocities 0\V B 4.577, there is a solution in

the form of a heton of three vortices with alternating

polarity, localized in 3 different horizontal planes with

a common vertical axis, the equations of the vortex

localization planes are determined similarly to the

previous case; at velocities 4.577\V\Vmax, there is

a solution in the form of two hetons in the near-surface

(for example, at points A1 and A2) and near-bottom (for

example, at two corresponding points near the reversal

C) regions with a large gap between them.

As is known, in hydrodynamics, a velocity rotor,

that is, relative vorticity, is used to describe a rotating
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fluid. By the value of the relative vorticity x we can

judge whether the vortex is strong or weak, and by the

sign of the vertical component xz we determine the

polarity of the vortex: a cyclone or an anticyclone.

Here we will be interested only in the vertical

component of vorticity xz, which for the solution

(4), (5) has the form

xz ¼
oVy

ox
� oVx

oy
¼ f zð Þ o2

ox2
þ o2

oy2

� �
F x� Vt; yð Þ

¼ �f zð ÞK2
r F x� Vt; yð Þ

ð9Þ

Thus, in the localization plane z = zc for solutions

of the form (4) from (9) we have

xz ¼ �K2
rwðx� Vt; y; zcÞ ð10Þ

that is, the value xz is determined by the geostrophic

stream function taken with the opposite sign.

3 Heton–like models

We consider a solution of the form (4), published in

[14]

w ¼ sin kzzð ÞFðx� Vt; yÞ

þ �V þ bðsinðKzÞM þ cosðKzÞ � 1Þ
K2

� �
y

ð11Þ

where K2 ¼ K2
r þ k2z ; Kr and kz—arbitrary constants,

M¼K sinðkzHÞsinðKHÞþkzcosðkzHÞcosðKHÞ�kzcosðkzHÞ
K sinðkzHÞcosðKHÞ�kzcosðkzHÞsinðKHÞ

ð12Þ

The function F(x-Vt, y) in (11) satisfies Eq. (5) and

can be taken in the following form

Fðx� Vt; yÞ ¼
XN
j¼1

CjJ0 Kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aj � VtÞ2þðy� bjÞ2

q� �

ð13Þ

where J0ð�Þ is the Bessel function of the first kind of

order zero; Cj; aj; bj- arbitrary constants; N C 1–is a

positive integer indicating the number of cylindrically

symmetric vortices considered in the problem.

From (9) and (11) we have

xz ¼ � sinðkzzcÞK2
r Fðx� Vt; yÞ ð14Þ

From (13) and (14) it is clear that the intensity of

individual (non-interacting) vortices is determined by

the values of the coefficients sinðkzzÞK2
r Cj, and their

polarity, for fixed Kr and kz, is determined by the signs

of the coefficients Cj. If sinðkzzÞ[ 0, then a negative

value of Cj will correspond to a cyclone (counter-

clockwise rotation), and a positive value of Cj will

correspond to an anticyclone (clockwise rotation).

We model the hetons within the framework of

solution (11–13) for N = 1 and values H = b = 1,

Kr = 2p, kz = 1.575p. As is already clear from

Fig. 1b, a necessary condition for constructing a heton

is the presence of turning points on the dependence

zcðVÞ. In Fig. 1b there are three such turns, they are

designated by the letters A, B and C. Let us choose for

modeling three pairs of closely spaced localization

planes, which are specified by points A1 (4.6, 0.995)

and A2(4.6, 0.968), B1(- 4.113, 0.65) and

B2(- 4.113, 0.5276), C1 (4.6, 0.2096) and C2(4.6,

0.18236) i.e. in each pair of vortices the upper and

lower vortices have the same velocity. In addition,

hetons A and C have the same velocity V = 4.6.

Streamlines of the hetons in the XZ plane (at y = 0)

are shown in Fig. 2a–c. Designations of hetons in the

caption to this figure by capital letters A, B, C

correspond to Fig. 1b. It can be seen that the vortices

Fig. 1 Dependence of the

position of the localization

plane z = zc on the vortex

drift velocity V in this plane

for solution (11) at

parameter values H = b = 1

and a Kr = 1.75, kz = 1.5; b
Kr = 2p, kz = 1.575p
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in each heton have a common axis of symmetry, a

common center and common streamlines—one of the

common streamlines is highlighted in red. Hetons A

and C have the same speed and the same axis of

symmetry; they appear in solution (11)-(13) simulta-

neously. However, in the figures (Fig. 2b-c) they are

given separately due to the fact that in the general

picture their structure would be indistinguishable,

since their width Dzc is much less than the ocean depth

H, which in Fig. 2 was taken equal to one. Figure 2a–c

show that the localization planes have a finite thick-

ness, which can be estimated as

Dzc ¼ OððC1=HÞ1=2Þ.1
Similarly, for the solution (11–13) for N = 2, a

vertical vortex quadrupole is constructed (Fig. 3), all

vortices of which propagate with the same velocity

V = - 4.113. In the XY plane, the coordinates of the

left pair of vortices are (- 2, 0), of the right pair of

vortices are (2, 0). The cores of vortex monopoles are

visible as compact thick colored spots: the red spot is

an anticyclone, the blue spot is a cyclone (Fig. 3b, c).

The dimensionless meridional gradient of Coriolis

parameter in (1) is b ¼ b0L
2

U ¼ Oð1Þ [1], where L andU

are characteristic horizontal length and velocity

scales. Let L = LR, where LR is the baroclinic Rossby

radius of deformation, which is a typical horizontal

scale. Then we have the estimate U ¼ b0L
2
R, i.e. the

characteristic horizontal velocity is approximately

equal to the Rossby wave speed, which is estimated at

1–2 cm s-1 for mid-latitudes [21]. Thus, the selected

hetons in Fig. 1b can propagate both east and west

with the velocities, significantly exceeding the Rossby

wave speed. It is known [21] that for the first time the

above properties were discovered for horizontal pairs

of vortices, called ‘‘modons.’’

A baroclinic dipole—heton can be constructed not

only on the basis of a cylindrically symmetric solution

of type (4) with a function F of the form (13), but also

on the basis of a spherically symmetric solution

[13, 14]. Let us consider a spherically symmetric

solution that takes into account the partial superposi-

tion of solutions with vertically shifted centers [14]

w ¼
XN
i¼1

Ci sinðKnRi þ aiÞ
Ri

þ bðcosðKnzÞ � 1Þ
K2
n

� V

� �
y ð15Þ

where Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� VtÞ2 þ y2 þ ðz� ziÞ2

q
, Kn ¼ 2p�n

H , N

and n = 1, 2, 3, …, Ci; ai; zi are arbitrary constants.

Equation (7) for solution (15) has the form

Uðzc;VÞ � � bðcosðKnzcÞ � 1Þ
K2
n

� V

� �
¼ 0 ð16Þ

Note that the velocity V is also a free parameter of

the problem. It can be seen from the (16) that at n = 1

the vortices are located in one (zc = 0.5H) plane or two

(z = zc and z = H - zc) planes where zc is any number

from the interval 0 B zc\ 0.5H. The vortices have the

same drift velocity V ¼ bðcosðK1zcÞ�1Þ
K2
1

. At n = 2 the

vortices are located in two, three or four planes z = zc,

z = H - zc, z = 0.5H - zc and z = 0.5H ? zc where

zc is any number from the interval 0 B zc B 0.25H,

and so on.

Fig. 2 Streamlines of the hetons in the XZ plane in section

y = 0. Parameter values in solution (11–13): H = b = 1, N = 1,

a1 ¼ b1 ¼ 0, Kr = 2p, kz = 1.575p,. The parameter C1, which

determines the amplitude, and the velocity V differ for different

hetons; a heton B, V = - 4.113, C1 = 2�10–3; b and c—hetons

A and C, respectively, with C1 = 2�10–4 and V = 4.6

1 Recall that here the ocean depthH is a dimensionless quantity.
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It is easy to see from (16) that vortices can exist

only in the velocity range � 2b
K2
n
B V B 0. Consider the

case N = 1 and n = 1 when the vortices are located in

one (zc = 0.5H) plane at V = � 2b
K2
1

or two (z = zc and

z = H - zc) planes, where � 2b
K2
1

\V\ 0. The result

of visualization of solution (15) in this case is shown in

Fig. 4. At the turning point V ¼ � 2b
K2
n
; zc ¼ 1

2
H, only

one vortex is possible. Figure 4a shows the XZ view of

this vortex in the section y = 0, and Fig. 4b shows the

center of the vortex as an XY view in the z ¼ 1
2
H plane.

Figure 4c shows a baroclinic dipole—heton, the

vortices of which are located in the planes z = 0.45H

and z = 0.55H and have the same velocity V = � 1:95b
K2
1

.

The streamline that is common to both vortices is

highlighted in red.

Let us now consider the case of superposition of

two spherical solutions, i.e. when N = 2 in solution

(15). For a set of parameters n = 1 b H = b = 1,

C1 = 0.001, C2 = - 0.001, a1 ¼ a2 ¼ 0; z1 ¼
10;z2 ¼ �10 and V = - 4.942 �10–2 we again have

a pair of vortices localized in the planes z = 0.45 and

z = 0.55, forming a heton. Figure 5a shows the XZ

view at y = 0 section. It can be seen that the vortices

have a common core at the center of the vortices and

common streamlines passing through this core and its

neighboring eddies (one of these streamlines is

highlighted in red in Fig. 5a). This core is significantly

larger than the size of the core in a similar solution

without superposition (Fig. 4a).

For completeness, Fig. 5b, c shows geostrophic

stream functions w(x,y) in the localization planes

z = 0.45 and z = 0.55. It can be seen that each vortex

consists of a central part (core) and flows in the form of

concentric rings with alternating directions of rotation.

In this case, the core and rings of the lower vortex and

the upper vortex, located one above the other, have

different polarities.

4 Simulation of the collision of localized vortices

in solution (11)

We consider solution (11) with function Fðx� Vt; yÞ
in form (13).

We will call the solution (11), (13) at N = 1 a

monopole, a dipole the solution at N = 2, when the

centers of the monopoles are at a sufficiently close

distance from each other, the same for a quadrupole at

N = 4 and so on. It is clear that the monopole consists

of the most intense central vortex (core) and concen-

tric vortex rings with alternating positive and negative

values of the geostrophic stream function w2). The

monopole, depending on the sign w of the central

vortex, will be called an anticyclone (w[ 0) or a

cyclone (w\ 0). Let us immediately note the differ-

ence between the localized solution (11), (13) and the

Larichev-Reznik soliton [2]: the Larichev-Reznik

soliton decays exponentially at infinity, while the

solution (11), (13) has the asymptotic behavior

Fig. 3 Baroclinic quadrupole. Parameter values in solution

(11)—(13): H = b = 1, N = 2, C1 = - C2 = 2�10–3,
a1 ¼ �a2 ¼ 2; b1 ¼ b2 ¼ 0; Kr = 2p, kz = 1.575p, V = -

4.113. a Streamlines of the baroclinic quadrupole. View in

XZ–plane in section y = 0; b and c XY view of the geostrophic

stream function w(x,y,z) in localization planes z = 0.65 and

z = 0.5276, respectively

2 ) In the plane of localization of the vortex z = zc the relation
(7) is satisfied, therefore, the sign of W in the plane of

localization with distance from the center of the vortex is

determined by the Bessel function J0ðKrrÞ.
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w� r�1=2 at r ! 1, that is this solution is not a soliton

solution in the generally accepted sense.

The ‘‘collision’’ of localized cylindrically symmet-

ric Rossby vortices in the form of monopoles or

dipoles is considered. The collision of something with

something, generally speaking, implies evolution in

time, since the collision process itself is dynamic.

Solutions of the form (4) (this type of solution also

includes solution (11)) describe a stationary flow

against the background of a zonal flow, that is, the time

parameter is not included explicitly in this solution,

but only implicitly through the running coordinate

x� Vt.

However, the solution includes constant parameters

ai; bi, by changing which we can place the centers of

monopoles (or dipoles) at a given distance from each

other, modeling both the process of their removal from

each other and their approach. Let us assume, for

example, that the shift parameters along the zonal

coordinate ai; i ¼ 1; 2; depend on one parameter as

follows: a1 = a and a2 = - a. Then, by changing the

parameter a, we modeling both the process of

monopoles moving away from each other and their

approach. It must be understood that in this way we

model a sequence of stationary solutions, but not the

evolution of the flow in the generally accepted sense.

For this reason, the term ‘‘collision’’ above was placed

in quotation marks, which we omit below.

Throughout this section we took the parameter

valuesH = 1, b = 1, Kr = 1.75 and kz = 1.5. For these

parameter values, the dependence of zc on V, obtained

from (7) and (8) for solution (11), has a monotonic

character (Fig. 1a), that is, each value 0 B zc B H cor-

responds to one value of V. Localization plane z = zc

Fig. 4 Flow patterns of solution (15) for parameter values

N = 1, n = 1, H = b = 1, C1 = 0.001,a1 ¼ 0; z1 ¼ 0. a XZ
view of the vortex (section y = 0) at the turning point zc = 0.5,

V = - 5.07 10–2; b XY view of the vortex at the turning point in

the plane z = 0.5; c XZ view of a heton in the section y = 0,

vortices are localized in the planes z = 0.45 and z = 0.55, heton

velocity V = - 4.94 10–2

Fig. 5 Flow patterns of solution (15) in XZ and XY planes with

parameter values N = 2, n = 1, H = b = 1, C1 = 0.001,

C2 = - 0.001,a1 ¼ a2 ¼ 0; z1 ¼ 10;z2 ¼ �10. a Streamlines

inXZ–plane at y = 0 at zc = 0.45 and 0.55. The streamline that is

common to both vortices is shown in red. b Geostrophic stream

function w(x,y) in XY–plane z = 0.55. c Geostrophic stream

function w(x,y) in XY–plane z = 0.45
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of the considered vortex flows was taken in the near-

surface layer zc = 0.98, which corresponds to the drift

velocity V = - 0.4452.

4.1 Non-central collision of two vortex

monopoles

The nature of the collision of vortices depends on their

polarity. First, let us consider the case when the

vortices are oriented in the opposite way and have the

same intensity in magnitude. For this case, the values

of the parameters in the solution (11) and (13): N = 2;

C1 = 1 and C2 = - 1. The shift parameters bj along

the y coordinate are impact parameters. When they are

equal to zero, b1 = b2 = 0, a central collision of

vortices takes place. We will consider a non-central

collision with parameters b1 = 0 and b2[ 0, in the

XY-plane, which is the localization plane z = zc of the

vortex flow (see (7)). We will denote the centers of the

vortices by (xc1, yc1) and (xc2 yc2), and the distance

between them by Dxc =|xc1-xc2| and Dyc =|yc1-yc2|. Let
us immediately note that, due to the long-range action

of the localized solutions under consideration, the

difference in the shift parameters along the x axis, a1—

a2, may differ from xc1-xc2 even if the vortex

monopoles are separated by a sufficiently large

distance. By wþ and w� we will denote the amplitudes

of the anticyclonic and cyclonic vortices, respectively.

The flow fields wðx; yÞ in the localization plane

z = 0.98 during a non-central collision of vortex

monopoles of different polarity and the same intensity

are shown in Fig. 6. Areas of high pressure are

indicated in red, areas of low pressure are indicated in

blue. The cores of vortex monopoles are visible as

compact thick colored spots: the red spot is an

anticyclone, the blue spot is a cyclone.

It can be seen (Fig. 6) that when the vortex vortices

approach each other, they begin to rotate around a

single center until they take a vertical position at

Dxc = 0, forming a dipole (Fig. 6e). Figure 6f shows

the locations of the vortex centers (cyclone and

anticyclone) shown in Fig. 6a–e. The distance

between vortices in a dipole Dyc & 2.1. Comparing

the colorbars in Fig. 6a and e we see that the intensity

of the vortices in the dipole has dropped by approx-

imately 20 percent relative to their original intensity. It

should also be noted that the collision pattern (Fig. 6a–

e) is symmetrical when the signs of a1 and a2 are

reversed. Figure 6f is also symmetrical about the line

ðx� VtÞc = 0.

We are interested in how much the found distance

between the vortices in the dipole and their amplitudes

depend on the impact parameter b2. Figure 7 shows

the amplitudes wþ and w� in the center (xc1 = xc2 = 0)

depending on the impact parameter b2 (another

parameter b1 = 0). It can be seen that this dependence

has a significantly non-monotonic character: wþ and

w� increase from zero and then oscillate around ± 1.

Moreover, their sum remains unchanged, wþ ? w� =

0. From Fig. 7 it is clear that at b2 = 0 the distance

between the centers of the vortices Dyc =|yc1 - yc2|=-

0, but already at small b2[ 0 Dyc = 2.1, i.e. changes

abruptly, and then up to the value of the parameter

b2 = 2, remains almost unchanged. The abrupt change

inDyc at b2 = 0 ? (b1 = 0) is quite unexpected, but has

a simple explanation, which is given in Appendix 1.

For parameter values b2[ 2 the distance between wþ
and w� begins to increase (Fig. 7). Thus, visualization

of solution (11) allows us to estimate the distance

between the centers of different-polar vortices when

they form a dipole, which, at the parameter value

Kr = 1.75 is (Dyc)dip & 2.1.

It is of interest to consider the central collision of

oppositely polar vortices, which corresponds to b1 = 0

and b2 = 0, and, as before, we take C1 = - C2 = 1. In

this case, with values of the shift parameters a1\ 1.0

and - a2\ 1.0, the distance between centers of

vortices Dxc does not change and amounts to Dxc&
2.1, i.e. a dipole is formed. As a1 and - a2 decrease,

the intensity of the vortices in the dipole weakens.

When a1 = 0 and - a2 = 0, the intensity of each

vortex becomes zero and the vortices disappear.

Visualization of the central collision of oppositely

polar vortices at a1 B 1.0 and - a2 B 1.0, which

explains the above, is presented in Appendix 2.

Visualization of the solution (11) and (13) for

N = 2, C1 = C2 = 1, b1 = 0 and b2 B 2, which corre-

sponds to the collision of two unipolar vortices of the

same intensity, occurs by merging the vortices (like

two drops of liquid) with the formation of one general

vortex. This can be observed in Fig. 8, built for the

values of the impact parameters b1 = 0 and b2 = 1.

In the case of a central collision of two unipolar

vortices (parameters b1 = b2 = 0), critical distance

between the centers of vortices, less than which they

123

12368 N. N. Myagkov, A. G. Kudryavtsev



merge, for the case when the amplitudes of the vortices

C1 = C2 = 1 and Kr = 1.75, is (Dxc)cr = 1.803.

4.2 An off-center ‘‘collision’’ of two oppositely

oriented dipoles of equal intensity

The nature of the dipole collision depends on their

orientation. If they are oriented in the same way, then,

as the visualization of solution (11), (13) shows for

N = 4 and C1 = - C2 = C3 = - C4 = 1, their colli-

sion occurs according to the mechanism described at

the end of Sect. 4.1. That is, the merging of dipoles

occurs through the pairwise merging of vortices of the

same polarity.

In this section we will briefly look at the off-center

‘‘collision’’ of two oppositely oriented dipoles. This

task seems to us more interesting. In this case, the

values of the parameters in (13): N = 4, - C1 = C2-

= C3 =- C4 = 1 and b1 =- b2 = 1.1, b3 = 2.1,

b4 =- 0.1. Here, by indices 1 and 2 we denote the

parameters that relate to the right dipole, and by

indices 3 and 4 – to the left dipole (see Fig. 9a). It was

assumed that the shift parameters ai (i = 1, 2, 3, 4)

(a) a1 = - a2 = 8; |Δxc| = 16.2; 

|Δyc| = 1.0

(b) a1 = - a2 = 3; |Δxc| = 5.8; |Δyc|

= 1.0
(c) a1 = - a2 = 1; |Δxc| =2.0, Δyc = 

0.98

(d) a1 = - a2 =0.5; |Δxc| = 1.52,

|Δyc| = 1.64.

(e) a1 = - a2 = 0; |Δxc| = 0; |Δyc| =

2.1

(f) 

Fig. 6 a–e The flow field wðx; yÞ in the localization plane

z = 0.98 during an off-central collision of oppositely polarized

vortices atC1 = - C2 = 1, b1 = 0, b2 = 1. Below each figure the

shift parameters a1 and a2, are shown for which they were

constructed, and the distances between the centers of the

vortices along the x and y axes. f The locations of the vortex

centers shown in Fig. 6 (a–e)

Fig. 7 Vortex amplitudes (wþ and w�) at Dxc = 0 and the

distance between the centers of the vortices Dyc = yc1 - yc2
depending on the impact parameter b2. Other parameters:

b1 = 0, a1 = a2 = 0, C1 = - C2 = 1, zc = 0.98
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change in proportion to one parameter a:

a1 = a2 = - a3 = - a4 = a.

Figure 9a shows the locations of the dipole vortex

centers as the parameter a decreases from 8 to 0. The

picture in Fig. 9a is symmetrical when the signs of ai
are reversed. It can be seen that the cyclonic vortices in

the dipoles merge at a = 0, forming a ‘‘tripole’’, which

is also shown in Fig. 9b by visualizing the geostrophic

stream function w(x,y) at a = 0. The distance between

the centers of neighboring vortices in a tripole is Dyc

& 2.1, which is in good agreement with the result

obtained in Sect. 4.1.

It is important to note that the results of vortex

interaction presented in Sect. 4 are qualitatively

consistent with hydrodynamic modeling of oceanic

vortices based on an N-layer shallow-water model

[15].

(a) a1 = - a2 = 2 (b) a1 = - a2 = 1.2 (c) a1 = - a2 = 1 

(d) a1 = - a2 =0.5 (e) a1 = - a2 = 0; xc = 0; yc =0.5

Fig. 8 a–e The flow field wðx; yÞ in the localization plane z = 0.98 for an off-center collision of unipolar vortices at C1 = C2 = 1,

b1 = 0, b2 = 1. Below each figure the shift parameters a1 and a2 are shown for which they are constructed

Fig. 9 Off-center collision of two oppositely oriented dipoles

of equal intensity,- C1 = C2 = C3 = - C4 = 1. Impact param-

eters b1 = - b2 = 1.1; b3 = 2.1, b4 = - 0.1; shift parameters

a1 = a2 = -a3 = -a4 = a. a Locations of dipole vortex centers as

parameter a decreases from 8 to 0. b Visualization of the

geostrophic stream function w(x,y) at a = 0
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5 Conclusion

The flow patterns of exact solutions of the (3 ? 1)—

dimensional nonlinear quasi-geostrophic equation of

potential vorticity, also known as the Charney–

Obukhov equation, for Rossby waves and vortices in

the ocean propagating along the zonal direction with a

constant velocity are considered. The exact solutions

considered in this article were recently obtained by us

in [12–14].

The main results of this work are as follows:

1)The vortices are localized in the vicinity of one or

several planes z ¼ zci; i ¼ 1; 2; :::L, where 0� zci �H

and L is the number of such planes, which depends on

the drift velocity V and the values of the free

parameters included in the Uðz;VÞ, where Uðz;VÞ is
the velocity of the steady zonal background flow. The

relationship between zci and V in the solutions is given

by the Eq. (7)Uðzc;VÞ ¼ 0, 0 B zc B H. Examples of

zc(V) dependencies are shown in Fig. 1. Localization

planes have a finite thickness, which can be estimated

as Dzc ¼ OððC=HÞ1=2Þ, where C is the coefficient in

the solution characterizing the intensity of the vortex

and H is the ocean depth.

2)The model of a baroclinic dipole (heton) in the

solution (11)-(13) for the ocean represents two

vortices of different polarity, located in different

planes of localization z = zci(V), (i = 1, 2), one above

the other, having a common center and common

streamlines that propagate without changing the shape

with the same constant velocity V, which is the drift

velocity of the dipole. There is a critical value of the

velocity Vcr such that at V\Vcr there are no vortices,

but as V increases, first one vortex z = zc(Vcr) appears,

then at V[Vcr two localization planes appear

z = zci(V), in which two vortices are located. Vortexes

in a dipole can have cylindrical symmetry (solution

(11–13)) or spherical symmetry (solution (15)). A

cylindrical—symmetrical heton can propagate both

west and east at a velocity significantly exceeding the

Rossby wave speed.

3)The ‘‘collision’’ of localized cylindrically sym-

metric Rossby vortices in the form of monopoles or

dipoles located in the same plane of vortex localiza-

tion z = zc is described as a sequence of stationary

solutions to the Charney-Obukhov equation. These

solutions differ from each other in the values of the

zonal coordinate shift parameters included in the

solution. By changing the shift parameters, we can

place the centers of the monopoles (or dipoles) at a

given distance from each other, simulating both the

process of their moving away from each other and

their approach. The result of a non-central ‘‘collision’’

of vortex monopoles and dipoles depends on their

polarity and their mutual orientation: two unipolar

vortices merge, two oppositely polarized vortices form

a dipole, two oppositely directed dipoles form a tripole

upon ‘‘collision’’. Note that the vortex collision results

described above are in qualitative agreement with

hydrodynamic modeling of oceanic vortices based on

an N-layer shallow-water model [15].

Fig. 10 Example of estimating the amplitudes of monopoles wþ and w� and the distance between them Dyc in the section x-Vt = 0 for

impact parameters a b1 = 0, b2 = 0.1; b b1 = 0, b2 = 1.0. Other parameters: a1 = a2 = 0, C1 = - C2 = 1, z = 0.98
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(a) a1 = - a2 = 1 (b) a1 = - a2 = 1

(c) a1 = - a2 = 0.1 (d) a1 = - a2 = 0.1

(e) a1 = - a2 = 0.01 (f) a1 = - a2 = 0.01

(g) a1 = - a2 = 0.0
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Appendix 1

Figure 10 in the section x - Vt = 0 shows the current

function w of solution (11), (13) and functions w1 and

w2 depending on y. Where w1 and w2 are defined as

follows

wj ¼ sin kzzcð ÞCjJ0 Kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aj � VtÞ2þðy� bjÞ2

q� �

þ �V þ bðsinðKzÞM þ cosðKzÞ � 1Þ
K2

� �
y

ð17Þ

where j = 1, 2. In the localization plane, due to (8) and

(11), we have w = w1 ? w2. Therefore, even with a

small non-zero value of the parameter b2 (or b1) the

dependence w(0, y), as can be seen from Fig. 10, has a

maximum (wþ) and a minimum (w�) with the distance

between them approximately equal to the width of the

central hump of the Bessel function. It can be seen

from the figure that when the parameter b2 changes by

an order of magnitude, the distance between wþ and

w� practically does not change.

Appendix 2

Visualization of the central collision of oppositely

polar vortices in solution (11), (13) for a1 B 1.0

and - a2 B 1.0. It can be seen (Fig. 11) that with a

decrease in the shift parameters a1 and - a2, the

distance between the centers of the vortices Dxc does
not change and is Dxc& 2.1, i.e. a dipole is formed. In

this case, the intensity of the vortices in the dipole

weakens. When a1 = 0 and - a2 = 0, the intensity of

each vortex becomes zero and the vortices disappear.
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