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Abstract In recent years, the Physics-Informed

Neural Networks have demonstrated significant poten-

tial in solving nonlinear evolution equations, and

exhibited high stability and applicability. However, it

does not fully adapt to nonlocal nonlinear evolution

equations. In this paper, we improve the traditional

Physics-Informed Neural Network by incorporating

prior information as a supplementary term in the loss

function to effectively capture the amplitude distribu-

tion at the target location, thereby enhancing the

predictive accuracy of the neural network. Addition-

ally, we address the problem of multiple competing

objectives in the loss function through stepwise

training, leveraging adaptive weights and adaptive

activation functions to optimize predictions. We apply

these improved strategies of physical information

neural networks to predict soliton solution of the

coupled nonlocal nonlinear Schrödinger equation,

including two kinds of nondegenerate one-soliton,

and two kinds of degenerate double-soliton. More-

over, we also discuss the impact of Gaussian noise on

data-driven parameter discovery of the coupled non-

local nonlinear Schrödinger equation.

Keywords Improved physics-informed neural

networks � Coupled nonlocal nonlinear Schrödinger

equation � Soliton � Prior information

1 Introduction

The formation of solitons is a complex dynamic

balance process, typically arising from a delicate

balance between nonlinear effects, dispersion effects

and possible diffraction effects. When the balance is

reached, stable localized wave packets, known as

optical solitons, are formed in optical media. Accord-

ing to the nature of the formation mechanism, optical

solitons can be divided into spatial solitons, temporal

solitons and spatiotemporal solitons [1]. The study of

solitons is crucial for a deeper understanding of

nonlinear wave phenomena, particularly in applica-

tions of optics [2], Bose–Einstein condensates [3],

water waves [4], and other related fields [5, 6]. To find

soliton solutions to nonlinear equations, more and

more methods have been proposed, such as Inverse

scattering transform method, Hirota bilinear method,

Darboux transformation method, etc.
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It is well known that in the fields of science and

engineering, numerical simulation is an important

method for solving complex physical problems. Tra-

ditional numerical methods, such as the finite element

method and the finite difference method, usually

require discretization of the space and time domains of

the problem and may be limited by high-dimensional

problems, complex boundary conditions and multi-

scale phenomena. These methods are difficult to

simulate the propagation of solitons. Some important

results have been achieved in terms of and interac-

tions, but there are still challenges in dealing with

nonlinear terms, boundary conditions, and multi-

soliton interactions. In recent years, the widespread

application of neural networks has given rise to some

innovative research ideas. In 2019, Maziar Raissi

[7, 8] embedded neural networks to solve nonlinear

evolution equation, as well as inverse problems. This

study explores the use of deep learning in modeling

nonlinear dynamics and underscores the advantages of

Physics-Informed Neural Networks (PINN) in data-

driven modeling. It does not require explicit solutions,

instead, it can generate continuous solutions across the

entire input space by learning the system’s behavior

from data [9]. At present, the PINN method has been

applied to fractional [10, 11] and stochastic partial

differential equations [12].

In order to improve the accuracy and robustness of

PINN, many extensions have been proposed, such as

multi-subnetwork structure [13], the space–time mul-

tiple sub-domains [14], and adaptive weights and

flexible learning rates [15]. George Em Karniadakisa

et al. added an adaptive activation function to the

neural network to speed up the convergence speed of

the physical information neural network [16]. Li et al.

proposed two neural network models and gradient-

optimized PINN [17, 18].We used PINN to drive data-

driven soliton solutions, rogue wave solutions, and

breathing wave solutions for high order nonlinear

Schrödinger equation (NLSE) and coupled NLSE

[13, 15, 19, 20]. Chen et al. [21, 22] predicted the

rogue periodic wave of the Chen–Lee–Liu equation

and solved bright and dark solitons for the nonlocal

integrable Hirota equation. They also proposed PTS-

PINN to solve PT symmetric non local equations

[23, 24].

The nonlocal NLSE [25] describes that the behavior

of a point in the system is not only affected by its

neighboring points, but also by other points, which

results in a more complex equation form. How to use

neural networks to predict the soliton dynamic

behavior of coupled nonlocal equations has so far

been rarely studied. Solving nonlocal nonlinear prob-

lems is challenging for the development of new

algorithms. Such research helps to discover the

formation of novel solitons, which has deeper signif-

icance for revealing new phenomena and understand-

ing the natural world. We propose an improved PINN

structure to predict the degenerate and non degenerate

soliton solutions of CNNLSE, using prior information

as a supplementary term to the loss function, and

optimizing the prediction by the stepwise training

using adaptive weights and adaptive activation func-

tions. Finally, compared with the PINN, we improve

the prediction accuracy of soliton solutions by opti-

mizing on two orders of magnitude, and effectively

solve the problem of the accuracy decline over time

and multi-objective competition in neural networks.

In the prediction of data-driven solutions, as the

evolution distance of time becomes longer, the

prediction accuracy of PINN becomes worse and

worse. The existing PINN method cannot reasonably

use the known physical quantities at a certain point and

cannot simulate long-time partial differential equa-

tions. PINN requires specialized design and modifi-

cation of hyperparameters, and its simple extension

cannot fully solve different problems [26]. To over-

come the shortcomings of existing PINN, we propose

to add prior information to the loss function to improve

prediction accuracy. When faced with many equation

terms, the prediction results of the model are often

unsatisfactory, so we propose step-by-step training of

the loss function to solve the multi-objective compe-

tition problem of the loss function and use the back

propagation of the network to optimize network

prediction.

The outline of this paper is as follows. In Sect. 2,

we first review the PINN model, and then introduce

our proposed hybrid training network model that adds

prior information. In Sect. 3, we use PINN, boundary

prior PINN and adaptive prior PINN models to predict

the nondegenerate one-soliton and degenerate double-

soliton of the coupled nonlocal nonlinear Schrödinger

equation(CNNLSE) with parity-time(PT) symmetric

potential. In Sect. 4, we also perform the data-driven

coefficient discovery inverse problem for nondegen-

erate one soliton. Then, the stability of PINN for

inverse problems is verified through numerical results.
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Finally, the last section provides analysis and

discussion.

2 Physical information neural network

with improved strategy

The Manakov system is an integrable coupled NLSE

[27]. Its integrability allows to find multiple soliton

solution by appropriate algorithms and methods.

Understanding the Manakov system helps to under-

stand and optimize the transmission properties of

pulses in optical fiber communication systems, which

has practical application value for improving the

efficiency and performance of communication sys-

tems [28]. So, in this section, we will introduce how to

use the improved strategy PINN algorithm to learn the

soliton solution of the CNNLSE with PT symmetric

potential under Dirichlet boundary conditions [29]

iqj;tðx; tÞ þ qj;xxðx; tÞ þ 2r
X2

p¼1

Vðx; tÞqpðx; tÞ ¼ 0; j ¼ 1; 2;

Vðx; tÞ ¼ q�pð�x; tÞqpðx; tÞ:

ð1Þ

x 2 x1; x2½ �; t 2 t1; t2½ �;
qjðx; t1Þ ¼ q0ðxÞ; qjðx1; tÞ ¼ qlbðtÞ;
qjðx2; tÞ ¼ qubðtÞ; f ¼ qt þ N½q�:

8
<

: ð2Þ

In Eq. (1), qjðx; tÞ; j ¼ 1; 2 are complex-valued

functions with respect to distance x and time t, ‘‘*’’

represents complex conjugation. The coefficient r
represents focusing and defocusing nonlinearity, tak-

ing 1 and- 1 respectively. This equation contains the

self-induced electric potential that satisfies the PT

symmetry condition V�ð�x; tÞ ¼ Vðx; tÞ [30]. Equa-

tion (1) has important physical significance for

revealing the principles and possible applications of

nonlinear optical and quantum mechanical phenom-

ena. It can provide useful information for the design of

new optical communication systems and quantum

information processing devices.

In Eq. (2), we define the initial and boundary

conditions, where x1 and x2 respectively represent the

left and right boundaries corresponding to x, and t1 and

t2 respectively represent the initial and final values

corresponding to t. We let f ¼ qt þ N½q� be the

residual of Eq. (2). To introduce intuitively how the

PINN algorithm numerically approximates the soliton

solution of the CNNLSE with PT symmetric potential,

the improved PINN model is shown in Fig. 1.

We have tried a dual subnet structure [13] to

represent the imaginary and real parts of the two

components and the corresponding nonlocal terms to

improve prediction speed and accuracy, but the results

were unsatisfactory. It is likely that the predictions

were distorted due to the characteristics of the

CNNLSE, and a single network model is ultimately

adopted in this paper. In Fig. 1, x, t are used as neural

network inputs. When the loss function does not

produce gradient disappearance, we use a 7 hidden

layer with 40 neurons in each hidden layer. Because

the predicted CNNLSE contains PT symmetry terms,

which is different from the local equation, and Python

cannot handle the mixture of real and imaginary parts,

we set the last layer of the neural network to have 8

outputs, including the imaginary and real parts of two

components of soliton solution and their correspond-

ing nonlocal terms with qj ¼ uj þ i � vj, q�j ¼
u�j þ i � v�j , j ¼ 1; 2.

In order to help better capture different patterns and

features in the input data, we define the product of the

adaptive activation function coefficients multiplied by

the hyperbolic tangent function (tanh) as the nonlinear

activation of the model function, the weights w and

bias b in all models are initialized using the Xavier

method. The neural network will continuously mini-

mize the loss function composed of initial conditions

and nonlinear evolution equation through the gradient

descent method to learn shared parameters (such as

weights and biases), so that the neural network can

learn nonlinear evolution equations, and finally obtain

predicting solution.

The loss function Loss consists of three parts: initial

condition errorMSE0, boundary condition errorMSEb,

and equation residual MSEf. The form is:

Loss ¼ a �MSE0 þ b �MSEb þ c �MSEf ð3Þ

with

MSE0 ¼
1

N0

XN0

i¼1

u1ðxi; tiÞ � ui1
�� ��2þ v1ðxi; tiÞ � vi1

�� ��2
�

þ u2ðxi; tiÞ � u j
2

�� ��2þ v2ðxi; tiÞ � v j
2

�� ��2
�

ð4Þ
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MSEb ¼
1

Nb

XNb

j¼1

u1ðx j; t jÞ � u j
1

�� ��2þ v1ðx j; t jÞ � v j
1

�� ��2
�

þ u2ðx j; t jÞ � u j
2

�� ��2þ v2ðx j; t jÞ � v j
2

�� ��2
�

ð5Þ

MSEf ¼
1

Nf

XNf

k¼1

fr1ðxk; tkÞ
�� ��2þ fr2ðxk; tkÞ

�� ��2
�

þ fm1ðxk; tmÞ
�� ��2þ fm2ðxm; tmÞj j2

� ð6Þ

We have added adaptive weight coefficients a, b, c
to the loss function to make the model better adapt to

different samples or features, help the model learn

more effectively, and improve the performance of the

model on specific tasks. In Eq. (6), fr, fm represent the

real and imaginary parts of the residuals respectively.

In the neural network, we use random sampling for

Dirichlet boundary conditions. The initial point is

N0 = 100, the left and right boundary points are

Nb = 100, the Latin hypercube [31] is used as the

sampling method, and the configuration point is

Nf = 10,000. We use two optimizers, L-BFG-S and

Adam. By using optimization algorithms such as

gradient descent, the network propagates errors back-

ward from the output layer and updates the weights to

reduce the loss function. On the existing PINN model,

we have added adaptive weight coefficients and

adaptive activation functions to allow the network to

adapt to different input distributions, so that the neural

network can better handle input data of different scales

and ranges, improve the robustness of the model, and

prevent the model overfitted, and thus the generaliza-

tion ability of the model is improved.

However, these improved strategies often lead to

the occurrence of numerous errors in predicting results

for more complicated nonlinear evolution equations.

For certain equations, we may have knowledge of

some physical quantities or specific values within the

equations, but there is a lack of a reasonable method to

incorporate them into PINN. Therefore, we consider

the usage of this prior information as constraints to

augment the training points. The specific approach is

to introduce an additional term of prior information

into the loss function as a constraint on the neural

network, and allow these additional terms to reflect the

physical laws that the system should satisfy or the

specific values of certain physical quantities at

moments. This enhances the learning efficiency and

numerical approximation capabilities of the neural

network. Although prior information can bring these

advantages, overly strong or inaccurate prior

Fig. 1 Improved PINN for solving CNNLSE
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information may also lead to a decline in model

performance. Therefore, using prior information

requires caution and is customized for specific tasks.

When we introduce additional terms to the loss

function, it involves optimizing a multi-objective

optimization problem. Different objective functions

may have varying priorities or competitive relation-

ships, which makes the optimization path of the model

more complicated and results in unpredictable out-

comes. Additionally, using multiple loss functions

may increase the risk of overfitting, and thus it needs to

assure the generalization capabilities of this model.

We propose a step-wise training of the loss function to

make the model reasonably use newly added loss term

without causing multi-objective competition problems

in the case of ensuring the advantages of PINN. By

adjusting the construction of the loss function, we

divide the training process into two steps (See detailed

procedure in Sect. 3).

All codes are programmed using Python3.10,

Tensorflow2.10.1 and Tensorflow1.15. The data

reported in this article are all from running on a

computer with 2060 graphics card, 2.10 GHz, 12th

Gen Intel(R) Core (TM) i7-12700 processor, and

16GB of memory.

3 Prediction of data-driven solutions

to the CNNLSE

3.1 Data-driven prediction of nondegenerate one-

soliton evolution

Recently, Geng used the non-standard Hirota method

[32] to obtain non-degenerate one-soliton and double-

soliton solutions [33] for CNNLSE. We first consider

the predictions of coupled nondegenerate one-soliton

solutions with one and double humps. In the exact

nondegenerate one-soliton solution expressed as

Eq. (9) in Ref. [34], the parameters are taken as k1 ¼
0:4þ 0:1i; k2 ¼ 0:4� 0:1i; a1 ¼
0:45þ 0:5i; a2 ¼ 0:5þ 0:55i. The initial conditions

are selected to be q0ðxÞ ¼ qjðx; 0Þ, and the Dirichlet

boundary conditions are

qlbðtÞ ¼ qjð�40; tÞ; qubðt ¼Þqjð40; tÞ; t 2 ½0; 10�. The

Pseudo-spectral method is used to discretize the exact

nondegenerate one-soliton solution into [256, 201]

data points to obtain the data set.

From Fig. 2a, b, the fitting effect of predicted

solution by the traditional PINN and exact solution

performs well in the early stage, but as the evolution

time t becomes longer, the fitting effect becomes

worse and worse. Inspired by the ideas of pseudo

boundary points and prior training points proposed by

Chen [35] and Li [18] we add end boundary points

Np = 100 as the prior items of the loss function. From

Fig. 2a, b, at t = [0, 2], the prediction accuracy is

significantly improved via the PINN with the bound-

ary prior, compared with the traditional PINN. How-

ever, when the evolution time t increases, the accuracy

gradually decreases. This still cannot achieve the

results we expected.

Therefore, we proposed a PINN with adaptive

priors. Like PINN with boundary priors, we use some

points as prior information to calculate the mean

square error between predicted and exact solutions.

The neural network will adaptively select some points

with larger error values based on the prediction

situation to calculate the average, and add these points

into the loss function for gradient descent of the

optimizer. In order to solve the problem that different

objective functions with different priorities or com-

peting relationships often lead to deformed prediction

results, we adopt a step-by-step training model as

follows. In the first step, let Loss ¼ a �MSE0þ
b �MSEb þ c �MSEf . After training for 30,000 times

via the traditional PINN, the predicted and exact

solutions are close each other; then in the second step,

let Loss ¼ 1
Np

PNp

j¼1

u1ðxy; tyÞ � uy1
�� ��2þ v1ðxy; tyÞ � vy1

�� ��2
�

þ u2ðxy; tyÞj �uy2j
2þ v2ðxy; tyÞ � vy2

�� ��2Þ. At this time,

after training 30,000 times, the neural network fit the

prior information we added, and can obtain a higher

precision solution than that via the traditional PINN.

In Fig. 3c, d, the neural network with adaptive prior

uses a sampling points NP = 5000. Comparison

between PINN with boundary priors and adaptive

priors shows that the latter exhibits the superior fitting

capabilityy, and the predictions is closer to exact

solution at all cases. After integrating the prior

information, the prediction time is close to that of

the traditional PINN. However, the PINN with adap-

tive prior can produce predicted solutions with higher

accuracy.

Next, we consider the predictions of coupled

nondegenerate one-soliton solution with both
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double-hump structures. In the exact nondegenerate

one-soliton solution expressed as Eq. (9) in Ref. [34],

the parameter is chosen as k1 ¼ 0:4þ 0:1 � i; k2 ¼
0:4� 0:1 �i; a1 ¼ 0:45þ 0:5 � i;a2¼ 0.5 + 0:55 � i.
Under the range of the space–time region is x1; x2½ � ¼
½�40; 40� and t1; t2½ � ¼ ½0; 10�, we obtain the initial and
boundary conditions of CNNLS. Using the PINN with

adaptive prior, taking points Np = 5000 as prior

information, the predicted solution at evolution time

t = 20 is shown in Fig. 4a, b, and the corresponding L2

norm relative error is

error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j ½qj � qjðxj; tÞ�

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j ½qjðxj; tÞ�

2
q ð7Þ

with the predicted solution qj. The relative errors of the

two-components are respectively 1.3898e-2 and

1.4943e-2, which shows that this method can effec-

tively use the specific values of physical laws we know

or the behavior of a certain physical quantity at a

certain position as part of the loss function to improve

the accuracy. Compared with predicted solutions via

the PINN with boundary prior, predicted solutions via

the PINN with adaptive prior in Fig. 3c, d have higher

accuracy.

In Table 1, ‘‘epoch’’ means the number of training

iterations, ‘‘step’’ indicates the training steps after

incorporating step-wise training. Compared the pre-

dicted results via different optimization methods in

Table 1, the impact of learning rate optimization on

predicted results is not particularly pronounced. The

inclusion of boundary priors improves the prediction

Fig. 2 Waterfall comparison plots between the predicted and

exact solutions for components a q1 and b q2. Top views of exact
solutions for components c q1 and d q2. Legends a, b, c, and

d respectively denote exact solution, predicted solutions via

traditional PINN, PINN with boundary priors, and PINN with

adaptive priors
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accuracy to a certain extent, while the addition of

adaptive priors significantly enhances the prediction

accuracy about 2–3 orders of magnitude. Taking more

prior information points means the reduction of

unknown points and improvement of the prediction

accuracy of the neural network, which involves a

Fig. 3 a, b 3D diagram of two-component exact solution and c,
d cross-sectional comparison diagrams of two-component

predicted and exact solutions at different time. Legends a, b,

and c respectively represent exact solution and the predicted

solutions via PINN with boundary prior and adaptive prior

Table 1 L2 norm error of predicted solutions for two-components q1 and q2 via various optimization methods

Epoch Step Learning rate t Prior information points Method L2 error of q1 L2 error of q2

10,000 0 Adma 10 0 PINN 0.3401 0.4179

10,000 0 Piecewise 10 0 PINN 0.3750 0.3268

10,000 0 Adma 10 100 Boundary prior 0.1702 0.1707

10,000 0 Piecewise 10 100 Boundary prior 0.0818 0.0905

10,000 0 Cosine 10 100 Boundary prior 0.1702 0.1707

30,000 3000 Adma 10 30,000 Adaptive prior 0.0031 0.0046

30,000 3000 Adma 10 5000 Adaptive prior 0.0068 0.0047

30,000 3000 Adma 10 100 Adaptive prior 0.0229 0.0203

30,000 3000 Adma 20 5000 Adaptive prior 0.0139 0.0149
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trade-off issue. We try to add different numbers of

prior points from 100 to 30,000. The more prior

information points we add, the greater the accuracy

improvement. But when we add 5000 points, the

improvement in accuracy begins to slow down, and the

order of magnitude is not significantly improved.

Therefore, we use 5000 adaptive prior points as the

optimization plan in the following discussion.

3.2 Data-driven prediction of degenerate double-

soliton collision

We will predict three collision scenarios of the

degenerate double-soliton solutions expressed as

Eq. (4) in Ref. [36]. Firstly, we set parameters as
k1 ¼ 0:5þ 0:8 � i; k

�

1
¼ �0:5þ 0:8 � i; k2 ¼ �2þ i; k

�

2
¼ 2þ i; a11 ¼ 1þ i; a12 ¼ 1:5þ i;

a21 ¼ 0:5þ i; a22 ¼ 2þ i;

b11 ¼ 1� i; b21 ¼ �0:5� i; b12 ¼ �1:5 �i; b22 ¼ 2� i.

After making the discrete data points into a data set,

we can obtain the Type-I collision behavior in Fig. 5.

From the comparison in Fig. 5c, d, the PINN method

with adaptive prior is also suitable for predicting the

collision behavior of double-solitons. The relative

errors of the L2 norm of two components are

8.9195 9 10-3 and 7.9951 9 10-3 respectively. As

the transmission time increases, the non-fitting phe-

nomenon will not occur, and this method has high

accuracy for the prediction of complicated solitons.

To obtain the Type-II collision expressed as Eq. (4)

in Ref. [36], we take the parameters k1 ¼ �1:5þ 0:8 �

i; k
�

1
¼ 1þ 0:8 �i; k2 ¼ 2þ i; k

�

2
¼ �2þ i; a11 ¼

1þ i; a12 ¼ 1:5þ i; a21 ¼ 0:5þ i; a22 ¼ 2þ i; b11 ¼

Fig. 4 a, b Two-component predicted solution via PINN with

adaptive prior and c, d Waterfall comparison diagrams of two-

component predicted and exact solutions. Legends a, b, and

c respectively represent exact solution and the predicted

solutions via PINN with boundary prior and adaptive prior
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1� i; b21 ¼ �0:5� i; b12 ¼ �1:5� i; b22 ¼ 2� i.

From Fig. 6, as time increases, the error of the

predicted solution does not increase. The PINN with

adaptive prior has good performance in various

spatiotemporal domains, and the relative errors of

the L2 norm of two components are 2.5960 9 10-2

and 2.5839 9 10-2 respectively, which further shows

its good stability and high accuracy.

We take parameters k1 ¼ 0:5þ 0:8 � i; k
�

1
¼ �0:5þ

0:8 � i; k2 ¼ 0:5þ 0:81 � i; k
�

2
¼ �0:5þ 0:81 � i; a11 ¼

1þ i; a12 ¼ 1þ i; a21 ¼ 0:1þ i; a22 ¼ 3þ i;

b11 ¼ 1� i; b21 ¼ �0:1� i; b12 ¼ �1� i; b22 ¼ 3� i,

propagation behavior of soliton molecule in the form

of bound states can be obtained. The results show that

the relative errors of the L2 norm between the

predicted and exact solutions of two components are

7.9275 9 10-3 and 6.9086 9 10-3 respectively.

From the dynamic behavior of these data-driven

solitons in the cross-section Figs. 7c, d, the learning

effect of PINNwith adaptive prior is very good and the

prediction error is very small.

4 Inverse problem

In this section we will use PINN to perform data-

driven parameter discovery of CNNLSE

iqj;tðx; tÞ þ qj;xxðx; tÞ þ 2r
X2

p¼1

q�pð�x; tÞqpðx; tÞqpðx; tÞ

¼ 0; j ¼ 1; 2

ð8Þ

Fig. 5 a, b Predicted Type-I collision of degenerate double-

soliton via PINN with adaptive prior and c, d cross-sectional

comparison diagram of two-component predicted and exact

solutions at different time. Legends a and b respectively

represent exact solution and predicted solution via PINN with

adaptive prior
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Soliton solution qj ¼ uj þ i � vj, the coefficient r is

the unknown quantity that we need to find by using

PINN. The loss function is

Loss ¼ 1

Nf

XNf

i¼1

u1ðxi; tiÞ � ui1
�� ��2þ v1ðxi; tiÞ � vi1

�� ��2
�

þ u2ðxi; tiÞ � u j
2

�� ��2þ v2ðxi; tiÞ � v j
2

�� ��2
�

þ fr1ðxk; tkÞ
�� ��2þ fr2ðxk; tkÞ

�� ��2þ fm1ðxk; tmÞ
�� ��2

þ fm2ðxm; tmÞj j2

ð9Þ

fj ¼ iqj;tðx; tÞ þ qj;xxðx; tÞ

þ 2r
X2

p¼1

q�pð�x; tÞqpðx; tÞqpðx; tÞ; j ¼ 1; 2
ð10Þ

fj ¼ fr;j þ i � fm;j ð11Þ

We discretize the nondegenerate one-soliton solu-

tion into [256, 201] and perform Pseudo-spectral

method to obtain the data set of parameter r ¼ 1.

Randomly sample 5000 points as samples from the

space–time region x1; x2½ � ¼ ½�40; 40�, t1; t2½ � ¼
½�1; 1� of the non-degenerate single soliton solution.

Data-driven parameter discovery is performed using

the loss function (9) and a deep neural network with 6

hidden layers of 50 neurons each. Figure 8 shows the

sampling points in the top view of exact solution and

the training convergence of the loss function. We get

r ¼ 1:0461, and the L2 relative error is 4.61%.

In order to study the impact of noise on the inverse

problem, we added 0–15% Gaussian noise as inter-

ference to the sampling points. We find that PINN can

still predict unknown parameters stably under differ-

ent noises, but the loss function will change. After

training 15,000 times, the loss functions are listed in

Fig. 6 a, b Predicted Type-II collision of degenerate double-

soliton via PINN with adaptive prior and c, d cross-sectional

comparison diagram of two-component predicted and exact

solutions at different time. Legends a and b respectively

represent exact solution and predicted solution via PINN with

adaptive prior
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Table 2. From Table 2, we find that PINN can

correctly predict unknown parameters even if a certain

proportion of Gaussian noise is added to the data set.

In Fig. 8c, the loss function has the best convergence

effect when the noise is 0. As the noise increases, the

error gradually adds, and the convergence effect of the

loss function becomes worse and worse. In summary,

data-driven parameter prediction via PINN can also

predict correct results within a certain noise range,

which also proves the stability and high adaptability of

PINN.

5 Conclusion

In summary, we propose an improved PINN structure

for predicting degenerate and nondegenerate soliton

solutions of the CNNLSE. After comparing various

optimization methods, we choose to add adaptive prior

information, adaptive activation functions and adap-

tive weights to PINN to improve the generalization

ability of the model and accelerate the training

process. We also change the composition of the loss

function and perform step-by-step training in order to

handle the multi-objective competition problem. The

addition of boundary prior information and adaptive

prior information to the loss function effectively

solves the problem of accuracy degradation of neural

networks over time, improving the prediction accu-

racy of two orders of magnitude for isolated solutions

of neural networks. In addition, we also discuss the

impact of Gaussian noise on data-driven parameter

discovery of the CNNLSE. We have verified that the

high stability and adaptability of PINN can be applied

Fig. 7 a, b Predicted degenerate soliton molecule via PINN

with adaptive prior and c, d waterfall comparison diagram of

two-component predicted and exact solutions at different time.

Legends a and b respectively represent exact solution and

predicted solution via PINN with adaptive prior
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to solve coupled nonlocal integrable systems, but there

are still many open problems, such as how to optimize

neural networks? How to effectively combine various

methods to improve accuracy and stability? This is

still a direction we need to study and move forward,

and these issues will be further studied in our future

work.
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Fig. 8 Top view of the sampling points of components a q1 and b q2 in inverse problem, and c loss function iterates with epoch after

adding different noises

Table 2 Prediction of parameter r and L2 relative error under

different noises

Noise (%) r L2 error of r (%) Loss function

0 1.0289 2.89 5.70904 9 10-5

1 0.9670 3.30 6.33146 9 10-5

5 1.0321 3.21 1.38952 9 10-4

10 0.9299 7.01 3.52044 9 10-4

15 1.0784 7.84 7.06438 9 10-4
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