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Abstract As the urbanization rate in China has

continued to increase, the highway congestion prob-

lem has become more severe, significantly reducing

the efficiency of traffic operations. To accurately

predict highway short-term traffic flow and effectively

solve congestion issues, in this paper, the basic

equations of fluid mechanics are described, variable

coefficient differential Euler equations are introduced

into a grey model and a high-order variable coefficient

grey prediction model is constructed based on the

principle of grey differential information. The model

is solved using mathematical methods such as recur-

sive sequences and mathematical transformations, and

the time response function of the model is obtained.

The order of derivatives can be used to effectively

simulate fluctuations in traffic flow data; therefore, to

improve the accuracy of the new model, the particle

swarm optimization algorithm is used to optimize the

order of the new model, leading to refined modelling

steps. Finally, the new model is applied to a case study

of traffic flow on highways in Canada, and its efficacy

is assessed from three distinct viewpoints. The

findings demonstrate that the new model can stably

predict traffic flow under different prediction methods,

and the performance of the new model under different

traffic flow conditions is verified using four different

periods of traffic flow data. The findings indicate that

the simulation and prediction results of the new model

are superior to those of six other grey models. The new

model can be used to effectively determine the

fluctuation patterns of highway traffic flow data and

yields good stability and prediction accuracy.

Keywords Grey prediction model � Highway traffic

flow prediction � Short-term traffic flow � Euler
equation � Particle swarm algorithm

1 Introduction

As China’s economy has rapidly developed, urban

areas have continuously expanded, leading to increases

in the urban population and the number of motor

vehicles. Since the twenty-first century, with contin-

uous improvements in the living standards of urban

residents in China, private cars have become the

preferred choice of transportation. This choice has

resulted in increasingly severe congestion on high-

ways, leading to a decline in highway efficiency. In

addition, factors such as poor driving habits have

exacerbated the issue of highway congestion [1].

Traffic congestion, long durations of congestion, and
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complex traffic characteristics are often observed on

highways due to the intertwinedmovement of vehicles.

Highways play a crucial role in promoting efficient

interactions and facilitating resource sharing among

cities. These roadways serve as essential infrastruc-

tures for improving the transportation environment

and driving economic development and act as lifelines

for disaster relief and emergency response. Therefore,

in recent years, through the analysis of traffic flow

data, traffic flow instability and congestion have been

observed, significantly reducing the efficiency of

traffic operations. Consequently, one effective

approach to address these problems is the develop-

ment of intelligent transportation systems. Traffic flow

prediction is not only a primary function in achieving

intelligent transportation systems (ITS) [2] but also an

important means to realize the transformation of

highway construction from traditional road infrastruc-

ture to intelligent services. Short-term traffic flow

prediction aims to intelligently and systematically

forecast changes in traffic flow on highways by mining

the patterns of traffic flow variations and anticipating

the state changes of transportation systems. These

predictions enable a more accurate and timely predic-

tion of traffic flow changes on highways, facilitating

the advancement of intelligent and systematized

transportation information systems. Specifically,

short-term traffic flow prediction involves predicting

changes in traffic flow on a particular road within the

next few minutes or hours. Real-time accurate traffic

flow prediction can provide a decision-making basis

for traffic management departments to develop pro-

grams and transform passive processing to active

prevention, thereby supporting active traffic manage-

ment and control. Thus, scientific and reasonable

emergency programs and effective control measures

should be developed to ensure safe and rapid travel on

highways and reduce time and economic losses.

To promote the development of intelligent high-

ways, research on related traffic flow prediction is

constantly evolving, and experience is constantly

being gained in terms of problem-solving approaches

and methods. For example, statistical models, includ-

ing historical mean models [3], time series models [4],

and Kalman filter prediction models [5] have been

utilized. Among them, historical mean models and

time series models are also linear models. Historical

mean models make predictions based on average

historical data values before a set prediction point,

while Kalman filter prediction models utilize the state

space value at the previous moment to make predic-

tions; both of these types of models are suitable for

stationary data with small fluctuations, and they have

the advantages of being noncomplex with an easy

programming implementation and simple calcula-

tions. However, these methods may not be able to

predict data changes characterized by the nonlinearity

and randomness of traffic flow well, and such models

satisfy real-time requirements. The autoregressive

integrated moving average (ARIMA) model [6] is a

commonly used time series forecasting method. This

type of model has the advantages of fast computation

speed and can be constructed using only the data of a

variable itself. However, this model has certain data

requirements. With the development of science and

technology, the advantages of the ARIMA method

have weakened.

In addition, artificial intelligence technology has

been introduced to address the shortcomings of

traditional statistical models. Currently, mainstream

models include machine learning models [7] and deep

learning models [8]. In commonly used machine

learning models [9, 10], such as the support vector

regression (SVR) and K-nearest neighbor (KNN)

models, the parameters are continuously adjusted to

capture complex nonlinear relationships through

adaptive learning. The support vector regression and

K-nearest neighbors models can be used for small-

scale datasets or time series. The K-nearest neighbor

algorithm is simple, easy to understand and imple-

ment, and can be used for nonlinear classification with

high accuracy. Support vector regression can solve

nonlinear problems and has strong generalizability

and robustness, but there is no universal method for

selecting kernel functions. In general, prediction

methods based on machine learning can solve the

poor performance problems of traditional methods and

can also address nonlinear problems; however, to

achieve high accuracy, a large amount of training data

is generally required.

Deep learning, which has been rapidly developing

in recent years, is a major research direction in the field

of machine learning. There are a wide range of deep

learning models, such as recurrent neural networks

(RNN) [11], long short-term memory (LSTM) net-

works [12], and convolutional neural networks (CNN)

[13]. LSTM and Bi-LSTM are successful variants of

RNNs that have been extensively studied, and
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impressive progress has been made using these

variants [14, 15]. These methods have gained signif-

icant popularity among researchers and have yielded

remarkable results. Zhang et al. [16] proposed and

evaluated a new advanced model, the long short-term

memory (LSTM) model, based on transfer learning for

traffic flow prediction with incomplete traffic infor-

mation. To improve the accuracy of short-term traffic

flow prediction, Naheliya et al. [17] proposed a

bidirectional long short-term memory (Bi-LSTM)

model with a modified firefly optimization algorithm

(MFOA) named MFOA-Bi-LSTM. To predict short-

term traffic flow,Bharti et al. [18] developed a PSO-Bi-

LSTM model based on a combination of particle

swarm optimization (PSO) and bidirectional long

short-term memory (Bi-LSTM) neural networks. Typ-

ically, deep learning algorithms require more training

time because they have many parameters that must be

trained on a large amount of data. In addition, complex

predictive techniques are not necessarily superior to

simple predictive techniques because complex predic-

tive techniques may easily fall into local optima,

leading to overfitting problems, and require a large

amount of information to derive parameters, especially

when faced with limited and insufficient data.

The grey prediction model can partially compen-

sate for the shortcomings of the above models. The

grey system theory proposed by Deng (1982) is in line

with the characteristics of limited information and

significant uncertainty in traffic flow data [19].

Additionally, short-term traffic flow prediction

involves inferring future traffic conditions by obtain-

ing a certain amount of dynamic data on road traffic

flow. Therefore, the most prominent advantage of the

grey prediction model over traditional statistical

prediction methods and artificial intelligence learning

methods is that it can still achieve accurate predictions

when limited data are available and can better handle

sudden changes in real traffic flow [20].

The grey prediction model has potential applica-

tions in various fields, such as natural gas [21, 22],

nuclear energy [23, 24], electricity [25, 26], solar

energy [27], and others [28]. These endeavors have to

some extent confirmed the modelling capacity of the

grey prediction model. For example, Chen et al. [29]

proposed a grey model with a fractional Hausdorff

derivative to improve the prediction accuracy of

traditional grey models and demonstrated the relation-

ship between error and order. The experimental results

showed that the proposed model can improve upon

traditional grey models. Chu et al. [30] introduced the

Jensen-Shannon divergence tomeasure the differences

between discrete Z numbers based onZ theory and grey

relationship theory, reducing the complexity of Z

number calculations. The authors established a quan-

titative model of the grey correlation degree based on

discrete Z numbers and proposed a multidimensional

fuzzy grey multicriteria optimization decision-making

method for evaluating the benefit of using Arctic

routes. To investigate the modelling performance of

fractional accumulated generation operations, He et al.

[31] proposed an enhanced fractional accumulation

grey model (AFAGM) by studying the relationship

between restoration error and order. Through case

analysis and comparative verification, the model

achieved excellent predictive performance and high

modelling efficiency.

Several scholars improved upon the method in the

data preprocessing stage and model construction stage

and achieved better prediction results. Duan et al. [32]

applied mechanical performance to traffic flow data,

proposed four new structural parameter models and

component parameters and analyzed the properties of

themodels. To overcome the effect of instability on the

model, Duan et al. [33] preprocessed lost flow and

anomaly data to predict short-term traffic flow, which

improved the model’s ability to process complete

traffic flow data. Methods to improve the model

construction stage include cumulative generation

operator changes, parameter optimization and residual

correction. Liu et al. [34] proposed a damping cumu-

lative generation operator that is superior to the

traditional first-order cumulative generation operator

and constructed an improved grey prediction model

with a damping trend factor. Since traffic flow has

spatiotemporal characteristics and periodicity, Duan

et al. [35] employed partial differential equations to

effectively capture the spatiotemporal attributes of

traffic flow, replacing point sequences with matrix

sequences and average sequence partial derivatives to

establish a partial grey prediction model with a control

matrix, which provides a new idea for research on

traffic flow prediction. In the literature, related studies

also cover improved methods of different forms of

models. To improve the performance of the GM(1,1)

model in estimating various traffic parameters in a

short period, Comert et al. [36] combined the oscilla-

tory behavior characteristics of sine and cosine
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functions, extended trigonometric functions and ver-

ified that this type of grey model can better handle

sudden changes in traffic flow. To study the stop-and-

go phenomenon caused by car-following, Wen et al.

[37] first added Brownian noise to the velocity

difference of the car-following model and subse-

quently modified the car-following model by intro-

ducing a traffic flow model fused with the car-

following model.

Existing models have not yet demonstrated suffi-

cient ability to accurately capture the dynamic nature of

trafficflowsystems.Typically, thesemodels are usually

first-order constant coefficient differential models that

limit the range of values of order to a certain extent,

resulting in a decrease in the stability of the model’s

performance under different conditions. The Euler

equation is a higher-order differential equation of

variable coefficient equations that can capture the

characteristics of system changes over time and has

better flexibility and interpretability. Therefore, in this

study, the Euler equation of traffic flow is described,

and high-order differential equations with variable

coefficients are investigated, leading to the establish-

ment of a grey prediction model for high-order Euler

equations using grey differential information. The new

model is a parameter-adjustable and structurally vari-

able high-order grey model. Moreover, considering the

uncertainty of the order of the Euler equation, to

maintain the stability of the model, a linear correction

term is introduced into the constructedmodel to prevent

data overfitting from occurring, and parameter ranges

are set. The particle swarm optimization algorithm is

used to optimize the order of the newmodel, improving

themodel’s accuracy. The primary contributions of this

paper can be summarized as follows:

(1) In terms of the model structure, to enhance the

accuracy of traffic flow prediction, this study

proposes a novel model with a structure derived

from Euler equations in fluid mechanics. This

model has variable order and structure, increas-

ing its flexibility. The introduction of Euler

equations with variable coefficient differentia-

tion enhances the ability of the model to adapt to

complex data. The coefficients are set as vari-

ables related to time, offering a more accurate

representation of the dynamics of traffic flow

over time and thus leading to better flexibility and

explanatory ability. The linear correction term is

introduced into the grey role quantity term,which

enhances the model structure stability.

(2) In terms of the research methodology, a high-

order variable coefficient grey prediction model

is constructed based on the Euler equations by

using the principle of grey differential informa-

tion, and the new model is studied in terms of

parameter estimation using the least squares

method. Mathematical methods such as recur-

sive sequences and mathematical transforma-

tions are employed to solve the model, and the

time response function of the model is derived in

detail, culminating in the final expression. To

optimize and improve the accuracy of the new

model, the particle swarm optimization algo-

rithm is employed, which results in better

flexibility and interpretability.

(3) In terms of applications, the examples are

validated by the provided traffic flow data, the

cases are validated from three different angles,

and the results show that the newmodel achieves

good results in terms of stability performance

under different conditions. Two traffic flow

cases validate the performance of the newmodel

under different traffic flow conditions. The

results show that the simulation and prediction

results of the new model proposed in this paper

are better than those of other grey models. The

proposed method provides insight into the

fluctuation patterns of highway traffic flow data

and exhibits good stability and prediction accu-

racy in both fitting and forecasting.

The remainder of this paper is organized as follows.

In Sect. 2, a new Euler equation grey prediction model

is proposed, and the parameters of the new model are

estimated. The time response expression and the final

restoration expression of the new model are derived in

detail. In Sect. 3, the criteria for evaluating the

performance of the model are given. In Sect. 4, the

PSO algorithm with better performance is selected to

optimize the order of the new model, and the

modelling steps of the new model are given. In

Sect. 5, a comprehensive empirical analysis is con-

ducted from multiple perspectives to evaluate the

effectiveness of the new model. This analysis encom-

passes various aspects, including the fitting effect and

prediction accuracy. Conclusions are drawn in Sect. 6,

and future research directions are outlined.
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2 The establishment of the Euler equation grey

prediction model

The motion of vehicles on a continuous road resembles

the flowof fluid, thus forming a flowing traffic roadway.

The Euler equation is a fundamental equation in fluid

dynamics and iswidely used. Equations of the following

form are often encountered in the study of physical

problems such as heat conduction, electromagnetic

wave propagation, and circular membrane vibration:

ax2D2yþ bxDyþ cy ¼ f xð Þ ð1Þ

where a; b; c represents constant and Eq. (1) is a

second-order variable coefficient differential equa-

tion. The coefficients exhibit certain patterns: the

coefficient of the second derivative D2y is a quadratic

function ax2, the coefficient of the first derivativeDy is

a linear function bx, and the coefficient y is a constant.

These equations are referred to as Euler equations. In

this section, we study the general form derived from

the second-order Euler equation and introduce a new

grey prediction model based on the Euler equation.

First, the definition of the Euler equation is outlined,

followed by an introduction to the model’s represen-

tation, parameter estimation, and discrete solution

processes.

2.1 The Euler equation

Differential equations with variable coefficients have

wide applications in various fields, such as biology,

electricity, and dynamics. Among them, the Euler

equation is one of the most extensively used types of

equations in the realm of variable coefficient differ-

ential equations and has attracted significant amounts

of attention from numerous scholars. The following is

the definition of the Euler equation:

Definition 1. An equation of the form

xn
dny

dxn
þa1x

n�1d
n�1y

dxn�1
þa2x

n�2d
n�2y

dxn�2
þ���þan�1x

dy

dx
þany¼f ðxÞ

is referred to as the Euler equation, where a1;a2���;
an�1;an are constants and a1 6¼0. When f ðxÞ�0,

xn
dny

dxn
þa1x

n�1d
n�1y

dxn�1
þa2x

n�2d
n�2y

dxn�2
þ���þan�1x

dy

dx
þany¼0 ð2Þ

is an n�th-order linear homogeneous Euler equation.

When f ðxÞ6¼0,

xn
dny

dxn
þ a1x

n�1 d
n�1y

dxn�1
þ a2x

n�2 d
n�2y

dxn�2
þ � � � þ an�1

x
dy

dx
þ any ¼ f ðxÞ

ð3Þ

is an n� th-order linear nonhomogeneous Euler

equation.

2.2 Generating sequences and mean generating

sequences

Definition 2. Let Xð0Þ ¼ ðxð0Þð1Þ; xð0Þð2Þ; � � � ;
xð0ÞðmÞÞ be the original nonnegative sequence, and

Xð1Þ be the first-order cumulative sequence (1-AGO)

of the original sequence Xð0Þ; that is,where

Xð1Þ ¼ ðxð1Þð1Þ; xð1Þð2Þ; � � � ; xð1ÞðmÞÞ

xð1ÞðkÞ ¼
Xk

i¼1

xð0ÞðiÞ; k ¼ 1; 2; � � � ;m ð4Þ

Definition 3. Let Xð0Þ ¼ ðxð0Þð1Þ; xð0Þð2Þ; � � � ;
xð0ÞðmÞÞ be an original non-negative sequence, and

Xð1Þ be given in Definition 2 above; then, að1ÞXð1Þ is
said to be a first-order cumulative sequence of the non-

negative sequences Xð1Þ.
Let

að1ÞXð1Þ ¼ ðað1Þxð1Þð1Þ; að1Þxð1Þð2Þ; � � � ; að1Þxð1ÞðmÞÞ

where að1Þxð1ÞðkÞ ¼ xð1ÞðkÞ � xð1Þðk � 1Þ. The i� th

cumulative generated sequence of Xð1Þ is denoted as

aðiÞXð1Þ; i ¼ 1; 2; � � � n, and the value of the specific

aðiÞxð1ÞðkÞ is represented by the following equation:

að1Þxð1ÞðkÞ ¼xð1ÞðkÞ � xð1Þðk � 1Þ ¼ xð0ÞðkÞ
að2Þxð1ÞðkÞ ¼að1Þxð1ÞðkÞ � að1Þxð1Þðk � 1Þ ¼ xð0ÞðkÞ � xð0Þðk � 1Þ

� � � � � �
aðnÞxð1ÞðkÞ ¼aðn�1Þxð1ÞðkÞ � aðn�1Þxð1Þðk � 1Þ ¼ aðn�2Þxð0ÞðkÞ � aðn�2Þxð0Þðk � 1Þ

Definition 4. Let Xð1Þ ¼ ðxð1Þð1Þ; xð1Þð2Þ; � � � ; xð1Þ
ðmÞÞ be the same as in Definition 2; then, Zð1Þ is the

mean generating sequence of Xð1Þ,

Zð1Þ ¼ ðzð1Þð2Þ; zð1Þð3Þ; � � � ; zð1ÞðmÞÞ, where

zð1ÞðkÞ ¼ 1

2
½xð1ÞðkÞ þ xð1Þðk � 1Þ�; k ¼ 2; � � � ;m ð5Þ
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2.3 Euler equation grey prediction model

Let the function f ðxÞ in Eq. (3) be represented by the

variable axþ b;then, the Euler equation can be

transformed into

xn
dny

dxn
þ a1x

n�1 d
n�1y

dxn�1
þ a2x

n�2 d
n�2y

dxn�2
þ � � � þ an�1

x
dy

dx
þ any ¼ axþ b

ð6Þ

Let y ¼ xð1ÞðtÞ; x ¼ t. For convenience, we can

simplify xð1ÞðtÞ as xð1Þ

tn
dnxð1Þ

dtn
þ a1t

n�1 d
n�1xð1Þ

dtn�1
þ a2t

n�2 d
n�2xð1Þ

dtn�2
þ � � �

þ an�1t
dxð1Þ

dt
þ anx

ð1Þ ¼ at þ b

ð7Þ

Due to

dxð1Þ

dt
¼ xð1ÞðkÞ � xð1Þðk � 1Þ

k � ðk � 1Þ
¼ xð1ÞðkÞ � xð1Þðk � 1Þ ¼ að1Þxð1ÞðkÞ ¼ xð0ÞðkÞ

d2xð1Þ

dt2
¼ xð0ÞðkÞ � xð0Þðk � 1Þ

k � ðk � 1Þ
¼ xð0ÞðkÞ � xð0Þðk � 1Þ ¼ að2Þxð1ÞðkÞ

� � � � � �
dðn�iÞxð1Þ

dtðn�iÞ ¼ aðn�i�1Þxð1ÞðkÞ � aðn�i�1Þxð1Þðk � 1Þ
k � ðk � 1Þ

¼ aðn�i�1Þxð1ÞðkÞ � aðn�i�1Þxð1Þðk � 1Þ ¼ aðn�iÞxð1ÞðkÞ
� � � � � �

dnxð1Þ

dtn
¼ aðn�1Þxð1ÞðkÞ � aðn�1Þxð1Þðk � 1Þ

k � ðk � 1Þ
¼ aðn�1Þxð1ÞðkÞ � aðn�1Þxð1Þðk � 1Þ ¼ aðnÞxð1ÞðkÞ

The following definition can be derived from the

above equations.

Definition 5. Assuming that Xð0Þ, Xð1Þ and Zð1Þ are
defined as above, the equation

knaðnÞxð1ÞðkÞ þ a1k
n�1aðn�1Þxð1ÞðkÞ

þ a2k
n�2aðn�2Þxð1ÞðkÞ þ � � � þ an�1ka

ð1Þxð1ÞðkÞ
þ anz

ð1ÞðkÞ
¼ ak þ b

ð8Þ

is the Euler equation grey model, referred to as the

EEGM(n,1) model.

where k ¼ 1; 2; � � � ;m; then, Eq. (7) is called the

whitening equation of the EEGM(n,1) model.

2.4 Parameter estimation

The parameter estimates of the EEGM(n,1) model are

given by Theorem 1.

Theorem 1. The least squares estimation of the

parameter vector p̂ ¼ ½a1; a2; � � � ; an; a; b�T in the

EEGM(n,1) model is determined by the following

equation:

(1) When m ¼ nþ 3 and jBj 6¼ 0, that gives

p̂ ¼ B�1Y;

(2) When m\nþ 3 and jBj 6¼ 0, that gives

p̂ ¼ ðBTBÞ�1BTY;

(3) When m\nþ 3 and jBj 6¼ 0, that gives

p̂ ¼ BTðBBTÞ�1Y ,

where

B ¼

�2n�1aðn�1Þxð1Þð2Þ �2n�2aðn�2Þxð1Þð2Þ � � � �2að1Þxð1Þð2Þ �zð1Þð2Þ 2 1

�3n�1aðn�1Þxð1Þð3Þ �3n�2aðn�2Þxð1Þð3Þ � � � �3að1Þxð1Þð3Þ �zð1Þð3Þ 3 1

..

. ..
. ..

. ..
. ..

. ..
.

�mn�1aðn�1Þxð1ÞðmÞ �mn�2aðn�2Þxð1ÞðmÞ � � � �mað1Þxð1ÞðmÞ �zð1ÞðmÞ m 1

0

BBBB@

1

CCCCA
Y ¼

2naðnÞxð1Þ1 ð2Þ
3naðnÞxð1Þ1 ð3Þ

..

.

mnaðnÞxð1Þ1 ðmÞ

0
BBBBB@

1
CCCCCA
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Proof: According to the definition provided by the

EEGM(n,1) model:

Thus, it can be inferred that

Equation (10) can be rewritten in matrix form as

follows:

Y ¼ Bp̂ ð11Þ

By utilizing the properties of matrices, the follow-

ing can be inferred:

(1) When m� 1 ¼ nþ 2, i.e.m ¼ nþ 3, the matrix

B at this point is invertible, i.e.jBj 6¼ 0, p̂ ¼
B�1Y can be obtained;

(2) When m� 1[ nþ 2, i.e.m[ nþ 3, B is a

column-full rank matrix and jBTBj 6¼ 0; then,

there exist matrices for which A is a matrix of

ðm� 1Þ � ðnþ 2Þ and C is a matrix of ðnþ
2Þ � ðnþ 2Þ with B ¼ AC. Then the general-

ized inverse matrix By of B is denoted by:

By ¼ CTðCCTÞ�1ðATAÞ�1AT ð12Þ

Since B is a column full rank matrix, let C ¼ Inþ1

and obtain:

B ¼ AC ¼ AInþ1 ¼ A ð13Þ

Therefore:

p̂ ¼ CTðCCTÞ�1ðATAÞ�1ATY

¼ ITnþ1ðInþ1I
T
nþ1Þ

�1ðBTBÞ�1BTY ¼ ðBTBÞ�1BTY

ð14Þ

(3) When m� 1\nþ 2, i.e.m\nþ 3,B is a row-

full rank matrix and jBBT j 6¼ 0; then, A is a

matrix of ðm� 1Þ � ðm� 1Þ and C is a matrix

of ðm� 1Þ � ðnþ 2Þ with B ¼ AC. Let

A ¼ Im�1; then, we have:

B ¼ AC ¼ Im�1C ¼ C ð15Þ

Therefore:

2naðnÞxð1Þð2Þ þ a12
n�1aðn�1Þxð1Þð2Þ þ a22

n�2aðn�2Þxð1Þð2Þ þ � � � þ an�12a
ð1Þxð1Þð2Þ þ anz

ð1Þð2Þ ¼ 2aþ b

3naðnÞxð1Þð3Þ þ a13
n�1aðn�1Þxð1Þð3Þ þ a23

n�2aðn�2Þxð1Þð3Þ þ � � � þ an�13a
ð1Þxð1Þð3Þ þ anz

ð1Þð3Þ ¼ 3aþ b

..

.

mnaðnÞxð1ÞðmÞ þ a1m
n�1aðn�1Þxð1ÞðmÞ þ a2m

n�2aðn�2Þxð1ÞðmÞ þ � � � þ an�1ma
ð1Þxð1ÞðmÞ þ anz

ð1ÞðmÞ ¼ maþ b

8
>>>>><

>>>>>:

ð9Þ

2naðnÞxð1Þð2Þ ¼ �a12
n�1aðn�1Þxð1Þð2Þ � a22

n�2aðn�2Þxð1Þð2Þ � � � � � an�12a
ð1Þxð1Þð2Þ � anz

ð1Þð2Þ þ 2aþ b

3naðnÞxð1Þð3Þ ¼ �a13
n�1aðn�1Þxð1Þð3Þ � a23

n�2aðn�2Þxð1Þð3Þ � � � � � an�13a
ð1Þxð1Þð3Þ � anz

ð1Þð3Þ þ 3aþ b

..

.

mnaðnÞxð1ÞðmÞ ¼ �a1m
n�1aðn�1Þxð1ÞðmÞ � a2m

n�2aðn�2Þxð1ÞðmÞ � � � � � an�1ma
ð1Þxð1ÞðmÞ � anz

ð1ÞðmÞmþ aþ b

8
>>>>><

>>>>>:

ð10Þ
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p̂ ¼ CTðCCTÞ�1ðATAÞ�1ATY

¼ BTðBBTÞ�1ðITm�1Im�1Þ�1ITm�1Y ¼ BTðBBTÞ�1Y

ð16Þ

Proof of the end.

2.5 Time response functions of the EEGM(n,1)

model

The time response function of the EEGM(n,1) model

is discussed below and is given by Theorem 2.

Theorem 2. The time response sequence of the

EEGM(n,1) model is

x̂ð1ÞðkÞ ¼ f ðkÞ þ 2

f ðkÞ x̂ð1Þðk � 1Þ

þ knkn

f ðkÞ
Xn�1

i¼1

aðiÞx̂ð1Þðk � 1Þ

þ kn�1k
n�1

f ðkÞ
Xn�2

i¼1

aðiÞx̂ð1Þðk � 1Þ þ � � �

þ k2k2

f ðkÞ a
ð1Þx̂ð1Þðk � 1Þ � c1

f ðkÞ k

� c2
f ðkÞ ; k ¼ 1; 2; � � �m

ð17Þ

The restored sequence of the EEGM(n,1) model is

x̂ð0ÞðkÞ ¼ f ðkÞ þ 2

f ðkÞ x̂ð1Þðk � 1Þ

þ knkn

f ðkÞ
Xn�1

i¼1

aðiÞx̂ð1Þðk � 1Þ þ � � �

þ k2k2

f ðkÞ a
ð1Þx̂ð1Þðk � 1Þ

� f ðk � 1Þ þ 2

f ðk � 1Þ x̂ð1Þðk � 2Þ

� knðk � 1Þn

f ðk � 1Þ
Xn�1

i¼1

aðiÞx̂ð1Þðk � 2Þ

� � � � � k2ðk � 1Þ2

f ðk � 1Þ að1Þx̂ð1Þðk � 2Þ

þ c1
f ðk � 1Þ ðk � 1Þ þ c2

f ðk � 1Þ �
c1
f ðkÞ k

� c2
f ðkÞ ; k ¼ 1; 2; � � �m

ð18Þ

x̂ð1ÞðkÞ and x̂ð0ÞðkÞ respectively denote the predicted
sequence and its restored values corresponding to the

original sequence xð1ÞðkÞ and xð0ÞðkÞ. Additionally,

f ðkÞ ¼ knkn þ kn�1k
n�1 þ � � � þ k1k � 1.

Proof: By utilizing the EEGM(n,1) model and the

definition of the mean sequence, we can substitute

Eq. (5) into Eq. (8) to obtain

knaðnÞxð1ÞðkÞ þ a1k
n�1aðn�1Þxð1ÞðkÞ þ a2k

n�2aðn�2Þxð1ÞðkÞ þ � � �

þ an�1ka
ð1Þxð1ÞðkÞ þ an

2
½x̂ð1ÞðkÞ þ x̂ð1Þðk � 1Þ� ¼ ak þ b

ð19Þ

From this it follows

an
2
x̂ð1ÞðkÞ ¼ � knaðnÞxð1ÞðkÞ � a1k

n�1aðn�1Þxð1ÞðkÞ

� a2k
n�2aðn�2Þxð1ÞðkÞ � � � �

� an�1ka
ð1Þxð1ÞðkÞ � an

2
x̂ð1Þðk � 1Þ þ ak þ b

ð20Þ

That is

x̂ð1ÞðkÞ ¼ � 2

an
knaðnÞxð1ÞðkÞ � 2a1

an
kn�1aðn�1Þxð1ÞðkÞ

� 2a2
an

kn�2aðn�2Þxð1ÞðkÞ � � � � � 2an�1

an
kað1Þxð1ÞðkÞ

� x̂ð1Þðk � 1Þ þ 2a

an
k þ 2

an
b

ð21Þ

Let kn ¼ � 2
an
; kn�1 ¼ � 2a1

an
; � � � ; k1 ¼

� 2an�1

an
; k0 ¼ �1; c1 ¼ 2a

an
; c2 ¼ 2b

an
, then Eq. (21) can

be converted into

x̂ð1ÞðkÞ ¼knk
naðnÞxð1ÞðkÞ þ kn�1k

n�1aðn�1Þxð1ÞðkÞ
þ kn�2k

n�2aðn�2Þxð1ÞðkÞ þ � � � þ k1ka
ð1Þxð1ÞðkÞ

þ k0x̂
ð1Þðk � 1Þ þ c1k þ c2

ð22Þ

Because

aðnÞxð1ÞðkÞ ¼aðn�1Þxð1ÞðkÞ � aðn�1Þxð1Þðk � 1Þ
aðn�1Þxð1ÞðkÞ ¼aðn�2Þxð1ÞðkÞ � aðn�2Þxð1Þðk � 1Þ
aðn�2Þxð1ÞðkÞ ¼aðn�3Þxð1ÞðkÞ � aðn�3Þxð1Þðk � 1Þ

..

.

að1Þxð1ÞðkÞ ¼xð1ÞðkÞ � xð1Þðk � 1Þ

Therefore
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aðnÞxð1ÞðkÞ ¼aðn�1Þxð1ÞðkÞ � aðn�1Þxð1Þðk � 1Þ
¼aðn�2Þxð1ÞðkÞ � aðn�2Þxð1Þðk � 1Þ
� aðn�1Þxð1Þðk � 1Þ

¼aðn�3Þxð1ÞðkÞ � aðn�3Þxð1Þðk � 1Þ
� aðn�2Þxð1Þðk � 1Þ � aðn�1Þxð1Þðk � 1Þ

¼ � � �
¼að1Þxð1ÞðkÞ � að1Þxð1Þðk � 1Þ
� að2Þxð1Þðk � 1Þ � � � � � aðn�1Þxð1Þðk � 1Þ

¼xð1ÞðkÞ � xð1Þðk � 1Þ �
Xn�1

i¼1

aðiÞxð1Þðk � 1Þ

aðn�1Þxð1ÞðkÞ ¼aðn�2Þxð1ÞðkÞ � aðn�2Þxð1Þðk � 1Þ
¼aðn�3Þxð1ÞðkÞ � aðn�3Þxð1Þðk � 1Þ
� aðn�2Þxð1Þðk � 1Þ

¼aðn�4Þxð1ÞðkÞ � aðn�4Þxð1Þðk � 1Þ
� aðn�3Þxð1Þðk � 1Þ � aðn�2Þxð1Þðk � 1Þ

¼ � � �
¼að1Þxð1ÞðkÞ � að1Þxð1Þðk � 1Þ
� að2Þxð1Þðk � 1Þ � � � � � aðn�2Þxð1Þðk � 1Þ

¼xð1ÞðkÞ � xð1Þðk � 1Þ �
Xn�2

i¼1

aðiÞxð1Þðk � 1Þ

Expanding in turn leads to

aðn�2Þxð1ÞðkÞ ¼ xð1ÞðkÞ � xð1Þðk � 1Þ �
Xn�3

i¼1

aðiÞxð1Þðk � 1Þ

..

.

að2Þxð1ÞðkÞ ¼ xð1ÞðkÞ � xð1Þðk � 1Þ � að1Þxð1Þðk � 1Þ
að1Þxð1ÞðkÞ ¼xð1ÞðkÞ � xð1Þðk � 1Þ

By substituting aðiÞxð1ÞðkÞ; i ¼ 1; 2; � � � ; n into

Eq. (22), we obtain

x̂ð1ÞðkÞ ¼knk
n½x̂ð1ÞðkÞ � x̂ð1Þðk � 1Þ

�
Xn�1

i¼1

aðiÞx̂ð1Þðk � 1Þ� þ kn�1k
n�1½x̂ð1ÞðkÞ � x̂ð1Þðk � 1Þ

�
Xn�2

i¼1

aðiÞx̂ð1Þðk � 1Þ� þ kn�2k
n�2½x̂ð1ÞðkÞ � x̂ð1Þðk � 1Þ

�
Xn�3

i¼1

aðiÞx̂ð1Þðk � 1Þ� þ � � � þ k1k½x̂ð1ÞðkÞ

� x̂ð1Þðk � 1Þ� þ k0x̂
ð1Þðk � 1Þ þ c1k þ c2

ð23Þ

By simplifying Eq. (23), we obtain

ðknkn þ kn�1k
n�1 þ � � � þ k1k � 1Þx̂ð1ÞðkÞ

¼ knk
n½x̂ð1Þðk � 1Þ

þ
Xn�1

i¼1

aðiÞx̂ð1Þðk � 1Þ� þ kn�1k
n�1½x̂ð1Þðk � 1Þ

þ
Xn�2

i¼1

aðiÞx̂ð1Þðk � 1Þ� þ kn�2k
n�2½x̂ð1Þðk � 1Þ

þ
Xn�3

i¼1

aðiÞx̂ð1Þðk � 1Þ� þ � � � þ k1kx̂
ð1Þðk � 1Þ

� k0x̂
ð1Þðk � 1Þ

� c1k � c2

ð24Þ

Therefore

x̂ð1ÞðkÞ ¼ knkn

knkn þ kn�1kn�1 þ � � � þ k1k � 1
½x̂ð1Þðk � 1Þ

þ
Xn�1

i¼1

aðiÞx̂ð1Þðk � 1Þ�

þ kn�1k
n�1

knkn þ kn�1kn�1 þ � � � þ k1k � 1

½x̂ð1Þðk � 1Þ þ
Xn�2

i¼1

aðiÞx̂ð1Þðk � 1Þ�

þ kn�2k
n�2

knkn þ kn�1kn�1 þ � � � þ k1k � 1
½x̂ð1Þðk � 1Þ

þ
Xn�3

i¼1

aðiÞx̂ð1Þðk � 1Þ�

þ � � � þ k1k � k0
knkn þ kn�1kn�1 þ � � � þ k1k � 1

x̂ð1Þðk � 1Þ

� c1
knkn þ kn�1kn�1 þ � � � þ k1k � 1

k

� c2
knkn þ kn�1kn�1 þ � � � þ k1k � 1

ð25Þ

When all the parameters of the model are deter-

mined, for the variable time point k of Eq. (25), there

are

klkl

knkn þ kn�1kn�1 þ � � � þ k1k � 1
; l ¼ 0; 1; � � � ; n

The equation is varied with time k. At this point,

since the order of the equation is set to n, for each

aðn�iÞx̂ð1Þðk � 1Þ; i ¼ 1; 2; � � � n� 1 in the above equa-

tion, it is an n� i cumulative reduction of x̂ð1Þðk � 1Þ,
so that the Eq. (25) is an overall circulation, thus
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giving the corresponding expression for the loop and

letting the initial value condition be

að1Þx̂ð1Þð1Þ ¼ að2Þx̂ð1Þð1Þ ¼ � � � ¼ aðnÞx̂ð1Þð1Þ ¼ x̂ð1Þð1Þ
¼ xð0Þð1Þ

For k ¼ 2, we have

x̂ð1Þð2Þ ¼ 2nkn
2nkn þ 2n�1kn�1 þ � � � þ 2k1 � 1

nx̂ð1Þð1Þ

þ 2n�1kn�1

2nkn þ 2n�1kn�1 þ � � � þ 2k1 � 1
ðn� 1Þx̂ð1Þð1Þ

þ � � � þ 2k1 � k0
2nkn þ 2n�1kn�1 þ � � � þ 2k1 � 1

x̂ð1Þð1Þ

� 2c1
2nkn þ 2n�1kn�1 þ � � � þ 2k1 � 1

� c2
2nkn þ 2n�1kn�1 þ � � � þ 2k1 � 1

¼ 2nkn
2nkn þ 2n�1kn�1 þ � � � þ 2k1 � 1

nxð0Þð1Þ

þ 2n�1kn�1

2nkn þ 2n�1kn�1 þ � � � þ 2k1 � 1
ðn� 1Þxð0Þð1Þ

þ � � � þ 2k1 � k0
2nkn þ 2n�1kn�1 þ � � � þ 2k1 � 1

xð0Þð1Þ

� 2c1
2nkn þ 2n�1kn�1 þ � � � þ 2k1 � 1

� c2
2nkn þ 2n�1kn�1 þ � � � þ 2k1 � 1

After determining the values of the parameters, the

value of x̂ð1Þð2Þ can be calculated. Subsequently, by

substituting x̂ð1Þð2Þ into Eq. (25) and iteratively setting
k ¼ 3; � � � ;m, the value of x̂ð1ÞðkÞ can also be obtained.
When the function f ðsÞ ¼ knsn þ kn�1s

n�1 þ � � � þ
k1s� 1; s 2 Nþ is combined with k0 ¼ �1, the fol-

lowing can be obtained:

x̂ð1ÞðkÞ ¼ f ðkÞ þ 2

f ðkÞ x̂ð1Þðk � 1Þ þ knkn

f ðkÞ
Xn�1

i¼1

aðiÞx̂ð1Þðk � 1Þ

þ kn�1k
n�1

f ðkÞ
Xn�2

i¼1

aðiÞx̂ð1Þðk � 1Þ þ � � �

þ k2k2

f ðkÞ a
ð1Þx̂ð1Þðk � 1Þ � c1

f ðkÞ k �
c2
f ðkÞ

ð26Þ

Consequently, it can be inferred that

x̂ð0ÞðkÞ ¼x̂ð1ÞðkÞ � x̂ð1Þðk � 1Þ

¼ f ðkÞ þ 2

f ðkÞ x̂ð1Þðk � 1Þ

þ knkn

f ðkÞ
Xn�1

i¼1

aðiÞx̂ð1Þðk � 1Þ

þ kn�1k
n�1

f ðkÞ
Xn�2

i¼1

aðiÞx̂ð1Þðk � 1Þ þ � � �

þ k2k2

f ðkÞ a
ð1Þx̂ð1Þðk � 1Þ � c1

f ðkÞ k

� c2
f ðkÞ �

f ðk � 1Þ þ 2

f ðk � 1Þ x̂ð1Þðk � 2Þ

� knðk � 1Þn

f ðk � 1Þ
Xn�1

i¼1

aðiÞx̂ð1Þðk � 2Þ

� kn�1ðk � 1Þn�1

f ðk � 1Þ
Xn�2

i¼1

aðiÞx̂ð1Þðk � 2Þ

� � � � � k2ðk � 1Þ2

f ðk � 1Þ að1Þx̂ð1Þðk � 2Þ

þ c1
f ðk � 1Þ ðk � 1Þ þ c2

f ðk � 1Þ

ð27Þ

Organized as follows

x̂ð0ÞðkÞ ¼ f ðkÞ þ 2

f ðkÞ x̂ð1Þðk � 1Þ

þ knkn

f ðkÞ
Xn�1

i¼1

aðiÞx̂ð1Þðk � 1Þ

þ � � � þ k2k2

f ðkÞ a
ð1Þx̂ð1Þðk � 1Þ

� f ðk � 1Þ þ 2

f ðk � 1Þ x̂ð1Þðk � 2Þ

� knðk � 1Þn

f ðk � 1Þ
Xn�1

i¼1

aðiÞx̂ð1Þðk � 2Þ

� � � � � k2ðk � 1Þ2

f ðk � 1Þ að1Þx̂ð1Þðk � 2Þ

þ c1
f ðk � 1Þ ðk � 1Þ þ c2

f ðk � 1Þ
� c1
f ðkÞ k �

c2
f ðkÞ

ð28Þ

End of proof.
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3 Model performance evaluation criteria

To validate the accuracy and reliability of the

proposed predictive model, it is crucial to select

effective criteria for evaluating the prediction accu-

racy. The original sequence is divided into two parts:

the simulated sequence and the predicted sequence.

Three commonly used statistical metrics, namely, the

absolute percentage error (APE), mean absolute

percentage error (MAPE), and comprehensive mean

relative percentage error (CMRPE), are employed to

assess the accuracy of both the simulated and

predicted stages. The performance evaluation criteria

are presented below.

Given the original sequence

Xð0Þ ¼ ðxð0Þð1Þ; xð0Þð2Þ; � � � ; xð0ÞðmÞ; xð0Þðm
þ 1Þ; � � � ; xð0Þðmþ pÞÞ

A grey prediction model is created using the first m

elements of the sequence, with the following p datas as

the prediction sequence to test the accuracy of the

model. The corresponding simulated sequence and

predicted sequence are given as:

X̂
ð0Þ
S ¼ðx̂ð0Þð1Þ; x̂ð0Þð2Þ; � � � ; x̂ð0ÞðmÞÞ

X̂
ð0Þ
P ¼ðx̂ð0Þðmþ 1Þ; x̂ð0Þðmþ 2Þ � � � ; x̂ð0Þðmþ pÞÞ

The corresponding error sequences for simulation

and prediction are

dS ¼ðdð1Þ; dð2Þ; � � � ; dðmÞÞ
dP ¼ðdðmþ 1Þ; dðmþ 2Þ � � � ; dðmþ pÞÞ

where dðiÞ ¼ xð0ÞðiÞ � x̂ð0ÞðiÞ; i ¼ 1; 2; � � � ;mþ p.

The corresponding absolute percentage error (APE)

is defined as

APE ¼ dðiÞ
xð0ÞðiÞ

����

����� 100%; i ¼ 1; 2; � � � ;mþ p ð29Þ

The mean absolute simulated percentage error

(MAPEs) is defined as

MAPEs ¼
Xm

i¼1

1

m

dðiÞ
xð0ÞðiÞ

����

����� 100%; i ¼ 1; 2; � � � ;m

ð30Þ

The mean absolute predicted percentage error

(MAPEp) is defined as

MAPEp ¼
Xmþp

i¼mþ1

1

p

dðiÞ
xð0ÞðiÞ

����

����� 100%; i

¼ mþ 1;mþ 2; � � � ;mþ p ð31Þ

The comprehensive mean relative percentage error

(CMRPE) is defined as

CMRPE ¼ MAPEsþMAPEp

2
ð32Þ

4 Particle swarm optimization for EEGM(n,1)

model

In this section, the working principle of the particle

swarm optimization algorithm and the search process

for the order of the EEGM(n,1) model based on

particle swarm optimization are introduced.

4.1 Particle swarm optimization for finding

the optimal order

In this section, the particle swarm algorithm [38]

(PSO) is employed to determine the optimal solution

for the parameters to improve the prediction accuracy.

The principle of PSO is to randomly initialize particles

and then iteratively update their velocities and posi-

tions to search for the optimal solution. Each particle

moves in the direction of its individual best and global

best, and in the multidimensional search process, the

update equations for the velocity and position of each

particle are as follows:

vk0id ¼ wvk0�1
id þ c1rand1ðp�id � xk0�1

id Þ þ c2rand2ðg�d
� xk0�1

id Þ
ð33Þ

xk0id ¼ xk0�1
id þ vk0id ð34Þ

Here, id denotes particle i in the d � th dimension;

k0 is the number of iterations, the maximum of which

can range between 100 and 1000 and is set to 100 in

this paper; and w is the inertia weight, whose value is

between 0 and 1 and is set to 0.8 in this paper; c1 and c2
are the two acceleration constants, which are also

referred to as learning factors; the former is the

individual learning factor of each particle, and the
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latter is the social learning factor of each particle.

Generally, c1 ¼ c2 2 ½0; 4� and is set to 0.5 in this

paper; rand1 and rand2 are two random numbers

uniformly distributed in (0,1). p� and g� denote the

individual optimal position and the global optimal

position, respectively.

Therefore, an optimization problem is constructed

to find the optimal value of n by using the minimum

CMRPE as the objective function, and the expression

of the optimization problem is as follows:

CMRPEmin
n

¼ 1

2

Xm

i¼1

1

m

dðiÞ
xð0ÞðiÞ

����

����þ
Xmþp

i¼mþ1

1

p

dðiÞ
xð0ÞðiÞ

����

����

 !

� 100%

ð35Þ

Therefore, the EEGM(n,1) model can be better

applied in real cases. As overfitting may occur if the

order of the EEGM(n,1) model is too high, it is worth

advocating providing the range of the order of the

EEGM(n,1) model during the modelling process;

therefore, the range of the model’s order is set to

n� 50 in this paper.

4.2 Modeling steps for the EEGM(n,1) model

The modeling steps of the EEGM(n,1) model are as

follows:

Step 1 Input initial sequence: The original data

sequence Xð0Þ is input;
Step 2 Preprocess the data: For the original

sequence Xð0Þ, the corresponding first-order cumula-

tive sequence Xð1Þ, the i� order cumulative sequence

aðiÞXð1Þ and the mean generating sequence Zð1Þ are

calculated according to Definitions 2, 3, and 4,

respectively;

Fig. 1 Step-by-step flowchart of the EEGM(n,1) model
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Step 3 Build the proposed model and estimate its

parameters: The matrices B and Y of the model are

constructed based on the defined sequences aðiÞXð1Þ

and Zð1Þ, and the estimated values of the parameters

a1; a2; � � � ; an; a; b are obtained;

Step 4 Optimize the model order: The particle

swarm algorithm is used to optimize the order n, and

the model is constructed based on the found optimal

order and the parameter values calculated by the least

squares method;

Step 5 Generate the time response function to

obtain the simulated and predicted values: the simu-

lated and predicted values are calculated using the

formula in Theorem 2;

Step 6 Test the model error: The simulation and

prediction errors are calculated according to the

performance index evaluation criteria of the

EEGM(n,1) model, and the simulation and prediction

performance of the model is analyzed;

Step 7Verify the validity of the EEGM(n,1) model:

The model is applied to an actual case to verify its

excellent prediction performance.

Based on the above main steps, Fig. 1 presents a

sequential flowchart of the EEGM(n,1) model.

5 Application of the EEGM(n,1) model to short-

term traffic flow prediction

5.1 Data analysis

The data for the study was obtained from the urban

highway data of Whitemud Drive in Canada, provided

by the Intelligent Transportation Research Center of

the University of Alberta [39].

In this section, three cases were used to verify the

validity and accuracy of the EEGM(n,1) model, and

data from Friday, August 14, which is a nonholiday

day, were selected to perform a valid analysis of the

application of this model. For Case 1, two sets of data,

one from 16:40 to17:30 and the other from 18:20 to

19:25, were selected. The sequence length in the first

set of data was 9, and that in the second set was 14. For

these two sets of data, we used a model with different

structures to predict the same number of steps with

different sequence lengths. For Case 2, the traffic flow

data from 18:00 to 19:25 on Friday, August 14th, were

selected, and a total of 18 data were obtained. In

addition, data from 18:00 to 19:05 and 18:00 to 19:10

were selected as the initial sequences to verify the

performance of the model in terms of processing the

data after rolling three times. For Case 3, the period

from 16:40 to 17:50 was selected. The first 12 data

were used to build the prediction model, and the last

three data were used to test the prediction error and to

compare the results with those of the NGM(1,1) model

[40], Verhulst model [41], GM(2,1) model [41],

WGM(1,1) model [42], CCRGM(1,1) model [43],

and NGBM(1,1,k,c) model [22].

5.2 Numerical simulations and case studies

5.2.1 Case 1: Predictions with the same step size

for two different periods on the same day

Traffic flow data with 5-min intervals for the periods

16:45–17:30 and 18:20–19:25 on August 14 are

selected. The total length of the original data for the

first period is 10, and the first 8 data are used to

construct the model. Predictions are made for the last

two data. The optimal order of this set of data is found

to be 6 by the optimization algorithm, and the MAPE

is computed for both the simulation and prediction

scenarios. The outcomes of this analysis are presented

in Table 1 and Table 3. The total length of the data for

the second period is 14, and the first 12 data are

selected as the simulated data. The prediction is

performed for the last two data. The optimal order of

this set of data is found to be 10 by the PSO algorithm,

and theMAPE is computed for both the simulation and

prediction scenarios. The outcomes of this analysis are

presented in Tables 2 and 3.

Table 3 shows that the new model yields simulation

errors of 9.4211% and 9.0122% during the periods of

16:45–17:30 and 18:20–19:25, respectively. The pre-

diction errors are 4.2829% and 3.1790% for the same

periods, respectively. Furthermore, the CMRPE of the

new model is approximately 6% for both the simula-

tion and prediction, indicating that the model has a

higher prediction performance. In terms of the struc-

ture of the model, the different optimal orders obtained

by the algorithm and the different model structures

prove that the results obtained by predicting two

different sets of data with the same step length under

different model structures are satisfactory; in terms of

the modelling object, it is verified that the model stably

and accurately predicts the two sets of data with

123

Grey prediction model based on Euler equations and its application in highway short-term… 10203



different lengths. To conduct a more comprehensive

examination of the effectiveness of the model in

simulating and predicting outcomes, Fig. 2 is plotted.

Figure 2a shows the simulated and predicted fitting

curves for the first set of data. Compared with the

original data, except for a slight deviation from the

actual trend at 16:50, the new model not only fits the

original data better in the simulation phase but also

obtains the same reflection in the prediction phase.

Figure 2b shows the fitting curves of the simulated and

predicted data for the second group, from which it can

be intuitively observed that the simulated trend of the

model is almost the same as the actual trend. In

summary, the model effectively conforms to the

distinct features of traffic flow data. This finding

indicates that the model achieves a good prediction

effect, which fully demonstrates that the model is

suitable for trend simulation and prediction of traffic

flow systems.

5.3 Case 2: Prediction of the same day and same

period with different lengths of data

for the same step length with rolling

mechanism

The same time period (18:00–19:25) of the same day

(August 14) is selected for the 5-min traffic flow data,

in which 18:00–19:05 and 18:00–19:10 are selected as

the initial periods, with total lengths of 14 and 15,

respectively. According to the modelling mechanism

of the new model, the first 13 data and the first 14 data

were selected, respectively, and the latter data are

predicted. Based on the new information priority

principle, this section describes the use of the rolling

mechanism for modelling. After rolling three times to

obtain two groups of data, each group undergoes

optimization using PSO, and both groups produce

results with a value of 2. The simulation and prediction

errors for the two groups of data are calculated, and the

results are shown in Tables 4, 5 and 6.

Table 4 shows that the EEGM(n,1) model exhibits

simulated MAPEs values of 9.4016%, 9.0939%,

8.8258%, and 6.8010% for the four time periods,

18:00–19:05, 18:05–19:10, 18:10–19:15, and

18:15–19:20, respectively, MAPEp values of

6.7093%, 2.5550%, 0.5969% and 0.4882%, and a

MAPEp value after rolling three times of only

Table 1 Simulation and

prediction effects of the

traffic flow model for

16:45–17:30

Time 16:45 16:50 16:55 17:00 17:05

Raw data 119.75 102.50 99.25 104.00 100.25

Simulation/prediction 119.75 141.40 97.25 100.79 91.24

APE (%) 0.00 37.95 2.01 3.08 8.98

Time 17:10 17:15 17:20 17:25 17:30

Raw data 94.50 97.00 104.50 95.75 90.50

Simulation/prediction 82.33 96.23 104.24 97.51 96.59

APE (%) 12.88 0.79 0.25 1.84 6.73

Table 2 Simulation and

prediction effects of the

traffic flow model for

18:20–19:25

Time 18:20 18:25 18:30 18:35 18:40 18:45 18:50

Raw data 70.00 58.75 56.00 53.25 51.75 52.25 53.25

Simulation/prediction 70.00 70.62 51.17 51.25 49.50 46.65 51.41

APE (%) 0.00 20.20 8.62 3.76 4.35 10.71 3.45

Time 18:55 19:00 19:05 19:10 19:15 19:20 19:25

Raw data 48.25 45.25 45.25 44.00 42.25 40.50 41.75

Simulation/prediction 52.49 42.10 40.54 53.05 41.70 39.51 40.12

APE (%) 8.79 6.96 10.42 20.58 1.31 2.45 3.91

Table 3 Three evaluation indicators for 16:45–17:30 and

18:20–19:25

Evaluation indicators 16:45–17:30 18:20–19:25

MAPEs (%) 9.4211 9.0122

MAPEp (%) 4.2829 3.1790

CMRPE (%) 6.8520 6.0956
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0.4882%. Table 6 shows that the CMRPE of the model

has an error of only 3.6446% after rolling three times,

which indicates high accuracy. Considering both the

simulation error and prediction error, the model’s error

is smaller than that of the previous one every time it is

rolled, which indicates that the model achieves high

accuracy.

In addition to the comparison of the MAPE,

comparing the trends of the prediction curves can also

effectively reveal that the model exhibits high stability

and prediction ability. Therefore, Fig. 3 depicts the

simulated and predicted fitting curves for each of the

four time periods. From the individual trend plots, the

EEGM(n,1) model not only fits the original data better

in the simulation stage but also exhibits the same

performance as that in the prediction phase. Overall,

the trend of the new model simulated from the first

period to the fourth period increasingly approaches

that of the original curve. In conclusion, the model

adapts to the rolling prediction of traffic flow data

better than the other models, which indicates that the

EEGM(n,1) model has notable predictive efficacy.

Table 4 Comparative analysis of simulation results and prediction effect of traffic flow model with rolling mechanism for initial

period 18:00–19:05

18:00–19:05 18:05–19:10 18:10–19:15 18:15–19:20

Raw data Simulation APE

(%)

Raw

data

Simulation APE

(%)

Raw

data

Simulation APE

(%)

Raw

data

Simulation APE

(%)

70.75 70.75 0.00 61.50 61.50 0.00 73.00 73.00 0.00 68.00 68.00 0.00

61.50 57.79 6.03 73.00 61.81 15.33 68.00 83.18 22.32 70.00 73.56 5.09

73.00 61.50 15.76 68.00 81.98 20.55 70.00 63.35 9.49 58.75 72.22 22.93

68.00 84.27 23.93 70.00 66.05 5.65 58.75 69.47 18.24 56.00 48.52 13.36

70.00 65.67 6.19 58.75 72.29 23.04 56.00 47.55 15.09 53.25 52.28 1.81

58.75 72.71 23.76 56.00 48.86 12.74 53.25 51.91 2.52 51.75 49.64 4.07

56.00 48.78 12.90 53.25 53.22 0.06 51.75 49.46 4.43 52.25 49.52 5.22

53.25 53.50 0.46 51.75 50.38 2.65 52.25 49.38 5.49 53.25 52.17 2.02

51.75 50.61 2.20 52.25 50.06 4.20 53.25 52.02 2.30 48.25 53.81 11.53

52.25 50.26 3.82 53.25 52.53 1.36 48.25 53.69 11.27 45.25 42.86 5.29

53.25 52.70 1.04 48.25 54.06 12.04 45.25 42.89 5.22 45.25 41.92 7.36

48.25 54.19 12.32 45.25 43.17 4.61 45.25 41.91 7.38 44.00 45.00 2.28

45.25 43.25 4.42 45.25 42.13 6.89 44.00 44.95 2.15 42.25 42.53 0.66

MAPEs

(%)

9.4016 9.0939 8.8258 6.8010

Prediction APE

(%)

Prediction APE

(%)

Prediction APE

(%)

Prediction APE

(%)

45.25 42.21 6.7093 44.00 45.12 2.5550 42.25 42.50 0.5969 40.50 40.30 0.4882

Fig. 2 Simulation and prediction of traffic flow data for two different periods for Case 1
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Table 5 shows that the new model yields simulated

MAPEs values of 9.1974%, 8.5884%, 7.6210%, and

7.9597% in the four time periods, respectively, and the

predicted MAPEp value has the smallest error of only

0.4665% after two rolling time periods. The simulated

MAPEs value gradually decreases after three rolling

cycles, although the simulation error after the third

cycle is 0.3387% greater than that after the second

cycle. However, overall, the results indicate that the

model effectively predicts data under the rolling

mechanism. Table 6 shows that the CMRPE values

of the model are all less than 10%, with the best

performance having an error of only 4.04375%. This

result indicates the effective predictability of the new

model on the data, and Fig. 4 is plotted to visualize the

prediction performance of the rolling prediction

mechanism.

Figure 4 shows the simulated and predicted fitting

curves for four time intervals: 18:00–19:10,

18:05–19:15, 18:10–19:20, and 18:20–19:25. It is

Table 5 Comparative analysis of simulation results and prediction effect of traffic flow model with rolling mechanism for the initial

period 18:00–19:10

18:00–19:10 18:05–19:15 18:10–19:20 18:15–19:25

Raw data Simulation APE

(%)

Raw

data

Simulation APE

(%)

Raw

data

Simulation APE

(%)

Raw

data

Simulation APE

(%)

70.75 70.75 0.00 61.50 61.50 0.00 73.00 73.00 0.00 68.00 68.00 0.00

61.50 57.75 6.10 73.00 61.89 15.23 68.00 80.10 17.79 70.00 57.90 17.28

73.00 61.51 15.74 68.00 81.97 20.55 70.00 64.29 8.16 58.75 81.24 38.29

68.00 84.27 23.93 70.00 66.02 5.68 58.75 69.98 19.11 56.00 49.77 11.12

70.00 65.68 6.18 58.75 72.28 23.03 56.00 48.20 13.93 53.25 53.91 1.25

58.75 72.71 23.76 56.00 48.85 12.77 53.25 52.17 2.02 51.75 50.59 2.24

56.00 48.78 12.89 53.25 53.21 0.07 51.75 49.64 4.09 52.25 50.20 3.92

53.25 53.50 0.47 51.75 50.37 2.66 52.25 49.49 5.28 53.25 52.72 1.00

51.75 50.61 2.20 52.25 50.05 4.20 53.25 52.08 2.20 48.25 54.21 12.34

52.25 50.26 3.81 53.25 52.52 1.36 48.25 53.73 11.35 45.25 42.95 5.09

53.25 52.70 1.04 48.25 54.06 12.04 45.25 42.97 5.03 45.25 42.05 7.07

48.25 54.19 12.32 45.25 43.16 4.61 45.25 41.96 7.27 44.00 45.17 2.67

45.25 43.25 4.41 45.25 42.13 6.89 44.00 44.97 2.20 42.25 42.63 0.91

45.25 42.21 6.71 44.00 45.12 2.55 42.25 42.53 0.65 40.50 40.38 0.30

MAPEs

(%)

9.1974 8.5884 7.6210 7.9597

Prediction APE

(%)

Prediction APE

(%)

Prediction APE

(%)

Prediction APE

(%)

44.00 45.20 2.7190 42.25 42.65 0.9354 40.50 40.31 0.4665 41.75 38.64 7.4507

Table 6 Comparison of

different performance

metrics in Case 2

Evaluation indicators 18:00–19:05 18:05–19:10 18:10–19:15 18:15–19:20

MAPEs (%) 9.4016 9.0939 8.8258 6.8010

MAPEp (%) 6.7093 2.5550 0.5969 0.4882

CMRPE (%) 8.05545 5.82445 4.71135 3.6446

Evaluation indicators 18:00–19:10 18:05–19:15 18:10–19:20 18:15–19:25

MAPEs (%) 9.1974 8.5884 7.6210 7.9597

MAPEp (%) 2.7190 0.9354 0.4665 7.4507

CMRPE (%) 5.9582 4.7619 4.04375 7.7052
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intuitively shown from the figure that the EEGM(n,1)

model captures the trend direction of the traffic flow

dynamics, in which the best fitting effect is observed in

third period, and in the fourth period from 18:30

onwards, the new model can fit the trend of the actual

data of the traffic flow well. This trend is very close to

that of the original data. These findings fully demon-

strate that the model is suitable for trend simulation

and prediction of the traffic flow system.

In comparing the two sets of data in Tables 4 and 5,

two different sets of data from the same period are

used to demonstrate that it is feasible to use the

prediction with the rolling mechanism for the traffic

flow data when the structure of the model is

unchanged, and good results are obtained. In terms

of the structure of the model, the optimal order

corresponding to the two sets of data are 2� order,

which indicates that the model can stably predict the

two sets of data with a rolling mechanism when the

structure is unchanged. In terms of the modelling

object, by keeping the initial time constant and

changing the length of the modelling sequence, the

model can also consistently and accurately predict two

sets of data with the same step length. The new model

can make stable predictions for different lengths of

modelled sequences with the rolling mechanism.

5.4 Case 3: performance comparison of different

models on the same day and period

The traffic flow data for the period 16:40–17:50 on

August 14 are selected, and the total length of the data

is 15. According to the modelling mechanism of the

new model, the first 12 data are selected as the

modelling data. The performance of the model was

then evaluated using the next 3 data, which represent

the following 15 min. The algorithm obtains the

optimal order of 3 for this set of data, and the results

are compared with those of the NGM(1,1), Verhulst,

GM(2,1), WGM(1,1), CCRGM(1,1), and

NGBM(1,1,k,c) models; additionally, a comparison

of the prediction results of the seven models with the

actual results is shown in Fig. 5. Three commonly

used indicators, CMRPE, APE, and MAPE, are

calculated to measure the prediction performance of

the models. The results are presented in Tables 7, 8,

and 9.

For the case study of this section, the EEGM(n,1)

model exhibits an error of 7.3959% in the modelling

part, and its prediction accuracy is higher in the

12-time nodes of modelling; moreover, its accuracy is

second only to that of the NGM(1,1) model and

CCRGM(1,1) models, but it has the highest accuracy

Fig. 3 Simulation and prediction of traffic flow data after rolling three times for the initial period 18:00–19:05
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Fig. 5 Simulation and prediction of traffic flow data for four different models in Case 3

Fig. 4 Simulation and prediction of traffic flow data after rolling three times for the initial period 18:00–19:10
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Table 7 Comparison of

Traffic Flow Model

Predictions from

16:40–17:50

Time Raw data EEGM(n,1) NGM(1,1) Verhulst

Simulation APE(%) Simulation APE(%) Simulation APE(%)

16:40 99.25 99.25 0.00 99.25 0.00 99.25 0.00

16:45 119.75 111.17 7.16 100.81 15.82 98.19 18.01

16:50 102.50 114.33 11.54 98.73 3.68 96.99 5.38

16:55 99.25 97.03 2.24 97.24 2.02 95.65 3.63

17:00 104.00 98.50 5.29 96.18 7.51 94.16 9.46

17:05 100.25 103.99 3.74 95.43 4.81 92.50 7.73

17:10 94.50 93.19 1.38 94.89 0.41 90.66 4.06

17:15 97.00 89.80 7.43 94.51 2.57 88.64 8.62

17:20 104.50 104.33 0.17 94.23 9.83 86.42 17.30

17:25 95.75 113.14 18.16 94.04 1.79 84.01 12.27

17:30 90.50 70.78 21.79 93.90 3.75 81.39 10.07

17:35 90.00 92.21 2.46 93.80 4.22 78.58 12.69

MAPEs(%) 7.3959 5.1288 9.9280

Prediction APE(%) Prediction APE(%) Prediction APE(%)

17:40 102.00 96.30 5.59 93.72 8.11 75.58 25.90

17:45 85.75 80.36 6.29 93.67 9.24 72.40 15.57

17:50 69.00 70.74 2.52 93.64 35.71 69.06 0.09

MAPEp(%) 4.7982 17.6868 13.8541

Table 8 Comparison of Traffic Flow Model Predictions for 16:40–17:50

Time Raw data GM(2,1) WGM(1,1) CCRGM(1,1) NGBM(1,1,k,c)

Simulation APE(%) Simulation APE(%) Simulation APE(%) Simulation APE(%)

16:40 99.25 99.25 0 99.25 0 99.25 0.00 99.25 0.00

16:45 119.75 3106.55 2494.19 119.75 0 98.73 17.55 154.34 28.89

16:50 102.5 - 9141.04 9018.09 93.06 9.21 98.04 4.35 134.35 31.07

16:55 99.25 12,640.38 12,635.9 116.5 17.38 97.37 1.89 120.44 21.35

17:00 104 - 11,504.64 11,162.15 89.84 13.61 96.71 7.01 110.90 6.64

17:05 100.25 10,128.34 10,003.08 113.32 13.04 96.06 4.18 104.40 4.14

17:10 94.5 - 9815.74 10,487.02 86.7 8.25 95.43 0.98 99.99 5.81

17:15 97 11,300.57 11,550.07 110.22 13.63 94.81 2.26 97.00 0.00

17:20 104.5 - 11,183.18 10,801.61 83.64 19.96 94.20 9.86 94.99 9.10

17:25 95.75 8758.73 9047.5 107.19 11.95 93.60 2.24 93.64 2.21

17:30 90.5 - 7303.7 8170.38 80.65 10.89 93.01 2.78 92.74 2.47

17:35 90 8412.17 9246.86 104.24 15.82 92.44 2.71 92.15 2.39

MAPEs (%) 9510.6239 13.3974 5.0738 10.3695

Prediction APE (%) Prediction APE (%) Prediction APE (%) Prediction APE (%)

17:40 102 - 7236.16 7194.27 77.67 23.8 91.87 9.93 91.77 10.03

17:45 85.75 3157.12 3581.77 101.33 18.17 91.32 6.49 91.53 6.74

17:50 69 - 1076.87 1660.68 74.79 8.39 90.77 31.56 91.38 32.43

MAPEp (%) 4145.575 16.8015 15.9930 16.4004

The significance of bold: emphasizing the difference in errors between EEGM (n,1) and five other grey prediction models,

highlighting the minimum MAPEs, MAPEp, and CMRPE

123

Grey prediction model based on Euler equations and its application in highway short-term… 10209



in the prediction part, with a value of only 4.7982%.

As shown in Table 9, the CMRPE of the EEGM(n,1)

model is 6.0970%, which is significantly lower than

that of the other six models. The GM(2,1) model yields

the lowest prediction accuracies in both the simulation

and prediction parts. Although the NGM(1,1) model

and the CCRGM(1,1) model yield high prediction

accuracies when the data are simulated, the MAPEp

values in the forecast part are significantly greater than

those of the proposed model, with errors as high as

17.6868% and 15.9930%, respectively. The errors of

the WGM(1,1) model and the NGBM(1,1,k,c) model

are both more than 10% in both the simulation and

prediction parts, which are much larger than those of

the new model. In summary, the proposed EEGM(n,1)

model achieves high prediction accuracy and exhibits

good adaptability and applicability.

Since the error of the GM(2,1) model is too large

and plotting affects the observation and comparison,

only the curves of the remaining four models fit to the

original data are plotted here, as shown in Fig. 5. The

NGM(1,1) model shows almost no fluctuation, and the

data show a gradual downwards trend that slowly

deviates from that of the original data. The predicted

curves of the Verhulst model are consistently below

the original data curve, underestimating the values of

the original data series and not matching the actual

data trend fluctuations. Although the predicted curve

of the WGM(1,1) model shows some fluctuations, it

deviates far from the actual curve and does not comply

with the fluctuation patterns of the original data. The

prediction results of the CCRGM(1,1) model do not

fluctuate much, exhibiting a relatively smooth trend.

However, this smoothing trend can lead to the model

failing to capture subtle changes and dynamics in the

data. The NGBM(1,1,k,c) model has certain limita-

tions when processing traffic flow data. The trend of

the model is inconsistent with the fluctuation law of

the actual traffic flow data, which shows that the

prediction accuracy of the model in this time period is

lacking. Considering the ability of the model to

simulate the original data, the EEGM(n,1) model can

effectively fit the actual traffic flow trend, reflecting

the overall variation trend of traffic volume. This

finding indicates that the model is adaptable to time

series with fluctuations. Thus, the EEGM(n,1) model

has the best goodness of fit of all the models.

5.5 Analysis of case results

In this section, the corresponding MAPEs, MAPEp,

and CMRPE values for the three cases are given in

Tables 3, 6, and 9, respectively, and the corresponding

bar charts are plotted. As shown in Fig. 6, the

corresponding errors of the EEGM(n,1) model in the

three cases are less than 10%, which indicates that the

model exhibits an accurate prediction effect. In

Fig. 6a, the MAPEs, MAPEp, and CMRPE values of

the two time periods do not differ much, and the

CMRPE is less than 7%. In Fig. 6b, the MAPEs,

MAPEp, and CMRPE values tend to decrease with

increasing number of rolling times. Figure 6c shows a

decreasing trend in the errors for the first three time

periods, while the error slightly increases for the fourth

period but remains stable at approximately 8%.

Figure 6d, shows that the MAPEs, MAPEp, and

CMRPE of the EEGM(n,1) model are the minimum

of all seven models, and the errors are not as high as

8%.

Due to the variable structure of the EEGM(n,1)

model, we set up three cases from different perspec-

tives. In Case 1, it is verified that under different model

structures, two sets of data are predicted with the same

step length, and the performance of the results

indicates that the model exhibits a stable prediction

effect. In Case 2, under the samemodel structure, three

rolling predictions are made for data of different

lengths at the same initial moment in the same period,

Table 9 Comparison of performance metrics of different models in Case 3

Evaluation indicators EEGM(n,1) NGM(1,1) Verhulst GM(2,1) WGM(1,1) CCRGM(1,1) NGBM(1,1,k,c)

MAPEs(%) 7.3959 5.1288 9.9280 9510.6239 13.3974 5.0738 10.3695

MAPEp(%) 4.7982 17.6868 13.8541 4145.5750 16.8015 15.9930 16.4004

CMRPE(%) 6.0970 11.4078 11.8911 6828.0995 15.0995 10.5334 13.3850

The significance of bold: emphasizing the difference in errors between EEGM (n,1) and five other grey prediction models,

highlighting the minimum MAPEs, MAPEp, and CMRPE
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which verifies that the model can accurately capture

the characteristics of the traffic flow data and also

provides stable predictions for simulated sequences of

different lengths. Additionally, the use of a different

rolling prediction method in Case 2 compared to Case

1 further highlights the ability of the EEGM(n,1)

model to stably predict traffic flow data under different

forecasting approaches. Case 3 verifies that the

combined performance of the EEGM(n,1) model in

the simulation and prediction phases is better than that

of the other six models by comparing the EEGM(n,1)

model with the NGM(1,1), Verhulst, GM(2,1),

WGM(1,1), CCRGM(1,1), and NGBM(1,1,k,c) mod-

els. The results demonstrate the capability of the

proposed model to capture future trends and develop

data more effectively, making it more applicable.

Based on the three empirical case studies presented

above, it can be inferred that models exhibit a

generally high level of accuracy in simulating and

predicting outcomes under various complex condi-

tions, such as different model structures, data lengths,

and forecasting methods. The new model achieves the

best fitting performance and is a validated method for

accurately predicting traffic flow trends with high

fitting and prediction accuracy. The results show that

the EEGM(n,1) model can simulate the fluctuating

trend of traffic flow well and that the model has good

adaptability to time series with fluctuations, conforms

to the characteristics of trend changes in traffic flow

data, and achieves good predictions of the direction

and development trends of traffic flow in the future.

Overall, the model is effective and reliable in predict-

ing the accuracy of traffic flow data and can be used for

practical applications.

6 Summary and outlook

In this paper, a high-order variable coefficient grey

prediction model based on the Euler equation is

established, beginning from the basic Euler equation

in fluid mechanics. First, the introduction of the

variable coefficient differential Euler equation makes

the model more adaptable to the stochastic and

nonlinear characteristics of traffic flow data and

allows us to better explore the characteristics of traffic

Fig. 6 Comparison of different evaluation indicators in the three cases
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flow data over time. In addition, to improve the

stability of the model structure, a linear correction

term is included in the grey prediction model.

Furthermore, a suitable time response function is

constructed using the principle of grey differential

information to eliminate errors between the differen-

tial function and the difference function. Finally, the

particle swarm optimization algorithm is employed to

optimize the new model, aiming to improve its

accuracy.

Furthermore, in the first two cases of traffic flow on

Canadian highways, the validation of the research

results shows that the new model exhibits good

adaptability and stability under complex situations

involving different model structures, different data

lengths, and different prediction methods and is

suitable for predicting highway short-term traffic flow.

The effectiveness of the EEGM(n,1) model is verified

in the third case, which is based on data from traffic

flow on Canadian highways. The results show that the

simulation and prediction results of the new model are

better than those of other grey models, including the

NGM(1,1), Verhulst, GM(2,1), WGM(1,1),

CCRGM(1,1), and NGBM(1,1,k,c) models. The new

model can effectively capture the fluctuation patterns

in highway traffic flow data, exhibiting good stability

and prediction accuracy in both fitting and prediction.

The proposed prediction model in this study can assist

decision-makers in obtaining a better understanding of

short-term traffic variations on highways, providing

theoretical support for short-term highway prediction

and offering scientific evidence for alleviating high-

way traffic congestion.

Although the proposed grey prediction model based

on the Euler equations has obvious advantages, there is

still room for improvement. To apply this model to

more complex traffic flow systems, considering that a

variety of external factors, such as speed limits,

accidents, weather, and special dates, can affect the

prediction of traffic flow, we will further investigate

the addition of these external factors to the model to

increase the complexity of the current traffic flow

prediction model and construct an accurate short-term

traffic flow prediction model.
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