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Abstract In recent years, generative adversarial

networks(GAN) has achieved great success in gener-

ating realistic images. However, the instability of

GAN and the lower accuracy of physics-informed

neural networks(PINN) in solving highly complex

partial differential equations make training models

extremely challenging. This paper proposes a novel

physics-informed GAN with gradient penalty

(PIGAN-GP) and applies it to predict solutions of

the 2-coupled mixed derivative nonlinear Schrödin-

ger. The PIGAN-GP integrates PINN as part of the

generator in the GAN framework, namely, utilizes

PINN to solve the physical equation and generate

predictions for the soliton positions and shapes. We

predict the positions and shapes of nondegenerate

solitons by the real and predicted solutions to demon-

strate the high accuracy and stability of this PIGAN-

GP network. Additionally, we also discuss the

influence of noise levels and different initializations

on the model parameter discovery using the PINN.

Keywords Nondegenerate soliton � Physics-

informed generative adversarial networks � 2-coupled

mixed derivative nonlinear Schrödinger equation

1 Introduction

A soliton is a special type of nonlinear wave that can

maintain its shape and energy without dispersing or

deforming, possessing unique characteristics during

its propagation. Optical solitons, for instance, exhibit

stable propagation in optical fibers. The study of the

dynamical behavior of solitons can enhance the

efficiency and stability of communication systems

[1]. In the realm of nonlinear wave theory, the

investigation of solitons helps us gain a better

understanding of the behavior of waves in nonlinear

systems and the influence of these waves on materials

and media. The collision between vector solitons can

lead to the exchange of energy between components

[2], which has wide applications in fields such as

physics, optics, acoustics, etc. However, due to the

nonlinear characteristics of solitons, the prediction of

their collision behavior [3] has always been a

challenge. In recent years, the development of deep

learning technology has provided new ideas for

solving soliton prediction problems [4].
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In the past 50 years, great progress has been made

in understanding different applications of multi-scale

physics from Geophysics to Biophysics by using finite

difference, finite element, spectral and even meshless

methods to numerically solve partial differential

equations [5]. Despite continuous progress, the use

of classical analysis or computational tools to simulate

and predict the evolution of nonlinear multiscale

systems with non-uniform cascades inevitably faces

severe challenges and introduces high costs and

multiple sources of uncertainty [6]. For complicated

nonlinear problems, it is difficult to find accurate

solutions. Researchers have proposed to predict the

solutions of nonlinear problems via the physics-

informed neural networks(PINN) [7], which combines

neural networks and physical equations to solve the

problems of efficiency and accuracy of partial differ-

ential equations(PDEs). By incorporating physical

constraints, such as PDEs and physical laws, into the

loss function and utilizing observational data for

neural network training, the model can adapt to the

system’s behavior. During training, the optimization

algorithm adjusts the neural network parameters by

minimizing the loss function, representing the dis-

crepancy between model predictions and actual data.

Upon completion of training, the neural network

becomes capable of predicting solutions to PDEs,

enabling the retrieval of the system’s solutions at any

given time and position without the necessity of

explicitly solving the PDEs.

In subsequent studies, Raissi et al. [8, 9] utilized the

nonlinear fitting ability of neural networks to approx-

imate the solutions of physical equations. This method

can improve the computational efficiency and accu-

racy of physical simulation processes. After Raissi

et al. presented the PINN method in 2019 [7, 9], Fang

et al. embedded the conservation laws such as energy

conservation into PINN [10] and proposed a subnet

structure for physical neural networks [11]. Chao et al.

introduced the local adaptive activation function of

neurons into the PINN network to improve the

performance of the neural network [12]. Li et al.

presented an adaptive search algorithm and mixed the

training prior information to enhance the approxima-

tion ability of the network [13]. Chen et al. incorpo-

rated two kinds of Miura transformation constraints

into neural networks to solve nonlinear PDEs for

unsupervised learning [14]. Up to now, PINN, through

a data-driven approach, eliminates the need for

explicitly solving PDEs and learning the behavior of

PDEs from actual samples. Compared with traditional

numerical methods, PINN, despite being trained on a

relatively small number of data points, still yields

robust numerical solutions and is applied to handle

complex geometric and multi-physics scenarios. Its

efficient neural network approximation endows it with

significant practical value in solving real-time or

large-scale problem. However, the mechanism of

PINN is not suitable for using additional information

samples to improve the network, it is often inefficient

when processing additional information. Conse-

quently, for some complex PDEs, the efficiency of

training PINN tends to be low. For different equations,

PINN requires specialized design and modification of

hyperparameters [15, 16] and its simple extensions

cannot completely solve different problems. For

example, when solving the problem of 2-CMDNLSE

[17], the network proposed by Raissi et al. alone to find

the solutions of the coupled equations [7] can not get

satisfactory results, and the prediction will have large

errors or deformed results and lead to the poor fitting

effect. If the number of neurons and network width is

increased, the training frequency and training time

will significantly add, and the fitting effect has not

been effectively improved [7].

Recently, Generative Adversarial Network (GAN)

has become very popular. GAN is also a kind of deep

learning network. Because GAN has the function of

learning data distribution and unsupervised learning, it

has been widely used in image generation, video

generation, speech synthesis and other related fields.

Since Goodfellow and others put forward GAN [18] in

2014, Wasserstein GAN [19], CycleGAN [20],

StyleGAN [21] and other extensions have emerged.

GAN has a wide range of applicability, and is able to

learn the distribution characteristics of data from

unlabeled data, thus it provides an understanding of

the hidden structure behind the data and generates new

samples that conform to the distribution. Due to its

ability to generate and synthesize data samples to

expand the training set, it is very useful in situations

where data is scarce or requires a large number of

samples. Because GANs can accurately approximate

data distributions even in the presence of scarce

samples, this provides us with an approach to enhance

networks using a limited set of labeled samples. GAN

also has its drawbacks, namely its unstable training

and difficulty in regulation. In the adversarial training
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process of GAN, there is a balance point between the

generator and discriminator, making it difficult to

optimize both networks simultaneously, which may

lead to unstable training [22]. Although GAN can

generate high-quality images, training GAN may be

difficult due to its unstable and sensitive nature. GAN

often suffers from pattern collapse [23], which gen-

erates a set of images but does not capture the full

diversity of training data. In addition, GAN is very

sensitive to hyperparameters and initialization, which

makes GAN training more challenging. The method

for training GAN is progressive growth technology,

where the resolution of the generator and discrimina-

tor gradually increases during the training process

[18]. This method has been proven to be effective in

generating high-resolution images, but it still faces the

aforementioned issues of traditional GAN

architecture.

PINN is highly efficient for solving PDEs, but its

mechanism is not suitable for using additional infor-

mation samples to improve the network, resulting in

low efficiency in processing additional information.

Therefore, for some complex PDEs, the training

efficiency is often low. However, GAN can accurately

approximate the data distribution under scarce sam-

ples, but lacks stability. In order to solve these

problems and effectively solve PDEs, we combined

the GAN [24] and the PINN. We propose a novel GAN

architecture, whose generator is composed of the

PINN [23]. GAN is composed of two neural networks

with a generator and a discriminator, which compete

with each other in a minimax game. The generator will

attempt to generate realistic images that can deceive

the discriminator, while the discriminator will attempt

to distinguish the generated fake images from real

images. This architecture can be used to address the

instability of traditional GAN networks and the

limitations of PINN mechanisms and thus improves

the accuracy of PINN and the generalization ability of

the model and its adaptability to real-world situations.

GAN can provide additional supervised signals as

auxiliary training for PINN, and the adversarial

training between the generator and discriminator can

provide additional information about the behavior of

the physical system, which helps improve the perfor-

mance of PINN and makes the new network more

robust when facing diverse physical contexts. We will

use this network to predict the nondegenerate single

and double soliton solutions of the coupled mixed

derivative nonlinear Schrödinger Eq. (2-CMDNLSE)

[25], and compare this method with the traditional

PINN [26].

2 Physics-informed generative adversarial

networks

As shown in Fig. 1, this method is a GAN network

composed of a generator and a discriminator. We

replace the generator in the traditional GAN by the

PINN. We take x and t as the input of the generator to

replace the original noise input, and get the output

G(x,t) after experiencing the neuron and activation

function tanh. Then G(x,t) will enter PDE processing

to obtain the Loss function LPINN of PINN, where

G(x,t) is used as input to the discriminator along with

the real sample umin iðx; tÞ, and this processing allow

the discriminator to evaluate the image generated by

the generator against the real image. The score of the

generated image is added with the scores of LPINN and

the real image to respectively get the loss functions of

the generator and discriminator, whose values decline

by training the neural network with the optimizer. This

process makes the discriminator have a stronger

ability to distinguish between real and generated

samples, and the generator has a stronger ability to

generate realistic samples, until the generator can

‘‘cheat’’ the discriminator into Nash equilibrium, and

the training finishes.

First, we introduce the loss functions of the

generator and discriminator. In an ideal state, we hope

that the discriminator evaluates the images generated

by the generator image(fake) and the real image(real)

with scores equal to 0 and 1, respectively. Since the

use of logarithmic function can improve the stability

of numerical calculation and avoid the numerical

instability and the underflow or overflow problems in

the Floating-point calculation, we will use the loga-

rithmic function in loss function. We hope that the

generator has a stronger ability to generate realistic

samples, namely D½GðxqT ; t
q
TÞ� tends to 1, so the

formula is written as 1 � D½GðxqT ; t
q
TÞ�f g in loss

function. However, we hope that the discriminator

can distinguish between the real and generated sam-

ples, that is D½GðxqT ; t
q
TÞ� and D½umin iðxqW ; t

q
WÞ� tend to 0

and 1 respectively, so the formula is written as

1 � D½umin iðxqW ; t
q
WÞ�

� �
and D½GðxqT ; t

q
TÞ� in the loss
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function. Therefore, loss functions of the generator G

and discriminator D become

LG ¼ k1LPINN þ 1

q

X1

q

log 1�f D½GðxqT ; t
q
TÞ�g ð1Þ

LD ¼ 1

q

X1

q

log 1�f D½umin iðxqW ; t
q
WÞ�

�
þ D½GðxqT ; t

q
TÞ�

þ k2GP

ð2Þ

where the real number k1 and k2 represent the

coefficients of LPINN and gradient penalty [24],

respectively. By calculating the gradient of the

discriminator output relative to the input sample, we

use the norm of these gradients as a penalty term and

add them into the discriminator’s loss function to

encourage the generation of smooth distributions and

improve the training stability. Punishing gradients in

each optimization iteration ensure that the discrimi-

nator’s gradient remains within a reasonable range,

which helps prevent gradient explosion or disappear-

ance, and thereby enhances the robustness of the

model.

Then, we introduce the situation of the discrimina-

tor, which takes a small data sample umin iðx; tÞ on the

output results Gðx; tÞ and the total area X of the dataset

of the generator as its input, namely fake and real

images. The discriminator will score the image

generated by the generator and the real image and

feed them back to the loss function. The small data

sample is similar to the input image data of the

traditional GAN, where we consider the actual coor-

dinate ðx; tÞ as the corresponding ðx; yÞ in the

horizontal and vertical directions of the pixel, and

the amplitude of the corresponding soliton as the pixel.

In this way, small data samples can be input into the

discriminator as labeled data.

The numbers of network layers and neurons of the

PINN network are basically the same as that of the

discriminator, which is composed of ordinary linear

layers and activation function tanh, while the last

discriminator is the sigmoid function, which will

output a scalar value to indicate whether the input is

the accurate solution of the PDE. In this way, the

discriminator can distinguish between the false sam-

ples generated by the generator and the samples in the

real dataset, which makes the prediction results of the

generator no longer solely be guided by PINN, and

ultimately the output of the generator more approxi-

mate to exact solution. However, when there is a

significant difference in the abilities of generators and

discriminators, the training of neural networks may

encounter difficulties. In order to improve the stability

of training and the quality of generated samples, we

introduce the gradient penalty, which is the gradient

penalty in Wasserstein GAN [24]. The aim is to

constrain the gradient of the discriminator to change

more smoothly and reduce extreme response to the

input space, which helps to generate more realistic and

high-quality samples.

Next, we introduce the generator, which is obtained

through PINN processing of PDE. We not only feed

the output Gðx; tÞ of the generator into the discrimi-

nator, but also into the PDE. In PDE, we will have the

Fig. 1 The Network Structure of the PIGAN-GP
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following processing: we use the random sampling for

the initial and Dirichlet boundaries of the data set to

obtain MSEbc and MSEic by minimizing the Mean

squared error between the real and predicted values.

Because Latin hypercube sampling has lower compu-

tational costs and ensures uniform distribution of

sampling across all dimensions, which thereby

enhances coverage of the entire input space. The

selection of sampling strategy needs to strike a balance

between accuracy and computational efficiency. Latin

hypercube sampling meets our requirement for a

relatively uniform sampling of the input space. So we

perform the Latin hypercube sampling on the coordi-

nates in the dataset [27], and then apply partial

differentiation to the predicted value corresponding to

the coordinate position, which is then taken into the

physical equation. MSEf is obtained by the difference

between the previous and subsequent iterations. Then

put the sum LPINN of the above minimum Mean

squared error into the loss function of the generator as

the regularization mechanism.

So, we can get that the loss functions of the neural

network generator are

MSEic¼
1

Nic

XNic

i

ð r1ðxi; tiÞ�ri1
�� ��2þ m1ðxi;tiÞ�mi

1

�� ��2þ

r2ðxi;tiÞ�r j2
�� ��2þ m2ðxi;tiÞ�mj

2

�� ��2Þ
ð3Þ

MSEbc ¼
1

Nbc

XNbc

j

ð r1ðx j; t jÞ � r j1
�� ��2þ m1ðx j; t jÞ � mj

1

�� ��2:

þ r2ðx j; t jÞ � r j2
�� ��2þ m2ðx j; t jÞ � mj

2

�� ��2Þ
ð4Þ

MSEf ¼
1

Nf

XNf

k

ð fr1ðxk; tkÞ
�� ��2þ fr2ðxk; tkÞ

�� ��2:

þ fm1ðxk; tmÞ
�� ��2þ fm2ðxm; tmÞj j2Þ

ð5Þ

LPINN ¼ MSEbc þMSEic þMSEf ð6Þ

The predicted values Gðx; tÞ of the generator are

composed of the real parts r1ðx; tÞ, r2ðx; tÞ and

imaginary parts m1ðx; tÞ, m2ðx; tÞ of the complex

functions u1 and u2, fri1; ri2;mi
1;m

i
2g

Nic

i¼1 and

fri1; ri2;mi
1;m

i
2g

Nbc

i¼1 represent the initial and boundary

values of u1 and u2, fxk; tkgNf

k¼1, and f ðx; tÞ is the

residual calculated by substituting the selected con-

figuration points from the total area of the dataset X
into the physical equation.

In this article, initial points Nic = 100, boundary

points Nbc = 100, and configuration points Nf-

= 10,000 are used. When Gðx; tÞ continuously

approaches to exact solution uðxÞ, the final trained

result can to some extent meet the physical laws.

After the above modeling work is completed, we

first update the weights of the discriminator, and then

sequentially update the weights of the generator. The

optimizers used for the two networks are Adam and

SGD, respectively. The Adam optimizer can adap-

tively adjust the learning rate of different weights,

while SGD updates parameters each time by randomly

selecting samples to avoid falling into local optima

[28]. Generators and discriminators are both very

weak from the beginning, so they generally do not

experience significant fluctuations in their loss func-

tions at the beginning of training. After a period of

stable training, the losses of both the generator and

discriminator should fluctuate within a small area

without a significant continuous upward or downward

trend. After reaching the Nash equilibrium, the

training finishes. If the generator’s loss function

continues to increase significantly, it indicates that it

is unable to learn how to deceive the discriminator,

which is reflected in the result of starting to generate

noise. If the value of the discriminator’s loss function

continues to rise significantly, it means that it cannot

learn how to recognize the generator. The result is that

the generator may generate consistent, meaningless

images that can deceive the discriminator, such as

directly outputting samples from the training set.

We will use the PIGAN-GP to predict nondegen-

erate one-soliton and two-soliton solutions [25] and

compare this method with the traditional PINN [7].

The positive problem in this article is programmed

using the Python 3.10 and Tensorflow 2.10.1, while

the inverse problem is programmed using Tensorflow

1.15. The data reported in this article are all from a

2060 graphics card, 2.10 GHz, 12th Gen Intel

(R) Core (TM) i7-12,700 processor, running on a

computer with 16 GB of memory.
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3 Data-driven optical soliton solutions

Recently, Geng et al. [29] obtained nondegenerate

one-soliton and two-soliton solutions of the

2-CMDNLSE via Hirota bilinear method [30]. This

unique multimodal coupled system [31] is always

accompanied by the energy conversion, which is

conducive to the research of the dense data informa-

tion transmission. The physical characteristics of the

energy conversion of collision solitons can be used to

design logic gates and fiber coupling directions [32].

In this paper, a new network structure is proposed to

predict the data-driven solutions and equation param-

eters of 2-CMDNLSE [31]

iu1t þ u1xx þ lð u1j j2þ u2j j2Þu1 þ ic½ð u1j j2þ u2j j2Þu1�x
¼ 0

ð7Þ

iu2t þ u2xx þ lð u1j j2þ u2j j2Þu2 þ ic½ð u1j j2þ u2j j2Þu2�x
¼ 0

ð8Þ

Equations (7) and (8) are models that describe the

propagation of ultrashort pulses in birefringent fibers.

The amplitudes u1 and u2 of the two polarizations are

related to normalized distance x and time t. l and c
represent the real constants of the third-order and

derivative third-order nonlinearity intensities,

respectively.

3.1 Nondegenerate one-soliton solution

Using the PIGAN-GP and PINN, we obtain the

predictive solution of nondegenerate one-soliton for

2-CMDNLSE. The exact solution of nondegenerate

one-soliton [29] is

u1 ¼ ½a1e
g1 þ A1e

g1þn1þn�1 �
D1

;

u2 ¼ ½a2e
g1 þ A2e

g1þn1þg�
1 �

D1

;

ð9Þ

where

g1 ¼ j1xþ r1t; n1 ¼ i1xþ q1t; r1 ¼ ij2
1
; q1 ¼ ii2

1
;

D1 ¼ 1 þ C1e
g1þg�

1 þ C2e
n1þn�1 þ B1e

g1þg�
1
þn1þn�1 ;

C1 ¼ ðicj1 þ lÞja1j2

2ðj1 þ j�1Þ
;C2 ¼ ðici1 þ lÞja2j2

2ði1 þ i�1Þ
;

A1 ¼ ðici1 þ lÞðj1 � i1Þa1ja2j2

2ðj1 þ i�1Þði1 þ i�1Þ
2

;A2

¼ ðicj1 þ lÞði1 � j1Þa2ja1j2

2ði1 þ j�1Þðj1 þ j�1Þ
2

;

B1 ¼ ji1 � j1j2ja1j2ja2j2ðiclði1 þ j1Þ � c2i1j1 þ l2Þ
4ðj1 þ j�1Þ

2ði1 þ i�1Þ
2ðj�1 þ i1Þðj1 þ i�1Þ

:

ð10Þ

In the range ofx 2 �15; 35½ �; t 2 0; 4½ �, we choose

the parameters k ¼ 1; l ¼ 1;

a1 ¼ 1:5; a2 ¼ �1; k1 ¼ 0:5001; l1 ¼ 0:5, use pseudo

spectral method to obtain the data for the exact

solution (9), and discretize it into [256, 201] data

points to obtain the dataset. The PINN part adopts the

same number of network layers L = 7, number of

neurons n = 100, and training times epoch = 10,000.

The spatiotemporal dynamics of nondegenerate

one-solitons is shown in Fig. 2a and b. Figure 2c and d

exhibit a comparison of the predicted and exact

solutions of the PIGAN-GP and PINN at three

evolution time. The PIGAN-GP network takes

13 min and 52 s to achieve the prediction of relative

errors L2 = 1.869e-2 and 2.045e-2 for two compo-

nents u1 and u2, while the PINN network takes 22 min

and 45 s to achieve L2 = 3.558e-1 and 3.487e-1 for

two components u1 and u2. The PIGAN-GP network

can indeed improve the prediction accuracy of non-

degenerate one-soliton, with good accuracy in the

entire spatial and temporal domains and good predic-

tion with continuously increasing evolution time t.

In the range ofx 2 �15; 25½ �; t 2 0; 2½ � , taking a

new parameter k ¼ 1; l ¼ 1; a1 ¼ 0:75; a2 ¼
�1; k1 ¼ 0:83; l1 ¼ 0:65, we obtain the data for exact

M-shaped nondegenerate one-soliton solution (9)

using the pseudo spectral method and discretize it

into [256, 201] data points to obtain the dataset.

Figures 3c and d indicate that there are still differences

in the prediction accuracy of solutions between two

networks, and the PIGAN-GP network performs better

in terms of accuracy. The PIGAN-GP network takes

29 min and 16 s to achieve the prediction of relative

errors L2 = 2.844e-2 and 2.176e-2 for two compo-

nents u1 and u2, while the PINN network predicted

relative errors L2 = 3.527e-1 and 1.993e-1 for two

123

10220 W.-X. Qiu et al.



components u1 and u2 with a prediction time 27% less

than the PIGAN-GP. Figure 3e shows the comparison

of the training loss function curves of two networks

only in the PINN part. It can be seen that the PIGAN-

GP can reach the optimal solution more smoothly and

stably, and the loss function is about 1e-3.

3.2 Nondegenerate two-soliton solution

In the given exact solution of nondegenerate double

solitons in ref. [33], we take the parameters k1 ¼
�1:1; l1 ¼ �2:1; k2 ¼ 1; l2 ¼ 2; a11 ¼ 1;

a12 ¼ 1; a21 ¼ 1; a22 ¼ 1; c ¼ 1; l ¼ 1. We use the

pseudo spectral method to obtain data for exact solu-

tions and discretize them into [256, 201] data points to

obtain a dataset. The PINN part adopts the number of

network layer as L = 12, number of neurons as

n = 100, and training frequency epoch = 4000. Fig-

ure 4a and b depict the boundary points and initial

sampling points for sampling, and Fig. 4e is the

change of loss function of two network structures.

Figure 4c and d indicate that the PIGAN-GP has

stability, high accuracy, and can achieve local optimal

solutions earlier than PINN.

In the exact solution of nondegenerate double

solitons given in reference [33], the parameter is taken

as k1 ¼ �1:1; l1 ¼ �2:1; k2 ¼ 1; l2 ¼ 2; a11 ¼
1; a12 ¼ 3; a21 ¼ 11; a22 ¼ 1; c ¼ �1; l ¼ 1, and we

can predict the dynamic behavior of another type of

nondegenerate double solitons.

Figure 5 shows that the PIGAN-GP network can

indeed stably improve the authenticity of predictions

throughout the entire training process. The prediction

of PINN spends 33 min and 49 s, while PIGAN-GP

spends 28 min and 30 s, which takes 18.66% less time

and the faster training speed than PINN. Figure 5e

shows the comparison of absolute error for the

nondegenerate single and double solitons under

Fig. 2 Evolution of exact nondegenerate one-soliton solution for components a u1 and b u2. Comparison chart of predicted and exact

solutions for components c u1 and d u2 using different networks at different evolution time
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Fig. 3 Evolution of predicted nondegenerate one-soliton solu-

tion for components a u1 and b u2. Waterfall comparison of the

evolution process of predicted and exact nondegenerate one-

soliton solutions for components c u1 and (d) u2. e Relation

curves between loss function and iteration number for different

networks
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different parameters in Figs. 2, 3, 4, 5. Comparing the

predicted values of four soliton structures from two

network structures in Fig. 5e, there is no doubt that the

prediction via the traditional PINN is far less accurate

than the PIGAN-GP.

4 Parameter prediction of physical model

In this section, we will predict the equation parameters

of 2-CMDNLSE [31], namely, treat the cubic

Fig. 4 Boundary and initial sampling points from exact

nondegenerate double soliton solutions for components a u1

and b u2, cross sections of predicted and exact solutions for

components c u1 and d u2 at different evolution time, and e loss

functions v.s. iteration number
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Fig. 5 Top view of predicted nondegenerate double soliton

solutions for components a u1 and b u2. Cross sections of

predicted and exact solutions for components c u1 and d u2 at

different evolution time. e The comparison of absolute error for

components u1 and u2 of nondegenerate one-soliton solitons and

two-soliton solitons, where a, b, c, and d respectively correspond

to cases in Figs. 2, 3, 4, 5
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nonlinear strength l and derivative cubic nonlinear

strength c in the equation as unknown parameters.

Envelopes u1 and u2 are composed of real and

imaginary parts as

u1 ¼ r1 þ i � m1 ð11Þ

u2 ¼ r2 þ i � m2 ð12Þ

Fig. 6 Top views of predicted nondegenerate one-soliton for components a u1 and b u2 with sampling points. c Loss function and

d error after adding different noises

Table 1 2-CMDNLSE obtained by learning unknown parameters

Item\CMDNLSE Model Relative error

l c

Correct equations iu1x þ u1xx þ lð u1j j2þ u2j j2Þu1 þ ic½ð u1j j2þ u2j j2Þu1�x ¼ 0

iu2x þ u2xx þ lð u1j j2þ u2j j2Þu2 þ ic½ð u1j j2þ u2j j2Þu2�x ¼ 0

– –

Identified equations iu1x þ u1xx þ 0:98776293 ð u1j j2þ u2j j2Þu1 þ 1:0401235 i½ð u1j j2þ u2j j2Þu1�x ¼ 0

iu2x þ u2xx þ 0:98776293 ð u1j j2þ u2j j2Þu2 þ 1:0401235 i½ð u1j j2þ u2j j2Þu2�x ¼ 0

0.01223707 0.0401235
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Inserting Eqs. (11), (12) into Eq. (9), and perform-

ing the separation of real and imaginary parts, we can

minimize the Mean squared error via the PINN

method to obtain the approximate values of the

unknown parameters. The Mean squared errors of

sampling points and residuals read

MSE1 ¼ 1

Ns

XNs

p

ð r1ðxp; tpÞ � rp1
�� ��2þ m1ðxp; tpÞ � mp

1

�� ��2:

þ r2ðxp; tpÞ � rp2
�� ��2þ m2ðxp; tpÞ � mp

2

�� ��2Þ
ð13Þ

MSE2 ¼ 1

Ns

XNs

p

ð fr1ðxp; tpÞj j2þ fr2ðxp; tpÞj j2:

þ fm1ðxp; tpÞj j2þ fm2ðxp; tpÞj j2Þ
ð14Þ

Loss ¼ MSE1 þMSE2 ð15Þ

The real values of unknown parameters in

2-CMDNLSE correspond to c = 1, l = 1. We

discretize nondegenerate one-soliton by the pseudo

spectral method into [256, 201] data points to obtain

the dataset. Figure 6a and b display the situation of

sampling points. In order to predict unknown param-

eters, we chose to sample points Ns = 5000 and used a

neural network with the number n = 50 of neurons and

a depth L = 6 of layers. Table 1 shows the training

results (predicted values and relative errors) of these

unknown coefficients. From this table, it can be seen

that the effect of the prediction is good.

To verify the stability of the neural network, we add

different interference noises during the sampling

process. As shown in Fig. 6c, with the increase of

noise, the rate of convergence of the loss function

significantly slows down, and the overall error adds.

Figure 6d shows the training errors of unknown

coefficients for different interference noises. We

found that the PINN can accurately predict unknown

coefficients, even if the sampled data is corrupted by

15% noise, and the error is still within an

acceptable range.

Next, we will change the initial values of two

parameters and study changes of two parameters with

training times under different initial values. As shown

in Fig. 7, two parameters start to evolve from different

initial values. As the training times increase, their

predicted values will gradually stabilize after approx-

imately 2000–3000 training sessions, and ultimately

are same to the true values. This indicates that

different initial values of parameters only affect the

time that it takes for parameter prediction to reach

stability. If the training level meets certain require-

ments, the predicted values of the parameters will be

close to exact values. This also implies that PINN is

excellent for the stability of parameter prediction.

5 Conclusion

In summary, using the PIGAN-GP method, we predict

the evolution processes of nondegenerate single and

double solitons for 2-CMDNLSE and compare the

results with those via the traditional PINN. In the

prediction of equation parameters, we add noise to

judge the stability of the neural network. The predic-

tion errors will increase with the increase of noise, but

these errors are still within a controllable range.

The PINN is less sensitive to hyperparameters and

initialization, which makes training and tuning easier.

Compared with the traditional PINN, the PIGAN-GP

method has improved the training accuracy by about

Fig. 7 Curve of variation

for parameters a c and b l
with training times for

different initial values
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an order of magnitude, and the time cost is basically

the same as that of traditional PINN. For the prediction

of some soliton structures, the PIGAN-GP method

achieves higher accuracy with less time, although it

requires less width and length, training times for the

neural network. This is also the reason why the

training time cost is lower than that of traditional

PINN. This network can help us better understand the

significant energy transfer characteristics and behavior

between two components of each vector soliton and

play a positive role in future applications in logic gate

and fiber directional coupler design.
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