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Abstract This paper focuses on the issue of quan-

tifying nonlinear output frequency response compo-

nents of different orders of nonlinear dynamical

systems for a general excitation. An alternative

approach is presented based on Volterra series and

conditioned spectral analysis (CSA) theories. Firstly, a

multiple-input/single-output (MISO) linear system

with a series of power characterized inputs is obtained

by decomposing the nonlinear system under analyzed

based on Volterra series. Secondly, the correlations

among the inputs of different orders are removed by

utilizing CSA approach, obtaining an algorithm of

identifying the nonlinear output frequency response

functions (NOFRFs) and evaluating the contributions

of different order nonlinearities to the output of the

system. Two kinds of nonlinear systems were simu-

lated numerically to verify the accuracy of the method.

The results reached by the proposed method are very

close to the numerical results obtained by the fourth

order Runge–Kutta method. Finally, an experiment

analysis was carried out, in which the vibration

transmission properties of a bolt connection were

tested when the bolt was fastened and loose respec-

tively. The results of experiments reflected further the

effectiveness of the method on distinguishing quanti-

tatively the contributions of each order nonlinearities

to the output of a nonlinear system.

Keywords Nonlinear dynamical systems �
Nonlinear output frequency responses � Volterra

series � Conditioned spectral analysis � System

identification

1 Introduction

Most practical mechanical systems have nonlinear

dynamic characteristics. When a general input is acted

on a nonlinear dynamical system, the nonlinear

dynamic behaviors can generate multiplication and

intermodulation frequency components in the output

spectra. Because the higher order frequency compo-

nents are much richer than the input frequencies and

multiple interferences may occur among all the

frequency components, difficulties are often encoun-

tered when one wants to evaluate the nonlinear

frequency responses of an unknown dynamical system

or to quantify the real contribution of a special input to

the output by using the measured data.

To address the problems of nonlinear systems, a

verity of methods have been developed up to now.

Usually, if the governing differential equation is

available for an inspected nonlinear dynamic system,

the solutions of differential equations can be achieved
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by using various analytical methods, including per-

turbation method [1–5], multiple scales method [6–9],

KBM method [10, 11], and harmonic balance method

[12–15] etc. However, in many practical cases, the

governing equations of nonlinear systems are not

available, and the analytical methods cannot be

utilized. Then, in such cases, many mathematic

models, such as Volterra series [16–20], NARMAX

model [21–23], Taylor series [24–26], Wiener model

[27–29], Hammerstein model [30–32], and Wiener-

Hammerstein model [33–35] etc., can be used to

identify the nonlinear systems. Among these mathe-

matic models, Volterra series is a powerful tool for the

analysis of nonlinear systems when the governing

equation is not available. Because of the complexities

of nonlinear systems and the well-known fact that the

discrete time representation of a continuous time

system is not unique, the NARMAX model represen-

tation for a nonlinear system may not be unique and, in

most cases, also involve a large number of terms. In

contrast, Volterra series gives a unified analytical

expression for the input–output maps of nonlinear

systems, and therefore has more reliability and

robustness than NARMAX model. In addition,

Volterra series has wider applications than Taylor

series, Wiener model, Hammerstein model, and

Wiener-Hammerstein model, because the Taylor

series model does not take the past input of system

into account, and both Wiener and Hammerstein

models can be equalized to truncated Volterra series

[36].

The multi-dimensional Fourier transforms of Vol-

terra kernels is known as Generalised Frequency

Response Functions (GFRFs), which provides a

general framework to analyze nonlinear systems in

frequency domain [37–39]. One of the methods for

evaluating GFRFs was implemented by minimizing

the mean square deviation of output under the

condition that the input is a zero-mean stationary

Gaussian process [40]. However, in many mechanical

systems, the input does not satisfy Gaussian statistics,

such as the vibration excitations generated by raceway

geometrical errors in rolling bearings [41]. An

extended approach was based on higher order spectra

for estimating the linear and quadratic transfer func-

tions of the quadratic time-invariant system with a

general input [42] and two general inputs [43].

However, because the number of frequency interac-

tions increases quickly with the order of GFRFs,

explicit expressions of frequency interactions required

in the extended approach become very complicated

when the order is higher than two or three. Another

way of GFRFs evaluation was to apply the parametric

modeling techniques, typically involving orthonormal

basis expansion [44], analytical derivation [45], and

harmonic probing [46–49]. Although these parametric

modeling methods can obtain the GFRFs theoretically,

they require not only the output data available but also

the knowledge of governing equations of nonlinear

systems, and inherently have the problem of conver-

gence in iteration processes [50]. Besides, many

experiment-based nonlinear modal analysis

approaches can be used to identify nonlinear systems

[51–55]. For example, the nonlinear parameters can be

estimated by the operation of subspace identification

without the knowledge of system types [56, 57], or by

oblique projection in the absence of input measure-

ments [58]; the nonlinear normal modes of T-beams

can be identified by response-controlled stepped-sine

testing (RCT) [59, 60]. However, because the proce-

dure of nonlinear modal analysis is very time-

consuming, and may raise the risk of damage and

fatigue, its effectiveness is affected in practice.

Recently, the concept of nonlinear output fre-

quency response functions (NOFRFs) was proposed

based on Volterra series [61], which allows the

analyses of nonlinear systems to be carried out in a

manner like linear systems. The effectiveness of

NOFRFs has been extensively verified, involving

energy transfer of bilinear oscillators [62], comparison

between NOFRFs and harmonic balance of Duffing

oscillators [63], parameter estimation of multi-degree-

of-freedom (MDOF) nonlinear systems [64], and

applications in structural damage detection of nonlin-

ear systems [65, 66] etc. However, the determination

method of NOFRFs in these studies generally requires

experimental or simulation results for the nonlinear

system under N different input signal excitations,

which must have the same waveform but different

magnitudes, and the number of different excitations

should be equal or greater than the highest order of

NOFRFs. Therefore, the existing determination

method of NOFRFs is subject to the constraint that

the input of system should be deterministic and

adjustable exactly, which is infeasible in many

practical analyses of mechanical systems.

In this paper, an alternative approach is introduced

to evaluate the nonlinear frequency response
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components of nonlinear dynamical systems with

respect to a general input. In Sect. 2, the approach was

derived based on conditioned spectral analysis tech-

nique. In Sect. 3, two kinds of nonlinear systems were

simulated to verify the accuracy of the method. In

Sect. 4, an experiment analysis was set up to detect the

nonlinear vibration transmissibility of loose bolt

connection by applying the method. Section 5 con-

cludes this study.

2 Method

For a stable time-invariant nonlinear system with a

general input and a noise contaminated output, the

input–output relationship about an equilibrium point

can be expressed by Volterra series as

y tð Þ ¼
XN

n¼1

yn tð Þ þ ny tð Þ

yn tð Þ ¼
Z 1

�1
� � �

Z 1

�1
hn s1; � � � ; snð Þ

Yn

i¼1

x t � sið Þdsi½ �

8
>>>><

>>>>:

;

ð1Þ

in which xð�Þ and yð�Þ represent the system input and

output respectively, ynðtÞ the output components

generated by the n-th order nonlinearity,

hnðs1; � � � ; snÞ is called ‘the n-th order Volterra kernel’

or ‘the n-th order impulse response function’ which

can reduce to the well-known impulse response

function of linear systems when n ¼ 1, nyðtÞ the noise

imposed on the output, N the maximum order of

nonlinearities considered for the system. The output

components of orders higher than N are omitted.

In frequency domain, the input–output maps of

Eq. (1) can be formulated as

Y jxð Þ ¼
XN

n¼1

Yn jxð Þþ E jxð Þ for 8x

Yn jxð Þ ¼ 1

n1=2 2pð Þn�1

Z

x1þ���þxn¼x
Yn jx1; . . .; jxnð Þdrnx

Yn jx1; . . .; jxnð Þ ¼ Hn jx1; . . .; jxnð Þ
Yn

i¼1

X jxið Þ

8
>>>>>>>>><

>>>>>>>>>:

;

ð2Þ

where x signifies the angular frequency, i.e., x ¼ 2pf ,
XðjxÞ the spectrum of input, YðjxÞ the spectrum of

output, YnðjxÞ the n-th order output spectrum com-

ponents, drnx refers to the area of a minute element on

the n-dimensional hyperplane x ¼ x1 þ � � � þ xn,

Hnðjx1; . . .; jxnÞ is named GFRFs equaling to the

multidimensional Fourier transform of the n-th order

impulse response hnðs1; � � � ; snÞ. The integration oper-

ation in Eq. (2) means that Yn jxð Þ can be achieved by

integrating Ynðjx1; . . .; jxnÞ over a n-dimensional

hyperplane x ¼ x1 þ � � � þ xn. The GFRFs are

nature extensions of the linear frequency response

function to nonlinear systems, as Hnðjx1; . . .; jxnÞ is

equal to the linear transfer function when n ¼ 1.

Being different from linear systems, nonlinear

systems have more complicated input–output rela-

tionship because of frequency multiplication and

intermodulation, giving rise to the difficulties in

identifying output frequency response components of

different orders. To address this issue, the concept of

NOFRFs was proposed by Lang and Billings [61],

which is given by

Gn jxð Þ ¼

R
x1þ���þxn¼x Hn jx1; . . .; jxnð Þ

Qn

i¼1

X jxið Þdrnx
R
x1þ���þxn¼x

Qn

i¼1

X jxið Þdrnx
;

ð3Þ

under the condition that the denominator is not equal

to zero. Then, the n-th order output frequency response

of the system can be rewritten as

Yn jxð Þ ¼ Gn jxð ÞXn jxð Þ; ð4Þ

where

Xn jxð Þ ¼ 1

n1=2 2pð Þn�1

Z

x1þ���þxn¼x

Yn

i¼1

X jxið Þdrnx:

ð5Þ

Equation (4) gives a compacted expression of

YnðjxÞ in a manner like a linear system, where

XnðjxÞ is the spectrum of input and Gn jxð Þ is the

linear transfer function. Because Xn jxð Þ is the Fourier

transform of x tð Þ to the n-th power, that is,

Xn jxð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
xn tð Þe�jxtdt; ð6Þ

the power function xn tð Þ can be regarded as the input

of Gn jxð Þ in time domain. Substituting Eq. (4) into (2)

gives
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Y jxð Þ ¼
XN

n¼1

Gn jxð ÞXn jxð ÞþE jxð Þ; ð7Þ

which reflects that a nonlinear dynamical system can

be decomposed into a MISO linear system. To identify

the NOFRFs and evaluate the contributions of each

order nonlinearity to the output, a digital approach is

presented here based on CSA technique.

As for a MISO linear system, the input–output

relationship can be quantified by ordinary coherence

function

c2
iy jxð Þ ¼

Siy jxð Þ
�� ��2

Sii jxð ÞSyy jxð Þ ð8Þ

under the condition that the inputs are uncorrelated,

where Sii jxð Þ, Syy jxð Þ and Siy jxð Þ represent the auto-

power and cross-power spectra and of the i-th input

and the output respectively. In the study, however, the

inputs of the equivalent MISO linear system may be

correlated with each other, resulting in the difficulties

in distinguishing the effects of different order nonlin-

earities on the output.

Conditioned spectral analysis provides a feasible way

for solving the correlation problem of MISO linear

systems, but it cannot be applied directly to nonlinear

systems because the multiplication and intermodulation

components of frequency are not considered in the present

CSA process. Based on the model of NOFRFs, the CSA

technique is extended to nonlinear systems in this study.

According to Eq. (7), a stable time-invariant non-

linear system with a general input is decomposed into

a MISO linear system near an equilibrium point. The

correlations between the inputs of different orders can

be removed by taking conditioning operations, obtain-

ing an equivalent MISO linear system with multiple

uncorrelated inputs, as shown in Fig. 1, where

Xi� i�1ð Þ! jxð Þ; i ¼ 1; � � � ;N þ 1, represent the condi-

tioned inputs. The i-th order input is conditioned by

all the lower order inputs

X1 jxð Þ;X2 jxð Þ; � � � ;Xi�1 jxð Þ in sequence, meaning

that the parts of Xi jxð Þ correlated with the lower order

inputs are all removed. As a result, the conditioned

inputs are uncorrelated with each other. The first order

input X1 jxð Þ can be regarded as X1�0! jxð Þ, where 0!

denotes no conditioning operation. The last condi-

tioned input X Nþ1ð Þ�N! jxð Þ refers to the measured

output conditioned by all the inputs

Xi jxð Þ; i ¼ 1; 2; � � � ;Nf g, equaling to the spectrum

of noise ny tð Þ. It is worth noting that any order input is

conditioned from the first order input to the higher

order inputs. Obviously, conditioning in this sequence

conforms to the physical meaning of Volterra series

model, because the i-th input depends on the order of

frequency intermodulation and the higher order inter-

modulation is based on the intermodulation of lower

orders.

In Fig. 1, Liy jxð Þ; i ¼ 1; 2; � � � ;N þ 1, denote the

linear transfer functions between the i-th order con-

ditioned input and the output, and L Nþ1ð Þy jxð Þ equals

to 1 according to the meaning of X Nþ1ð Þ�N! jxð Þ. Noted

that although Liy jxð Þ
� �

are quite different from the

NOFRFs Gi jxð Þf g except L1y jxð Þ ¼ G1 jxð Þ, the

contributions of the inputs to the output are not

Fig. 1 The CSA model of a nonlinear system linearized by NOFRFs
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essentially influenced by the transforming. The rela-

tionship between the two models can be formulated as

Liy jxð Þ ¼
XN

j¼i

Lij jxð ÞGj jxð Þ; ð9Þ

in which i ¼ 1; 2; � � � ;N, and Lij jxð Þ represents the

linear transfer function between the conditioned inputs

Xi� i�1ð Þ! jxð Þ and Xj� i�1ð Þ! jxð Þ. It is supposed that

Lij jxð Þ ¼ 0 when j\i, and Lij jxð Þ ¼ 1 when j ¼ i.

The conditioned inputs Xi� i�1ð Þ! jxð Þ; 2� i�N þ 1,

are formulated as

Xi i�1ð Þ! jxð Þ ¼ Xi jxð Þ �
Xi�1

k¼1

Lki jxð ÞXk k�1ð Þ! jxð Þ;

ð10Þ

which can be implemented by the iteration

Xik! jxð Þ ¼ Xi k�1ð Þ! jxð Þ � Lki jxð ÞXk k�1ð Þ! jxð Þ; ð11Þ

where 1� k� i� 1. The conditioned linear transfer

functions Lij jxð Þ are given by

Lij jxð Þ ¼
Sij i�1ð Þ! jxð Þ
Sii i�1ð Þ! jxð Þ ; ð12Þ

in which 1� i\j�N þ 1, Li Nþ1ð Þ jxð Þ refers to

Liy jxð Þ, Sii� i�1ð Þ! jxð Þ the auto-power spectral density

of the conditioned input Xi� i�1ð Þ! jxð Þ, and Sij� i�1ð Þ! jxð Þ
the cross-power spectral density of the conditioned

inputs Xi� i�1ð Þ! jxð Þ and Xj� i�1ð Þ! jxð Þ. The power spec-

tral densities can be defined by

Sij i�1ð Þ! jxð Þ ¼ E X�
i i�1ð Þ! jxð ÞXj i�1ð Þ! jxð Þ

h i
ð13Þ

and

Sii i�1ð Þ! jxð Þ ¼ E X�
i i�1ð Þ! jxð ÞXi i�1ð Þ! jxð Þ

h i
ð14Þ

respectively, where E �½ � denotes the value of expec-

tation and the superscript * signifies complex

conjugation.

The conditioned input power spectra can be

obtained by

Sijk! jxð Þ ¼ Sij k�1ð Þ! jxð Þ � Lkj jxð ÞSik k�1ð Þ! jxð Þ; ð15Þ

and

Siik! jxð Þ ¼ Sii k�1ð Þ! jxð Þ � Lki jxð Þj j2Skk k�1ð Þ! jxð Þ:
ð16Þ

in the case of i ¼ j.

By iterating Eqs. (12), (15) and (16) from the first

order to the maximal order numerically, one can yield

the optimum estimations of Lij jxð Þ
� �

, Sij�k! jxð Þ
� �

and Sii�k! jxð Þf g.

Given the conditioned input–output transfer func-

tions Liy jxð Þ
� �

, the NOFRFs Gi jxð Þf g can be

deduced from Eq. (9), that is,

GN jxð Þ ¼ LNy jxð Þ

Gi jxð Þ ¼ Liy jxð Þ �
XN

j¼iþ1

Lij jxð ÞGj jxð Þ

8
>><

>>:
; ð17Þ

in which i ¼ N � 1; N � 2; � � � ; 1. Equation (17)

provides an alternative way for evaluating the

NOFRFs of the nonlinear system.

To sum up, the presented digital method of evalu-

ating NOFRFs of nonlinear systems with a general

input is carried out by the algorithm as shown in Fig. 2.

As a result, the output spectra generated by each

order unconditioned input can be yielded by Eq. (4),

such that the contributions of each order nonlinearity

to the output are distinguished by this way. In addition,

the total output power spectrum responding to the

original input x tð Þ is given by

Sy: x jxð Þ ¼
XN

i¼1

Liy jxð Þ
�� ��2Sii i�1ð Þ! jxð Þ ð18Þ

and the contribution ratio of the original input to the

measured output can be quantified by

c2
xy jxð Þ ¼

XN

i¼1

Sy: i i�1ð Þ! jxð Þ
Syy jxð Þ : ð19Þ

3 Simulation studies

3.1 Duffing-Van der Pol oscillator

To verify the algorithm, two classic dynamic nonlinear

systems are simulated here. The first nonlinear system

is a Duffing-Van der Pol oscillator as shown in Fig. 3.

Its motion equation is
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m
d2y0 tð Þ
dt2

þ c
dy0 tð Þ
dt

þ k1y0 tð Þ þ k2y
2
0 tð Þ þ k3y

3
0 tð Þ ¼ x tð Þ

y tð Þ ¼ y0 tð Þ þ n tð Þ

8
<

: ;

ð20Þ

where x tð Þ denotes the force acted on the mass m, y0 tð Þ
the displacement of the mass, y tð Þ the measured

displacement of the mass, n tð Þ a zero-mean Normally

distributed random noise imposed on the measured

data of y0 tð Þ. m ¼ 1kg, c ¼ 20N � s � m�1,

k1 ¼ 104N � m�1, k2 ¼ 107N � m�2 and k3 ¼
5 � 109N � m�3 are the characteristic parameters of

the system.

The general input of the system is given by

x tð Þ ¼ 3

2p
sin 2 � 55 � p� tð Þ � sin 2 � 30 � p� tð Þ

t
;

ð21Þ

in which �2:56� t� 2:56 seconds as plotted in

Fig. 4a. The output of the system is numerically

simulated by using the fourth order Runge–Kutta

method, as shown in Fig. 4b, and the input and output

amplitude spectra obtained by FFT are as sketched in

Fig. 5. The output spectrum distributes in the lower

range of 0–20 Hz besides the input frequency range of

30–55 Hz, particularly near 15 Hz where a distinct

Fig. 2 The algorithm of

evaluating NOFRFs by

using CSA method

Fig. 3 Duffing-Van der Pol oscillator for simulation
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peak appears, implying that a part of power is

transferred to the lower frequency range.

To determine the correlations between the different

order inputs, the ordinary coherence function c2
ij xð Þ ¼

Sij jxð Þ
�� ��2 Sii jxð ÞSjj jxð Þ

� ��1
is applied, in which

Sij jxð Þ represents the cross-spectral density functions

of the i-th and j-th order inputs, Sii jxð Þ and Sjj jxð Þ
represent the auto-power spectral density functions.

The coherence spectra between the first five order

inputs are as plotted in Fig. 6. It is indicated that

significant correlations exist between the inputs of

different orders. Take c2
1j; j ¼ 2; 3; 4; 5, for example,

as shown in Fig. 6a, x1 tð Þ and x2 tð Þ are highly

correlated in the frequency bands of 24–30 Hz and

55–62 Hz, while x1 tð Þ and x3 tð Þ in the lower range of

0–13 Hz and the higher range of 70–100 Hz, x1 tð Þ and

x4 tð Þ in the middle range of 30–55 Hz where the

correlation between x1 tð Þ and x5 tð Þ is even higher.

Similarly, distinct correlations also exist between the

2nd, 3rd, and 4th order inputs, which can be seen in

Fig. 6b–d, respectively.

The correlations between the inputs of different

orders are removed by applying the CSA procedure,

obtaining the first five order NOFRFs

Gi jxð Þ; i ¼ 1; 2; � � � ; 5f g of the nonlinear system.

Their amplitude spectra are as plotted in Fig. 7, which

reflect the amplitude-frequency response characteris-

tics of each order nonlinearity with respect to the

input. For instance, in the frequency range of 30–

55 Hz, the second to fifth order NOFRFs all have

higher amplitudes, meaning that the nonlinear system

has greater gains on the amplitudes of the second to

fifth order unconditioned inputs in the frequency

range. Besides, both G3 jxð Þj j and G5 jxð Þj j exhibit

many distinct peaks in the lower range of 0–20 Hz,

implying that the system has notable gains on the third

and fifth order unconditioned inputs in the frequency

range.

Fig. 4 The time sequences of the system input and output: a the

input, b the output

Fig. 5 The amplitude spectra of the system input and output

obtained by FFT: a the input, b the output
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The amplitude spectra of the first five order

response components Yi jxð Þj j; i ¼ 1; � � � ; 5f g are

obtained as plotted in Fig. 8a–e, which reveal the

contributions of each order nonlinearity to the system

output without considering interferences. The first,

third and fifth order inputs induce remarkable output

responses in the frequency range of 30–55 Hz, which

is identical with the first order input frequency range,

while the second and fourth order inputs mainly give

rise to the output components in the lower frequency

range and the higher frequency range.

The amplitude spectrum of total output yielded by

summing the unconditioned output response compo-

nents, i.e.,
P5

i¼1 Yi jxð Þ
���

���, is as shown in Fig. 8f, which

matches the result of Runge–Kutta method in Fig. 5b

very well, verifying numerically that the CSA

approach is effective in distinguishing the contribu-

tions of each order nonlinearity to the output of the

system quantitatively. For example, at the frequency

of 15.44 Hz,30.30 Hz, 41.44 Hz and 54.73 Hz, the

first five order responses and their summation are as

listed in Table 1. The percentages of relative deviation

between the total output amplitudes obtained by the

two methods are 0.70%, 0.31%, 0.58% and 0.26% at

these frequencies respectively. The relative deviations

are mainly due to the noise nyðtÞ imposed on the

output, which is common in practical mechanical

systems. Besides, the interference between each order

output components are revealed obviously. For exam-

ple, at the frequency of 15.44 Hz, although the

magnitudes of the second to fifth order output

components are very high, mutual interference results

in severe offset in the amplitude of total output.

Fig. 6 The coherence

spectra of the input between

the first five orders:

a between the first and the

higher orders, b between the

second and the higher

orders, c between the third

and the higher orders,

d between the fourth and the

fifth orders
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Fig. 7 Amplitude spectra

of the first five order

NOFRFs: a G1 fð Þj j; b
G2 fð Þj j; c G3 fð Þj j; d
G4 fð Þj j; e G5 fð Þj j
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3.2 Quadratic system with time lags

The second case for simulation is a dimensionless

quadratic system with time lags as shown in Fig. 9. Its

governing equation is given by

y0 tð Þ ¼ k1x tð Þ þ k2x t � s1ð Þ þ k3x
2 tð Þ þ k4x

2 t � s2ð Þ
y tð Þ ¼ y0 tð Þ þ n tð Þ

(
;

ð22Þ

where x tð Þ and y0 tð Þ represent the input and output of

the system in time domain respectively, y tð Þ the

measured output of the system, n tð Þ a zero-mean

Gaussian noise acted on the output, k1 ¼ �0:64,

Fig. 8 The amplitude spectra of the first five order unconditioned output components and the summing spectrum: a Y1 fð Þj j; b Y2 fð Þj j;
c Y3 fð Þj j; d Y4 fð Þj j; e Y5 fð Þj j; f Y fð Þj j
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k2 ¼ 1:0, k3 ¼ 0:9 and k4 ¼ 1:0 are characteristic

parameters, s1 ¼ 0:001s and s2 ¼ 0:0005s refer to the

time delays. Suppose that both input and output of the

system are displacements and the input is formed by

Eq. (21) as same as the first simulated system.

The output time sequence obtained directly by the

fourth order Runge–Kutta method is as shown in

Fig. 10a, and the amplitude spectrum of output

obtained by FFT is as sketched in Fig. 10b. Obviously,

the output spectrum has prominent magnitude in the

ranges of 0–25 Hz and 60–110 Hz, while in the

frequency range of input, i.e., 30–55 Hz, the magni-

tude is approximately equal to zero, implying that

almost all the power is transferred to the lower and

higher frequency ranges.

By using the CSA method, the first five order

NOFRFs Gi jxð Þ; i ¼ 1; � � � ; 5f g of the system are

obtained and their amplitude spectra are as shown in

Fig. 11, which reflect the amplitude-frequency

response characteristics of each order nonlinearities

with respect to the input. The amplitude spectra of the

second to fifth order NOFRFs have higher magnitudes

in the frequency range of 30–55 Hz which is equal to

the original input frequency range. Besides, many

distinct peaks exist in the lower and higher frequency

ranges, e.g., G3 jxð Þj j in the ranges of 0–20 Hz and

70–100 Hz, indicating that the NOFRFs also have

notable gains on the input at these frequencies.

Table 1 Contributions of the first five order nonlinearities to the output at some frequencies. (9 10-5 m)

Items 15.44 Hz 30.30 Hz 41.44 Hz 54.73 Hz

Y1 fð Þ - 0.00002 ? 0.0006i 1.80 - 1.40i -12.79 - 3.22i -0.39 ? 0.46i

Y2 fð Þ - 75.70 - 106.57i 0.0002 ? 0.0001i 0.0014 ? 0.0009i 0.0006 ? 0.0001i

Y3 fð Þ - 90.98 ? 56.44i - 86.62 - 134.82i 2300.7 ? 1620.1i 317.27 ? 164.23i

Y4 fð Þ 20.93 ? 185.86i - 12.28 - 11.77i 22.44 ? 14.83i 33.74 ? 12.56i

Y5 fð Þ 146.88 - 135.68i 98.89 ? 146.60i - 2311 - 1630.9i - 350.91 - 176.74i
P5

i¼1 Yi jxð Þ
���

��� 1.1337 2.2729 1.0411 0.5761

Y fð Þj j obtained by Runge–Kutta

methodYf
1.1417 2.2658 1.0472 0.5776

Percentages of relative deviation 0.70% 0.31% 0.58% 0.26%

Fig. 9 The quadratic nonlinear system with time lags for

simulation

Fig. 10 The output time sequence and amplitude spectrum of

the quadratic system with time lags: a the time sequence, b the

amplitude spectrum
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The amplitude spectra of the first five order

response components Yi jxð Þj j; i ¼ 1; � � � ; 5f g, and

their summation
P5

i¼1 Yi jxð Þ
���

��� are as plotted in

Fig. 12. Obviously, the second and fourth order inputs

give rise to prominent output responses in the

frequency ranges of 0–25 Hz and 60–110 Hz.

Although the first, third and fifth order inputs generate

notable output responses in the frequency range of

30–55 Hz, the amplitude of their summation decreases

nearly to zero due to interferences, as shown in

Fig. 12f. Similarly, in the higher frequency range of

110–170 Hz, the output responses of the third to fifth

orders also reduced nearly to zero due to interferences.

Fig. 11 The amplitude

spectra of the first five order

NOFRFs of the quadratic

system with time lags: a
G1 fð Þj j; b G2 fð Þj j; c
G3 fð Þj j; d G4 fð Þj j; e G5 fð Þj j
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The summation of the unconditioned output

response components is very close to the result of

Runge–Kutta method shown in Fig. 14b, verifying

numerically that the approach is effective in quanti-

fying the contributions of each order nonlinearity to

the output of the system. For example, at the frequency

of 15.05 Hz, 72.13 Hz, 85.23 Hz, 98.13 Hz, the first

five order output responses and their summation are as

listed in Table 2. The percentages of relative deviation

between the total output amplitudes obtained by the

two methods are 1.16%, 0.85%, 0.53% and 0.16% at

these frequencies respectively, which are mainly due

to the noise nyðtÞ imposed on the output. In addition, it

is uncovered that mutual interference also happens

between the output components of different orders.

For example, at the frequency of 85.23 Hz, the

Fig. 12 The amplitude spectra of the first five order unconditioned output components of the second nonlinear system and their

summing spectrum: a Y1 fð Þj j; b Y2 fð Þj j; c Y3 fð Þj j; d Y4 fð Þj j; e Y5 fð Þj j; f
P5

i¼1 Yi fð Þ
���

���

123

Quantification of nonlinear output frequency responses for a general input based on volterra… 10179



amplitude of total output is smaller than Y2j j, Y4j j and

Y5j j due to the interference between them.

4 Identification of bolt looseness

To verify the effectiveness of the method further, an

experiment analysis was carried out, in which the

method was utilized to test the vibration transferring

characteristics of bolt connection when the bolt was

tight and loose respectively. The experimental setup is

as shown in Fig. 13. Two carbon fiber reinforced

polymer (CFRP) plates were connected by a bolt and

supported by cushions on both ends. The material

properties of the plates are as listed in Table 3. A

motor drives a grinding wheel at a speed of 10,200

rpm, generating a vibration excitation because of

rotation unbalance. The vibration was transmitted by

the plates from the right side of the bolt to the left side.

With the purpose of measuring vibration, two accel-

eration sensors were fixed on each plate near the bolt,

named Sensor 1 and Sensor 2 respectively, which were

connected to a dynamic signal analysis system. The

sampling frequency was 12.8 kHz and the sampling

time length was 10 s every time.

The bolt connection can be taken as a vibration

transmission system, the input of which is the

vibration generated by the motor and measured by

Sensor 1, the output is the vibration measured by

Sensor 2. In the light of embodying the influences of

bolt tightness on its vibration transfer characteristics,

two experiments were carried out in the study, that is,

the bolt was fastened in experiment 1 and loose in

experiment 2. When the bolt was fastened, the time

sequences picked up by Sensor 1 and Sensor 2 are

approximate in amplitude as shown in Fig. 14a. And

their frequency spectra are almost the same as seen in

Fig. 14b and c, in which the peak at 170 Hz is

dominant in amplitude and the rest of components are

very small, implying that the vibration transmission of

the fastened bolt is close to linear. However, when the

bolt was loose, the input and output signals were

significantly different both in time and frequency

domains, as depicted in Fig. 15. In time domain, the

amplitude of the output was apparently lower than the

input. And in frequency domain, the obvious differ-

ences between the multiple frequency components

mean that the loose bolt connection has nonlinear

vibration transferring properties. For example, at the

frequencies of 1887 Hz and 2405 Hz, the amplitude

ratios of input relative to 170 Hz were 0.30 and 0.095,

while the amplitude ratios of output changed to 0.141

and 0.676, respectively.

The amplitude spectra of the first five order

NOFRFs are as plotted in Fig. 16 when the bolt was

loose and fastened, which are obviously different

under the two conditions. The 1st order NORFR of the

fastened bolt has signally greater amplitudes than the

loose bolt at most frequencies, e.g., near 837 Hz,

2714 Hz and 2945 Hz, indicating that the fastened

bolt has more linear vibration transferring character-

istics. However, the differences change gradually with

the increase of order. Conversely, the amplitudes of

the 3rd, 4th and 5th order NOFRFs of loose bolt are

more prominent than those of fastened bolt at a lot of

frequencies, e.g., near 170 Hz, 1026 Hz and 2430 Hz.

Table 2 Contributions of the first five order nonlinearities to the output at some frequencies. (Dimensionless)

Items 15.05 Hz 72.13 Hz 85.23 Hz 98.13 Hz

Y1 fð Þ 0.0239 - 0.0023i - 0.0170 - 0.1283i 0.0093 ? 0.0003i - 0.0189 ? 0.0262i

Y2 fð Þ 2701.2 ? 3902.6i 1652.9 ? 5191.7i - 3.1121 ? 40.4944i - 792.68 ? 4266.9i

Y3 fð Þ - 797.09 - 1147.0i - 319.11 - 1357.2i 1.59 9 10–5 - 2.29 9 10-7i - 332.18 - 615.69i

Y4 fð Þ - 3751.5 - 5627.8i - 2292.1 - 7552.2i - 48.4255 ? 2.2338i - 108.70 - 5190.3i

Y5 fð Þ 1880.5 ? 2865.6i 968.56 ? 3701.3i 36.3905—4.4689i 1229.8 ? 1559.0i
P5

i¼1 Yi jxð Þ
���

��� 33.6828 19.5119 41.1455 20.2642

Y fð Þj j obtained by Runge–

Kutta methodYf
33.2953 19.6792 40.9292 20.2323

Percentages of relative

deviation

1.16% 0.85% 0.53% 0.16%
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This is due to the fact that the loose bolt has obvious

nonlinear vibration transferring characteristics. There-

fore, the method can be used to detect bolt looseness

by observing the changes in amplitude of NOFRFs.

The amplitude spectra of the first five order output

components Yi jxð Þj j; i ¼ 1; � � � ; 5f g, and their sum-

mation
P5

i¼1 Yi jxð Þ
���

��� are as plotted in Fig. 17 when

the bolt was fastened and Fig. 18 when the bolt was

loose respectively, which reveal the contributions of

each order nonlinearity of the system to the output

before interference occurs with respect to the input.

For example, when the bolt was loose, Y1 fð Þj j had

higher amplitudes at the frequencies of 170 Hz,

851 Hz and 2405 Hz, Y2 fð Þj j at 170 Hz, 343 Hz,

1361 Hz, 1881 Hz and 2410 Hz, Y3 fð Þj j at 170 Hz,

1874 Hz and 2396 Hz, Y4 fð Þj j at 170 Hz, 343 Hz,

1361 Hz and 2396 Hz, Y5 fð Þj j at 170 Hz, 1874 Hz

Fig. 13 The diagram and

photograph of experiment

apparatus

Table 3 Material properties of carbon fiber reinforced epoxy

resin composite

Items Data

Modulus of rigidity G12&G13(GPa) 5.25

Modulus of rigidity G23(GPa) 3.48

Tensile modulus E1&E2(GPa) 10.5

Density (kg/m3) 1.6
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Fig. 14 The measured

vibration of the two plates

near the bolt connection

when the bolt was fastened:

a the time sequences; b the

input spectrum; c the output

spectrum

Fig.15 The measured

vibration of the two plates

near the bolt connection

when the bolt was loose:

a the time sequences; b the

input spectrum; c the output

spectrum
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and 2396 Hz, meaning that the output response

components play an important role in the total output

at these frequencies. Comparatively, the amplitudes of

each order output were much smaller at the multiple

frequencies when the bolt was fastened. Even though

the 2nd and 4th order outputs had distinct amplitudes

at some multiple frequencies as shown in Fig. 17b and

d, they almost canceled each other out in the total

output. The total output amplitude spectrum yielded

by summing the first fourth order components when

the bolt was fastened and loose are as plotted in

Figs. 17f and 18f, both of which match the measured

amplitude spectra of output very well.

Fig. 16 The amplitude

spectra of the first five order

NOFRFs of the bolted

connection system: a
G1 fð Þj j; b G2 fð Þj j; c
G3 fð Þj j; d G4 fð Þj j; e G5 fð Þj j
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By comparing the summing output spectra Figs. 17f

and 18f with the measured output spectra Figs. 14c and

15c, it is known that the approach is feasible in

identifying the nonlinear output frequency response

components of the bolt connected plate system. For

instance, at the peak frequencies of 170 Hz, 508 Hz,

1169 Hz and 2202 Hz, the first five order output

responses and their summations are as listed in

Table 4. The percentages of relative deviation

between the total output amplitudes obtained by the

two methods are 0.002%, 1.61%, 0.25% and 0.03% at

these frequencies respectively. A similar conclusion

also can be reached when the bolt was loose. For

example, at the peak frequencies of 170 Hz, 851 Hz,

1872 Hz, and 2406 Hz, the percentage of relative

Fig. 17 The amplitude spectra of the first five order output response components when the bolt was fastened
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deviation are merely 0.23%, 0.87%, 0.004%, and

0.29%, as shown in Table 5.

In contrast, the existing NOFRFs evaluation

method, which requires N different input signal

excitations with the same waveform but different

magnitudes, is infeasible in this case, because the

waveform of the measured vibration excitation signals

cannot remain unchanged exactly under different test

conditions of magnitude. Therefore, the CSA based

method has more feasibility in evaluating NOFRFs

and nonlinear frequency response components when

the input of system are stochastic or nonadjustable.

Fig. 18 The amplitude spectra of the first five order output response components when the bolt was loose
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5 Conclusions

(1) An alternative approach of quantifying the

nonlinear frequency responses of dynamical

systems with respect to a general input was

presented based on Volterra and CSA theories in

this study, as shown in Fig. 2, in which the

correlations between different order inputs of

the equivalent MISO system are removed by

taking conditioning operations.

(2) NOFRFs and nonlinear output response com-

ponents of different orders were obtained effi-

ciently, which reveal the characteristics of

nonlineary frequency response and the contri-

butions of each order nonlinearities to the

output.

(3) Two kinds of nonlinear dynamical systems were

simulated to verify the accuracy of the method.

One is a Duffing-Van der Pol oscillator, and the

other is a quadratic system with time lags. The

total output amplitude spectra reached by the

proposed method are very close to the numerical

results obtained by the fourth order Runge–

Kutta method, verifying that the approach is

promising in identifying the nonlinear output

frequency responses of nonlinear dynamical

systems with respect to a general input.

(4) The effectiveness of the method was confirmed

by vibration transmission experiments of bolt

connected plates. Both when the bolt was

fastened and loose, the outputted amplitude

spectra of the presented approach match the

measuring results very well, and the first five

order frequency response components of the

system were distinguished successfully.
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Table 5 Contributions of the first five order nonlinearities to the output at some frequencies when the bolt was loose. (g)
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Percentages of relative deviation 0.23% 0.87% 0.004% 0.29%
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