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Abstract This paper explores the Konopelchenko–
Dubrovsky (KD) equation and employs Hirota’s bilin-
ear method and Kadomtsev–Petviashvili (KP) hier-
archy reduction technique to construct solitons, line
breathers, rational solutions, and algebraic solitons
within the system. These solutions are represented
using N × N determinants. When the determinant size
N is odd, periodic background solutions are generated,
while even N values yield solutions on constant back-
grounds. By utilizing asymptotic analysis, the paper
elucidates explicit expressions for asymptotic algebraic
solitons localized in a straight line for the algebraic soli-
ton solutions. The dynamics of the obtained solutions
are further examined and illustrated through plots.
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1 Introduction

In the 1960s, Zabusky and Kruskal utilized the finite
difference method to investigate the numerical solu-
tions of theKorteweg-deVries (KdV) equation and dis-
covered that solitons possess the characteristic of elas-
tic collisions property, where their shapes and veloci-
ties remain unchanged after collisions [1]. In addition
to the KdV equation, solitons can be found in vari-
ous other (1+ 1)-dimensional continuous and discrete
equations, such as the modified KdV equation, non-
linear Schrödinger equation, Burgers equation, sine-
Gordon equation, and the nonlinear Schrödinger equa-
tions with non local characteristics [2–6]. These equa-
tions have found extensive applications in modeling
nonlinear phenomena across diverse fields including
mathematics, physics, optics, fluid dynamics, chem-
istry, biology, and more. Consequently, the investiga-
tion of solitons has emerged as a prominent and highly
regarded research area [7–11]. With the advancement
of soliton theory, researchers have discovered vari-
ous types of soliton solutions, including line solitons,
algebraic solitons, breathers, rogue waves, lumps, and
peakon solutions, among others.
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The significant contributions of soliton solutions to
the understanding of nonlinear phenomena have led to
extensive research on the mathematical structures and
potential algebraic properties of soliton equations. The
study of solutions for nonlinear soliton equations con-
tinues to be a thriving and ongoing subject of research.
These investigations aim to deepen our knowledge of
the rich dynamics and behaviors exhibited by solitons,
thereby advancing our understanding of nonlinear sys-
tems and their applications.

Scholars have given various methods to derive
soliton solutions, including inverse scattering trans-
form [12], Darboux transform [13–15], Hirota bilin-
ear method [16–23], Painlevé analysis [24,25], and
Riemann-Hilbert method [26]. Another effective
method is the KP hierarchy reduction technique [27]
based on Hirota’s bilinear method.

The Kyoto school has developed a technique that
has proven successful in deriving soliton solutions for
numerous integrable equations. This method has been
widely applied and has yielded significant results in
obtaining soliton solutions for a variety of integrable
equations [28,29]. Ohta and Yang have shown that this
method is also applicable for obtaining rogue wave
solutions of equations such as the nonlocal nonlinear
Schrödinger equation (NLSE) [30], Davey-Stewartson
(DS) equation [31], and Ablowitz-Ladik equation [32].
Furthermore, this method can be used to derive ( semi-
) rational solutions of the third-type DS equation [33].
In 2018, Feng [34] further improved the KP hierar-
chy reduction method and obtained general soliton
solutions for the NLSE with zero and nonzero bound-
ary conditions using this method. Several soliton solu-
tions for nonlocal integrable equations have also been
constructed using similar approaches [35]. Compared
to other methods for deriving soliton solutions and
(semi-) rational solutions, the expressions obtained
through the KP hierarchy method are more general and
concise.

The aim of this paper is to make a study on the
(2+ 1)-dimensional KD equation [36] in the stratified
shear flow, internal and shallow-water waves, plasmas
andother fields,with the help ofKPhierarchy reduction
technique and symbolic computation

Ut −Uxxx − 6βUUx + 3

2
α2U 2Ux − 3Vy

+ 3αUxV = 0,

Uy = Vx , (1.1)

where α and β are arbitrary constants, U and V are
the analytic functions of the variables x , y and t ,
the subscripts denote the partial differential deriva-
tives. Eq. (1.1) is a highly significant nonlinear par-
tial differential equation, which has been attributed to
the renowned Russian mathematicians Konopelchenko
and Dubrovsky. It serves as a powerful mathemati-
cal tool for analyzing and understanding a wide range
of nonlinear wave phenomena, encompassing sound
waves, water waves, and light waves. Its applications
extend to the exploration of various wave-related phe-
nomena, includingwave propagation, interference, and
scattering. In the domain of solid mechanics, Eq. (1.1)
assumes a crucial role in characterizing the vibrations
and waves exhibited by elastic bodies. Specifically, it
facilitates the comprehensive description of the inter-
play between stress and strain within elastic materials,
as well as the propagation behavior of elastic waves.
In the field of optics, Eq. (1.1) proves instrumental in
studying the intricate nonlinear propagation dynamics
of light. It enables the analysis of phenomena such as
self-focusing, self-phase modulation, and optical soli-
tons, which bear significant implications for essen-
tial applications in optical fiber communications and
lasers. Eq. (1.1) can be reduced to the Gardner [37–
40], KP [41–44] and modified KP (mKP) [45,46] in
ocean dynamics, fluid mechanics and plasma physics.
For example, (1) when V = 0, Eq. (1.1) are reduced
to the Gardner equation, which is used to analyze
the solitary waves, interfacial waves in the stratified
shear flow and internal waves in a stratified ocean; (2)
when α = 0, Eq. (1.1) are reduced to the KP equa-
tion to model the shallow-water waves, propagation of
weakly nonlinear dispersive long waves, etc; (3) when
β = 0, Eq. (1.1) can be reduced to the mKP equation
that can describe the evolution of solitary waves and
the propagation of ionic acoustic and electromagnetic
waves.

KD equation (1.1) have attracted a lot of atten-
tion because of its practical physical significance. In
[47], abundant new exact non-travellingwave solutions
of KD equation were presented based on improved
tanh function method. Wang [48] propose the further
improved F-expansion method to get Jacobi elliptic
function solutions, soliton-like solutions, trigonomet-
ric function solutions of KD equation. Multiple lump
solutions of KD equation are obtained by the Hirota
bilinear method [49]. Via the Sato theory and Hirota
method, Yuan and Tian [50] present the soliton solu-
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tions in terms of the Gram determinant which can
yield the bright, depression and kink solitons. Breather
waves [51], Wronskian solutions [52] and Painlevé
property [53] of KD equation were studied. Recently,
Grinevich and Santini [54] conducted research and
demonstrated that rogue wave solutions or Akhmediev
breathers can be formed in the presence of non-zero
backgrounds, represented by elliptic functions. They
also investigated the breathers and rogue wave solu-
tions in the context of the Hirota equation and the non-
linear Schrödinger equationwith elliptic function back-
grounds [55]. The construction of soliton solutions on
periodic function backgrounds presents a more chal-
lenging task. In this paper, the aim is to construct (semi-
) rational solutions, such as solitons, linear breathers
and algebraic soliton solutions, of KD equation on the
zero background and periodic background. Compared
with asymptotic analysis of exponential-type solitons,
asymptotic behavior of algebraic soliton solutions is
much more difficult to be conducted. We analyze
the asymptotic behaviors of algebraic solitons of KD
equation.

The organization of this article is as follows. In
Sect. 2, we provided a detailed exposition on the deriva-
tion and simplification of the solution to KD equa-
tions from a modified KP equation. Subsequently, in
Sect. 3, we conducted an analysis of the dynamics of
solitons in both constant and periodic backgrounds.
The Sect. 4 focused on the investigation of breath-
ing solutions. Moving forward, in Sect. 5, we explored
various dynamic behaviors, including algebraic soli-
tons, multiple rational solutions. Lastly, in Sect. 6, we
summarized the research findings and engaged in a
discussion.

2 The determinant structure

Through the dependent variable transformations

U = 2

α

(
ln

G

F

)
x
, V = 2

α

(
ln

G

F

)
y
, (2.1)

then the Eq. (1.1) can be transformed into the following
bilinear forms

(Dt − D3
x + 3Dx Dy + 6ADy)G · F = 0,

(Dy + D2
x + 2ADx )G · F = 0, (2.2)

whereA = −β
α
,G and F are real functions of variables

x , y and t , D is the Hirota derivative [16] defined by

Dm1
x Dm2

y Dm3
t g(x, y, t) · f (x, y, t) ≡(

∂

∂x
− ∂

∂x ′

)m1
(

∂

∂y
− ∂

∂y ′

)m2

(
∂

∂t
− ∂

∂t ′

)m3

g(x, y, t) f (x
′
, y

′
, t

′
) |x=x ′

,y=y′
,t=t ′ ,

with f being a differentiable function of x , y, and t ; g
being a differentiable function of the formal variables
x

′
, y

′
, and t

′
, while m1, m2, and m3 being the non-

negative integers.
We start from the bilinear equations of the KP hier-

archy [30]

(D3
x + 3Dx Dy − 4Dt + 3a(D2

x + Dy) + 6a2Dx )

τn+1 · τn = 0,

(D2
x − Dy + 2aDx )τn+1 · τn = 0. (2.3)

Under the variable transformation x1 = x , x2 = −y,
x−1 = 4t , G = τn+1 and F = τn , the modified KP
equation (2.3) turns into bilinear KD equations (2.2)

(D3
x1 + 3Dx1Dx2 − 4Dx−1 + 6ADx2)τn+1 · τn = 0,

(D2
x1 − Dx2 + 2ADx1)τn+1 · τn = 0, (2.4)

and taking F = τ0 and G = τ1, the above bilinear
equation become

(D3
x1 + 3Dx1Dx2 − 4Dx−1 + 6ADx2)g · f = 0,

(D2
x1 − Dx2 + 2ADx1)g · f = 0, (2.5)

in the algebraic solutions, the bilinear equations (2.5)
are reduced to the bilinear equations (2.2). For simplic-
ity of calculation, let parameter α = 2 in the following.

2.1 Gram determinant solution for the bilinear
equation

In this subsection, we first derive the Gram solutions
for the higher-dimensional bilinear system. According
to lemma 3.1 of [28], we get the following lemma 1:
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Lemma 1 The KP hierarchy have been proved to have
the Gram-type determinant solution

τn = det
1≤i, j≤N

(m(n)
i j ) (2.6)

where N is any positive integer. Which are satisfied the
next differential and difference relations,

∂x1m
(n)
i j = φ

(n)
i ϕ

(n)
j ,

∂x2m
(n)
i j = (∂x1φ

(n)
i )ϕ

(n)
j − φ

(n)
i )(∂x1ϕ

(n)
j ),

∂x3m
(n)
i j = (∂2x1φ

(n)
i )ϕ

(n)
j + φ

(n)
i (∂2x1ϕ

(n)
j )

− (∂x1φ
(n)
i )(∂x1ϕ

(n)
i ),

m(n+1)
i j = m(n)

i j + φ
(n)
i ϕ

(n+1)
j ,

φ
(n+1)
i = (∂x1 − A))φ

(n)
i ,

ϕ
(n−1)
i = −(∂x1 + A))ϕ

(n)
j ,

∂x2φ
(n)
i = ∂2x1φ

(n)
i ,

∂x2ϕ
(n)
j = −∂2x1ϕ

(n)
j ,

∂x3φ
(n)
i = ∂3x1φ

(n)
i ,

∂x3ϕ
(n)
j = ∂3x1ϕ

(n)
j ,

with m(n)
i j , φ

(n)
i and ϕ

(n)
j as the functions of x1, x2 and

x3, i and j as the integers, and the superscript “(n)” as
a note for distinguishing the n-th power. Substituting
elements m(n)

i j into Gram determinant, we obtain N-
soliton solutions for KD equations.

In order to construct soliton solutions and semi-
rational soluions to the bilinear equations defined in
(2.5), we choose the special φ and ϕ functions

φ
(n)
i = (ui − A)neξi ϕ

(n)
j = (−v j + A)−neη j (2.7)

m(n)
i j = c jδi j +

∫ x1
φ

(n)
i ϕ

(n)
j dx1 = c jδi j

+ 1

ui + v j

(
− ui − A

v j + A

)n

eξi+η j (2.8)

where

ξi = ui x + u2i x2 + u3i x3 + ξi0,

η j = v j x − v2j x2 + v3j x3 + η j0, (2.9)

ui , v j as the constants, δi j as the Kronecker delta nota-

tion. By substituting the above elements m(n)
i j into the

Gram determinant, the n-soliton solution of the KD
equation is obtained.

According Ref. [30], the differential operators Ai

and B j are introduced

Ai =
ni∑
k=0

aik
(
ui∂ui

)ni−k
,

Bj =
n j∑
h=0

b jh
(
v j∂v j

)n j−h
, (2.10)

to generate rational solutions. Here aik and b jl are
arbitrary complex constants, and ni and n j are arbi-
trary positive integers. We apply the differential Ai and
B j to m

(n)
i j and denote

m̃(n)
i j = Ai B jm

(n)
i j

= c jδi j + (− ui − A

v j + A
)eξi+η j

ni∑
k=0

aik(ui∂ui

+ nui
ui − A

+ ξ̃i )
ni−k

n j∑
h=0

b jh(v j∂v j − nv j

v j + A
+ η̃ j )

n j−h 1

ui + v j
, (2.11)

where

ξ̃i =ui x1+2u2i x2+3u3i x3, η̃ j =v j x1−2v2j x2+3v3j x3.

Since these operators apply only to the parameters u1
and v j , the determinant τn = det

1≤i, j≤N
(m(n)

i j ) also solves

bilinear equations (2.4).
When c j is zero in equation (2.11), the determinant

elements are polynomials in x, y, and t, such that τn
is a polynomial, resulting in a rational solution for the
KD equation. When c j is not zero, we can obtain semi-
rational solutions expressed as a combination of expo-
nential functions and polynomials. According to the
above analysis, we have the following theorem.

Theorem 2.1 KD equations (1.1) adimts solutions
transformations

U = 2

α

(
ln

τn+1

τn

)
x
, V = 2

α

(
ln

τn+1

τn

)
y
, (2.12)

where the determinant τn = det1≤i, j≤N (m̃(n)
i j ) has ele-

ments

m̃(n)
i j = c jδi j + (− ui − A

v j + A
)eξi+η j
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ni∑
k=0

aik(ui∂ui + nui
ui − A

+ ξ̃i )
ni−k

n j∑
h=0

b jh(v j∂v j − nv j

v j + A
+ η̃ j )

n j−h 1

ui + v j
, (2.13)

and

ξ̃i = ui x1 + 2u2i x2 + 3u3i x3,

η̃ j = v j x1 − 2v2j x2 + 3v3j x3,

ξi = ui x + u2i x2 + u3i x3 + ξi0,

η j = v j x − v2j x2 + v3j x3 + η j0,

where ui , v j , and c j are arbitrary complex constants,
and ni and n j are the arbitrary positive integers. By

choosing different types of functions ofm(n)
i j ,φi ,ϕ j , and

m̃(n)
i j , the soliton, breather, and (semi-)rational solu-

tions to KD equations (1.1) can be constructed.

3 Dynamics of the soliton solutions

In this section, we construct and analyze the dynamics
of soliton solutions for theKDequation (1.1) separately
with constant and periodic background.

3.1 One-soliton solutions

Setting N = 1 in equation (2.7) and get the first order
determinant

m(n)
i j = c jδi j + 1

ui + v j

(
− ui − A

v j + A

)n

eξi+η j ,

ξ1 + η1 = (u1 + v1)x + (v21 − u21)y

+ 4(u31 + v31)t + ξ10 + η10, (3.1)

here u1, v1, c1, ξ10, η10 are all parameters.

Case 1 On the zero background
If we take c1 = 1, u1, v1, ξ10, and η10 are arbitrary
constants, functions F and G have the form

F = 1 + 1

v1 + u1
eξ1+η1 ,

G = 1 +
(

−u1 − A

v1 + A

)
1

v1 + u1
eξ1+η1 , (3.2)

and the potential u and v are the form

U = 2

α

(
ln

g

f

)
x

= − (u1 + v1)
3eξ1+η1

(v1 + A)(u1 + v1 + eξ1+η1)2
,

V = 2

α

(
ln

g

f

)
y

= (u1 + v1)
3eξ1+η1(u1 − v1)

(v1 + A)(u1 + v1 + eξ1+η1)2
.

(3.3)

Plots of one-bright-soliton solution and one-dark-
soliton solution are shown in Fig. 1.

Case 2 On the periodic background
If we take c1 = ic, u1 = ϑ + iθ and v1 = −u∗

1, where
ϑ , θ , c are real numbers and cθ �= 0, then functions F
and G have the form

F = c1 + 1

v1 + u1
eξ1+η1

= ic − i

2θ
e2iθx−4iϑθy+8(ϑ+iθ)3t+ξ10+η10 , (3.4)

G = c1 +
(

−u1 − A

v1 + A

)
1

v1 + u1
eξ1+η1

= ic + i(ϑ + iθ − A)

2(−ϑ + iθ + A)θ

e2iθx−4iϑθy+8(ϑ+iθ)3t+ξ10+η10 ,

substituting (3.4) into (2.1), we obtain the one-soliton
solution

U = 2

α

(
ln

G

F

)
x

= 8θ3ce2iθx−4iϑθy+8(ϑ+iθ)3t+ξ10+η10

(−ϑ + iθ + A)(−2cθ + e2iθx−4iϑθy+8(ϑ+iθ)3t+ξ10+η10 )2

(3.5)

when u1 is a pure imaginary number, the solutions (3.5)
are periodic in both x and t with periods − i

θ
and iπ

4θ3
,

respectively. It will be seen later that it plays an impor-
tant role when constructing soliton and (semi-) rational
solutions of KD equation (1.1) in the periodic context.
Plot of this periodic one-soliton solutions is depicted in
Fig. 2. In this paper, regular solutions (3.5) provide the
periodic background for higher-order soliton solution
(see Fig. 2).
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Fig. 1 One-soliton solution
u and v (3.3) with
parameters c = 1, A = −1,
u1 = 1, v1 = 1

2 ,
ξ10 = η10 = 0, t = 0

Fig. 2 One periodic
solution u (3.5) with
suitable parameters c = 1,
ϑ = 1

2 , θ = 1, A = 1
2 ,

ξ10 = η10 = 0, t = 0

3.2 Two-soliton solutions

Case 1 On the constant background
In order to derive two-soliton solution, by taking N =
2. For the convenience of calculation, we choose c1 =
c2 = 1. The F and G in 2 × 2 determinant

F =
∣∣∣∣∣
1 + 1

u1+v1
eξ1+η1 1

u1+v2
eξ1+η2

1
u2+v1

eξ2+η1 1 + 1
u2+v2

eξ2+η2

∣∣∣∣∣
= 1 + 1

v1 + u1
eς1 + 1

v2 + u2
eς2

+ (u1 − u2)(v1 − v2)

(v1 + u1)(v2 + u1)(v1 + u2)(v2 + u2)
eς1+ς2 , (3.6)

G =
∣∣∣∣∣
1 + 1

u1+v1
(− u1−A

v1+A
)eξ1+η1 1

u1+v2
(− u1−A

v2+A
)eξ1+η2

1
u2+v1

(− u2−A

v1+A
)eξ2+η1 1 + 1

u2+v2
(− u2−A

v2+A
)eξ2+η2

∣∣∣∣∣
= 1 − u1 − A

(v1 + A)(v1 + u1)
eς1 − u2 − A

(v2 + A)(v2 + u2)
eς2

+ (u1−A)(u2−A)(u1−u2)(v1−v2)

(v1+A)(v2+A)(u1+v1)(u1+v2)(u2+v1)(u2+v2)
eς1+ς2 ,

(3.7)

in which

ς1 = ξ1 + η1 = (u1 + v1)x + (v21 − u21)y

+ 4(u31 + v31)t + ξ10 + η10,

ς2 = ξ2 + η2 = (u2 + v2)x + (v22 − u22)y

+ 4(u32 + v32)t + ξ20 + η20.

After simple algebra calculation, we obtain two soli-
tons.We analyzed the collision of two solitons and pro-
vided the asymptotic behavior of the collision when
t = 0. The two-soliton solution of U is expressed as
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Fig. 3 Two soliton solution
of U with suitable
parameters A = −1,
u1 = 1, u2 = 3, v1 = 2,
v2 = 4, t = 0

U = −N112e2ζ1+ζ2 − N122eζ1+2ζ2 − N12eζ1+ζ2 − N1eζ1 − N2eζ2

D1eζ1 + D2eζ2 + D22e2ζ2 + D12eζ1+ζ2 + D122eζ1+2ζ2 + D112e2ζ1+ζ2 + D1122e2ζ1+2ζ2 + D11e2ζ1 + 1
,

(3.8)

where

N1 = −u1 − v1

v1 + A
, N2 = u2 + v2

v2 + A
,

N112 = − (v1 − v2)(u1 − u2)(−u1 + A)(u2 + v2)

(u2 + v1)(u1 + v2)(v2 + A)(v1 + A)(u1 + v1)2
,

N122 = − (v1 − v2)(u1 − u2)(−u2 + A)(u1 + v1)

(u2 + v1)(u1 + v2)(v2 + A)(v1 + A)(u2 + v2)2
,

N12 = (−u1 + A)(u1 − u2 + v1 − v2)

(u1 + v1)(v1 + A)(u2 + v2)

+ (u1+u2+v1+v2)(u1−u2)(−u2+A)(−u1+A)(v1 − v2)

(u1 + v1)(v1 + A)(u2 + v2)(v2 + A)(u1 + v2)(u2 + v1)

− (−u2 + A)(u1 − u2 + v1 − v2)

(u2 + v2)(v2 + A)(u1 + v1)

− (u1 + u2 + v1 + v2)(v1 − v2)(u1 − u2)

(u1 + v1)(u2 + v2)(u1 + v2)(u2 + v1)
,

D1 = 2A − u1 + v1

(u1 + v1)(v1 + A)
, D2 = 2A − u2 + v2

(u2 + v2)(v2 + A)
,

D22 = −u2 + A

(u2 + v2)2(v2 + A)
, D11 = −u1 + A

(u1 + v1)2(v1 + A)
,

D122 = 2A − u2 + v2

(u2 + v2)(v2 + A)
, D112 = −u2 + A

(u2 + v2)2(v2 + A)
,

D12 = (u1 − u2)(−u2 + A)(−u1 + A)(v1 − v2)

(u1 + v1)(v1 + A)(u2 + v2)(v2 + A)(u1 + v2)(u2 + v1)

+ (−u2 + A)

(u2 + v2)(v2 + A)(u1 + v1)

+ (−u1 + A)

(u1 + v1)(v1 + A)(u2 + v2)

+ (v1 − v2)(u1 − u2)

(u1 + v1)(u2 + v2)(u1 + v2)(u2 + v1)
,

D1122 = (u1 − u2)2(−u1 + A)(−u2 + A)(v1 − v2)
2

(u1+v1)2(v1+A)(u2+v2)2(v2+A)(u1+v2)2(u2+v1)2
.

Figures 3, 4, and 5 respectively depict the interaction
and corresponding density of two solitons under differ-
ent parameters in a zero background. Figures 3 and 4
illustrate the interaction between a bright soliton and a
dark soliton for different values of parameter u2. Fig-
ure 5 shows the interaction between two bright solitons.
We define the left-moving soliton as soliton 1, located
on the plane ζ1 = 0, and the right-moving soliton as
soliton 2, located on the plane ζ2 = 0. Subsequently,
we present the asymptotic forms of the solutions for
these two solitons.

We have the following asymptotic forms for the two-
soliton solutions.

Before collision (y → −∞)
Soliton 1 (ζ1 ≈ 0, ζ2 → +∞)

U → 2
−N122eζ1

D22 + D122eζ1 + D1122e2ζ1

= −2
(u1 + v1)

2

(2A − u1 + v1) + 2
√

(−u1 + A)(v1 + A)cosh(ς1 − �1)
,

e�1 = (u2 + v1)(u1 + v2)(u1 + v1)

(u1 − u2)(v1 − v2)

√
v1 + A

−u1 + A
.
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Fig. 4 Two soliton solution of U with suitable parameters A = −1, u1 = 1, u2 = 3
2 , v1 = 2, v2 = 4, t = 0

Fig. 5 Two soliton solution of U with suitable parameters A = −1, u1 = 1, u2 = 3, v1 = − 1
3 , v2 = − 9

4 , t = 0

Soliton 2 (ζ2 ≈ 0, ζ1 → −∞)

U → 2
−N2eζ2

D2eζ2 + D22e2ζ2 + 1

= −2
(u2 + v2)

2

(2A − u2 + v2) + 2
√

(−u2 + A)(v2 + A)cosh(ς2 − �2)
,

e�2 = (u2 + v2)

√
v2 + A

−u2 + A
.

After collision (y → +∞)
Soliton 1 (ζ1 ≈ 0, ζ2 → −∞)

U → 2
−N1eζ1

D1eζ1 + +D11e2ζ1 + 1

= −2
(u1 + v1)

2

(2A − u1 + v1) + 2
√

(−u1 + A)(v1 + A)cosh(ς1 − �3)
,

e�3 = (u1 + v1)

√
v1 + A

−u1 + A
.

Soliton 2 (ζ2 ≈ 0, ζ1 → +∞)

U → 2
−N112eζ2

D112eζ2 + D1122e2ζ2 + D11

= −2
(u2 + v2)

2

(2A − u2 + v2) + 2
√

(−u2 + A)(v2 + A)cosh(ς2 − �4)
,

e�4 = (u2 + v1)(u1 + v2)(u2 + v2)

(u1 − u2)(v1 − v2)

√
v2 + A

−u2 + A
.
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Fig. 6 Two soliton solution
of U on the periodic
background with suitable
parameters A = −1,
u1 = 1, u2 = 3, v1 = − 1

3 ,
v2 = −2, t = 0, ϑ = −1,
θ = 1, c1 = c2 = 1, c3 = i,
ξi = η j = 0 (i = 1, 2, 3)

According to the analysis of asymptotic behavior,
when two solitons collide, their interaction is com-
pletely elastic. This means that after the collision, the
shape and velocity of the two solitary waves remain
unchanged. In other words, they retain their original
waveform and motion state without any deformation
or energy loss.

Case 2 On the periodic background
Taking N = 3 and v3 = −u∗

3 in Eq. (2.9) to con-
struct two-soiton solutions on the periodic background.
The tau functions F and G have the next determinant
expressions

F = det
1≤i, j≤3

(m(0)
i j ),

G = det
1≤i, j≤3

(m(1)
i j ) (3.9)

where the entries are defined by

m(n)
i j = c j δi j + 1

ui + v j

(
− ui − A

v j + A

)n

eξi+η j , n = 0, 1,

(3.10)

in which u3 = ϑ + iθ , v3 = ip∗
3 , c1 = c2 = 1,

ϑ = a, ξi + ηi = ξi + ηi = (ui + vi )x + (q2i −
u2i )y + 4(v3i + v3i )t + ξi0 + ηi0. i = 1, 2, ξ3 + η3 =
−8iθ3t + (24itϑ2 − 4iyϑ + 2ix)θ + ξ30 + η30.

Parametersu1,u2, v1, v2,ϑ , θ , and c are all real num-
bers. Substituting the functions F and G into Eq. (2.1),
we obtain the two soliton solution in a periodic back-
ground. Figure 6 depicts the interaction of two solitons
against the periodic background and their correspond-
ing densities.

4 Line breather solutions

In this section, we provide linear breather solutions and
their propagation evolution diagrams by selecting dif-
ferent values of N and parameters.

Case 1 On the constant background
To construct the traveling breather solutions of the KD
equation under a constant background, we first set the
size of the determinant to be even in Theorem 2.1.
Assuming N = 2, ũ1 = ṽ2 = iu, ṽ1 = ũ2 = iv,
c1 = ϑ + iθ , c2 = −c∗

1, and choosing ũi = ṽi are pure
imaginary, u, v, ϑ , and θ are real. In particular, ϑ and
θ are not equal to zero. Then,U and V are rewritten as
follows

U = 2

α

(
ln

G

F

)
x
,

V = 2

α

(
ln

G

F

)
y
, (4.1)

in which

F =
∣∣∣∣∣
(ϑ + iθ)e−ξ1−η1 + 1

iu+iv − i
2u

− i
2v (−ϑ + iθ)e−ξ2−η2 + 1

iu+iv

∣∣∣∣∣
= (u − v)2

4(u + v)2uv
eξ1+η1+ξ2+η2 + iϑ + θ

p + q
eξ1+η1

+ −iϑ + θ

u + v
eξ2+η2 − ϑ2 − θ2, (4.2)

G =
∣∣∣∣∣
(ϑ + iθ)e−ξ1−η1 − u

(iu+iv)v
i
2u

i
2v (−ϑ + iθ)e−ξ2−η2 − v

(iu+iv)u

∣∣∣∣∣
= (iau + iav − A

2 + uv)(u − v)2

4(u + v)2(iv + A)(iu + A)uv
eξ1+η1+ξ2+η2 ,
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+ (iϑ + θ)(A2 + u2)

(u + v)(iv + A)(iu + A)
eξ1+η1

− (iϑ − θ)(A2 + v2)

(u + v)(iv + A)(iu + A)
eξ2+η2

− (iAu + iAv + A
2 − uv)(ϑ2 + θ2)

(iv + A)(iu + A)
, (4.3)

and

ξ1 + η1 = −4i(u3 + v3)t + i(u + v)x

+ (u2 − v2)y + ξ10 + η10,

ξ2 + η2 = −4i(u3 + v3)t + i(u + v)x

+ (−u2 + v2)y + ξ20 + η20.

Line breather solution ofU at t = 0 on the constant
background is depicted in Fig. 7.

Case 2 On the periodic background
In order to derive line breathing solutions on a peri-
odic background, we impose that the determinant in
Theorem 2.1 should be an odd number. For simplicity,
let’s assume the determinant size is N = 3. Assuming
N = 3, ũ1 = ṽ2 = iu, ṽ1 = ũ2 = iv, ũ3 = ṽ3 = im,
c1 = ϑ + iθ , c2 = −c∗

1, we can obtain line breath-
ing solutions on the periodic background with the tau
function

F =

∣∣∣∣∣∣∣
(ϑ + iθ)e−ξ1−η1 + 1

ip+iq − i
2p

1
ip+im

− i
2q (−ϑ + iθ)e−ξ2−η2 + 1

ip+iq
1

iq+im
1

iq+im
1

ip+im (−ϑ + iθ)e−ξ3−η3 + i
2m

∣∣∣∣∣∣∣
, (4.4)

G =

∣∣∣∣∣∣∣
(ϑ + iθ)e−ξ1−η1 − p

(ip+iq)q
i
2p − p

(ip+im)m
i
2q (−ϑ + iθ)e−ξ2−η2 − q

(ip+iq)p − q
(iq+im)m

− m
(iq+im)q − m

(ip+im)p (−ϑ + iθ)e−ξ3−η3 + i
2m

∣∣∣∣∣∣∣
, (4.5)

then we obtain the line breather solution on the peri-
odic background and through the graphic display their
transmission dynamics behavior.

Line breather solution of U on the constant back-
ground is depicted in Fig. 8 with suitable parameters.
Through Figs. 7 and8, we find that the amplitude of
the line respirator may be higher than that on a con-
stant background due to the appearance of the periodic
background.

5 Dynamics of the rational solutions

5.1 Fundamental algebraic solitons

Taking N = 1, n = 0, c1 = 0 in Theorem 2.1. Then,
the KD equation (1.1) has the solution (2.1) with

F = m̃(0)
11 = 1

u1 + v1

[
(̃ξ1 + c11 − u1

u1 + v1
)(̃η1 + d11

− v1

u1 + v1
) + u1v1

(u1 + v1)2
)

]
eξ1+η1 , (5.1)

G = m̃(1)
11 = −u1 − A

v1 + A

1

u1 + v1

×
[(

u1
u1 − A

+ ξ̃1 + c11 − u1
u1 + v1

)

×
(

− v1

v1 + A
+ η̃1 + d11 − v1

u1 + v1

)

+ u1v1
(u1 + v1)2

]
eξ1+η1 . (5.2)

where

ξ̃1 = u1x − 2u21y + 12u31t,

η̃1 = v1x + 2v21 y + 12v31 t,

Here, choosing parameters c11 = ic, d11 = id and
ũ1, ṽ1, A as real. After a simple calculation, we
obtain
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Fig. 7 Line breather solution u on the constant background with suitable parameters ϑ = 0, θ = −2, u = 1
10 , v = 2

5 , t = 0, A = 1,
ξi0 = η j0 = 0 (i, j = 1, 2)

Fig. 8 Line breather solution u on the periodic background with suitable parameters ϑ = 0, θ = −1, p = 1
10 , q = 2

5 , t = 0, A = 1,
m = 1, c3 = −i, ξi0 = η j0 = 0 (i, j = 1, 2, 3)

|F | = 1

u1 + v1

∣∣∣∣
(

ξ̃1 + ic − u1
u1 + v1

)
(

η̃1 + di − v1

u1 + v1

)
+ u1v1

(u1 + v1)2

∣∣∣∣ eξ1+η1 ,

= 1

u1 + v1

√
F2
1 + F2

2 e
ξ1+η1 ,

F1 =
(

ξ̃1 − u1
u1 + v1

)(
η̃1 − v1

u1 + v1

)

− cd + u1v1
(u1 + v1)2

,

F2 =
(

ξ̃1 − u1
u1 + v1

)
d +

(
η̃1 − v1

u1 + v1

)
c.

|G| = u1 − A

v1 + A

1

u1 + v1∣∣∣∣
(

u1
u1 − A

+ ξ̃1 + ic − u1
u1 + v1

)

×
(

− v1

v1 + A
+ η̃1 + id − v1

u1 + v1

)

+ u1v1
(u1 + v1)2

∣∣∣∣ eξ1+η1 ,

=
∣∣∣∣u1 − A

v1 + A

∣∣∣∣ 1

u1 + v1

√
G2

1 + G2
2e

ξ1+η1 ,
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G1 =
(

u1
u1 − A

+ ξ̃1 − u1
u1 + v1

)

×
(

− v1

v1 + A
+ η̃1 − v1

u1 + v1

)
,

G2 =
(

u1
u1 − A

+ ξ̃1 − u1
u1 + v1

)
d

+
(

− v1

v1 + A
+ η̃1 − v1

u1 + v1

)
c.

To ensure the regularity of |U | and |V |, we need to take
parameters so that F2

1 + F2
2 �= 0 and G2

1 + G2
2 �= 0.

The elastic collision of the two-soliton is demonstrated
in Fig. 9.

5.2 Algebraic multi-soliton solutions

Taking N = 2, n1 = 1, n = 0, c1 = 0 in Theorem 2.1.
Thus we get

F =
∣∣∣∣∣
m̃(0)

11 m̃(0)
12

m̃(0)
21 m̃(0)

22

∣∣∣∣∣
G =

∣∣∣∣∣
m̃(1)

11 m̃(1)
12

m̃(1)
21 m̃(1)

22

∣∣∣∣∣ , (5.3)

where

m̃(0)
i j = 1

ui + v j

×
[
(̃ξi + ci1 − ui

ui + v j
)(̃η j + d j1 − v j

ui + v j
)

+ uiv j

(ui + v j )2

]
eξi+η j , (5.4)

m̃(1)
i j = − ui − A

v j + A

1

ui + v j

×
[
(

ui
ui − A

+ ξ̃i + ci1 − ui
ui + v j

)

×(− v j

v j + A
+ η̃ j + d j1 − v j

ui + v j
)

+ uiv j

(ui + v j )2

]
eξi+η j , (5.5)

On the wave plane, there are three types of waves
with different propagation directions and speeds. As
time progresses (refer to Fig. 10, the position of the
collision center changes. This can be visualized in

a two-dimensional image. Figure 10 illustrates that
waves with larger amplitudes will catch up to waves
with smaller amplitudes. After the collision, the waves
will separate from each other due to variations in their
heights. If we choose parameters as u1 = v2 = − 1

4 ,
v1 = u2 = 5

4 , c11 = d11 = 2i, c21 = 4i, d21 = 10i,
ξ10 = η10 = 0, ξ20 = η20 = 0, the image of the poten-
tial U degenerates into that of algebraic two-soliton
solution in Section 3.2 (see Fig. 11 ). Plot of the degen-
eration algebraic two-soliton U is depicted in Fig. 5.

5.3 Multiple rational solutions on periodic
background

Taking N = 3, n1 = 1, n = 0, c1 = 0 in Theorem 2.1.

f =

∣∣∣∣∣∣∣
m̃(0)

11 m̃(0)
12 m̃(0)

13

m̃(0)
21 m̃(0)

22 m̃(0)
23

m̃(0)
31 m̃(0)

32 m̃(0)
33

∣∣∣∣∣∣∣

g =

∣∣∣∣∣∣∣
m̃(1)

11 m̃(1)
12 m̃(1)

13

m̃(1)
21 m̃(1)

22 m̃(1)
23

m̃(1)
31 m̃(1)

32 m̃(1)
33

∣∣∣∣∣∣∣
, (5.6)

where

m̃(n)
i j = 1

ui + v j

(
− ui − A

v j + A

)n

×
(

ξ̃i + ci1 + nui
ui − A

− ui
ui + v j

)
eξi+η j ,

m̃(n)
i j = 1

ui + v j

(
− ui − A

v j + A

)n

×
(

η̃i + ci1 − nv j

v j + A
− ui

ui + v j

)
eξi+η j ,

m̃(n)
i j = c j + 1

u3 + v3

(
−u3 − A

v3 + A

)
eξi+η j ,

Substituting F and G into Eq. (2.1) yields semi-
rational solutions U and V . Since the explicit expres-
sions of U and V are very complicated, we omit the
specific forms of U and V here. To better investigate
the dynamics of this class of semi-intelligible, we set
the parameter to u1 = v2 = − 1

2 , v1 = u2 = 5
2 ,

v3 = u3 = −i, c11 = 2i, d11 = 6i, c21 = 4i, d21 = 8i,
ξi0 = η j0 = 0, (i, j = 1, 2, 3), c1 = c2 = 1,
c3 = −5i, t = 0
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Fig. 9 Algebraic two-soliton solutions ofU and V with suitable parameters u1 = 1
2 , v1 = 1, c = d = 2, A = 1, ξ10 = η10 = 0, t = 0

Fig. 10 Algebraic three-soliton solutions U with suitable parameters u1 = − 1
2 , v1 = 3

2 , u2 = − 5
2 , v2 = 2, c11 = 1

2 i, d11 = 2i,
c21 = i, d21 = 40i, A = 1, ξ10 = η10 = 0, ξ20 = η20 = 0, (a, d) t = 1

4 , (b, e), t = 0, (c, f ) t = − 1
6

From Fig. 12(a), it can be seen that three periodic
waves are displayed on the periodic background sur-
face, of which two waves are anti-dark waves and the
third wave is dark waves. When the parameter is taken
as u1 = u2 = − 1

2 , v1 = v2 = 5
2 , v3 = u3 = −i,

c11 = 2i, d11 = 6i, c21 = 4i, d21 = 8i, ξi0 = η j0 =

0, (i, j = 1, 2, 3), c1 = c2 = 1, c3 = −5i, t = 0,
Fig. 13(a) shows twoperiodicwaves on a periodic back-
ground, one is anti-dark and the other is dark. It can
be seen that the amplitude of the wave increases after
the collision, while the propagation direction does not
change.

123



10272 M.-J. Dong et al.

Fig. 11 Algebraic soliton solution U with suitable parameters u1 = v2 = − 1
4 , v1 = u2 = 5

4 , c11 = d11 = 2i, c21 = 4i, d21 = 10i,
ξ10 = η10 = 0, ξ20 = η20 = 0, t = 0

Fig. 12 Semi-rational soliton solution U with suitable parameters u1 = v2 = − 1
2 , v1 = u2 = 5

2 , v3 = u3 = −i, c11 = 2i, d11 = 6i,
c21 = 4i, d21 = 8i, ξi0 = η j0 = 0, (i, j = 1, 2, 3), c1 = c2 = 1, c3 = −5i , t = 0

6 Conclusions and discussions

KPhierarchy reduction technique is an effectivemethod
for studying the soliton structure of integrable sys-
tems. Based on this method, we provide general soliton
solutions and (semi-)rational solutions of the N × N
determinant of the KD equation using bilinear meth-
ods. Soliton solutions, line breather solutions, alge-
braic soliton solutions, and multiple rational solutions

are constructed for constant and periodic backgrounds,
respectively. The dynamical characteristics of the solu-
tions under different parameters are analyzed. We find
that these solutions are located on a constant back-
ground for N = 2n and on a periodic background for
N = 2n + 1. We analyze in detail the local dynamics
of rational and semi-rational solutions for N = 1, 2,
and 3 cases. Using KP reduction to study integrable
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Fig. 13 Semi-rational soliton solution U with suitable parameters u1 = u2 = − 1
2 , v1 = v2 = 5

2 , v3 = u3 = −i, c11 = 2i, d11 = 6i,
c21 = 4i, d21 = 8i, ξi0 = η j0 = 0, (i, j = 1, 2, 3), c1 = c2 = 1, c3 = −5i, t = 0

equations is an interesting direction and a topic to be
explored in progress.
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