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Abstract This study presented a comprehensive

reduced-order modeling and solution method for

multi-harmonic nonlinear frequency response analysis

of large space truss structures with nonlinear joints. In

the modeling method, the multi-harmonic describing

function method was used to obtain the equivalent

linearized model of the nonlinear joint, then a

condensed two-node hybrid element model consider-

ing the high-order harmonic response was derived for

the truss member with two nonlinear joints at its ends,

at last the condensed truss model and the equivalent

beam model were established for the truss structures.

In the solution method, the application of the arc-

length continuation method on solution of the nonlin-

ear frequency responses of large space truss structures

was elaborated in detail, and the modification of the

formulas in the arc-length method and the bordering

algorithm for solving nonlinear algebraic equation

system with complex variables was presented for the

first time. In the numerical studies, a planar truss

structure with rotational nonlinear joints and a spatial

truss structure with axial nonlinear joints were studied,

the cubic stiffness model and piece-wise linear

stiffness model were used for modeling the joint

nonlinearity. The influences of joint parameters and

excitation amplitude, as well as the closely spaced

modes, the coupling vibration, and the damping on the

frequency response of the truss structures were

investigated. The correctness of the presented method

was verified by the time response evaluated by the

nonlinear finite element model of the original truss

structure established in ANSYS.

Keywords Large space truss structures � Nonlinear
joint � Equivalent continuum model � Arc-length
continuation method � Multi-harmonic describing

function method

1 Introduction

Truss structures are ideal structural foundations for

large spacecrafts, such as the deployable trusses used

in solar panels, space antennas and telescopes [1–3],

the on-orbit assembled trusses used in space station

[4]. Unlike the truss structures used in civil engineer-

ing, which are connected by the welded or bolted

joints, the large space truss structures (LSTS) are

usually connected by deployable joints or

erectable joints. Because of the inevitable clearances
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in these joints, they exhibit more significant nonlinear

mechanical properties [5, 6]. Accurate modeling and

analyzing the nonlinear characteristics of LSTS con-

sidering joint nonlinearity is very important to the

design and vibration control of these structures [7, 8].

The modeling and analysis methods of nonlinear

dynamics of large structures can be divided into two

categories: the time domain methods and the fre-

quency domain methods. The time domain methods

mainly use the nonlinear finite element method to

establish the model, and then solve the dynamic

responses by time integration methods [9–11]. The

frequency domain methods mainly use the harmonic

balance method (HBM) or the describing function

method in the modeling, and then solve the nonlinear

algebraic equation systems (NAES) to obtain the

frequency responses of the structures [12–16]. Due to

the large number of flexible members and nonlinear

joint connections in LSTS, the dimensions of the

nonlinear dynamic model of these structures are

usually very high, which makes the nonlinear dynamic

analysis extremely difficult. Therefore, it is very

necessary to establish reduced order nonlinear dynam-

ics models for LSTS. In the past decades, by using the

periodicity of LSTS, the equivalent continuum mod-

eling (ECM) method has been widely used to establish

analytic PDE models or low-dimensional discrete

models for LSTS [14–24]. In the early studies, the

space truss structures were modelled as ideal pin-

jointed or rigid-jointed in order to obtain the equiv-

alent continuum models [17–19], which ignore the

actual mechanical characteristics of the joints.

Recently, researchers began to consider the stiffness

and damping properties of the joints in the equivalent

continuummodeling methods. For examples, Salehian

and Inman [20] presented an ECM method of beam-

like truss structures with linear torsional joints by

using the micropolar continuum theory. Webster [8]

presented an ECM method for truss structures with

axial nonlinear joints by considering the fundamental

harmonic response and using the describing function

method. Liu et al. [21–23] presented an ECM method

for truss structures with nonlinear joints having six

degree-of-freedoms characteristics based on the

energy equivalence method and analyzed the funda-

mental harmonic response of spatial truss structure

with hysteretic joints. Li et al. [24] presented a multi-

harmonic ECMmethod for planar truss structures with

polynomial-type nonlinear joints based on the

displacement equivalence method. Although the mod-

eling method of LSTS has achieved a great progress, a

comprehensive reduced-order modeling method

which can consider the complex nonlinear character-

istics of the joints and fits any form of LSTS is needed.

Another crucial issue in nonlinear dynamic analysis

of LSTS is the solution method of the high-dimen-

sional nonlinear dynamic models. In the frequency

domain, the models are large-scale NAES. Although

the traditional iterative method such as the Newton–

Raphson method can be used for solving NAES, it will

fail at turning points and branch points because the

Jacobian matrix is singular at such points [25].

Alternatively, the arc-length continuation method is

a powerful technique for solving NAES which can

pass through the singularity points and trace the entire

solution path. The arc-length method originally pre-

sented by Riks has been developed and improved for

decades, and various forms of ‘arc-length-type

method’ have been proposed, such as the pseudo arc-

length method [26, 27], the adaptive arc-length

method [28], and the curvature-controlled arc-length

method [29], etc. Nowadays, these methods have been

widely used in nonlinear static finite element analysis

(FEA) of structures [30–32]. However, compared with

the mature application in static structural analysis, the

application of the arc-length method in nonlinear

vibration or frequency response analysis of structures

is still under development, and in most cases the

researchers need to develop their own algorithms and

programs [33–43]. Lewandowski [33] used the New-

ton-type algorithm with arc-length procedure to solve

the nonlinear steady-state response of structures with

geometrically nonlinearity. Groll and Ewins [34]

applied the arc-length continuation method on analy-

sis of the rotor/stator interaction dynamic problem

which was modelled as a two degree-of-freedoms

(DOFs) model with contact and gap nonlinearity.

Ferreira and Serpa [35] wrote a special paper to

introduce and discuss the application of the arc-length

method in nonlinear frequency response analysis, and

employed the arc-length method on three DOFs

systems with cubic stiffness nonlinearity and gap

nonlinearity. Li et al. [24] used the arc-length method

to solve the frequency response of a planar repetitive

truss structure with polynomial-type nonlinear joints.

Comparing the arc-length methods used in the previ-

ous studies, it is found that the methods they used have

some differences in the procedures, such as the
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definitions of the constraint equation [35, 43], the

ways of evaluating the predict solution and determin-

ing the tracking direction [36–38], which means that

the algorithm suitable for one certain problem may

encounter difficulties in other problems. In addition,

the solution tracking of high-dimensional nonlinear

systems, such as the LSTS, using the arc-length

method is rather more difficult than that of low-

dimensional nonlinear systems [39]. Thus, a suit-

able arc-length continuation algorithm is in demand

for the nonlinear frequency response analysis of

LSTS.

This paper presents a comprehensive reduced-order

modeling and solution method for multi-harmonic

frequency response analysis of large space truss

structures with nonlinear joints, which considers six

DOFs mechanical characteristics of the joints and is

suitable for any form of truss structures. In Sect. 2, the

reduced-order modeling method for the space truss

structures with nonlinear joints are introduced. In

Sect. 3, a detailed procedure of the arc-length contin-

uation method for solving the reduced frequency-

domain model of the LSTS are elaborated. In Sect. 4,

two numerical examples including a planar truss

structure with nonlinear rotational stiffness joints and

a spatial truss structure with nonlinear axial stiffness

joints are given to verity the correctness of the

presented method and show the influence of joint

nonlinearity on the frequency response of the truss

structures. In Sect. 5, the conclusions are given.

2 Reduced-order modeling method of the large

space truss structures

Taking the planar truss structure shown in Fig. 1 as an

example, the truss members are connected by mechan-

ical joints such as the deployable joints and

erectable joints. Nonlinear stiffness and damping are

usually existed in these joints since there are contacts

and deformations between the joint parts. Different

types of joints exhibit different nonlinear behaviors,

which can be described approximately by different

nonlinear models, such as the clearance model

[44, 45], the cubic stiffness model [14, 46, 47], the

piecewise linear stiffness model [8, 23], and the

hysteresis model [13, 22], etc. In order to incorporate

the stiffness and damping of the joints in the dynamic

model of the truss structure, the connection between

the truss member and the joint is modelled by a spring-

damper system which has stiffness and damping

properties in six directions, corresponding to the six

degrees-of-freedom at each end of the truss member,

as shown in Fig. 2. The stiffness and damping of the

joints are represented by kux, kuy, kuz, khx, khy, khz and

cux, cuy, cuz, chx, chy, chz, respectively, which can be

linear or nonlinear.

2.1 Equivalent linearized model of the nonlinear

joint

Considering that the steady-state response of the truss

structure under harmonic excitation contains N har-

monics, i.e., harmonic h1, h2, …, and hN, the relative

displacement of the nonlinear joint in a certain

direction s can be expressed as

ds � ~dhNs ¼ Im
XhN

n¼h1

Dsne
inxt

 !
¼ Im

XhN

n¼h1

Dsne
inw

 !

ð1Þ

where w ¼ xt,i ¼
ffiffiffiffiffiffiffi
�1

p
,Dsn is the displacement

amplitude of the nth harmonic, Imð � Þ denotes taking
the imaginary part.

The nonlinear restoring force of the joint in the

direction s can be approximated by the Fourier series

as

Fig. 1 Planar truss

structure with nonlinear

joints
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fsðds; _dsÞ � fsð~dhNs ;
_~d
hN
s Þ � Im

XhN

n¼h1

Fsne
inw

 !
ð2Þ

with the coefficients

Fsnð~dhNs Þ ¼ i

p

Z 2p

0

fsð~dhNs ;
_~d
hN
s Þe�inwdw; n ¼ h1; h2. . .; hNð Þ

ð3Þ

Utilizing the multi-harmonic describing function

method [48], the coefficients Fsn can be expressed by

functions of the displacement amplitudes of the

harmonics

Fsnð~dhNs Þ ¼
XhN

m¼h1

gsnmDsm; n ¼ h1; h2. . .; hNð Þ ð4Þ

where the coefficients gsnm are called multi-harmonic

describing functions, which can be obtained by

gsnm ¼

Fsnð~dms Þ
Dsm

; m ¼ h1

Fsnð~dms Þ � Fsnð~dm�1
s Þ

Dsm
; m ¼ h2; . . .; hN

8
>><

>>:

ð5Þ

For smooth nonlinear joint model, the analytical

expressions of the multi-harmonic describing func-

tions can be obtained from Eq. (5) directly. For

example, for the cubic stiffness model

fsðdsÞ ¼ k1ds þ k3d
3
s ð6Þ

When only the first harmonic is considered, the

describing function is

gs11 ¼ k1 þ
3

4
k3D

2
s1 ð7Þ

When the first and the third harmonics are consid-

ered, the describing functions are

gs11 ¼ k1 þ
3

4
k3D

2
s1

gs13 ¼
3

2
k3Ds1Ds3 �

3

4
k3D

2
s1

gs31 ¼ � 1

4
k3D

2
s1

gs33 ¼ k1 þ
3

2
k3D

2
s1 þ

3

4
k3D

2
s3

8
>>>>>>>><

>>>>>>>>:

ð8Þ

For non-smooth nonlinear joint model, the analyt-

ical expressions of the multi-harmonic describing

functions can’t be obtained since the integral in

Eq. (3) can’t be analytically evaluated, but if only

the first harmonic is considered, the analytical expres-

sion of the describing function can also be derived. For

example, for the piece-wise linear stiffness model as

shown in Fig. 3, the nonlinear restoring force is

Fig. 2 Truss member

connected with two

nonlinear joints at its ends

(khx and the damping models

are not depicted here)

Fig. 3 Piece-wise linear stiffness model
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fsðdsÞ ¼
k1ds; dsj j � dsy
k2ds þ signðdsÞðk1 � k2Þdsy; dsj j[ dsy

�

ð9Þ

the first-harmonic describing function can be obtained

as

gs11 ¼

k1; dsj j � dsy

2

p
arcsin

dsy
Ds1

þ dsy
Ds1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� dsy
Ds1

� �2
s2

4

3

5ðk1 � k2Þ þ k2; dsj j[ dsy

8
>><

>>:

ð10Þ

2.2 Reduced order modeling of the truss structure

with nonlinear joints

Denoting the displacement vectors uH ¼ uTi ; u
T
j

n oT

,

~u ¼ uTk ; u
T
l

� �T
, and uB ¼ uTm; u

T
n

� �T
, where up ðp ¼

i; j; k; l;m; nÞ is the nodal displacement vector of node

p, and the deformation vector of the two joints

dJ ¼ d1; d2f gT, where d1f gT and d2f gT are deforma-

tion vectors of the joints at the left and the right end of

the member, respectively, the superscript ‘‘T’’ denotes

the transpose of a matrix or a vector.

Considering the higher order harmonics in the

response of the truss structure, the nodal displacement

vector and the joint deformation vector can bewritten as

up ¼
XhN

n¼h1

Upne
inw; ðp ¼ i; j; k; l;m; nÞ; dq

¼
XhN

n¼h1

Dqne
inw; ðq ¼ 1; 2Þ ð11Þ

then

uH ¼
XhN

n¼h1

UHne
inw; ~u ¼

XhN

n¼h1

~Une
inw; uB

¼
XhN

n¼h1

UBne
inw; dJ ¼

XhN

n¼h1

DJne
inw ð12Þ

where

UHn ¼
Uin

Ujn

� �
; ~Un ¼

Ukn

Uln

� �
; UBn

¼ Umn

Unn

� �
; DJn ¼

D1n

D2n

� �
ð13Þ

According to the kinematic relationship between

the joints and the member, it can be obtained that

uB ¼ ~u� d; ~u ¼ ðIþ EÞuH ð14Þ

where I is a 12 9 12 identity matrix, and

E ¼ E1 0
0 E2

	 

ð15Þ

with

E1 ¼

0 0 0 0 0 0

0 0 0 0 0 e1
0 0 0 0 �e1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775
; E2

¼

0 0 0 0 0 0

0 0 0 0 0 �e2
0 0 0 0 e2 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775

ð16Þ

Substituting Eq. (12) into (14) yields

XhN

n¼h1

UBne
inw ¼

XhN

n¼h1

~Une
inw �

XhN

n¼h1

DJne
inw;

XhN

n¼h1

~Une
inw

¼ ðIþ EÞ
XhN

n¼h1

UHne
inw

ð17Þ

According to the harmonic balance condition, it can

be obtained that

UBN ¼ ~UN � DJN ; ~UN ¼ ðINþENÞUHN ð18Þ

where

UHN ¼

UHh1

UHh2

..

.

UHhN

8
>>><

>>>:

9
>>>=

>>>;
; ~UN ¼

~Uh1
~Uh2

..

.

~UhN

8
>>><

>>>:

9
>>>=

>>>;
; UBN

¼

UBh1

UBh2

..

.

UBhN

8
>>><

>>>:

9
>>>=

>>>;
; DJN ¼

DJh1

DJh2

..

.

DJhN

8
>>><

>>>:

9
>>>=

>>>;
ð19Þ
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IN is a 12N 9 12N identity matrix, EN is a block

diagonal matrix composed of N matrices of E.

According to the dynamic equilibrium between the

joints and the member, it can be obtained that

XhN

n¼h1

DBnUBne
inw ¼

XhN

n¼h1

DJnDJne
inwþfJ ð20Þ

where

DBn ¼ KB � n2x2MB þ inxCB ð21Þ

DJn ¼ KJ þ inxCJ ð22Þ

fJ ¼ fux1; fuy1; fuz1; fhx1; fhy1; fhz1; fux2; fuy2; fuz2; fhx2; fhy2; fhz2
� �T

ð23Þ

with

KJ ¼ diag kux1; kuy1; kuz1; khx1; khy1; khz1; kux2;
��

kuy2; kuz2; khx2; khy2; khz2
� ð24Þ

CJ ¼ diag cux1; cuy1; cuz1; chx1; chy1; chz1; cux2; cuy2;
��

cuz2; chx2; chy2; chz2
�

ð25Þ

Corresponding to the six degrees of freedom at the

end of the member, the nonlinear characteristics of the

six degrees of freedom direction of the joint are

considered, thus the nonlinear restoring force vector of

the joint can be written as

fJðdJ ; _dJÞ � fJð~d
hN
J ;

~_d
hN

J Þ �
XhN

n¼h1

FJne
inw ð26Þ

where

dJ ¼ dux1; duy1; duz1; dhx1; dhy1; dhz1; dux2; duy2; duz2;
�

dhx2; dhy2; dhz2
�T

ð27Þ

FJn ¼ Fux1n;Fuy1n;Fuz1n;Fhx1n;Fhy1n;Fhz1n;Fux2n;
�

Fuy2n;Fuz2n;Fhx2n;Fhy2n;Fhz2n
�T

ð28Þ

According to Eq. (4), the coefficient vector FJn in

Eq. (26) can be written as

FJnð~d
hN Þ ¼

XhN

m¼h1

gJnmDJm; n ¼ h1; h2. . .; hNð Þ ð29Þ

where

gJnm ¼ diag gux1nm; guy1nm; guz1nm; ghx1nm; ghy1nm; ghz1nm;
��

gux2nm; guy2nm; guz2nm; ghx2nm; ghy2nm; ghz2nm
�

ð30Þ

Substituting Eqs. (26) and (29) into (20) yields

XhN

n¼h1

DBnUBne
inw ¼

XhN

n¼h1

DJnDJne
inw

þ
XhN

n¼h1

XhN

m¼h1

gJnmDJme
inw ð31Þ

According to the harmonic balance condition,

Eq. (31) can be expressed in the followingmatrix form

DBNUBN ¼ DJNþgJNð ÞDJN ð32Þ

where

DBN ¼

DBh1 0 � � � 0
0 DBh2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � DBhN

2

6664

3

7775; DJN

¼

DJh1 0 � � � 0
0 DJh2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � DJhN

2
6664

3
7775 ð33Þ

gJN ¼

gJh1h1 gJh1h2 � � � gJh1hN
gJh2h1 gJh2h2 � � � gJh2hN
..
. ..

. . .
. ..

.

gJhNh1 gJhNh2 � � � gJhNhN

2

6664

3

7775 ð34Þ

From Eqs. (18) and (32), it can be solved that

UBN ¼ GBNUHN ; DJN ¼ GJNUHN ð35Þ

where

SN ¼ DJNþgJN þ DBNð Þ�1DBN ð36Þ

GBN ¼ IN � SNð Þ IN þ ENð Þ; GJN¼ SNðIN þ ENÞ
ð37Þ

In order to obtain a condensed two-node hybrid

joint-beam element for the truss member with two

nonlinear joints at its ends, the energy method in [21]
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can be used. However, for the multi-harmonic

response, the analytical evaluation of the total energy

of the member with two nonlinear joints is very

complicated due to the product terms between differ-

ent harmonics. Based on the energy equivalence of

each harmonic, an approximated energy equivalence

relationship can be written as

1

2
UT

HNDHNUHN ¼ 1

2
UT

BNDBNUBN

þ 1

2
DT
JN DJNþgJNð ÞDJN ð38Þ

where DHN is the multi-harmonic dynamic stiffness

matrix of the condensed hybrid element.

Substituting Eq. (35) into (38) yields

DHN ¼ GT
BNDBNGBN þGT

JN DJNþgJNð ÞGJN ð39Þ

Using this hybrid joint-beam element, a condensed

truss model can be obtained for the original truss

structure, as shown in Fig. 4.

Utilizing the multi-harmonic dynamic stiffness

matrix DHN of the hybrid joint-beam element to

assemble the global dynamic stiffness matrix of the

condensed truss structure, then the equation of motion

of the condensed truss model in the frequency domain

can be written as

DCTN UCTN ;xð Þ � UCTNðxÞ ¼ FCTNðxÞ ð40Þ

where DCTN ,UCTN and FCTN are the global dynamic

stiffness matrix, the global nodal displacement ampli-

tude vector, and the global nodal force amplitude

vector of the condensed model of the truss structure

considering N harmonics, respectively.

Furtherly, utilizing the equivalent continuum mod-

eling method presented in [22], an equivalent beam

model can be established for the truss structure as

shown in Fig. 5.

Denoting the multi-harmonic displacement ampli-

tude vectors of the repeating element and the equiv-

alent beam element as.

UCRN ¼ UT
CRh1

UT
CRh2

� � �UT
CRhN

n oT

; UERN

¼ UT
ERh1

UT
ERh2

� � �UT
ERhN

n oT

ð41Þ

Based on the hypothesis of the displacement and

rotation fields for the repeating element [22], they can

be transformed to.

UCRN ¼ TCRNS0RN ; UERN ¼ TERNS1RN ð42Þ

where S0RN is the multi-harmonic amplitude vector

of the displacement and strain components at the

center of the repeating element, S1RN is a subvector of

S0RN by discarding some strain components which are

not included in the classical beam theory, TCRN and

TERN are the transformation matrices determined by

the hypothesis of the displacement and rotation fields.

Utilizing the following approximated energy equiv-

alence relationship

1

2
UT

CRNDCRNUCRN ¼ 1

2
UT

ERNDERNUERN ð43Þ

the multi-harmonic dynamic stiffness matrix DERN of

the equivalent beam element can be derived from the

multi-harmonic dynamic stiffness matrix DCRN of the

repeating element of the condensed truss model. Then

by assembling the global dynamic stiffness matrix of

the equivalent beam model, the equation of motion of

the equivalent beam model in the frequency domain

can be written as

DETN UETN ;xð Þ � UETNðxÞ ¼ FETNðxÞ ð44Þ

where DETN ,UETN and FETN are the global dynamic

stiffness matrix, the global nodal displacement ampli-

tude vector, and the global nodal force amplitude

vector of the equivalent beam model of the truss

structure considering N harmonics, respectively.

Fig. 4 Condensed model of the planar truss structure with

nonlinear joints

Fig. 5 Equivalent beammodel of the planar truss structure with

nonlinear joints
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3 Solution method of the nonlinear frequency

response

The equation of motion of the condensed truss model

or the equivalent beam model of the original truss

structure can be written in the following form

FðU;xÞ ¼ 0 ð45Þ

where F denotes a vector function, U represents UCTN

orUETN corresponding to the condensed truss model or

the equivalent beam model. In order to solve Eq. (45)

by the arc-length continuation method, the parameter

of arc length s is introduced in Eq. (45), then one

obtains

FðUðsÞ;x ðsÞÞ ¼ 0 ð46Þ

Since the unknown variable s is added in the system

equation, an additional constraint equation is needed

to solve the system equation. When the displacement

amplitude vector U is real-valued, the constraint

equation can be defined as

gðU;xÞ ¼ DUTDUþ w2Dx2 � Ds2 ¼ 0 ð47Þ

where DU ¼ U� Ui, Dx ¼ x� xi, Ui;xið Þ is the

known solution at the last frequency, w is a scaling

parameter that governs the relative contributions of the

displacement and frequency increments.

The implementation of the arc-length method

usually consists two phases, i.e., the prediction phase

and the correction phase.

3.1 Prediction phase of the arc-length

continuation method

In the prediction phase, an initial predict solution will

be obtained for the nonlinear equation system. Several

different approaches are available to obtain the initial

predict solution, such as the tangent predictor method

[26], the secant predictor method [36], the extrapo-

lated predictor method [32], etc. The tangent predictor

is used in this study.

Differentiating Eq. (46) with respect to the arc

length s yields

oF

oU

dU

ds
þ oF

ox
dx
ds

¼ KTU
0 þ qx0 ¼ 0 ð48Þ

where KT � oF
oU, q � oF

ox, U
0 � dU

ds
, x0 � dx

ds
, in struc-

tural dynamics KT represents the tangent stiffness

matrix of the structure at frequency x.

Rewriting Eq. (48) as

KT q½ �
U0

x0

( )
¼ At ¼ 0 ð49Þ

where t is the tangent vector at the point U;xð Þ on the
solution path. Since the number of unknown variables

in t is one more than the number of rows in the matrix

A, the solution of Eq. (49) is nonunique. In order to

determine the tangent vector t uniquely, an additional

equation needs to be supplemented. A convenient

additional equation is specified by the Euclidean

arclength normalization [26]

tk k ¼ U0TU0 þ x02 ¼ 1 ð50Þ

One solution method for Eqs.(49) and (50) is given

in [26] as follows: Firstly solving the following

equation

KTz ¼ �q ð51Þ

for the vector z, then owing to the linearity of Eq. (49)

in U0 and x0, it can be obtained that

U0 ¼ zx0 ð52Þ

Substituting Eq. (52) into Eq. (50) yields

x0 ¼ �ð1þ zTzÞ�1=2 ð53Þ

where the plus andminus signs determine the direction

of the continuation. If the sign is not chosen appro-

priately, the direction for searching the next point is

incorrect and the corrector phase may travel back to

the previously computed solution [33].

The above method requires the evaluation of the

inverse of the tangent stiffness matrix KT , so it may

fail at turning points and other bifurcation points

where KT is singular. In order to avoid this problem,

the idea used in the scheme presented by Kubı́ček

[26, 49] was adopted here, namely, although KT is

singular at a turning point, one can find a nonsingular

submatrix by deleting one certain column (for exam-

ple the kth column, the value of k can be found by

using a Gaussian elimination scheme with pivoting).

Here, the tangent vector t was solved as follows:

Firstly, assuming the kth element tk in the tangent

vector t equals to 1, and then transferring Eq. (49) to

~A~t ¼ �ak ð54Þ

where ~A ¼ a1; . . .ak�1; akþ1; � � � ; anþ1½ �,
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~t ¼ t1; . . .; tk�1; tkþ1; � � � ; tnf gT, ak is the vector of the
kth column of the matrix A. Since ~A is nonsingular, ~t

can be solved from Eq. (54), then a special solution of

t can be obtained as ts ¼ t1; . . .; tk�1; 1; tkþ1; . . .tnf gT,
then the normalized vector t is

t ¼ � ts
tsk k ð55Þ

Following the method used in [35], the sign of t is

determined by the sign of the determinant of the

matrix ~A. At last, the tangent vector t is obtained as

t ¼ sign detð ~AÞ
� � ts

tsk k ð56Þ

After obtaining the tangent vector t, the predict

solution at the arc length sþ Ds can be obtained as

Uð0Þ ¼ Ui þ U0Ds; xð0Þ ¼ xi þ x0Ds ð57Þ

3.2 Correction phase of the arc-length

continuation method

In the correction phase, the predict solution obtained

above will be corrected iteratively until the final

convergent solution is obtained. In order to obtain the

iterative scheme of the corrected solution, the first

order Taylor expansion is performed on Eqs. (46) and

(47), which yields

FðU;xÞ � F0 þ
oF

oU
dUþ oF

ox
dx¼F0 þKTdUþqdx

¼ 0

ð58aÞ

gðU;xÞ � g0 þ 2DUTdUþ 2w2Dxdx ¼ 0 ð58bÞ

Equation (58) can be rewritten as

KT q
2DUT 2w2Dx

	 

dU

dk

( )
¼ �

F0

g0

( )
ð59Þ

Equation (59) can be solved by the Newton–

Raphson iterative method, which yields

Uðkþ1Þ¼UðkÞþrdUðkþ1Þ

xðkþ1Þ¼xðkÞþrdxðkþ1Þ

(
ð60Þ

where r (0\ r B 1) is the relaxation parameter [26],

which is helpful to improve the convergence of the

algorithm, dUðkþ1Þ and dxðkþ1Þ are the increments

from the kth step to the (k ? 1) th step, which satisfy

the following equation

K
ðkÞ
T qðkÞ

2DUðkÞT 2w2DxðkÞ

	 

dUðkþ1Þ

dxðkþ1Þ

( )
¼ �

FðkÞ

gðkÞ

( )

ð61Þ

where DUðkÞ ¼ UðkÞ � Ui, DxðkÞ ¼ xðkÞ � xi. This

equation can be solved by evaluating the inversion

of the coefficient matrix. However, this coefficient

matrix is neither symmetric nor banded. In order to

utilize the banded symmetric property of the tangent

stiffness matrix K
ðkÞ
T , some other methods have been

proposed in the past studies.

When the matrix K
ðkÞ
T is nonsingular, Eq. (61) can

be solved by using the bordering algorithm [43], which

gives

dUðkþ1Þ¼Z1 þ dxðkþ1ÞZ2 ð62Þ

where

Z1¼� K
ðkÞ
T

h i�1

FðkÞ; Z2¼� K
ðkÞ
T

h i�1

qðkÞ ð63Þ

Substituting Eq. (62) into the second equation of

Eq. (61), the frequency increment can be solved as

dxðkþ1Þ ¼ � 2DUðkÞTZ1þgðkÞ

2DUðkÞTZ2 þ 2w2DxðkÞ
ð64Þ

3.3 The algorithm modification for evaluating

complex-valued frequency response

A problem needs to be mentioned is that when

damping is considered in the structure the frequency

response is complex-valued, but the above arc-length

method can’t be directly used to solve the complex-

variable nonlinear equation system. This is because

the first-order Taylor expansion used in Eq. 58(b) is

only suitable for real-variable function, consequently,

the iterative formula (61) based on the Taylor

expansion is also only suitable for real-variable

nonlinear equation system. In order to solve this

problem, the usual approach is to separate the real part

and the imaginary part of the complex-variable

equation system to obtain a new augmented real-

variable equation system before the arc-length method

was applied [50, 51]. Here, a direct solution method is

123

Reduced-order modeling and solution method for nonlinear frequency response analysis 10135



presented by modifying the iterative formula in the

arc-length method.

When the solution vector U is complex-valued, the

additional restraint Eq. (47) needs to be modified as

gðU;xÞ ¼ DUHDUþ w2Dx2 � Ds2 ¼ 0 ð65Þ

where the superscript ‘H’ denotes the conjugate

transpose of a matrix or vector.

Equation (65) is a real-valued scalar function with

the complex variable U, its first-order Taylor expan-

sion is [52]

gðU;U	;xÞ � go þ
oðDUHDUÞ

oU
dUþ oðDUHDUÞ

oU	 dU	
	 


þ 2w2Dxdx

¼go þ
oðDUHDUÞ

oU
dUþ oðDUTDU	Þ

oU	 dU	
	 


þ 2w2Dxdx

¼go þ DUHdUþ DUTdU	� �
þ 2w2Dxdx ¼ 0

ð66Þ

where the superscript ‘*’ denotes the conjugate

operation. Note that the derivation of Eq. (66) utilizes

the equality DUHDU¼ DUHDU
� �T¼DUTDU	 consid-

ering that DUHDU is a real number.

The iterative scheme of Eq. (66) is

DUðkÞHdUðkþ1Þ þ DUðkÞTdUðkþ1Þ	 þ 2w2DxðkÞdxðkþ1Þ

¼ �gðkÞ

ð67aÞ

or

2Re DUðkÞHdUðkþ1Þ
� �

þ 2w2DxðkÞdxðkþ1Þ ¼ �gðkÞ

ð67bÞ

As a result, the iterative scheme for the increments

dUðkþ1Þ and dxðkþ1Þ becomes

K
ðkÞ
T 0 qðkÞ

0 K
ðkÞ	
T qðkÞ	

DUðkÞH DUðkÞT 2w2DxðkÞ

2
64

3
75

dUðkþ1Þ

dUðkþ1Þ	

dxðkþ1Þ

8
<

:

9
=

;

¼ �
FðkÞ

FðkÞ	

gðkÞ

8
<

:

9
=

;

ð68aÞ

or

ReðKðkÞ
T Þ �ImðKðkÞ

T Þ ReðqðkÞÞ
ImðKðkÞ

T Þ ReðKðkÞ
T Þ ImðqðkÞÞ

2ReðDUðkÞHÞ �2ImðDUðkÞHÞ 2w2DxðkÞ

2

64

3

75

ReðdUðkþ1ÞÞ
ImðdUðkþ1ÞÞ
dxðkþ1Þ

8
><

>:

9
>=

>;
¼�

ReðFðkÞÞ
ImðFðkÞÞ

gðkÞ

8
><

>:

9
>=

>;

ð68bÞ

Correspondingly, the bordering algorithm for solv-

ing the frequency increment is modified as

dxðkþ1Þ ¼ � DUðkÞHZ1þDUðkÞTZ	
1þgðkÞ

DUðkÞHZ2 þ DUðkÞTZ	
2 þ 2w2DxðkÞ

ð69Þ

4 Numerical examples

4.1 Example 1: A planar truss structure

with rotational nonlinear joints

The planar truss structure, as shown in Fig. 1, is made

up of 10 repeating elements and 60 nonlinear joints.

The lengths of the horizontal and vertical members are

Ll = 1.5 m (including the lengths of two end joints)

and Lv = 1.5 m. The eccentricities of the joints

connected with longitudinal members are assumed as

el1 ¼ el2 ¼ 0:02 m, and those with diagonal member

are ed1 ¼ ed2 ¼ 0:03 m. All members are made of

carbon fiber tubes with Young’s modulus E = 205

GPa and density q = 1720 kg/m3. The outer and inner

diameters of the members are do = 40 mm and

di = 34 mm, respectively. The damping of the truss

members is considered by using the Rayleigh damping

model and the mass-proportional and stiffness-pro-

portional damping coefficients are assumed as

a = 0.05 and b = 0.005, respectively. The truss struc-

ture is assumed clamped at its left end. Considering

that the planar truss structure is prone to take place of

out-of-plane bending and twisting vibrations, the

influence of nonlinear rotational stiffness of all joints

on the out-of-plane vibration characteristics of the

planar truss structure is studied here. For the sake of

simplicity, all joints are assumed to have the same

properties, and the stiffness and damping coefficients

of the joint in six directions are assumed as in Table 1.

123

10136 F. Liu et al.



For this planar truss structure, a condensed truss

model can be established by the presented modeling

method, which contains 22 nodes and 132 DOFs. In

order to verify the accuracy of the presented method,

the commercial finite element package ANSYS is used

to established a full finite element model for the

original truss structure, in which, each truss member is

modeled by a spatial beam element (Beam4 element),

the connection between the joint and the member is

modelled by six spring-damper elements (using

Combin14 element for modeling linear stiffness and

damping of the joint and Combin39 element for

modeling nonlinear stiffness of the joint), the rigid

body of the joint is modelled by a rigid constraint

element (MPC184 element). The total FEM model

contains 82 nodes and 492 DOFs.

The first two linear modes obtained by the ANSYS

model (The rotational stiffness khz of the joint is

assumed as 1 9 104 N m/rad in the linear model) are

shown in Fig. 6. It can be found that the first two linear

modes of this planar truss structure are all out-of-plane

vibration modes, and the frequencies of these two

modes are well separated.

4.1.1 The joint has cubic rotational stiffness

Firstly, considering the joint has cubic rotational

stiffness as in Eq. (6) around the z-axis direction. A

sinusoidal excitation with amplitude F = 1N is

applied at point A along the y-axis direction to excite

the out-of-plane vibration of the planar truss structure.

Letting the stiffness coefficient k1 = 1 9 104 N m/

rad and k2 = 5 9 108 N m/rad, the displacement

amplitudes of the first harmonic and the third

harmonic of point A along the y-axis direction

evaluated by the presented condensed truss model

are shown in Fig. 7. It can be found that under the

influence of cubic rotational stiffnesses of all the joints

the amplitude-frequency curve of the first harmonic

bends to right and shows obvious stiffness hardening

characteristics. From the amplitude-frequency curve

of the third harmonic it can be seen that the amplitude

Table 1 Stiffness and

damping coefficients of the

joints in the planar truss

structure

Stiffness coefficients Values Damping coefficients Values

kux (N/m) 5 9 106 cux (N�s/m) 5 9 103

kuy (N/m) 6 9 106 cuy (N�s/m) 6 9 103

kuz (N/m) 7 9 106 cuz (N�s/m) 7 9 103

khx (N m/rad) 1 9 104 chx (N�m�s/rad) 1 9 102

khy (N m/rad) 2 9 104 chy (N�m�s/rad) 2 9 102

khz (N m/rad) Nonlinear chz (N�m�s/rad) 3 9 102

Fig. 6 First two linear

modes of the planar truss

structure
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of the third harmonic is much smaller than that of the

first harmonic, and the 3 super-harmonic resonance

phenomena can be observed in the third harmonic.

Furthermore, it can be found that whether the third

harmonic is considered in the model has little influ-

ence on the calculation result of the first harmonic.

Letting the stiffness coefficient k1 = 1 9 104 N m/

rad and varying the stiffness coefficient k2, the

displacement amplitudes of point A along the y-axis

direction near the first resonant frequency of the truss

are shown in Fig. 8. It shows that under the influence

of cubic rotational stiffnesses of all the joints the

amplitude-frequency curve for the first primary reso-

nance of the planar truss structure bends to the right

and shows obvious stiffness hardening characteristics,

the first resonant frequency of the planar truss

structure increases with the increase of the stiffness

coefficient k2. Furthermore, it can be found that the

range of unstable region of the amplitude-frequency

curve also increases with the increase of k2.

In order to investigate the effect of excitation

amplitude on the nonlinear frequency response of the

planar truss structure, assume the joint parameters are

k1 = 1 9 104 N m/rad and k2 = 5 9 108 N m/rad,

and vary the excitation amplitude that applied on

point A. The displacement amplitude of point A along

the y-axis direction for the first and second resonances

of the planar truss structure under different excitation

amplitudes are shown in Fig. 9. The result shows that

the first two resonant frequencies of the planar truss

structure all increase with the excitation amplitude

gradually. Moreover, it can be found that the ampli-

tude-frequency curve of the planar truss structure in

the vicinity of a certain resonant frequency is resemble

to that of a single-degree-of-freedom Duffing system

since the vibration modes of this planar truss are well

separated.

4.1.2 The joint has piece-wise linear rotational

stiffness

Next, considering the joint in the planar truss structure

has piece-wise linear rotational stiffness as in Eq. (9)

around the z-axis direction.

Letting the joint parameters k1 = 1 9 104 N m/rad,

dy = 1 9 10-3 rad, and the excitation amplitude

F = 1N, the displacement amplitude of point A of

the planar truss structure with different joint stiffness

parameter k2 are shown in Fig. 8, which gives similar

conclusions as Fig. 10, but there is a little difference in

the shapes of the amplitude-frequency curves of these

two nonlinear joint models.

Assuming the nonlinear joint parameters are

k1 = 1 9 104 N m/rad, k2 = 5 9 104 N m/rad and

dy = 1 9 10-3 rad, the frequency responses of the

planar truss structure under different excitation ampli-

tudes are shown in Fig. 11. It can be found that the first

Fig. 7 The first and the third harmonic responses of the planar

truss structure with joints having cubic rotational stiffness

Fig. 8 Influence of joint parameter on the frequency response

of the planar truss structure with joints having cubic rotational

stiffness
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two resonant frequencies of the truss structure also

increase with the excitation amplitude like the cubic

stiffness nonlinearity, but it gradually tends to a

constant value which is different from the cubic

stiffness nonlinearity.

Since the ANSYS package we used cannot obtain

the nonlinear frequency response directly in the

frequency domain, the time domain response analysis

using the forward and backward linear swept-sine

excitations are carried out on the ANSYS model. The

excitation force of the swept-sine excitation is

FZ ¼ F sinðat þ bt2Þ ð70Þ

where

a ¼ xs; b ¼ xe � xs

2T
for forward swept - sine excitaion

a ¼ xe; b ¼ xs � xe

2T
for backward swept - sine excition

8
><

>:
ð71Þ

where F is the excitation amplitude, xs and xe are the

starting and ending values of the excitation frequency,

T is the time duration of the excitation.

A nonlinear transient response analysis is carried

out in ANSYS to obtain the time response of the truss

structure under the swept-sine excitation (In order to

obtain accurate resonant frequency and resonant

amplitude, the swept-sine excitation should be applied

very slowly). The comparison of the results obtained

by the presented method and ANSYS is shown in

Fig. 12. It can be found that the amplitude-frequency

Fig. 9 Influence of excitation amplitude on the frequency

response of the planar truss structure with joints having cubic

rotational stiffness

Fig. 10 Influence of joint parameter on the frequency response

of the planar truss structure with joints having piece-wise linear

rotational stiffness

Fig. 11 Influence of excitation amplitude on the frequency

response of the planar truss structure with joints having piece-

wise linear rotational stiffness
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curve obtained by the presented method coincides

with the envelopes of the time responses obtained by

ANSYS very well, and the jump-up and jump-down

frequencies obtained by these two methods also match

very well.

4.2 Example 2: A spatial truss structure with axial

nonlinear joints

Next, a more complex truss structure will be consid-

ered. This truss structure, as shown in Fig. 13, is made

up of 20 repeating elements. The size of the repeating

element is Ll = Lv = Lb = 1.5 m. The geometric and

material parameters of the truss members are the same

as those in the previous planar truss example.

Considering that the low frequency vibration of this

truss structure mainly causes the axial deformations of

the truss members, the influence of the axial nonlinear

stiffness of the joints on the dynamic characteristics of

the truss structure is studied. Furthermore, considering

that the deformations of the longitudinal and diagonal

members are dominant for this structure, only the

longitudinal and diagonal members are assumed to be

connected with nonlinear joints, while the transverse

and vertical members are assumed to be rigid

connected. There are a total of 320 nonlinear joints

in this structure, the stiffness and damping coefficients

of the joints are listed in Table 2.

For this spatial truss structure, an equivalent beam

model is established using the presented modeling

method, which contains 21 nodes and 168 DOFs.

Besides, in order to verify the accuracy of the

presented method, a full FEM model is also estab-

lished by ANSYS, which contains 884 nodes and 5304

DOFs.

The first four linear modes obtained by the ANSYS

model (The axial stiffness kux of the joint is assumed as

3 9 106 N/m in the linear model) are shown in

Fig. 14, which shows that the first and second natural

frequencies are very close, and the same is true of the

third and fourth natural frequencies. Moreover, it can

be found that the flexural vibrations around the y-axis

and the z-axis are coupling in each mode since the

asymmetric arrangement of the diagonal members.

Assume the joint has piece-wise linear stiffness in

the axial direction with the parameters k1 = 3 9 106

N/m, k2 = 5 9 106 N/m and dy = 1 9 10-5 m, and

apply a sinusoidal excitation along the z-axis direction

at point A on the truss structure, the displacement

amplitudes of point A along the z-axis direction under

different excitation amplitudes evaluated by the

equivalent beam model are shown in Fig. 15. It can

be found that the frequency responses of this spatial

truss structure are more complex than the previous

planar truss structure, under some excitation ampli-

tudes the frequency response of the spatial truss

structure has 5 steady-state solutions in some fre-

quency ranges, including 3 stable solutions and 2

Fig. 12 Comparison of the results obtained by the presented

method and the ANSYS time response analysis method for

planar truss structure with joints having piece-wise linear

rotational stiffness

Fig. 13 Spatial truss structure with nonlinear joints
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unstable solutions, and there is an additional small

peak in addition to the main peak in the amplitude-

frequency curve. For the first resonance region, the

above phenomenon appears when the excitation

amplitude is small, while for the second resonance

region the above phenomenon appears when the

excitation amplitude is large. The reason for the above

phenomenon is that there are two closely spaced

modes in each resonance region in the corresponding

linear model of this truss structure, as shown in

Table 2 Stiffness and

damping coefficients of the

joints in the spatial truss

structure

Stiffness coefficients Values Damping coefficients Values

kux (N/m) Nonlinear cux (N�s/m) 5 9 103

kuy (N/m) 6 9 106 cuy (N�s/m) 6 9 103

kuz (N/m) 7 9 106 cuz (N�s/m) 7 9 103

khx (N m/rad) 1 9 104 chx (N�m�s/rad) 1 9 102

khy (N m/rad) 2 9 104 chy (N�m�s/rad) 2 9 102

khz (N m/rad) 3 9 104 chz (N�m�s/rad) 3 9 102

Fig. 14 First four linear modes of the spatial truss structure

Fig. 15 Frequency responses of the spatial truss structure with

piece-wise linear axial stiffness in the joints under different

excitation amplitudes
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Fig. 14, since the spatial truss structure is asymmetric

caused by the arrangement of the diagonal members,

the sinusoidal excitation acting on point A will arouse

the vibrations of the two closely spaced modes

simultaneously which makes the amplitude-frequency

curves of these two modes overlap in certain fre-

quency ranges.

In order to verify the correctness of the presented

method for the spatial truss structure, the frequency

responses obtained by the equivalent beam model are

compared with the time responses obtained by the

ANSYS model. Figure 16 shows the comparison

result in the first resonance region under the excitation

amplitude F = 2N, and Fig. 17 shows the comparison

result in the second resonance region under the

excitation amplitude F = 8N. It can be found that the

amplitude-frequency curve obtained by the presented

method coincides with the envelopes of the time

responses obtained by ANSYS very well, and the

jump-up and jump-down frequencies obtained by

these two methods also match very well.

At last, the influence of joint damping on the

nonlinear frequency response of the spatial truss

structure will be investigated. A high joint damping

is considered by magnifying the joint damping coef-

ficients in Table 1 by 5 times. The comparison of the

models with low joint damping and high joint damping

is shown in Fig. 18. It can be found that for high joint

damping both the resonant frequency and the resonant

amplitude of the truss structure decrease. Furthermore,

the shape of the amplitude-frequency curve can

change greatly, such as the two peaks in the second

resonance region reduce to one. This result indicates

that complex nonlinear dynamics phenomena are easy

to occur in large space truss structures with low

damping.

5 Conclusions

In this study, the nonlinear frequency response anal-

ysis of large space truss structures with nonlinear

joints was studied using the presented reduced-order

modeling method and the arc-length continuation

method. Some critical issues encountered in the

implementation of the arc-length continuation
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Fig. 16 Comparison of the results obtained by the presented

method and the ANSYS time response analysis method

(excitation amplitude F = 2N)
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Fig. 17 Comparison of the results obtained by the presented

method and the ANSYS time response analysis method

(excitation amplitude F = 8N)
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algorithm in solving high-dimensional nonlinear alge-

braic equation system were emphatically described

such as the evaluation of the tangent vector at singular

points, the selection of the prediction direction, and the

algorithm modification for evaluation of complex

response. The numerical studies were carried out on a

planar truss structure with rotational nonlinear joints

and a spatial truss structure with axial nonlinear joints.

The results indicated that for the planar truss structure

whose vibration modes are well separated its ampli-

tude-frequency curve in the vicinity of a certain

resonant frequency is resemble to the amplitude-

frequency curve of a single-degree-of-freedom non-

linear system. The 3 super-harmonic resonance was

found from the amplitude-frequency curve of the third

harmonic in the planar truss structure with cubic

rotational joints. The frequency response of the spatial

truss structure is more complex than the planar truss

structure since the exist of closely spaced modes and

coupling vibration, which has 5 steady-state solutions

in certain frequency ranges. Furthermore, the result

shows that the damping has important influence on the

nonlinear dynamic response of the space truss struc-

ture, complex nonlinear dynamics phenomena are

easy to occur in large space truss structures with low

damping. The comparison of the results obtained by

the presented method and the ANSYS time-domain

analysis verify the correctness of the presented

modeling and solution method.
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51. Süß, D., Willner, K.: Investigation of a jointed friction

oscillator using the multiharmonic balance method. Mech.

Syst. Signal Process. 52–53, 73–87 (2015)

52. Hjørungnes, A.: Complex-Valued Matrix Derivatives: With

Application in Signal Processing and Communications.

Cambridge University Press, Cambridge (2011)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner)

holds exclusive rights to this article under a publishing

agreement with the author(s) or other rightsholder(s); author

self-archiving of the accepted manuscript version of this article

is solely governed by the terms of such publishing agreement

and applicable law.

123

Reduced-order modeling and solution method for nonlinear frequency response analysis 10145


	Reduced-order modeling and solution method for nonlinear frequency response analysis of large space truss structures
	Abstract
	Introduction
	Reduced-order modeling method of the large space truss structures
	Equivalent linearized model of the nonlinear joint
	Reduced order modeling of the truss structure with nonlinear joints

	Solution method of the nonlinear frequency response
	Prediction phase of the arc-length continuation method
	Correction phase of the arc-length continuation method
	The algorithm modification for evaluating complex-valued frequency response

	Numerical examples
	Example 1: A planar truss structure with rotational nonlinear joints
	The joint has cubic rotational stiffness
	The joint has piece-wise linear rotational stiffness

	Example 2: A spatial truss structure with axial nonlinear joints

	Conclusions
	Data availability
	References




