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Abstract This study introduces the multivariate
generalized exponential rational integral function
(MGERIF) approach for solving the Hirota bilinear
problem in 2+1 dimensions. Motivated by the gener-
alized exponential rational function method, MGERIF
method proves to be a powerful tool for finding solu-
tions involving exponential, trigonometric, and hyper-
bolic functions. The solutionswe foundusingMGERIF
method have important applications in different sci-
entific domains, including nonlinear optics, plasma
physics, fluid dynamics, mathematical physics, and
condensed matter physics. To illuminate the physi-
cal significance of the derived solutions, we employ
three-dimensional (3D) and contour plots, exploring
various parameter choices. This visualization approach
enhances our understanding of the obtained solutions
and facilitates a comprehensive discussion on their
potential applications in real-world phenomena. By
employing MGERIF method, we contribute to the
advancement of methodologies for solving integrable
systems, offering a valuable framework for exploring
the rich landscape of nonlinear phenomena in various
physical contexts.
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1 Introduction

Nonlinear partial differential equations (NLPDEs) play
a pivotal role in describing awide array of complex phe-
nomena across various scientific disciplines, physics,
biology, and engineering [1–9]. Their significance lies
in capturing intricate behaviors that linear equations
often fail to model adequately. In the field of NLPDEs,
the Hirota bilinear equation stands out as a particu-
larly intriguing and challenging problem. This equa-
tion, embedded in a (2+1)-dimensional framework,
has attracted considerable attention due to its relevance
in understanding nonlinear wave interactions and soli-
ton dynamics. While several existing methods have
been employed to tackle nonlinear PDEs, such as: exp-
function method [10], Hirota bilinear method [11–13],
New extended direct algebraic method [14], the tan-

cot method [15], the inverse
(
G ′
G

)
-expansion method

[16], solitary wave ansatz method [17], the unified
solver method [18], the improved tan(

φ(ξ)
2 )-expansion

method [19], the generalized Riccati equation mapping
method [20], Sine-Gordan equation expansion method
[21], the Darboux transformations methods [22], the
Weierstrass elliptic function method [23], Lie symme-
try method [24], Sardar sub-equation method [25–27],
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and many more [28–32]. In this work, we focus on
using the multivariate generalized exponential rational
integral function to extract the solutions of the (2+1)-D
Hirota bilinear problem [33]:

Ryt + c1
(
Rxxxy + 3Rxx

∫
Ry dx + 3RRxy

+ 6Rx Ry

)
+ c2Ryy = 0, (1)

where ci ’s (1 ≤ i ≤ 2) are arbitrary constants. The
Hirota bilinear equation uses in the study of nonlin-
ear wave interactions and soliton dynamics. Its rele-
vance extends to various scientific disciplines, includ-
ing physics, plasma physics, and nonlinear optics. Soli-
ton solutions of the Hirota bilinear equation are known
for their stability and ability to maintain their shape
during propagation, making them crucial in describ-
ing certain physical phenomena. In recent years many
researchers have worked on this equation, which are
as follows: In their study, Hua et al. [34] explored
two categories of interaction solutions: lump-kink and
lump-soliton. These were achieved by combining two
positive quadratic functions with either an exponen-
tial function or two positive quadratic functions with
a hyperbolic cosine function in the bilinear equation.
Lu and Ma [35] have discussed the lump solutions and
the rogue waves for the Hirota bilinear equation in the
context of positive quadratic function solutions. They
have presented the sufficient and necessary conditions
for analyticity and rational localization of the lumps.
Mandal et al. [36] explored an extended version of the
generalized (2 + 1)-dimensional Hirota bilinear equa-
tion, unveiling nonlinear wave phenomena in diverse
fields such as shallow water, oceanography, and non-
linear optics. Their investigation encompassed a thor-
ough examination of integrability aspects, employing
theBell polynomial form to establish theHirota bilinear
form and Bäcklund transformations. The utilization of
the Cole-Hopf transformation facilitated the derivation
of Lax pairs through the direct linearization of the cou-
pled system involving binary Bell polynomials. Fur-
thermore, the study unveiled an array of infinite conser-
vation laws derived from the two-field condition inher-
ent in the generalized (2 + 1)-dimensional Hirota bilin-
ear equation. Mandal et al. also presented expressions
for one-soliton, two-soliton, and three-soliton solutions
emanating from the Hirota bilinear equation.

This article is structured into multiple sections, each
devoted to exploring how the multivariate generalized
exponential rational integral function is applied to the
(2+1)-D Hirota bilinear equation, elucidating the con-
sequential results. The first section provides a histor-
ical overview of the Hirota bilinear equation, offer-
ing insights into its origins and development. The sec-
ond section focuses on the key steps of the proposed
method for investigating nonlinear partial differential
equations. In the third section, we apply the MGERIF
method to the Hirota bilinear equation, obtaining vari-
ous families of solutions. The fourth section discusses
the physical interpretation of the solutions for differ-
ent parameter choices. Finally, the fifth section briefly
concludes our work.

2 Multivariate generalized exponential rational
integral function approach

This section introduces an innovative and highly effi-
cient approach referred to as the multivariate general-
ized exponential rational integral functionmethod. The
MGERIFmethod stands out for its exceptional capabil-
ity to yield novel and analytical solutions to nonlinear
partial differential equations (NLPDEs). This distinc-
tive approach is elucidated with the foundational sup-
port of the generalized exponential rational function
(GERF) [37,38] method. The significance of MGERIF
lies in its ability to tackle NLPDEs, providing a pow-
erful tool for addressing complex mathematical prob-
lems.

• In general NLPDEs can be written as

P(R, Rx , Ry, Rt , Rxx , Rxt , ...) = 0, (2)

where R = R(x, y, t) is a solution of Eq. (2) with
the independent variables x ,y and t.

• To reduce the Eq. (2), we consider the transforma-
tion

R = R(x, y, t) = S(ϑ),

ϑ = a1x + a2y + a3t + a4, (3)

where a1, a2, a3, and a4 are arbitrary constants.
Making use of transformation (3) into (2), then
the reduced nonlinear ordinary differential equa-
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tion (NLODE) can be recast as

P(S(ϑ), S′(ϑ), S′′(ϑ), ...) = 0, (4)

with S′ = dS
dϑ

, S′′ = d2S
dϑ2 , · · · etc.

• To simplify the NLODE (4), we propose a solution
of the form

S(ϑ) = H0 +
N∑
i=1

Hi

⎛
⎜⎜⎜⎝

∫ ∫
· · ·

∫

︸ ︷︷ ︸
i

U (ϑ) dϑ dϑ · · · dϑ

⎞
⎟⎟⎟⎠

i

+
N∑
i=1

Pi

⎛
⎜⎜⎜⎝

∫ ∫
· · ·

∫

︸ ︷︷ ︸
i

U (ϑ) dϑ dϑ · · · dϑ

⎞
⎟⎟⎟⎠

−i

.

(5)

Here, U (ϑ), which appears in the solution, is
defined as

U (ϑ) = k1em1ϑ + k2em2ϑ

k3em3ϑ + k4em4ϑ
. (6)

• In order to satisfy Eq. (1), it is crucial to determine
the appropriate values for arbitrary parameters such
as k j ,m j , (1 ≤ j ≤ 4), H0, Hi and Pi (1 ≤ i ≤
N ) to be determined in such a way Eq. (1) satisfies.

• Additionally, the value of N , which represent the
order of the method, is determined by applying the
homogeneous balancing principle to both the high-
est order derivative term and the nonlinear term
within NLODE (4).

• Placing (5) into (4) with (6), we arrive at an alge-
braic equation Q(�1,�2,�3,�4) = 0. Here,
� j = em jϑ , for 1 ≤ j ≤ 4. Thereafter, we are
making each of the coefficient of function in Q to
zero.

• After applyingmathematical simplifications through
software like Mathematica, we can determine the
specific values of the variables H0, Hi and Pi

(1 ≤ i ≤ N ). Once these values are determined,
we can substitute them into Eqs. (5) and (6), allow-
ing us to obtain exact soliton solutions for the Eq.
(4).

Remark:

The introduce method offers a systematic and effec-
tive approach for obtaining exact soliton solutions to
NLPDEs of the form given in Eq. (2). By employing
a transformation and subsequent reducing the NLPDE
to a nonlinear ODE in terms of a new variable, the
method allows for the systematic simplification of the
problem. The proposed solution structure in Eq. (5),
involving a series expansion with integrals of a spe-
cific function U (ϑ), provides a flexible framework to
capture the complex dynamics of the underlying equa-
tion.

3 Applications of MGERIF method

In this section, we employ the MGERIF method to
derive analytic wave solutions for the Hirota Bilinear
equation. To initiate this process, we utilize a wave
transformation for the Eq. (1), expressed as:

R(x, y, t) = S(ϑ), with ϑ = a1x + a2y + a3t + a4.
(7)

This translation transforms theHirotaBilinear equation
into the following equation:

a2a
3
1c1S

(4)(ϑ) + 6a2a1c1S(ϑ)S′′(ϑ) + a22c2S
′′(ϑ)

+ 6a2a1c1S
′(ϑ)2 + a2a3S

′′(ϑ) = 0. (8)

By carefully balancing the terms involving S(4) and
SS′′ inEq. (8),wedetermine that N = 2.Consequently,
the trial solution is given by

S(ϑ) = H0 + H1

(∫
U (ϑ) dϑ

)

+ H2

(∫ ∫
U (ϑ)dϑdϑ

)2

+ P1∫
U (ϑ) dϑ

+ P2(∫ ∫
U (ϑ)dϑdϑ

)2 . (9)

Substituting this trial solution into (8) and applying the
MGERIF technique with computational software such
as Mathematica, we obtain a set of solutions for the
Hirota Bilinear equation.
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1. The familiar sine representation:

Setting the parameters to [k1, k2, k3, k4] = [1,−1, i, i]
and [m1,m2,m3,m4] = [i,−i, 0, 0], Eq. (6) trans-
forms into the standard form of the sine function

U (ϑ) = sin(ϑ). (10)

After incorporating Eq. (10) into Eq. (9), we are able
to establish the expression for S(ϑ):

S(ϑ) = H2 sin
2(ϑ) − H1 cos(ϑ) + H0

+ P2 csc
2(ϑ) − P1 sec(ϑ). (11)

Case 1.1:

H0 �= 0;H1 �= 0;H2 = 0;
P1 = 0;P2 = 0; a3 = −a2c2; c1 = 0.

Substituting the specified constants into Eq. (11),
allows us to derive the solution to Eq. (8) as

S(ϑ) = H0 − H1 cos(ϑ). (12)

Hence, using Eq. (12) within the expression (7), allows
us to determine the exact invariant solution to theHirota
bilinear equaion

R(x, y, t) = H0 − H1 cos (a1x + a2y − a2c2t + a4) .

(13)

Case 1.2:

H0 �= 0;H1 �= 0;H2 �= 0;
P1 �= 0;P2 = 0; a3 = −a2c2; c1 = 0.

Substituting the specified constants into Eq. (11),
allows us to derive the solution to Eq. (8) as

S(ϑ) = H2 sin
2(ϑ) − H1 cos(ϑ) + H0 − P1 sec(ϑ).

(14)

Hence, using Eq. (14) within the expression (7), allows
us to determine the exact invariant solution to theHirota
bilinear equaion

R(x, y, t) = H2 sin
2 (a1x + a2y − a2c2t + a4)

− H1 cos (a1x + a2y − a2c2t + a4)

− P1 sec (a1x + a2y − a2c2t + a4) + H0.

(15)

Case 1.3:

H0 �= 0;H1 �= 0;H2 �= 0;P1 �= 0;P2 �= 0;
a3 = −a2c2; c1 = 0.

Substituting the specified constants into Eq. (11),
allows us to derive the solution to Eq. (8) as

S(ϑ) = H2 sin
2(ϑ) − H1 cos(ϑ) + H0

+ P2 csc
2(ϑ) − P1 sec(ϑ). (16)

Hence, using Eq. (16) within the expression (7), allows
us to determine the exact invariant solution to theHirota
bilinear equaion

R(x, y, t) = H2 sin
2 (a1x + a2y − a2c2t + a4)

− H1 cos (a1x + a2y − a2c2t + a4)

+ P2 csc
2 (a1x + a2y − a2c2t + a4)

− P1 sec (a1x + a2y − a2c2t + a4) + H0.

(17)

Case 1.4:

H0 �= 0;H1 �= 0;H2 �= 0;P1 = 0;P2 = 0;
a1 = 0; a3 = −a2c2.

Substituting the specified constants into Eq. (11),
allows us to derive the solution to Eq. (8) as

S(ϑ) = H2 sin
2(ϑ) − H1 cos(ϑ) + H0. (18)

Hence, using Eq. (18) within the expression (7), allows
us to determine the exact invariant solution to theHirota
bilinear equaion

R(x, y, t) = H2 sin
2 (−a2c2t + a2y + a4)

− H1 cos (−a2c2t + a2y + a4) + H0.

(19)

2. The familiar cosine representation:

Setting the parameters to [k1, k2, k3, k4] = [1, 1, 1, 1]
and [m1,m2,m3,m4] = [i,−i, 0, 0], Eq. (6) trans-
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Fig. 1 Visualization of Eq. (15): real, imaginary and absolute components

Fig. 2 Visualization of Eq. (17): real, imaginary and absolute components

forms into the standard form of the cosine function

U (ϑ) = cos(ϑ). (20)

By plugging in Eq. (20) into Eq. (9), we can determine
the specific form for S(ϑ):

S(ϑ) = H1 sin(ϑ) + H2 cos
2(ϑ) + H0

+ P1 csc(ϑ) + P2 sec
2(ϑ). (21)

Case 2.1:

H0 �= 0;H1 �= 0;H2 = 0;P1 = 0;
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P2 = 0; a3 = −a2c2; c1 = 0.

The solution to Eq. (8) can be obtained by inserting
these given constants into Eq. (11):

S(ϑ) = H1 sin(ϑ) + H0. (22)

Hence, from Eq. (22) in the context of expression (7),
we obtain

R(x, y, t) = H1 sin (a1x + a2y − a2c2t + a4) + H0.

(23)

Case 2.2:

H0 �= 0;H1 �= 0;H2 �= 0;P1 �= 0;
P2 = 0; a3 = −a2c2; c1 = 0.

The solution to Eq. (8) can be obtained by inserting
these given constants into Eq. (11):

S(ϑ) = H1 sin(ϑ) + H2 cos
2(ϑ) + H0 + P1 csc(ϑ).

(24)

Hence, from Eq. (24) in the context of expression (7),
we obtain

R(x, y, t) = H1 sin (a1x + a2y − a2c2t + a4)

+ H2 cos
2 (a1x + a2y − a2c2t + a4)

+ P1 csc (a1x + a2y − a2c2t + a4)+H0.

(25)

Case 2.3:

H0 �= 0;H1 �= 0;H2 �= 0;P1 �= 0;
P2 �= 0; a3 = −a2c2; c1 = 0.

The solution to Eq. (8) can be obtained by inserting
these given constants into Eq. (11):

S(ϑ) = H1 sin(ϑ) + H2 cos
2(ϑ)

+ H0 + P1 csc(ϑ) + P2 sec
2(ϑ). (26)

Hence, from Eq. (26) in the context of expression (7),
we obtain

R(x, y, t) = H1 sin (a1x + a2y − a2c2t + a4)

+ H2 cos
2 (a1x + a2y − a2c2t + a4)

+ P1 csc (a1x + a2y − a2c2t + a4)

+ P2 sec
2 (a1x + a2y − a2c2t + a4)+H0.

(27)

Case 2.4:

H0 �= 0;H1 �= 0;H2 �= 0;P1 = 0;
P2 = 0; a1 = 0; a3 = −a2c2.

The solution to Eq. (8) can be obtained by inserting
these given constants into Eq. (11):

S(ϑ) = H1 sin(ϑ) + H2 cos
2(ϑ) + H0. (28)

Hence, from Eq. (28) in the context of expression (7),
we obtain

R(x, y, t) = H1 sin (−a2c2t + a2y + a4)

+ H2 cos
2 (−a2c2t + a2y + a4) + H0.

(29)

3. The familiar exponential representation:

Setting the parameters to [k1, k2, k3, k4] = [2, 2, 2, 2]
and [m1,m2,m3,m4] = [2/5, 2/5, 0, 0], Eq. (6) trans-
forms into the standard form of the exponential func-
tion

U (ϑ) = exp

(
2ϑ

5

)
. (30)

By replacingEq. (30)with Eq. (9), the structure of S(ϑ)

can be deduced as:

S(ϑ) = H0 + 5

2
exp

(
2ϑ

5

)
H1 + 625

16
exp

(
4ϑ

5

)
H2

+ 2

5
exp

(
−2ϑ

5

)
P1 + 16

625
exp

(
−4ϑ

5

)
P2.

(31)

Case 3.1:

H0 �= 0;H1 �= 0;H2 = 0;P1 = 0;
P2 = 0; a3 = −a2c2; c1 = 0.
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Fig. 3 Visualization of Eq. (25): real, imaginary and absolute components

Fig. 4 Visualization of Eq. (27): real, imaginary and absolute components
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Utilizing the provided set of constant in Eq. (31), we
can deduce a solution for Eq. (8) as

S(ϑ) = 5

2
exp

(
2ϑ

5

)
H1 + H0. (32)

Equations (32) and (7) yield the soliton solution for the
Hirota Bilinear equation:

R(x, y, t) = 5

2
H1 exp

(
2

5

(
a1x + a2y

− a2c2t + a4
)) + H0. (33)

Case 3.2:

H0 �= 0;H1 �= 0;H2 �= 0;P1 �= 0;
P2 = 0; a3 = −a2c2; c1 = 0.

Utilizing the provided set of constant in Eq. (31), we
can deduce a solution for Eq. (8) as

S(ϑ) = H0 + 5

2
exp

(
2ϑ

5

)
H1 + 625

16
exp

(
4ϑ

5

)
H2

+ 2

5
exp

(
−2ϑ

5

)
P1. (34)

Equations (34) and (7) yield the soliton solution for the
Hirota Bilinear equation:

R(x, y, t)

= 2

5
P1 exp

(−2

5
(a1x + a2y − a2c2t + a4)

)

+ 5

2
H1 exp

(
2

5
(a1x + a2y − a2c2t + a4)

)

+ 625

16
H2 exp

(
4

5
(a1x + a2y − a2c2t + a4)

)

+ H0. (35)

Case 3.3:

H0 �= 0;H1 �= 0;H2 �= 0;P1 �= 0;
P2 �= 0; a3 = −a2c2; c1 = 0.

Utilizing the provided set of constant in Eq. (31), we
can deduce a solution for Eq. (8) as

S(ϑ)

= H0 + 5

2
exp

(
2ϑ

5

)
H1 + 625

16
exp

(
4ϑ

5

)
H2

+ 2

5
exp

(
−2ϑ

5

)
P1 + 16

625
exp

(
−4ϑ

5

)
P2.

(36)

Equations (36) and (7) yield the soliton solution for the
Hirota Bilinear equation:

R(x, y, t)

= 2

5
P1 exp

(−2

5
(a1x + a2y − a2c2t + a4)

)

+ 16

625
P2 exp

(−4

5
(a1x + a2y − a2c2t + a4)

)

+ 5

2
H1 exp

(
2

5
(a1x + a2y − a2c2t + a4)

)

+ 625

16
H2 exp

(
4

5
(a1x + a2y − a2c2t + a4)

)
+ H0.

(37)

Case 3.4:

H0 �= 0;H1 �= 0;H2 �= 0;P1 = 0;
P2 = 0; a1 = 0; a3 = −a2c2.

Utilizing the provided set of constant in Eq. (31), we
can deduce a solution for Eq. (8) as

S(ϑ) = 5

2
exp

(
2ϑ

5

)
H1 + 625

16
exp

(
4ϑ

5

)
H2 + H0.

(38)

Equations (38) and (7) yield the soliton solution for the
Hirota Bilinear equation:

R(x, y, t) = 5

2
H1 exp

(
2

5
(−a2c2t + a2y + a4)

)

+ 625

16
H2 exp

(
4

5
(−a2c2t + a2y + a4)

)

+ H0. (39)
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4. The familiar cosine hyperbolic representation:

Setting the parameters to [k1, k2, k3, k4] = [i, i, i, i]
and [m1,m2,m3,m4] = [1,−1, 0, 0], Eq. (6) trans-
forms into the standard form of the cosine hyperbolic
function

U (ϑ) = cosh(ϑ). (40)

PluggingEq. (40) intoEq. (9),we can derive the expres-
sion for S(ϑ) as:

S(ϑ) = H1 sinh(ϑ) + H2 cosh
2(ϑ)

+ H0 + P1csch(ϑ) + P2sech
2(ϑ). (41)

Case 4.1:

H0 �= 0;H1 �= 0;H2 = 0;P1 = 0;
P2 = 0; a3 = −a2c2; c1 = 0.

By inserting the given constants into Eq. (41), we can
derive the solution of Eq. (8) as:

S(ϑ) = H1 sinh(ϑ) + H0. (42)

Therefore, the soliton solution for the Hirota Bilinear
equation can be found through Eqs. (42) and (7):

R(x, y, t) = H1 sinh (a1x + a2y − a2c2t + a4) + H0.

(43)

Case 4.2:

H0 �= 0;H1 �= 0;H2 �= 0;P1 �= 0;
P2 = 0; a3 = −a2c2; c1 = 0.

By inserting the given constants into Eq. (41), we can
derive the solution of Eq. (8) as:

S(ϑ) = H0 + H1 sinh(ϑ) + H2 cosh
2(ϑ)

+ P1csch(ϑ). (44)

Therefore, the soliton solution for the Hirota Bilinear
equation can be found through Eqs. (44) and (7):

R(x, y, t) = H1 sinh (a1x + a2y − a2c2t + a4)

+ H2 cosh
2 (a1x + a2y − a2c2t + a4)

+ P1csch (a1x + a2y − a2c2t + a4) + H0.

(45)

Case 4.3:

H0 �= 0;H1 �= 0;H2 �= 0;P1 �= 0;
P2 �= 0; a3 = −a2c2; c1 = 0.

By inserting the given constants into Eq. (41), we can
derive the solution of Eq. (8) as:

S(ϑ) = H1 sinh(ϑ) + H2 cosh
2(ϑ)

+ P1csch(ϑ) + P2sech
2(ϑ) + H0. (46)

Therefore, the soliton solution for the Hirota Bilinear
equation can be found through Eqs. (46) and (7):

R(x, y, t) = H1 sinh (a1x + a2y − a2c2t + a4)

+ H2 cosh
2 (a1x + a2y − a2c2t + a4)

+ P1csch (a1x + a2y − a2c2t + a4)

+ P2sech
2 (a1x + a2y − a2c2t + a4) + H0.

(47)

Case 4.4:

H0 �= 0;H1 �= 0;H2 �= 0;P1 = 0;
P2 = 0; a1 = 0; a3 = −a2c2.

By inserting the given constants into Eq. (41), we can
derive the solution of Eq. (8) as:

S(ϑ) = H1 sinh(ϑ) + H2 cosh
2(ϑ) + H0. (48)

Therefore, the soliton solution for the Hirota Bilinear
equation can be found through Eqs. (48) and (7):

R(x, y, t) = H1 sinh (a1x + a2y − a2c2t + a4)

+ H2 cosh
2 (a1x + a2y − a2c2t + a4) + H0.

(49)

5. The familiar sine hyperbolic representation:

Setting theparameters to [k1, k2, k3, k4] = [2i,−2i, 4i, 4i]
and [m1,m2,m3,m4] = [1/2,−1/2, 0, 0], Eq. (6)
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Fig. 5 Visualization of Eq. (47): real, imaginary and absolute components

transforms into the standard formof the sine hyperbolic
function

U (ϑ) = 1

2
sinh(ϑ/2). (50)

Upon inserting Eq. (50) into Eq. (9), the expression for
S(ϑ) becomes:

S(ϑ) = 4H2 sinh
2
(

ϑ

2

)
+ H1 cosh

(
ϑ

2

)

+ H0 + 1

4
P2csch

2
(

ϑ

2

)
+ P1sech

(
ϑ

2

)
.

(51)

Case 5.1:

H0 �= 0;H1 �= 0;H2 = 0;P1 = 0;
P2 = 0; a3 = −a2c2; c1 = 0.

Utilizing the provided set of constant in Eq. (51), we
can deduce a solution for Eq. (8) as

S(ϑ) = H1 cosh

(
ϑ

2

)
+ H0. (52)

Equations (52) and (7) yield the soliton solution for the
Hirota Bilinear equation:

R(x, y, t)

= H1 cosh

(
1

2
(a1x + a2y − a2c2t + a4)

)
+ H0.

(53)

Case 5.2:

H0 �= 0;H1 �= 0;H2 �= 0;P1 �= 0;
P2 = 0; a3 = −a2c2; c1 = 0.

Utilizing the provided set of constant in Eq. (51), we
can deduce a solution for Eq. (8) as

S(ϑ) = 4H2 sinh
2
(

ϑ

2

)
+ H1 cosh

(
ϑ

2

)

+ H0 + P1sech

(
ϑ

2

)
. (54)

Equations (54) and (7) yield the soliton solution for the
Hirota Bilinear equation:

R(x, y, t)

= 4H2 sinh
2
(
1

2
(a1x + a2y − a2c2t + a4)

)
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+ H1 cosh

(
1

2
(a1x + a2y − a2c2t + a4)

)

+ P1sech

(
1

2
(a1x + a2y − a2c2t + a4)

)
+ H0.

(55)

Case 5.3:

H0 �= 0;H1 �= 0;H2 �= 0;P1 �= 0;
P2 �= 0; a3 = −a2c2; c1 = 0.

Utilizing the provided set of constant in Eq. (51), we
can deduce a solution for Eq. (8) as

S(ϑ) = 4H2 sinh
2
(

ϑ

2

)
+ H1 cosh

(
ϑ

2

)

+ H0 + 1

4
P2csch

2
(

ϑ

2

)
+ P1sech

(
ϑ

2

)
.

(56)

Equations (56) and (7) yield the soliton solution for the
Hirota Bilinear equation:

R(x, y, t)

= 4H2 sinh
2
(
1

2
(a1x + a2y − a2c2t + a4)

)

+ H1 cosh

(
1

2
(a1x + a2y − a2c2t + a4)

)

+ 1

4
P2csch

2
(
1

2
(a1x + a2y − a2c2t + a4)

)

+ P1sech

(
1

2
(a1x + a2y − a2c2t + a4)

)
+ H0.

(57)

Case 5.4:

H0 �= 0;H1 �= 0;H2 �= 0;P1 = 0;
P2 = 0; a1 = 0; a3 = −a2c2.

Utilizing the provided set of constant in Eq. (51), we
can deduce a solution for Eq. (8) as

S(ϑ) = 4H2 sinh
2
(

ϑ

2

)
+ H1 cosh

(
ϑ

2

)
+ H0.

(58)

Equations (58) and (7) yield the soliton solution for the
Hirota Bilinear equation:

R(x, y, t) = 4H2 sinh
2
(
1

2
(−a2c2t + a2y + a4)

)

+ H1 cosh

(
1

2
(−a2c2t + a2y + a4)

)

+ H0. (59)

4 Physical discussion

To deepen our comprehension of the obtained solu-
tions, we have provided visual representation through
3Dplots and corresponding contour plots. These graph-
ical illustrations offer insights into the behavior of the
solutions, showcasing their variations based on care-
fully chosen parameters.

• In Fig. 1, we depict the lumps corresponding to the
real and imaginary components of the solution (15)
for the choice of parameters (a)–(d) a1 = 2; a2 =
i; a4 = 1; c2 = 2i;H0 = 0;H1 = 0;H2 =
0;P1 = 0.2i; at t = 0.1 (b)–(e) a1 = 2; a2 =
i; a4 = 3; c2 = 2i;H0 = 0;H1 = 0;H2 =
0;P1 = 2; at t = 0.1 respectively, while the
absolute part represents the multi-solitons for (c)–
(f) a1 = 2; a2 = 5i; a4 = 3i; c2 = 3;H0 =
0.25;H1 = 0;H2 = 0;P1 = 2i; at t = 0.02.

• The real and imaginary parts of the solution (17)
are visualized as lumps in Fig. (2). The absolute
part exhibits the multi-soliton profile with differ-
ent parameter configurations: (a)–(d) a1 = 2; a2 =
2i; a4 = 1; c2 = 2i;H0 = 0;H1 = 0;H2 =
0;P1 = 2;P2 = 2i; at t = 0.01 (b)–(e) a1 =
2; a2 = 2i; a4 = 1; c2 = 2i;H0 = 0;H1 =
0;H2 = 0;P1 = 2;P2 = 1; at t = 0.01 and
(c)–(f) a1 = 3i; a2 = 2; a4 = i; c2 = 0.5;H0 =
0;H1 = 0;H2 = 0;P1 = 2i;P2 = 2; at
t = 0.03.

• The lumps corresponding to the real and imaginary
parts of the solution (25) are shown in Fig. (3).
The absolute part presents a soliton profile with
different parameter values: (a)–(d) a1 = 2; a2 =
i; a4 = 0.3; c2 = 2i;H0 = 0;H1 = 0;H2 =
0;P1 = 3i; at t = 1 (b)–(e) a1 = 2; a2 = i; a4 =
0.3; c2 = 2i;H0 = 0;H1 = 0;H2 = 0;P1 = 3;
at t = 2 and (c)–(f) a1 = 2; a2 = i; a4 = 0.3; c2 =
2i;H0 = 0;H1 = 0;H2 = 0;P1 = 3; at t = 2.
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Here in this figure, we have study the behavior of
the solution for full plot range and with no plot
range that represent the different dynamics.

• In Fig. (4), we observe the lumps representing
the real and imaginary parts of the solution (27).
The absolute part demonstrates a multi-soliton pro-
file for the following parameter choices: (a)–(d)
a1 = 2.2; a2 = 3i; a4 = 1.25; c2 = 3i;H0 =
0.02;H1 = 0.023;H2 = 0;P1 = 3i;P2 = 2i; at
t = 0.01 (b)-(e) a1 = 2; a2 = 3i; a4 = 0.4i; c2 =
5;H0 = 0;H1 = 0;H2 = 0;P1 = 7i;P2 = 2i;
at t = 0.03 and (c)-(f) a1 = 2; a2 = 3i; a4 =
0.4i; c2 = 5i;H0 = 0;H1 = 0;H2 = 0;P1 =
7;P2 = 2i; at t = 0.3.

• Figure (5) displays the lumps for the real com-
ponent and interaction of lumps and peakon for
the imaginary component of the solution (49). The
absolute part shows a multi-soliton profile under
the parameter configurations: (a)–(d) a1 = 2; a2 =
2i; a4 = 0.02; c2 = 3;H0 = 2;H1 = 0;H2 =
0;P1 = 3i;P2 = 2.1i; at t = 1.5 (b)–(e) a1 =
2; a2 = 2i; a4 = 0.7; c2 = 5;H0 = 0;H1 =
0;H2 = 0;P1 = 3i;P2 = 2.1i; at t = 1.5 and
(c)–(f) a1 = 2; a2 = 2i; a4 = 0.7; c2 = 5;H0 =
0;H1 = 0;H2 = 0;P1 = 3i;P2 = 2.1i; at
t = 1.5.

5 Conclusion

In conclusion, we have presented a novel method for
solving NLPDEs, specifically focusing on the (2+1)-
dimension Hirota bilinear equation. We have desig-
nated the approach as the multivariate generalized
exponential rational integral function. We applied this
method to the Hirota bilinear equation, demonstrating
its effectiveness in finding solutions. The obtained solu-
tions were visualized through 3D and contour plots,
providing a comprehensive understandingof the behav-
ior of the solutions. Overall, our proposed method
offers a systematic and powerful approach to tackle
NLPDEs, particularly showcasing its applicability to
the Hirota bilinear equation. The accuracy and effi-
ciency of our method were verified through compu-
tational software Mathematica, validating its potential
as a valuable tool in the domain of nonlinear differen-
tial equations. Future work could involve extending the
proposed method to other classes of nonlinear partial
differential equations, exploring its applicability and

efficiency in diverse mathematical contexts. Addition-
ally, further research could focus on developing numer-
ical techniques for real-time simulations and exploring
potential applications in physical systems or interdis-
ciplinary fields. Validating the method on a broader
range of benchmark problems and comparing its per-
formance with existing approaches would contribute to
establishing its robustness and versatility.
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