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Abstract To address the issue of dynamical degrada-
tion in digital chaotic maps, we propose a novel inter-
nal perturbation method. In this method, the system
states and iteration times are utilized to perturb the
parameters of the chaotic maps, which can effectively
increase their complexity and period length. Some low-
dimensional and high-dimensional chaotic maps are
chosen as examples to verify the effectiveness of this
method, and their dynamics are analyzed. The simula-
tion results indicate that these improved chaotic maps
exhibit a larger chaotic range and complexity com-
pared to their original chaotic maps, and have longer
period lengths and smaller auto-correlation than their
digital chaotic maps at 8-bit precision. To further ver-
ify its feasibility and application value, the improved
chaotic maps are implemented on field-programmable
gate array, and applied to pseudo-random number gen-
erator at finite precision.
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1 Introduction

Chaotic systems have received widespread attention
due to their inherent characteristics, such as unpre-
dictability, non-periodicity, and initial value sensitiv-
ity. Therefore, they are extensively applied in different
fields, includingmeteorology [1], biology [2–4], chem-
istry [5–7], economics [8–10], chaotic cryptography
[11–13] and so on. To implement chaotic systems, one
approach is to use nonlinear devices and specific circuit
topologies to configure and generate chaotic behavior,
which are commonly known as analog chaotic systems.
However, it is difficult to implement because they are
easily affected by noise, parasitic effects, and burrs.
The other is to employ digital circuit devices such as
microcontrollers or FPGA to implement chaotic sys-
tems, which are referred to as digital chaotic systems.
However, due to finite computational precision, digital
chaotic systems will undergo dynamical degradation,
severely restricting their practical applications.

There exist two principal directions for overcoming
the dynamical degradation of digital chaotic maps. One
is to construct high-performance chaotic maps through
some control methods, such as parallel chaotification
[14], nonlinear function coupling [15,16], mathemati-
cal transformation [17–19], etc. Liu et al. [14] used a
parallel structure to construct reinforced chaotic maps,
greatly improving the complexity of the system. Hua et
al. [16] used Sine function to cascade multiple chaotic
seed maps and constructed a more powerful chaotic
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map, which have a larger chaotic range, better com-
plexity, and unpredictability. Fan et al. [17] constructed
the high-dimensional chaoticmaps by usingmathemat-
ical transformations, which can generate desired posi-
tive Lyapunov exponents. Although these chaotic maps
havemore complex dynamical characteristics, they still
undergo dynamical degradation at low precision.

Another type of method is to apply anti-degradation
treatment to the chaotic maps. The commonly used
methods include (1) Improving computational preci-
sion [20,21]: Using higher precision devices to con-
struct chaotic maps can effectively extend their cycles,
but it will significantly increase implementation costs.
(2) Switching multiple chaotic maps [22–24]: Switch-
ing to another chaotic mapwhen a periodic state occurs
can effectively extend the period length, but often
results in non-ideal distribution characteristics of the
switched chaotic system. (3)Delay introducingmethod
[25,26]: Introducing a delay part to control the param-
eters or states of the system is equivalent to expand the
dimension of the chaotic map. It effectively enhances
its complexity, but the improvement effect is gener-
ally limited. (4) Error compensation method [27,28]:
Applying state error compensation to the input of a
chaotic map greatly improves its dynamical degrada-
tion. However, due to the constraints of mathemati-
cal theorems, it is still unable to expand into high-
dimensional spaces. (5)Analog and digitalmixing [29–
31]: Modulating digital chaotic systems by using ana-
log chaotic systems to enhance the randomness of their
trajectories. It can effectively improve systemcomplex-
ity and resist dynamical degradation, but its implemen-
tation cost is high, and it is prone to noise interference.
(6) Bit inversion [32,33]: Inverting the decimal part of
a chaotic map to increase its complexity. It can achieve
more precise control by bit operation, but it requires
higher implementation costs. (7) Perturbation method
[34–36]: By introducing external random sources like
m-sequences or chaotic sequences to perturb system
parameters or states, it achieves a significant improve-
ment in systemperformance.However, it has a fewdefi-
ciencies, such as the instability of the random source
and the high costs associated with implementation.

To effectively address the issue of dynamical degra-
dation in digital chaotic maps at a low cost, we pro-
pose a novel internal perturbation (InP) method. The
system parameters are perturbed by nonlinear func-
tions that couple the system states and iteration times.
Under low precision, both low-dimensional and high-

dimensional maps are subjected to anti-degradation
treatment, and their Lyapunov exponents, trajectories,
phase diagrams, auto-correlation, complexity, period
lengths and sensitivity are compared and analyzed. The
experiment results demonstrate that the InP method
efficiently counteract the dynamical degradation of dig-
ital chaotic maps. Finally, the improved chaotic maps
are implemented by FPGA and a novel pseudo-random
sequence generator (PRNG) which operates at finite
computational precision is designed to perform the
NIST testing.

The structure of this paper is as follows. Section 2
introduces the InP method. In Sect. 3, the numerical
experiments are conducted on the improved chaotic
maps. In Sect. 4, we implement the improved chaotic
maps by FPGA and apply them to PRNG. Finally, we
summarize this paper and indicate the future directions.

2 Internal perturbation method

2.1 Digital chaotic maps

A discrete chaotic map is defined by

xi+1 = F (xi ) , (1)

where xi ∈ � is the state value of the map, and F :
xi → xi+1 is a chaotic map.

When we confine it to finite computational preci-
sion, the chaotic domain � is quantized uniformly to
the finite domain �d :

�d =
{
xi | xi = k · 2−d , k = 0, 1, . . . , 2d − 1

}
, (2)

where d is the calculation precision.
Then, the chaotic map is digitized as

xi+1 = UQ ◦ F (xi ) , (3)

where xi ∈ �d ,UQ (UniformQuantization):� → �d

denotes equidistant quantization of the chaotic map.
Here, we choose f loor(x) as the quantitative func-
tion,where f loor(x) represents taking an integer down
from x . The quantization process can be represented as
UQ ◦ x = f loor(x · 2d)/2d .

2.2 Principle of the internal perturbation method

This method only processes the parameters, and the
system phase space has not been destroyed after exper-
iments. So it can be considered as a remedial measure
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Fig. 1 Principle block diagram of the InP method

rather than generating a new random source [37]. The
principle block diagram of the InP method is shown in
Fig. 1. When a chaotic map is iterated, its states and
iteration times continually change, and they are com-
bined to obtain a new source

ri = UQ ◦ (xi · i) . (4)

By using a nonlinear function to confine ri within the
finite range, we have obtained an internal perturbation
factor

ki = m1 − m2 + m2 × sin (ri ) , (5)

where parameterm1 andm2 are used to adjust the range
of ki , which meet m1 > m2/2 > 0, so ki ∈ (m1 −
2m2,m1). With each iteration of the chaotic map, it
continues to oscillate. By replacing a parameter of the
chaoticmapwith it, we obtain an improved chaoticmap

xi+1 = UQ ◦ (F (xi , ki )) . (6)

3 Experiments and discussions

In this section, we conduct anti-degradation treat-
ment on several typical low-dimensional and high-
dimensional chaotic maps by using InP method, and
then obtain the improved chaotic maps. Subsequently,
the comparative analyses are conducted with original
chaotic maps, digital chaotic maps, and the improved
chaotic maps processed by other anti-degradation
methods [24,25,32,37,38].

3.1 Improved Logistic map

3.1.1 Definition

The digital Logistic map is defined by

xi+1 = UQ ◦ (μ · xi · (1 − xi )) , (7)

Fig. 2 LE values of the improved Logistic map

where μ ∈ (3.5699, 4] is the parameter. To resist the
dynamical degradation caused by finite computational
precision,we apply the InPmethod for anti-degradation
treatment

xi+1 = UQ ◦ (ki · xi · (1 − xi )) , (8)

where ki is determined by Eq. (5), and we choose
m1 = 4 and m2 = 1.15. In this case, the range
of parameters ki is (1.7, 4). Next, we conduct anti-
degradation analysis on the improved Logistic map.

3.1.2 Lyapunov exponents analysis

The Lyapunov exponent (LE) is an indicator that mea-
sures the degree of divergence of adjacent trajectories,
and is commonly used to describe how small pertur-
bations evolve over time in nonlinear systems. Gener-
ally, When the maximum LE of the system is positive,
it indicates chaos. However, for digital chaotic maps,
due to the finite computational precision, the trajectory
may degenerate into a fixed point or a limit cycle. Wolf
et al. [39] proposed a method to calculate the LE based
on time series analysis. We set the computational pre-
cision d = 8, with the parameter m1 = 4, and analyze
the LE of system (8) as the parameter m2 varies, as
shown in Fig. 2. It shows that as m2 changes from 0
to 1.2, the variation range of the system parameter ki
expands from fixed value 4 to [1.6, 4], and the LE of
the system is still positive. It proves that even in low
precision, the improved Logistic map remains chaotic.
In addition, the parameter range of the original Logistic
map is (3.5699, 4], while the improved Logistic map
expands the parameter range to [1.6, 4]. Our method
not only ensures that the system is still chaotic at 8-bit
precision, but also expands the parameter range.
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Fig. 3 The trajectories of the two chaotic maps. aDigital Logis-
tic map. b Improved Logistic map

3.1.3 Trajectory and phase diagram analysis

We set the initial value x(0) = 0.3, and the computa-
tional precision d = 8. For digital chaotic maps, their
trajectories often exhibit periodic behavior. We com-
pare and analyze the trajectories of the digital Logistic
map (system (7)) and the improved Logistic map (sys-
tem (8)), as shown in Fig. 3. It shows that the digital
Logistic map reach a cyclic state after about 15 iter-
ations and the cycle length is 4, but in Fig. 3b, the
improved Logistic map exhibits a complex trajectory
and still presents an aperiodic state.

The phase space of the chaotic map reflects the cor-
relation between adjacent iterations, and its phase dia-
gram provides a visual way to understand the behav-
ior of the chaotic map. The wider and more uniform
the distribution range of the phase diagram, usually
indicates that the system has better ergodicity. The
phase diagrams of the original Logistic map, digital
Logistic map, and improved Logistic map are com-
pared and analyzed in Fig. 4. Figure 4b illustrates that
the digital Logistic map’s phase space is compressed,
and degenerates into several discrete fixed points, and
the system’s ergodicity severely decreases. The origi-
nal Logistic map’s phase diagram is shown in Fig. 4a,

which is a convex parabola. In Fig. 4c, the improved
Logisticmapnot only retains the convexparabola struc-
ture, but also further expands the domain of attraction
and enhances its ergodicity. It indicates that the InP
method can effectively expand the attraction domain
of the chaotic maps.

3.1.4 Auto-correlation analysis

We set the computational precision d = 8, and conduct
auto-correlation analysis on the two chaotic maps, as
shown in Fig. 5. In Fig. 5a, the digital Logistic map
shows extremely strong correlation, but in Fig. 5b, the
improved Logistic map’s auto-correlation graph shows
an ideal delta shape, indicating that the InP method can
enable chaotic maps to maintain weak auto-correlation
even at low precision.

3.1.5 Approximate entropy analysis

Approximate entropy (ApEn) is an index used to ana-
lyze sequence to describe the irregularity of systems.
In general, as the ApEn value increases, the chaotic
system becomes more complex. We compare the InP
method with four existing methods: (1) Bi-coupling
(BC) method [24]. (2) Delay-introducing (DI) method
[25]. (3) Bit reversal (BR) method [32]. (4) Period
detection disturbance (PD) method [38]. We set the
the phase space dimension m = 2, and the similarity
tolerance limit r = 0.1, and the results are shown in
Fig. 6. At low precision, the improved Logistic map’s
ApEn value is stable around 1.5, and is far superior to
the other four methods. It shows that our method can
significantly improve system complexity.

3.1.6 Permutation entropy analysis

Permutation entropy (PE) complexity is commonly
employed to describe the randomness of sequence. A

Fig. 4 The phase diagrams
of the three chaotic maps. a
Original Logistic map. b
Digital Logistic map. c
Improved Logistic map
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Fig. 5 The Auto-correlation graphs of the two chaotic maps. a
Digital Logistic map. b Improved Logistic map

Fig. 6 The ApEn values for the five different anti-degradation
methods

Fig. 7 The PE values for the five different Logistic maps

high PE value usually indicates that the system pos-
sesses larger complexity. The embedding dimension p
and the delay time t are set as 5 and 1, respectively. Sim-
ilar to theApEn analysis,we compare and analyze three
anti-degradationmethods and the original Logisticmap
at different precisions, as shown in Fig. 7. The original
Logistic map’s PE value is maintained at 0.6804, and
the improved Logistic map’s PE value is stable around
0.86, which is not only superior to the other three anti-
degradation methods, but also better than the original
Logistic map. It demonstrates the effectiveness of this
method in enhancing the performance of the chaotic
systems.

3.1.7 Period analysis

By detecting the length of the period, the performance
of anti-degradationmethods can be evaluated. Here, for
chaotic maps with fixed parameters, we use the chaotic
cycle-finding algorithm [40] to calculate their period
lengths, and its pseudocode is shown below. For other
chaotic maps, we count the distance between the two
peaks in the autocorrelation graph of them to find the
period. We compare and analyze five methods, and list
their period lengths in Table 1. It shows that even at low
precision, the improved chaotic map still has a larger
period, and the period cannot be detected above 8-bit
precision, far superior to other methods.

Algorithm 1 Chaotic cycle-finding algorithm

1: Define the computational precision L , cycle length len,
step number stepn , maximum step size for a single
cycle stepm , initial value x0, chaotic system F(x, L).

2: while true
3: x = F(x, L);
4: stepn + +;
5: if x == x0
6: break;
7: end if stepn == stepm
8: stepn = 0;
9: stepm = stepm · 2;
10: x0 = x ;
11: end
12: end
13: x = F(x, L);
14: while x �= x0
15: len + +;
16: x = F(x, L);
17: end
18: len

3.1.8 Sensitivity analysis

The sensitivity of the chaotic maps to initial values can
be characterized by the differences in initial valueswith
slight variations. For precision d = 16,we set the initial
values to 0.3 and 0.3 + 2−d respectively, and analyze
the sequence with an initial length of 100. In Fig. 8,
after the second iteration, the two trajectories begin to
separate, so it shows that the improved Logistic map
has strong sensitivity to initial values.
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Fig. 8 Sensitivity analysis
of system (8). a Trajectories
with different initial values.
b The difference between
these two curves

Table 1 Periodic testing
for five contrast
anti-degradation methods
(U denotes undetected)

Precisions BC [24] DI [25] BR [32] ID [37] InP

4 bits 3 2 4 44 201

8 bits 4 17 8 710 U

12 bits 9 86 40 U U

16 bits 119 206 53 U U

20 bits 439 2281 150 U U

3.2 High-dimensional chaotic maps

In this section, we conduct anti-degradation analysis on
a two-dimensional chaotic map and a four-dimensional
chaotic map, respectively.

3.2.1 Definition

The 2D-SIMMmap [11] consists of an iterative chaotic
map with infinite collapse (ICMIC) and a Sine map,
which are cascaded and exhibit rich chaotic characteris-
tics. The 4D-SHmap [41] utilizes two one-dimensional
seed maps generated through mixed modulation cou-
pling, and also has rich dynamical characteristics. The
2D-SIMM map is described as
{
xi+1 = a · sin (b · yi ) · sin (c/xi )
yi+1 = a · sin (b · xi+1) · sin (c/yi )

, (9)

where a, b, c ∈ (0, 9) are the system parameters. Here
we set a = 1 and b = π . The digital 2D-SIMMmap is
{
xi+1 = UQ ◦ (sin (π · yi ) · sin (c/xi ))
yi+1 = UQ ◦ (sin (π · xi+1) · sin (c/yi ))

. (10)

Using the InP method for anti-degradation treat-
ment, the perturbation factors are
{
c1(i) = UQ ◦ (9 − c0 + c0 · sin (i · xi ))
c2(i) = UQ ◦ (9 − c0 + c0 · sin (i · yi )) , (11)

where c0 is an undetermined constant, and c1(i), c2(i)
∈ (9−2c0, 9). In addition, due to the ICMIC seedmap,

the chaotic value cannot be 0, so the state is compen-
sated as⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi =
{
xi xi �= 0

UQ ◦ (0.01 · sin (2 + c1(i))) xi = 0

yi =
{
yi yi �= 0

UQ ◦ (0.01 · sin (2 + c2(i))) yi = 0

.

(12)

Then replace the parameter c, we get the improved
2D-SIMM map
{
xi+1 = UQ ◦ (sin (π · yi ) · sin (c1(i)/xi ))
yi+1 = UQ ◦ (sin (π · xi+1) · sin (c2(i)/yi ))

.

(13)

The 4D-SH map is
⎧
⎪⎪⎨
⎪⎪⎩

xi+1 = k · sin (
a · (

1 − 2 · w2
i

) · sin (b/xi )
)

yi+1 = k · sin (
a · (

1 − 2 · x2i+1

) · sin (b/yi )
)

zi+1 = k · sin (
a · (

1 − 2 · y2i+1

) · sin (b/zi )
)

wi+1 = k · sin (
a · (

1 − 2 · z2i+1

) · sin (b/wi )
)
,

(14)

where k, a, b ∈ (0, 9) are the system parameters. Here
we set k = 1 and a = 2π . The digital 4D-SH map is
⎧⎪⎪⎨
⎪⎪⎩

xi+1 = UQ ◦ (
sin

(
2π · (1 − 2 · w2

i

) · sin (b/xi )
))

yi+1 = UQ ◦ (
sin

(
2π · (1 − 2 · x2i+1

) · sin (b/yi )
))

zi+1 = UQ ◦ (
sin

(
2π · (

1 − 2 · y2i+1

) · sin (b/zi )
))

wi+1 = UQ ◦ (
sin

(
2π · (

1 − 2 · z2i+1

) · sin (b/wi )
))

.

(15)
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Fig. 9 Attractors of the
two-dimensional chaotic
maps. a Original 2D-SIMM
map. b Digital 2D-SIMM
map. c Improved 2D-SIMM
map

Fig. 10 Attractors of the
four-dimensional chaotic
maps. a Original 4D-SH
map. b Digital 4D-SH map.
c Improved 4D-SH map

Using the InP method for anti-degradation treat-
ment, the perturbation factors are
⎧⎪⎪⎨
⎪⎪⎩

b1(i) = UQ ◦ (9 − b0 + b0 · sin (i · xi ))
b2(i) = UQ ◦ (9 − b0 + b0 · sin (i · yi ))
b3(i) = UQ ◦ (9 − b0 + b0 · sin (i · zi ))
b4(i) = UQ ◦ (9 − b0 + b0 · sin (i · wi ))

, (16)

where b0 is an undetermined constant, and b1(i), b2(i),
b3(i), b4(i) ∈ (9−2b0, 9). Similarly, due to the ICMIC
map, we need to compensate for the state
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi =
{
xi xi �= 0

UQ ◦ (0.01 · sin (2 + b1(i))) xi = 0

yi =
{
yi yi �= 0

UQ ◦ (0.01 · sin (2 + b2(i))) yi = 0

zi =
{
zi zi �= 0

UQ ◦ (0.01 · sin (2 + b3(i))) zi = 0

wi =
{

wi wi �= 0

UQ ◦ (0.01 · sin (2 + b4(i))) wi = 0

.

(17)

Then replace the parameter b, we get the improved
4D-SH map
⎧
⎪⎪⎨
⎪⎪⎩

xi+1 = UQ ◦ (
sin

(
2π · (

1 − 2 · w2
i

) · sin (b1(i)/xi )
))

yi+1 = UQ ◦ (
sin

(
2π · (

1 − 2 · x2i+1

) · sin (b2(i)/yi )
))

zi+1 = UQ ◦ (
sin

(
2π · (

1 − 2 · y2i+1

) · sin (b3(i)/zi )
))

wi+1 = UQ ◦ (
sin

(
2π · (

1 − 2 · z2i+1

) · sin (b4(i)/wi )
))

.

(18)

Here, Eqs. (13) and (18) represent the improved 2D-
SIMMmapand the improved4D-SHmap, respectively.

3.2.2 Attractors analysis

We set calculation precision d = 8, b0 = c0 = 3
and the range of perturbation factors is (3, 9). Next,
we compare the digital chaotic map with the improved
chaotic map. The attractors of the two-dimensional
chaotic maps are shown in Fig. 9. In Fig. 9b, the per-
formance of the digital 2D-SIMM map has deterio-
rated, and the attractor only exhibits a few discrete
fixed points. From Fig. 9a, c, the InP method restores
the attractor of the original 2D-SIMM map. Since the
visualization of a four-dimensional chaotic map can-
not be directly displayed on a two-dimensional plane,
we plot the four-dimensional attractor graphs by rep-
resenting the fourth dimensional data in color form, as
shown in Fig. 10. In Fig. 10b, the chaotic map is dig-
itized and degenerated into several fixed points. From
Fig. 10a, c, the InP method successfully restores the
attractor structure of 4D-SH map.

3.2.3 Complexity analysis

Usually, high-dimensional chaotic maps exhibit larger
complexity compared to low-dimensional chaoticmaps.
However, when the computational precision decreases,
the high-dimensional chaotic maps’s complexity will
also be low, requiring anti-degradation treatment.
Fig. 11a reflects the variation of ApEn values with
precisions for improved 2D-SIMMmap (system (13)),
original 2D-SIMMmap (system (9)), improved 4D-SH
map (system (18)), and original 4D-SH map (system
(14)).We can see that for the improved 2D-SIMMmap,
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Table 2 Periodic testing for four chaotic maps (U denotes unde-
tected)

Precisions System (10) System (13) System (15) System (18)

4 bits 8 201 7 11360

8 bits 59 U 5 U

12 bits 153 U 2160 U

16 bits 1822 U 4043 U

20 bits 6807 U 50417 U

the ApEn value is higher than the original 2D-SIMM
map. Due to the original 4D-SH map has a large com-
plexity, whose ApEn value exceeds 2.4. Therefore, for
the improved 4D-SH map, the improvement of the InP
method reaches a certain limit, but it can still maintain
an approximate ApEn value at low precision. Fig. 11b
reflects the variation of PE values with precisions for
the four different chaotic maps. The PE values of all
four chaotic maps are very high, and the PE values of
the improved 2D-SIMMmapare even higher than those
of the original 2D-SIMM map.

3.2.4 Period analysis

We analyze the output sequence periods of the digital
chaotic maps and the improved chaotic maps, and test
the precision d from 4 to 20. The results are shown
in Table 2. We can see that the period lengths of the
digital chaotic maps are generally low. However, after
using the InP method, the period lengths are greatly
extended, and the system performance is improved.

3.2.5 Sensitivity analysis

For precision d = 8, we set the initial values of system
(13) x-dimension are 0.2 and 0.2+2−d , and the initial
values of the y-dimension are 0.1 and 0.1+2−d , respec-
tively. We analyze the first 100 iterations, as shown in
Fig. 12. From Fig. 12a, we can see that when the ini-
tial value of x changes, the y-dimensional data under-
goes differentiation after approximately two iterations,
exhibiting different chaotic behaviors. In Fig. 12b, dif-
ferentiation occurs at the third iteration. In addition,
we conduct the same analysis on system (18). For
x-dimensional data, we change the initial values of
y, z and w dimensions and analyze their trajectories,
respectively. In a short period, the chaotic trajectories

all separate in Fig. 12c–e. It indicates that the improved
chaotic maps still have strong initial value sensitivity
at low precision.

4 Application

In this section, we utilize field-programmable gate
array (FPGA) to implement the improved 2D-SIMM
map (system (13)) and the improved 4D-SH map (sys-
tem (18)) based on the InP method, and design a new
pseudo-random number generator (PRNG).

4.1 FPGA implementation

To demonstrate the InP method can solve the problems
caused by hardware devices’ truncation effects, FPGA
is used to reproduce the improved 2D-SIMM map and
the improved 4D-SH map. In FPGA, the IEEE754 sin-
gle precision floating-point type is often used as the
data format to save resources [42]. The data format is
shown in Fig. 13. It has a total of 32-bits, with the high-
est bit being the sign bit, [30...23] being the index bit,
and [22...0] being the tail bit. The last part has 23 digits,
and commonly referred to as the significant digit. For a
digital chaotic map, small perturbations have a signifi-
cant impact on the entire map, so the tail digit has the
greatest impact on the chaotic state. Due to the trun-
cation effect of hardware devices, it leads to dynami-
cal degradation of some chaotic maps implemented on
FPGA platform. Table 3 lists the hardware device trun-
cation effect demonstration. It shows that due to the
decimal part of a single precision floating-point num-
ber is only 23 digits, and the red part of the original data
is preserved, while the blue part is truncated, resulting
in the rounding errors.

Figure 14 shows the hardware block diagram of
FPGA, where the SIL_4D module constructs a 4-
dimensional system based on the InP method through
a state mechanism. The output data is a 32-bit float-
ing point number, which needs to be converted into
16-bit fixed point data through the Float2dac module.
Finally, the 16-bit data is converted into analog sig-
nals through the Dac_out module and outputed to the
DAC8552 chip.

Figure 15 shows the FPGA experimental platform,
where FPGA is Altera Cyclone V 5CSEMA5F31C6
with 50 MHz clock frequency. Under the IEEE754
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Fig. 11 The complexity
analysis for the four
different chaotic maps. a
ApEn complexity. b PE
complexity

Fig. 12 Sensitivity analysis: a Initial value x0 + 2−8 in system (13). b Initial value y0 + 2−8 in system (13). c Initial value y0 + 2−8

in system (18). d Initial value z0 + 2−8 in system (18). e Initial value w0 + 2−8 in system (18)

Table 3 The hardware device truncation effect demonstration

Two different formats of 0.142

1: fixed-point number:

010 = 0b0

.14210 = 0b001001000101101000011100101011 · · ·
0.14210 = 0b0.001001000101101000011100101011 · · ·

2: IEEE754 single precision floating-point number:

0.14210 = 0b1.001000101101000011100101011· · ·E-3
= [0][01111100][00100010110100001110010]

= 3E11687216

single precision floating-point standard, we apply the
InP method to the FPGA platform, using a DAC8552
chip to convert digital signals into analog signals. The
attractors of the improved 2D-SIMM map and the
improved 4D-SH map are printed on the oscilloscope,
and compared with the results of MATLAB simulation
in Fig. 16. It shows that the graphs printed by FPGA are
similar to the simulation results in MATLAB, proving

Fig. 13 The structure of IEEE754 single precision floating point
numbers

that the InP method can solve the problems caused by
hardware devices’ truncation effects.

In addition, we compute the throughput (TP) of the
sequence. Fig. 17 shows the timing diagram, where
wire_done1, A1, A2, A3, A4 denote the flag for com-
pleting one iteration, first data, second data, third data,
fourth data, respectively. It shows that the time required
for the system to complete one iteration is 18,900 ns.
The throughput (TP) is calculated as T P = W/T ,
where W , T denotes the output data volume, run time,
respectively. Therefore, we get T P = 32 bits ×
4/18,900 ns = 6.77 Mbps. And we also count the
resource consumptionof the system, as listed inTable 4.

123



9612 B. Li et al.

Fig. 14 Hardware block diagram of FPGA

Fig. 15 FPGA experimental platform

4.2 Pseudo-random number generator

We design a novel PRNG, which operates at finite pre-
cision to evaluate the randomness of sequences gen-
erated by digital chaotic maps. The steps are listed as
follows.

step 1: Iterate theM-dimensional chaoticmap N+t
times and discard the initial t iterations to avoid tran-
sient effects, then obtaining a new chaotic sequence
X j = {

x j (i)
}N
i=1 , j = 1, 2, . . . , M .

step 2: At L-bit precision, quantify the chaotic
sequence X as binary sequences with a bit width of
l(l ≤ min(L , 16), and let l = 8). Finally, a new
pseudo-random sequence P = {bi }lNi=1 is obtained by

{bi }kli=(k−1)l+1 = dec2bin

⎛
⎝mod

⎛
⎝

⎡
⎣

⎛
⎝

M∑
j=1

x j (i)

⎞
⎠ /M · 2min(L ,16)

⎤
⎦ , 2l

⎞
⎠

⎞
⎠ ,

(19)

where M is the dimension of the chaotic map. l is the
bit width of the unit data, and x j is the output set of
each dimension, where k = 1, 2, ..., N . N is the length
of the chaotic sequence, and dec2bin(x) is a decimal
to binary function.

NIST-800-22 test is usually used to test the random-
ness of sequences. It consists of 15 independent tests
that test 100 sets of binary data with a length of 106.
Only when the pass rate > 96% and P_value > 0.01,
the test is considered passed. We use the Logistic map
as the target map and apply different anti-degradation
methods for analysis, with the proportion of passing
independent test items as shown in Table 5. The results
indicate that at different levels of precision, the chaotic
map improved by the InP method has a higher pass rate
compared to the chaotic maps improved by other meth-
ods. It shows that this method can effectively improve
the randomness of chaotic sequences at low precision.

5 Conclusion

In this paper, we introduce a novel anti-degradation
method, and achieve good anti-degradation effects
at a low cost. Both the low-dimensional and high-
dimensional chaotic maps are subjected to anti degra-
dation treatment. By calculating the Lyapunov expo-
nents, we demonstrate that the improved chaotic map
not only exhibits chaos at low precision, but also
expands the chaotic range. Finally, we apply this
method to the field of FPGA, and verify it can solve
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Fig. 16 Comparison of MATLAB and FPGA outputs: a x–y
dimension of system (9). b x–y dimension of system (14). c x–z
dimension of system (14). d z–w dimension of system (14). e

x–y dimension of system (13). f x–y dimension of system (18).
g x–z dimension of system (18). h z–w dimension of system (18)

Fig. 17 System timing diagram testing

Table 4 FPGA resource consumption table

Compilation hierarchy node ALMs ALUTs Logic registers Block memory bits M10Ks DSP blocks

Top 3566.0 5695 5385 7323 17 23

Float2dac 152.8 273 128 0 0 6

Dac_out_ctrl 90.2 146 101 0 0 0

Dac8552_driver 56.7 79 75 0 0 0

SIL_4D 3322.5 5275 5156 7323 17 17

Table 5 NIST testing for seven contrast anti-degradation methods

Precisions DI [25] DC [26] BR [32] ID [37] PD [38] DFPP [43] InP

10 bits 0/15 0/15 0/15 2/15 0/15 0/15 7/15

16 bits 0/15 0/15 0/15 10/15 14/15 15/15 15/15

32 bits 0/15 4/15 3/15 11/15 14/15 15/15 15/15

The bold one signifies its effect is the best
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the problems caused by hardware devices’ truncation
effects. In addition, we conduct NIST test at finite pre-
cision, which demonstrates that the sequence gener-
ated by the improved chaotic map exhibits strong ran-
domness at low precision. Compared with several anti-
degradation methods, the InP method has the charac-
teristics of lower implementation cost and better anti-
degradation effect. Next, we will combine this method
with image encryption to achieve finite precision image
encryption.
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