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Abstract This paper explores the nonlinear dynamic

responses and bifurcations of the truncated sandwich

simply supported porous conical shell with varying

thickness under 1:1 internal resonance. Two skins with

carbon fiber and a core with porous aluminum foam,

which has an exponentially variable thickness along

the generator and various porosity distribution types

along the core thickness, make up the sandwich shell

structure with varying stiffness. The porous shell

structure is affected by a combination of the in-plane

load, transverse excitation, thermal stress and aerody-

namic force, which is formulated by employing first-

order piston theory with a modified term for curvature.

By way of FSDT, von-Karman geometrical

formulations, Hamilton’s principle and Galerkin pro-

cedure, the nonlinear dynamic formulations in ordi-

nary differential form for the variable stiffness porous

sandwich shell structure are identified. The averaged

equations in polar and Cartesian coordinate forms for

the sandwich structure under the combined circum-

stance of 1:1 internal resonance, first-order main

resonance and 1/2 subharmonic resonance are deter-

mined by multiple-scale technique. The frequency-

amplitude and force–amplitude characteristic curves,

phase portraits, time history and bifurcation diagrams

are exhibited by numerical simulation. The impacts of

the damping coefficient, detuning parameters, tem-

perature increment, transverse and in-plane
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excitations on the nonlinear dynamics and bifurcation

behaviors of variable thickness sandwich porous

conical shell are demonstrated.

Keywords Nonlinear dynamic response �
Bifurcation � Sandwich conical shell � Variable
thickness � Internal resonance � Porous aluminum foam

1 Introduction

As an important part of the carrier rocket, the fairing is

designed to protect the satellite and other payloads

from harmful environments such as aerodynamic

forces, aerodynamic heating and acoustic vibration,

so special materials that have excellent mechanical

properties are required. Porous metal foam materials

have a large pore size and specific surface area, which

give them lightweight, high temperature resistant and

energy absorption properties. Corresponding to spe-

cial locations and sizes of the pores, the porous metal

foam can produce continuously varying physical

properties along the thickness [1–3]. As observed in

Fig. 1, the rocket structure’s top fairing component

can be reduced to a combined model of a truncated

conical shell and a negligibly small top shell. The

sandwich structure, which is made of two high-

strength skins and a lightweight core, is particularly

suitable for the airfoils of high-speed vehicles and

segments subject to extreme aerodynamic forces and

heating, such as the fairing shells of carrier rockets

[4, 5]. The variable thickness fairing shells can

enhance structural stiffness, eliminate stress concen-

tration, and reduce centrifugal stress and structural

mass [6, 7]. The fairing shells are constantly exposed

to complicated forces, such as thermal stresses aero-

dynamic pressure, in-plane and transverse forces,

leading to complex nonlinear dynamic behaviors.

Specifically, the nonlinear internal resonance behav-

iors can lead to increased structural vibration,

increased noise, and even damage and breakage

[8–10]. Therefore, it is essential and remarkable to

explore the nonlinear dynamics of the variable thick-

ness truncated porous sandwich conical shell under

complicated forces and internal resonance.

Recently, sandwich structures with porous metal

foam material have gained considerable interest from

practical applications and theoretical research due to

their superior mechanical performance. Zhu et al. [11]

examined the natural vibration behaviors of sandwich

skew plates composed of two pure metal skins and a

porous metal foam core. Using the isogeometric

method and modified Riks approach, the various

buckling characteristics of porous metal sandwich

skew plates exposed to compressive forces were found

by Sengar et al. [12]. Zhou et al. [13] discussed the

effects of the impact location, metal foam core’s

thickness and distribution on the impact characteristic

of sandwich square plates, and optimized the geomet-

ric pathways by analytical formulation. Xin et al. [14]

presented a Navier solution for obtaining natural

vibration frequencies and modes of porous metal foam

sandwich thick beam. Xiao et al. [15] proposed a novel

lightweight porous mental foam-filled corrugated

sandwich structure, which had outstanding load-bear-

ing and heat transfer properties. The impact charac-

teristics of sandwich beams made of aluminum foam

porous core and mild steel surface sheet with various

thickness distributions were tested by Guo et al. [16].

Keleshteri et al. [17] determined the fundamental

frequencies and the related buckling loads of the

functionally graded porous sandwich cylindrical pan-

els through the Navier approach. Grag et al. [18, 19]

researched the vibration and static properties of metal

foam sandwich beams and plates, and examined the

impact of boundary condition, geometry, and porosity

parameters on sandwich beam behavior. Zhang et al.

Fig. 1 The model of a

rocket structure with faring

component
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[20] examined analytically and numerically the plastic

characteristic of a porous sandwich rectangular tube

under clamped support and transverse load.

It can be noted that numerous researchers have

explored the dynamic response characteristics of the

variable thickness structures. Tornabene et al. [21–23]

adopted the higher-order ESL method and GDQ

approach for determiningmodal and natural frequency

of doubly-cured anisotropic shell structures with

varying geometry, thickness and boundary. The

vibration behavior analysis of varying thickness

orthotropic plates with various boundaries, and geo-

metric and material parameters was performed by

Song et al. [24] providing a novel generalized

analytical approach. By utilizing the classical thin

shell framework and Rayleigh–Ritz technique, a

porous cantilever variable thickness plate was mod-

eled by Hao et al. [25] to discover the free vibration

behavior of the spinning twisted plate. Liu et al. [26]

provided a meshless generalized finite difference

technique to examine the bending characteristics of

thin plates with varying thickness and different

boundaries. A novel shear deformation plate theory

with trigonometric functions for obtaining natural

frequencies of FGM two-directional varying thickness

plates was established by Hoang et al. [27]. Kumar

et al. [28] explored the impact of porosity parameter,

foundation and varying thickness on the vibration

behaviors of an exponential FGM plate placed on an

orthotropic elastic foundation. Foroutan et al. [29]

employed the approach of fourth-order P–T and

multiple scales to determine the resonant characteris-

tic and nonlinear vibration behavior of varying

thickness toroidal FGM shell structures subject to

external loads. Cao et al. [30] examined the nonlinear

vibration of the arches with varying thickness and

cross-sectional shapes by utilizing the differential

quadrature procedure and direct iteration approach.

Sofiyev et al. [31–34] utilized the Galerkin technique

and Runge–Kutta procedure to analyze the dynamic

buckling characteristics of the conical shell with

varying thickness and FGM, and explored a novel

expression about modified Young’s moduli consider-

ing the vacancies and scale effects.

Furthermore, a large number of literature and

research focused on the internal resonance behaviors

of rings, tubes, beams, plates and shells under complex

loads. Casalotti et al. [35] conducted research on 1:2

and 1:3 internal resonance responses of a thin tube

subject to external force, and found potential energy

exchange from the local modes to the global modes.

Wu et al. [36] utilized the Galerkin procedure and

approximate multiple-scale technique to explore

numerically the nonlinear dynamics of a flexible

beam-ring configuration with 1:1 internal resonance.

The nonlinear internal resonant characteristics of a

cantilevered thin shell were analyzed by Qiu et al. [37]

utilizing the Galerkin technique and asymptotic per-

turbation method. Khaniki et al. [38] adopted a novel

strategy for nonlinear forced vibration investigation of

nanoplates with nonlocal strain gradients, whose

specifically combined parameters can cause different

internal resonant behaviors. Employing the modified

Lindstedt Poincare method, Ding et al. [39, 40]

explored the impacts of initial geometric defect, GPLs

and pore parameters on the nonlinear resonance

responses of grapheme platelets reinforced metal

foam (GPLRMF) cylindrical and doubly curved shells

with geometric defect. Additionally, Ding et al.

[41, 42] also used the methods of variable amplitudes

(MVA) and multiple scales to nonlinear forced

vibration and resonance responses of axially traveling

GPLRMF shell structures. The nonlinear vibration

responses of GPLRMF conical shells with 1:1 internal

resonance were investigated by Saboori et al. [43]

adopting the Galerkin procedure, perturbation and

multiple-scale analysis. Based on the HSDT, Galerkin

method and MVA, Zhang et al. [44] analyzed the

principal and internal coupled resonance characteris-

tics of rotating GPLRMF cylindrical shells, and found

the multiple jumping behavior and bifurcation phe-

nomenon of the coupled resonance. Employing FSDT,

Galerkin procedure and multi-scale technique, Sofiyev

et al. [45–48] investigated the nonlinear forced

vibration behaviors including primary resonance of

carbon nanotubes reinforced double-curved shells and

laminated plates, and discussed the influences of CNT

distribution patterns, nonlinearity and external force

on the forced vibration frequencies, and also examined

the effects of transverse shear deformations, geometric

and material parameters on natural frequencies of

truncated FGM sandwich conical shell.

However, rare researchers have reported the mod-

eling and nonlinear internal resonance analysis of the

porous metal foam sandwich truncated variable

thickness conical shell subject to complicated loads.

In this work, the nonlinear internal resonant responses

of varying thickness porous truncated sandwich
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simply supported conical shell subject to the thermal

stress, supersonic aerodynamic force, transverse and

in-plane loads. The sandwich structure is made of

multi-layer carbon fiber skins and an aluminum foam

core with exponentially varying thickness. The porous

foam’s porosity distribution schemes have five various

patterns containing Pattern-V, Pattern-K, Pattern-U,
Pattern-X and Pattern-O. Utilizing the FSDT, von-

Karman geometrical formulations, Hamilton’s princi-

ple, Galerkin technique and introducing dimensionless

parameters, the dimensionless 2DOF nonlinear ordi-

nary differential dynamic formulations for the porous

sandwich shell structure with variable stiffness are

determined. The multiple-scale technique is employed

for the perturbation investigation to obtain the aver-

aged formulations under 1:1 internal resonance. The

characteristics of the frequency-amplitude responses,

force–amplitude curves, bifurcations, periodic and

chaotic behaviors are analyzed by numerical calcula-

tions. The impacts of the detuning parameters, damp-

ing coefficient, temperature increment, transverse and

in-plane loads on the nonlinear dynamic responses and

bifurcation performances of the variable stiffness

truncated porous shell structure with 1:1 internal

resonance, first-order main resonance and 1/2 subhar-

monic resonance are examined.

2 Nonlinear dynamic formulations

Figure 2 depicts the geometric model of a truncated

variable stiffness conical shell, which has varying total

thickness h along the length L, semi-vertical angle b,
minimal mid-surface radius r1 and maximal mid-plane

radius r2. Furthermore, the averaged radius at any

position along the generatrix is presented as

R ¼ r1 þ x sinb. Consider a coordinate system

x; h; zð Þ that has an origin positioned at the top of the

middle plane of the variable thickness structure, and

assume that the sandwich conical shell has N layers

with a cross-ply lamination order of 0=90ð Þs.
Moreover, the sandwich structure is composed of

two skins with an identical number of carbon fiber

layers and thickness hf , as well as a middle aluminum

foam core layer with a varying thickness hc along the

generatrix, which can take the following expression of

[49]

hc xð Þ ¼ h2 1� h1
h2

� �
1� x

L

� �� �Nx

ð1Þ

where Nx implies the thickness function’s exponent,

whereas h1 and h2 independently symbolize the

maximal and minimal thickness of the middle porous

core along the x direction. The largest and smallest

thicknesses are positioned at the top and bottom of the

sandwich structure to minimize the centrifugal stress

during rapid rotation, separately.

As presented in Fig. 2, the sandwich varying

thickness structure is subjected to the supersonic flow

U1, uniformly distributed transverse excitation

F cos ðX1T0Þ and in-plane excitation p1 cosðX2T0Þ.
By utilizing the first-order piston framework, the

aerodynamic load Pa created by supersonic flow is

vertical to the longitudinal direction of the sandwich

structure and can be described as [50]

Pa ¼ � cap1M2
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
a � 1

p w;x þ
M2

a � 2

M2
a � 1

� �
1

Maa1
_w� 1

2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

a � 1
p w

" #

ð2Þ

where Ma, ca, p1 and a1 signify the Mach number,

adiabatic index, free flow static pressure and sound

velocity, individually. The related transverse displace-

ment, aerodynamic damping, and modified term for

curvature are determined by the three terms of the

above formulation, independently.

Five distinct middle aluminum porous foam’s

porosity distribution patterns, including Pattern-V,

Pattern-K, Pattern-U, Pattern-X and Pattern-O, along

with the relative mass density, Young’s modulus and

sketch, are displayed in Table 1 [1–3, 51]. The pores in

Pattern-V and Pattern-K types have continuous and

monotonous variation through the exterior surface to

the interior surface, as opposed to the uniform pores in

Pattern-U distribution. Additionally, the pores in

Pattern-X and Pattern-O types are dispersed constantly

through the mid-surface to the interior and exterior

layers of the variable thickness sandwich conical shell.

As displayed in Table 1, the Emax and qmax
individually indicate the highest Young’s modulus

and mass density, while Nc and qc symbolize the

coefficients of porosity and mass density for all porous

distribution. In particular, k and q�c refer to the

parameters for the pores of Pattern-U distribution.

Their formulations are expressed as
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Fig. 2 Geometric description of truncated variable stiffness sandwich conical shell

Table 1 Porosity distribution types of aluminum foam

Porosity type Young’s modulus Mass density Sketch

Pattern-V EV ðzÞ ¼ Emax 1� Nccos
pz
2hc

þ p
4

� �h i
qV ðzÞ ¼ qmax 1� qccos

pz
2hc

þ p
4

� �h i

Pattern-K EKðzÞ ¼ Emax 1� Ncsin
3p
4
� pz

2hc

� �h i
qKðzÞ ¼ qmax 1� qcsin

3p
4
� pz

2hc

� �h i

Pattern-U EU zð Þ ¼ Emax 1� Nck½ � qU zð Þ ¼ qmax 1� q�ck
	 


Pattern-X EXðzÞ ¼ Emax 1� Nc cos
pz
hc

� �h i
qXðzÞ ¼ qmax 1� qc cos

pz
2hc

� �h i

Pattern-O EOðzÞ ¼ Emax 1� Nc 1� cos pz
hc

� �� �h i
qOðzÞ ¼ qmax 1� qc 1� cos pz

2hc

� �� �h i
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qc ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nc

p
ð3aÞ

k ¼ 1

Nc
1� 1� 2qc

p

� �2
 !

ð3bÞ

q�c ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nc

p

k
ð3cÞ

Within the framework of FSDT, the three displace-

ments of the variable thickness sandwich structure can

be expressed as

u x; h; zð Þ ¼ u0 x; hð Þ þ z/x x; hð Þ ð4aÞ

v x; h; zð Þ ¼ v0 x; hð Þ þ z/h x; hð Þ ð4bÞ

w x; h; zð Þ ¼ w0 x; hð Þ ð4cÞ

in which u0, v0 and w0 independently demonstrate the

mid-plane displacements of arbitrary position, while

/x and /h symbolize the mid-surface normal rotations

around circumferential and longitudinal axis,

separately.

Through the combination of the von-Karman

geometric nonlinear formulations with displacements

in Eq. (4a–c), the nonlinear strains are defined as

ex
eh
cxh

8<
:

9=
; ¼

e 0ð Þ
x

e 0ð Þ
h

c 0ð Þ
xh

8><
>:

9>=
>;þ z

e 1ð Þ
x

e 1ð Þ
h

c 1ð Þ
xh

8><
>:

9>=
>;;

chz
cxz

� �

¼
/h þ

1

R

ow0

oh
� v0 cos b

� �

/x þ
ow0

ox

8><
>:

9>=
>; ð5Þ

where

e 0ð Þ
x

e 0ð Þ
h

c 0ð Þ
xh

8><
>:

9>=
>; ¼

ou0
ox

þ 1

2

ow0

ox

� �2

1

R
u0 sin bþ w0 cos bþ ov0

oh

� �
þ 1

2

1

R2

ow0

oh

� �2

ov0
ox

þ 1

R

ou0
oh

� v0 sin bþ ow0

ox

ow0

oh

� �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð6aÞ

e 1ð Þ
x

e 1ð Þ
h

c 1ð Þ
xh

8><
>:

9>=
>; ¼

o/x

ox
1

R

o/h

oh
þ /x sin b

� �

o/h

ox
þ 1

R

o/x

oh
� /h sin b

� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð6bÞ

By utilizing generalized Hooke’s law and account-

ing for the heating stress impact, every layer’s

constitutive relationships of the porous sandwich

structure with varying thickness are prescribed as [52]

rx
rh
rxh
rhz
rxz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

kð Þ

¼

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q44 0

0 0 0 0 Q55

2
6666664

3
7777775

kð Þ

ex
eh
cxh
chz
cxz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

�

ax
ah
2axh
0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
DT zð Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

kð Þ

ð7Þ

where k represents every layer’s number, DT stands

for the linear temperature increment as opposed to a

specified temperature, and Qij i; j ¼ 1; 2; 4; 5; 6ð Þ
imply the converted stiffness factors. Moreover, ax,
ah and axh denote the converted heating expansion

factors.

Due to the properties of isotropic material, the

middle porous aluminum foam layer has identical

thermal expansion factors a along x and h directions,

while the shear component axh is zero. Additionally,

the converted thermal expansion factors of two carbon

fiber skins can be identified through

ax ¼ a1 cos
2 cþ a2 sin

2 c ð8aÞ

ah ¼ a1 sin
2 cþ a2 cos

2 c ð8bÞ

axh ¼ a1 � a2ð Þ sin c cos c ð8cÞ

where a1 and a2 denote the factors of heating

expansion along the x1 and x2 directions of the skins,

separately.

The aluminum foam core layer’s stiffness coeffi-

cients Qij concerning various porosity distribution

schemes are formulated as the Eq. (9). While for the

two orthotropic skins made of carbon fiber, the

converted stiffness factors Qij are determined by the

Eq. (10a, b).
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Q11 ¼
ET zð Þ
1� m2

; Q12 ¼
mET zð Þ
1� m2

; Q22 ¼ Q11; Q44

¼ ET zð Þ
2 1þ mð Þ ;Q55 ¼ Q66 ¼ Q44 ð9Þ

Q11

Q12

Q22

Q66

8>><
>>:

9>>=
>>;

¼
C4 2C2S2 S4 4C2S2

C2S2 C4 þ S4 C2S2 �4C2S2

S4 2C2S2 C4 4C2S2

C2S2 �2C2S2 C2S2 C2 � S2ð Þ2

8>><
>>:

9>>=
>>;

Q11

Q12

Q22

Q66

8>><
>>:

9>>=
>>;

ð10aÞ

Q44

Q55

� �
¼ C2 S2

S2 C2

� �
Q44

Q55

� �
; C ¼ cos c; S

¼ sin c

ð10bÞ

in which subscript T , m and c sequentially demonstrate

the type of porosity pattern, Poisson’s ratio and

stacking angle between adjacent layers of the varying

thickness sandwich structure. Whereas the stiffness

factors Qij of the middle porous layers are calculated

according to the engineering constants, as below

Q11 ¼
E1

1� m12m21
; Q12 ¼

m12E1

1� m12m21
; Q22

¼ E2

1� m12m21
; Q66 ¼ G12; Q44 ¼ G23; Q55

¼ G13

ð11Þ

By replacing the above strain–displacement and

constitutive relations to energy terms of the shell and

then applying Hamilton’s principle, the nonlinear

dynamic formulations in following partial differential

form for the porous sandwich truncated conical shell

are eventually determined as [8–10, 53]

Nxx;x þ
1

R
Nxx sin bþ 1

R
Nxh;h �

1

R
Nhh sinb

¼ I0 €u0 þ I1 €/x ð12aÞ

Nxh;x þ
2

R
Nxh sin bþ 1

R
Nhh;h þ

1

R
Qh cos b

¼ I0 €v0 þ I1 €/h ð12bÞ

Qx;xþ
1

R
Qx sin bþ 1

R
Qh;h þ Nxx;x

ow0

ox
þ Nxx

o2w0

ox2

þ 1

R
Nxx

ow0

ox
sin bþ 1

R
Nxh;x

ow0

oh

þ 1

R
Nxh;h

ow0

ox
þ 2

R
Nxh

o2w0

oxoh
� 1

R
Nhh cos b

þ 1

R2
Nhh;h

ow0

oh
þ 1

R2
Nhh

o2w0

oh2

þF1 cos X1tð Þ � p1 cos X2tð Þ o
2w

ox2
þ Pa � j _w0 ¼ I0 €w0

ð12cÞ

Mxx;x þ
1

R
Mxx sin bþ 1

R
Mxh;h �

1

R
Mhh sin b� Qx

¼ I1 €u0 þ I2 €/x

ð12dÞ

Mxh;x þ
2

R
Mxh sin bþ 1

R
Mhh;h � Qh ¼ I1 €v0 þ I2 €/h

ð12eÞ

in which one dot and two dot superscript sequentially

demonstrate the first-order and second-order deriva-

tive of the relative time, and j signifies the damping

factor of the sandwich structure. All the inertia

components for the variable stiffness sandwich shell

structure can be extracted by Eq. (13), while the in-

plane and shear components of moment resultants and

stress resultants, which consider the impact of the

thermal stress, are prescribed as Eq. (14).

Ii ¼
XN
k¼1

Z zkþ1

zk

ziqðkÞdz; i ¼ 0; 1; 2ð Þ ð13Þ

Nxx

Nhh

Nxh

Mxx

Mhh

Mxh

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

A11 A12 0 B11 B12 0

A12 A22 0 B12 B22 0

0 0 A66 0 0 B66

B11 B12 0 D11 D12 0

B12 B22 0 D12 D22 0

0 0 B66 0 0 D66

2
666666664

3
777777775

e 0ð Þ
x

e 0ð Þ
h

c 0ð Þ
xh

e 1ð Þ
x

e 1ð Þ
h

c 1ð Þ
xh

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

�

NT
xx

NT
hh

NT
xh

MT
xx

MT
hh

MT
xh

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
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Qx

Qh

� �
¼ K

A55 0

0 A44

� �
cxz
chz

� �
ð14Þ

where K expresses the shear correction component

and is approximately defined as 5=6. All the stiffness

components in the above formulations can be achieved

by Eqs. (15a,b), and the in-plane thermal moment

resultants and stress resultants for the porous structure

are identified as Eq. (16).

Aij;Bij;Dij


 �
¼
XN
k¼1

Z zkþ1

zk

Q
kð Þ
ij 1; z; z2

 �

dz; i; j ¼ 1; 2; 6ð Þ

ð15aÞ

Aij ¼
XN
k¼1

Z Zkþ1

Zk

Q
ðkÞ
ij ð1; z; z2Þdz; ði; j ¼ 4; 5Þ ð15bÞ

NT
xx

NT
hh

NT
xh

8>><
>>:

9>>=
>>;
;

MT
xx

MT
hh

MT
xh

8>><
>>:

9>>=
>>;

0
BB@

1
CCA

¼
XN
k¼1

Z zkþ1

zk

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2
64

3
75

kð Þ ax

ah

2axh

8>><
>>:

9>>=
>>;

kð Þ

DT ;DTzð Þdz

ð16Þ

Introducing the abovementioned Eqs. (13)–(16)

into Eqs. (12a–e), the simplified nonlinear dynamic

equations in the form of five generalized displace-

ments for the sandwich structure with variable thick-

ness can be formulated as

L11u0 þ L12v0 þ L13w0 þ L14/x þ L15/h þ L16 þ N1

¼ I0 €u0 þ I1 €/x

ð17aÞ

L21u0 þ L22v0 þ L23w0 þ L24/x þ L25/h þ L26 þ N2

¼ I0 €v0 þ I1 €/h

ð17bÞ

L31u0þL32v0 þ L33 þ L37p1ð Þw0 þ L34/x þ L35/h

þL36 þ N3 þ F1 cos X1tð Þ þ Pa � j _w0 ¼ I0 €w0

ð17cÞ

L41u0 þ L42v0 þ L43w0 þ L44/x þ L45/h þ L46 þ N4

¼ I1 €u0 þ I2 €/x

ð17dÞ

L51u0 þ L52v0 þ L53w0 þ L54/x þ L55/h þ L56 þ N5

¼ I1 €v0 þ I2 €/h

ð17eÞ

where Lij and Ni imply the linear and nonlinear

symbols in partial differential form, and their explicit

formulations are mentioned in the earlier research

[54, 55]. Moreover,

L37 ¼ � cos X2tð Þd11 ð18Þ

The boundary condition is assumed as simply

supported at two ends of the porous varying thickness

structure and illustrated as [56, 57]

Nxx ¼ Mxx ¼ v0 ¼ w0 ¼ /h ¼ 0 at x ¼ 0 and x ¼ L

ð19Þ

The displacements and transverse excitation func-

tions of the varying thickness structure are developed

by utilizing the double trigonometric series to meet the

aforementioned boundary condition, as below [58]

u0 ¼
XM
m¼1

XN
n¼1

umn tð Þ cos mpx
L

� �
cos nhð Þ ð20aÞ

v0 ¼
XM
m¼1

XN
n¼1

vmn tð Þ sin mpx
L

� �
sin nhð Þ ð20bÞ

w0 ¼
XM
m¼1

XN
n¼1

wmn tð Þ sin mpx
L

� �
cos nhð Þ ð20cÞ

/x ¼
XM
m¼1

XN
n¼1

/xmn tð Þ cos mpx
L

� �
cos nhð Þ ð20dÞ

/h ¼
XM
m¼1

XN
n¼1

/hmn tð Þ sin mpx
L

� �
sin nhð Þ ð20eÞ

F ¼
XM
m¼1

XN
n¼1

Fmn sin
mpx
L

� �
cos nhð Þ ð20fÞ

in which m and n refer to the full-wave number in

generatrix direction and the half-wave number in

circumferential direction, separately. Furthermore,

Fmn, umn tð Þ, vmn tð Þ, wmn tð Þ, /xmn tð Þ and /hmn tð Þ

123

8938 Research



individually stand for the amplitudes of transverse

excitation and time-related displacement for different

modes.

The nonlinear vibrations of the first two modes for

the porous sandwich conical shell are much larger than

those of other modes, and the weakly nonlinear

internal resonance behaviors are taken into consider-

ation. Consequently, we can utilize the first two linear

modes to approximately solve the nonlinear dynamic

equations of the conical shell with variable thickness

[10]. The in-plane and rotational inertia components in

Eq. (17a–e) can be overlooked since their effects on

the system’s nonlinear vibrations are considerably

lower than those of the radial inertia component [59].

It’s feasible to focus on the first two modes of the

radial displacement w0.

Introducing the abovementioned double series into

the simplified nonlinear dynamic Eqs. (17a–e) and

utilizing the Galerkin technique, the in-plane and

rotational displacements u0, v0, /x and /h are stated as

the functions of radial displacement w0. The 2DOF

nonlinear dynamic formulations in following ordinary

differential form for the varying thickness porous

sandwich shell structure are ultimately constructed by

introducing the in-plane and rotational displacement

functions into Eq. (17c), as below

€W1 þ l1 _W1 þ x2
1W1 þ f11W

3
1 þ f12W1W

2
2

þ f13W1p1 cos X2tð Þ
¼ f14F1 cos X1tð Þ ð21aÞ

€W2 þ l2 _W2 þ x2
2W2 þ f21W

3
2 þ f22W

2
1W2

þ f23W2p1 cos X2tð Þ
¼ f24F2 cos X1tð Þ ð21bÞ

where x2
1 ¼ f15 þ f16p1, x2

2 ¼ f25 þ f26p1. W1 and

W2 represent the amplitudes of radial displacement for

the first two modes, while F1 and F2 denote the

amplitudes of transverse excitation for the first two

modes. To establish the dimensionless dynamic for-

mulations for the porous shell structure with variable

stiffness, the above variables and coefficients are

converted as

s ¼ x1t; W1 ¼ q1h1; W2 ¼ q2h1; �X1 ¼
X1

x1

; �X2 ¼
X2

x2

;

�l1 ¼
l1
x1

; �l2 ¼
l2
x2

; �x1 ¼
x1

x1

; �x2 ¼
x2

x1

; �p1 ¼
p1
h21

;

�F1 ¼
F1

h31
; �F2 ¼

F2

h31
; �fij ¼

fijh
2
1

x2
1

; ði ¼ 1; 2; j ¼ 1; 2; 3; 4Þ

ð22Þ

By applying Eq. (22) into Eqs. (21a, b), the

dimensionless nonlinear dynamic formulations for

variable thickness porous conical shell structure are

ultimately obtained, as follows

€q1 þ l1 _q1 þ x2
1q1 þ f11q

3
1 þ f12q1q

2
2

þ f13q1p1 cos X2t

 �

¼ f14F1 cos X1t

 �

ð23aÞ

€q2 þ l2 _q2 þ x2
2q2 þ f21q

3
2 þ f22q

2
1q2

þ f23q2p1 cos X2t

 �

¼ f24F2 cos X1t

 �

ð23bÞ

3 Perturbation analysis

In this part, the multiple-scale technique is utilized for

the perturbation analysis of sandwich porous structure

with varying thickness to overcome the problem of

internal resonance [60]. By inputting a small pertur-

bation factor e, all the transverse displacement-related

terms, damping and excitation terms are assumed to be

tiny quantities as the following converted form.

qi ¼ e
1
2 ~wi; �li ¼ e~li; �p1 ¼ e~p1; �Fi ¼ e

3
2 ~Fi; ði ¼ 1; 2Þ

ð24Þ

The horizontal and curved bars on the dimension-

less parameters are neglected for simplicity, and the

dimensionless nonlinear dynamic formulations are

rewritten by introducing Eq. (24) into Eqs. (23a,b), as

follows

€w1 þ el1 _w1 þ x2
1w1 þ ef11w

3
1 þ ef12w1w

2
2

þ ef13w1p1 cos X2sð Þ
¼ ef14F1 cos X1sð Þ ð25aÞ

€w2 þ el2 _w2 þ x2
2w2 þ ef21w

3
2 þ ef22w

2
1w2

þ ef23w2p1 cos X2sð Þ
¼ ef24F2 cos X1sð Þ ð25bÞ
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Based on the multiple-scale technique, it is sup-

posed that Eqs. (25a, b) has an approximate solution

of the following form

w1 ¼ x10 T0; T1ð Þ þ ex11 T0; T1ð Þ þ � � � ð26aÞ

w2 ¼ x20 T0; T1ð Þ þ ex21 T0; T1ð Þ þ � � � ð26bÞ

where T0 ¼ s, T1 ¼ es.
Afterwards, the related differential operators are

identified as

d

ds
¼ o

oT0

oT0
os

þ o

oT1

oT1
os

þ � � � ¼ D0 þ eD1 þ � � � ;

ð27aÞ

d2

ds2
¼ D0 þ eD1 þ � � �ð Þ2¼ D2

0 þ 2eD0D1 þ � � � ;

ð27bÞ

where Dk ¼ o
oTk

, k ¼ 0; 1ð Þ.
By applying Eqs. (26a, b)–(27a, b) to Eqs. (25a, b)

and making the factors of the identical power about

small value e in two sides of the equations equal, the

formulations are derived as follows.

Order e0:

D2
0x10 þ x2

1x10 ¼ 0 ð28aÞ

D2
0x20 þ x2

2x20 ¼ 0 ð28bÞ

Order e1:

D2
0x11 þ x2

1x11 ¼ �2D0D1x10 � l1D0x10 � f11x
3
10

� f12x10x
2
20 � f13p1 cosðX2T0Þx10

þ f14F1 cosðX1T0Þ
ð29aÞ

D2
0x21 þ x2

2x21 ¼ �2D0D1x20 � l2D0x20 � f21x
3
20

� f22x
2
10x20 � f23p1 cosðX2T0Þx20

þ f24F2 cosðX1T0Þ
ð29bÞ

Solving Eqs. (28a, b), the solution in following

complex form is prescribed as

x10 ¼ A1 T1ð Þeix1T0 þ A1 T1ð Þe�ix1T0 ð30aÞ

x20 ¼ A2 T1ð Þeix2T0 þ A2 T1ð Þe�ix2T0 ð30bÞ

in which A1 and A2 denotes the complex conjugate

components of A1 and A2.

Introducing Eqs. (30a, b) into Eqs. (29a, b) can

obtain

D2
0x11 þ x2

1x11

¼ �2ix1D1A1 � il1x1A1 � 3f11A
2
1
�A1 � 2f12A1A2

�A2 �
1

2
f13A1p1e

iX2T0

� �
eix1T0

� f11A
3
1e

3ix1T0 � f12A1A
2
2e

iðx1þ2x2ÞT0 � f12 �A1A
2
2e

ið2x2�x1ÞT0

� 1

2
f13 �A1p1e

iðX2�x1ÞT0 þ 1

2
f14F1e

iX1T0 þ CC

ð31aÞ

D2
0x21 þ x2

2x21

¼ �2ix2D1A2 � il2x2A2 � 3f21A
2
2
�A2 � 2f22A1

�A1A2 �
1

2
f23A2p1e

iX2T0

� �
eix2T0

� f21A
3
2e

3ix2T0 � f22A
2
1A2e

ið2x1þx2ÞT0 � f22A
2
1
�A2e

ið2x1�x2ÞT0

� 1

2
f23 �A2p1e

iðX2�x2ÞT0 þ 1

2
f24F2e

iX1T0 þ CC

ð31bÞ

in which CC indicates the complex conjugate compo-

nents corresponding to previous components.

Considering the circumstance of 1:1 internal reso-

nance, first-order main resonance and 1/2 subhar-

monic resonance, the transverse force’s frequency is

approximately identical to first-order natural fre-

quency for the porous sandwich conical shell with

varying thickness, while the in-plane force’s fre-

quency is almost identical to twice first-order natural

frequency. As a result, the resonance relationships of

the system are stated by adding the detuning param-

eters r1 and r2, as shown below.

X1 ¼ x1 þ er1; x2 ¼ x1 þ er2; X2 ¼ 2X1 ð32Þ

Introducing Eq. (32) into the right end of Eq. (31a,

b) yields the following conditions for eliminating the

secular term

2ix1D1A1 þ il1x1A1 þ 3f11A
2
1
�A1 þ 2f12A1A2

�A2

þ 1

2
f13 �A1p1e

2ir1T1 þ f12 �A1A
2
2e

2ir2T1 � 1

2
f14F1e

ir1T1

¼ 0

ð33aÞ

2ix2D1A2 þ il2x2A2 þ 3f21A
2
2
�A2 þ 2f22A1

�A1A2

þ 1

2
f23 �A2p1e

2iðr1�r2ÞT1 þ f22A
2
1
�A2e

�2ir2T1

� 1

2
f24F2e

iðr1�r2ÞT1

¼ 0

ð33bÞ

The two amplitudes A1 and A2 can be stated as the

functions of following polar coordinate form.
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A1ðT1Þ ¼
1

2
a1ðT1Þei/1ðT1Þ;A2ðT1Þ ¼

1

2
a2ðT1Þei/2ðT1Þ

ð34Þ

By removing Eq. (34) in Eqs. (33a, b) and dividing

the real and imaginary components, the averaged

formulations in polar coordinate form for the variable

thickness porous sandwich shell structure can be found

as follows

_a1 ¼ � l1a1
2

� f12a1a
2
2 sinð2c1Þ
8x1

� f13p1a1 sinð2c1 þ 2c2Þ
4x1

þ f14F1 sinðc1 þ c2Þ
2x1

ð35aÞ

a1 _c1 ¼a1r1 � a2ðr1 � r2Þ þ
3f21a

3
2

8x2

þ f22a
2
1a2 cosð2c1Þ
8x2

þ f22a
2
1a2

4x2

þ f23p1a2 cosð2c2Þ
4x2

� f24F2 cosðc2Þ
2x2

� 3f11a
3
1

8x1

� f12a1a
2
2 cosð2c1Þ
8x1

� f12a1a
2
2

4x1

� f13p1a1 cosð2c1 þ 2c2Þ
4x1

þ f14F1 cosðc1 þ c2Þ
2x1

ð35bÞ

_a2 ¼ � l2a2
2

þ f22a
2
1a2 sinð2c1Þ
8x2

� f23p1a2 sinð2c2Þ
4x2

þ f24F2 sinðc2Þ
2x2

ð35cÞ

a2 _c2 ¼a2ðr1 � r2Þ �
3f21a

3
2

8x2

� f22a
2
1a2 cosð2c1Þ
8x2

� f22a21a2
4x2

� f23p1a2 cosð2c2Þ
4x2

þ f24F2 cosðc2Þ
2x2

ð35dÞ

where c1 ¼ r2T1 � u1 þ u2, c2 ¼ r1 � r2ð ÞT1 � u2.

The two amplitudes A1 and A2 can be also rewritten

and defined as the functions of the Cartesian coordi-

nate form, as below

A1 ¼
1

2
x1 þ ix2ð Þeik1 ;A2 ¼

1

2
x3 þ ix4ð Þeik2 ð36Þ

By applying Eq. (36) in Eqs. (33a, b) and dividing

the real and imaginary components, the averaged

formulations in Cartesian coordinate form are

achieved as

_x1 ¼r1x2 �
1

2
l1x1 �

3

8x1

f11 x21x2 þ x32

 �

� 1

8x1

f12 2x1x3x4 þ 3x2x
2
3 þ 5x2x

2
4


 �
þ 1

4x1

f13p1x2

ð37aÞ

_x2 ¼� r1x1 �
1

2
l1x2 þ

3

8x1

f11 x1x
2
2 þ x31


 �

þ 1

8x1

f12 2x2x3x4 þ 3x1x
2
4 þ 5x1x

2
3


 �

þ 1

4x1

f13p1x1 �
1

2x1

f14F1

ð37bÞ

_x3 ¼ r1 � r2ð Þx4 �
1

2
l2x3 �

3

8x2

f21 x23x4 þ x34

 �

� 1

8x2

f22 x21x4 þ 2x1x2x3 þ 3x22x4

 �

þ 1

4x2

f23p1x4

ð37cÞ

_x4 ¼ r2 � r1ð Þx3 �
1

2
l2x4 þ

3

8x2

f21 x3x
2
4 þ x33


 �

þ 1

8x2

f22 x22x3 þ 2x1x2x4 þ 3x21x3

 �

þ 1

4x2

f23p1x3 �
1

2x2

f24F2

ð37dÞ

where k1 ¼ r1T1, k2 ¼ r1 � r2ð ÞT1.

Table 2 Comparison of

dimensionless natural

frequencies X for truncated

simply supported conical

shell (m ¼ 1)

n b = 308 b = 458 b = 608

Present Lam Li Present Lam Li Present Lam Li

2 0.8497 0.8420 0.8431 0.7694 0.7655 0.7642 0.6387 0.6348 0.6342

3 0.7502 0.7376 0.7416 0.7293 0.7212 0.7211 0.6318 0.6238 0.6236

4 0.6546 0.6362 0.6419 0.6878 0.6739 0.6747 0.6283 0.6145 0.6146

5 0.5796 0.5528 0.5590 0.6539 0.6323 0.6336 0.6321 0.6111 0.6113
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4 Frequency responses and force responses

4.1 Comparative investigation

Before conducting the numerical calculations, it is

significant and necessary to confirm the reliability of

the strategy applied in this investigation. To accom-

plish the intended result, the dimensionless natural

frequencies of the truncated conical shell under simply

supported conditions are identified and formulated as

X ¼ xr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2ð Þq=E

p
. Next, as Table 2 demon-

strates, the frequency results are evaluated with those

of Lam et al. [61] and Li et al. [62].

The Aluminum without pores is employed as a

comparable material of the structure, which is inde-

pendent of temperature increase and has material

attributes of E ¼ 70 GPa, q ¼ 2707 kg/m3, v ¼ 0:3,

a ¼ 2:4� 10�8 m/K. And the specified physical

dimensions are considered to be hc ¼ 0:01,

hc=r2 ¼ 0:01, L sin b=r2 ¼ 0:25. Additionally, the

generatrix wave number m is specified as 1. Table 2

indicates that the current results exhibit a high degree

of consistency with those identified throughout the

previous research.

bFig. 3 Influence of the length-to-thickness ratio of core on first

two order frequency parameters for the shell structure with

various porosity distribution schemes

Fig. 4 The frequency-

amplitude curves of

sandwich structure under

various damping

coefficients l1, a the first-

order resonance, b the

second-order resonance
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4.2 Frequency characteristics

In this part, the natural frequency parameters are

presented to explore the nonlinear vibration charac-

teristics and determine the nonlinear internal reso-

nance conditions of the truncated porous sandwich

structure with varying thickness.

The parameters related to material characteristics,

geometric shapes and airflow properties are presented

in the following investigations. Specifically, the

carbon fiber skins’ property parameters are considered

to be E1 ¼ 140 GPa, E2 ¼ 10 GPa,

G12 ¼ G13 ¼ G23 ¼ 7 GPa, v ¼ 0:3,

a1 ¼ �0:3� 10�6 m/K, a2 ¼ 28� 10�6 m/K, while

the physical characteristics of aluminum foam core

with five diverse schemes of porosity distribution

pattern are stated as Emax ¼ 70 GPa,

qmax ¼ 2707 kg/m3, m ¼ 0:3, a ¼ 2:4� 10�8m=K.

The dimensionless natural frequencies are defined as

X ¼ xr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2ð Þqmax=Emax

p
. The sandwich porous

shell structure with varying stiffness is simply sup-

ported and at DT ¼ 100�C, and the structural param-

eters are N ¼ 9, Nc ¼ 0:5, Nx ¼ 1, h1 ¼ 0:01,

h2=h1 ¼ 0:5, hf =h1 ¼ 0:8, r1=h1 ¼ 400, b ¼ 30� and

j ¼ 0:005. The airflow properties are expected to be

Ma ¼ 3, a1 ¼ 213:36 m/s, ca ¼ 1:4, p1 ¼ 10 MPa.

Figure 3 portrays the variation of first two order

natural frequencies versus the porous core’s length-to-

thickness ratio L=h1 for the varying thickness porous

conical shell with five distribution schemes of pores. It

Fig. 5 The frequency-

amplitude curves of

sandwich structure with

variable thickness under

various transverse

excitations F, a the first-

order resonant response

curves, b the second-order

resonant response curves
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is obvious that the larger L=h1 of the core, the lower

the frequency parameters of the various porosity

distribution schemes. The largest fundamental fre-

quency parameters of the first two vibration modes

belong to the Pattern-K distribution due to its higher

stiffness, whereas the other four distribution schemes

have considerably similar values of natural frequen-

cies. From Fig. 3, it can be also found that the first two

fundamental frequencies are quite close to each other

for the five styles of pore distribution schemes. It’s

worth noting that when the middle layer’s length-to-

thickness ratio L=h1 ¼ 100, the ratio of natural

frequencies for first two modes can be considered as

1:1, and the modes of the first two order frequency

parameters are 1; 3ð Þ and 1; 4ð Þ at this time [46]. As a

result, the Pattern-K distributed sandwich conical shell

structure with varying thickness and L=h1 ¼ 100 is

used for the next numerical simulation.

4.3 Frequency-amplitude responses

This section revolves around the frequency-amplitude

responses of varying thickness sandwich structure

under 1:1 internal resonance, first-order main reso-

nance and 1/2 subharmonic resonance. The frequency-

amplitude characteristic curves of the varying stiffness

sandwich porous shell can be developed by using the

MATLAB software to solve the averaged Eq. (35) in

Fig. 6 The frequency-

amplitude curves of

sandwich shell structure

under various in-plane

excitations P1, a the first-

order resonant responses,

b the second-order resonant

responses
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polar coordinate form. The impacts of damping

coefficient, detuning parameter, temperature incre-

ment, transverse and in-plane forces on the resonant

frequency-amplitude responses of the sandwich struc-

ture with variable stiffness are explored.

Figure 4 depicts the effects of damping coefficient

l1 on the resonant frequency-amplitude response

characteristics of first two modes for the Pattern-K
distributed sandwich shell structure with varying

thickness, whose parameters are chosen as l2 ¼ 0:3,

r2 ¼ 2, F ¼ 100, P1 ¼ 0. Figure 4a and b represent

the first-order and second-order modal frequency-

amplitude curves, respectively. Because of the hard-

ening impact of the cubic nonlinear components in the

dynamical formulation, a resonant peak appears on the

right side of r1 ¼ 0, which indicates that the structure

has a hardening-spring property. The amplitudes of

second-order mode are remarkably smaller than those

of first-order mode, revealing that the energy is mainly

concentrated in first-order mode. From the results, it is

evident that the damping coefficient l1 has a consid-

erable impact on amplitude reduction. The first-order

modal response amplitudes near the resonant region

become smaller with increasing the damping coeffi-

cient, while the response amplitudes away from

resonant region are insensitive to the change of l1.
The stable response amplitudes of the second-order

mode are slightly affected by the damping coefficient,

while the unstable region decreases as the damping

coefficient increases.

Fig. 7 The frequency-

amplitude curves of varying

thickness porous shell

structure under various

detuning parameters r2,
a the first-order resonant

curves, b the second-order

resonant curves
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The frequency-amplitude response characteristics

of Pattern-K distributed porous conical shell with the

main resonance of first-order mode and 1:1 internal

resonance under three various transverse excitations

F, which are selected as 0, 4000 and 8000, are

presented in Fig. 5. Figure 5a and b individually

demonstrate the nonlinear frequency responses of

first-order and second-order resonances, where the

parameters are l1 ¼ 0:04, l2 ¼ 0:3, r2 ¼ 2, P1 ¼ 0.

A resonant peak towards the right occurs in both

modes, which reflects that the responses of the

structure are characterized as stiffness-hardening

behavior. With increasing transverse excitation F in

two modal resonances, the resonant peak and size of

resonant domain rise. Furthermore, when the system is

subjected to larger transverse excitation, the

nonlinearity and instability of the frequency-ampli-

tude response become stronger owing to the softening

effect of transverse force on sandwich shell structure.

The frequency-amplitude response characteristics

of 1:1 internal resonance and 1/2 subharmonic reso-

nance for a truncated porous sandwich conical shell

with Pattern-K porosity distribution and variable

stiffness under three different in-plane excitations P

are illustrated in Fig. 6, where the parameters are

selected as l1 ¼ 0:04, l2 ¼ 0:3, r2 ¼ 2 and F ¼ 100.

The first-order modal resonant responses have clear

stiffness hardening effects and concentrate the main

energy, as presented in Fig. 6, where the responses of

the first-order mode have pronounced peaks towards

the right and their amplitude is significantly bigger

than those of the second-order mode. The resonant

Fig. 8 The frequency-

amplitude curves of porous

sandwich structure under

various temperature

increments DT , a the first-

order resonant curves, b the

second-order resonant

curves
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peaks of two modes rise with increasing in-plane

force, while the response amplitudes further from the

resonant area barely change. As the in-plane excitation

rises, the unstable region widens because of the

softening effect on the sandwich shell structure.

Figure 7 displays the impacts of detuning param-

eter r2 on 1:1 internal resonant frequency-amplitude

response characteristics for the porous sandwich shell

structure with varying thickness and Pattern-K poros-

ity distribution, where parameters are provided as

l1 ¼ 0:04, l2 ¼ 0:3, F ¼ 100, P1 ¼ 0. For the first-

order mode, the resonant regions and peak values at

r2 ¼ �2 and r2 ¼ 2 are approximately the same,

while the smallest region and peak value of resonance

belong to r2 ¼ 0. For the second-order mode, the

stable resonant peak value and resonant region are the

smallest when r2 is equal to 0, and the stable resonant
peak values are nearly identical when r2 is chosen as

- 2 and 2, with the stable peak of resonance at r2 ¼
�2 developing the softening-spring characteristic and

the stable peak of resonance at r2 ¼ 2 suffering the

hardening-spring property. The appearance of unsta-

ble areas is more complicated for the second-order

mode, specifically, the unstable resonant peak at r2 ¼
�2 presents the stiffness hardening characteristic and

is the largest value of the peaks, the unstable resonant

peak at r2 ¼ 0 gives itself a larger resonant peak,

while the unstable resonant peak at r2 ¼ 2 provides

the smallest peak value.

Fig. 9 The force–

amplitude responses of

sandwich shell structure

under various damping

parameters l1, a the first-

order resonant responses,

b the second-order resonant

responses
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Under the circumstance of the main resonance of

first-order mode and 1:1 internal resonance, the

influences of the temperature increment DT on the

frequency-amplitude response characteristics of Pat-

tern-K distributed porous conical shell with variable

stiffness are examined in Fig. 8. The temperature

increments are chosen as 100, 300 and 500, while the

other parameters are l1 ¼ 0:04, l2 ¼ 0:3, r2 ¼ 2,

F ¼ 100 and P1 ¼ 0. Compared with the second-order

mode, the first-order mode has larger amplitudes and

more obvious resonant peaks towards the right, which

shows that the first-order mode concentrates the main

energy and has stronger nonlinearity. It can be found

from Fig. 8 that the effects of temperature increment

on the resonant amplitude are evident. As the

temperature increment DT increases, the resonant

peaks and unstable regions of the two modes increase,

which indicates that a larger temperature increment

will increase the instability of the nonlinear system.

4.4 Force–amplitude responses

The force–amplitude responses of the porous sand-

wich structure with variable stiffness under 1:1

internal resonance and first-order main resonance are

primarily investigated in this part. Defining the left

components of averaged formulations in the form of

polar coordinate to zero and utilizing the MATLAB

program, the resonant force–amplitude curves of the

sandwich shell structure are portrayed to examine the

Fig. 10 The force–

amplitude curves of porous

shell structure under various

in-plane excitations P1, a the
first-order modal resonance,

b the second-order modal

resonance
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impacts of damping coefficient, temperature incre-

ment, in-plane excitation and two detuning

parameters.

The force–amplitude curves of Pattern-K dis-

tributed porous sandwich shell structure with 1:1

internal resonance under various damping coefficients

l1, which are provided as 0.3, 0.6 and 0.9, are

exhibited in Fig. 9. From Fig. 9a and b, the nonlinear

force characteristic curves of the resonant responses

for first-order and second-order modes are separately

displayed, in which the parameters are l2 ¼ 0:3,

r1 ¼ 0, r2 ¼ 2, P1 ¼ 0. The first-order modal reso-

nant amplitudes are substantially bigger than those of

the second-order mode, implying that the energy is

essentially captured by the first-order mode. As

discovered in Fig. 9, when the damping coefficient

rises, the first-order modal response amplitude

decreases, while the second-order modal response

amplitude increases. The result demonstrates that

there is a considerable energy transfer between the first

two modes. Furthermore, as transverse excitation

increases under the same damping coefficient, the

unstable response amplitudes of the second-order and

first-order modes appear simultaneously, and the

smaller l1, the earlier the unstable response ampli-

tudes appear in the system.

Figure 10 exhibits the 1:1 internal resonant force–

amplitude response characteristics of variable

Fig. 11 The force–

amplitude curves of

sandwich shell structure

under various detuning

parameters r1, a the first-

order resonant response

curves, b the second-order

resonant response curves

123

8950 Research



thickness truncated sandwich shell structure with

Pattern-K pore distribution under various in-plane

excitation P1, where parameters are given by

l1 ¼ l2 ¼ 0:3, r1 ¼ 0, r2 ¼ 2. Figure 10a and b are

the first-order and second-order order modal force–

amplitude response curves, individually. The response

amplitudes of the second-order mode are shown to be

considerably lower than those of the first-order mode,

suggesting that although the second-order modal

response is more visibly impacted by internal reso-

nance, it contains less energy. For the first-order mode,

the structure has a larger resonant response amplitude

and faster appearance of the unstable response ampli-

tude as the in-plane excitation P1 increases. While for

the second-order mode, there are several

unstable response amplitude groups and a decrease

in resonant amplitude of the structure as the in-plane

excitation P1 rises. The results illustrate that when the

transverse and in-plane forces occur simultaneously,

the resonant response of the porous sandwich structure

is complicated and unstable.

Figure 11 pronounces impacts of detuning param-

eter r1 on the first two modal force–amplitude

response characteristics for Pattern-K distributed

sandwich conical shell under 1:1 internal resonance

and main resonance of first-order mode, where

parameters are l1 ¼ l2 ¼ 0:3, r2 ¼ 0, P1 ¼ 0. When

the transverse excitation F is extremely small, the

system at r1 ¼ 0 has a greater stable response ampli-

tude for the two modes. For the first-order mode, the

Fig. 12 The force–

amplitude curves of varying

thickness shell structure

under various detuning

parameters r2, a the first-

order resonant response

curves, b the second-order

resonant response curves
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structure has a higher response amplitude and the

unstable resonant response amplitude occurs faster at

r1 ¼ 0:1 as the transverse excitation rises, while the

smallest response amplitude belongs to the system

with r1 ¼ �0:1. While for the second-order mode, as

the transverse force F continues to increase, the

response amplitude of the system with r1 ¼ 0:1

becomes the largest, and after the transverse excitation

is greater than 2500, the largest response amplitude

belongs to the system with r1 ¼ �0:1.

Figure 12 shows the force–amplitude response

characteristics for the Pattern-K distributed sandwich

shell structure under 1:1 internal resonance for first

two modes and different detuning parameters r2, and

other parameters are provided as l1 ¼ l2 ¼ 0:3,

r1 ¼ 0, P1 ¼ 0. For the first-order mode, the system

with r2 ¼ �0:1 has a larger stabilized response

amplitude when the transverse excitation F is

extremely small, while the system has a larger

response amplitude and a wider unstable response

amplitude region when detuning parameter r2 and

transverse force F increases. For the second-order

mode, when F is relatively small, the largest stable res-

onant response amplitude belongs to the structure with

r2 ¼ 0. Because of the energy exchange between two

modes, the second-order modal response amplitude

becomes smaller with increasing r2 and F, but the area

Fig. 13 The force–

amplitude response curves

of porous sandwich conical

shell with varying stiffness

under various temperature

increments DT , a the first-

order resonant response

curves, b the second-order

resonant response curves
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of unstable response amplitude occurs at the same time

for the two modes.

Figure 13 shows the effects of temperature incre-

ment DT on the force–amplitude response character-

istics of the variable stiffness sandwich conical shell

with Type-K porosity distribution in the case of 1:1

internal resonance and main resonance of first-order

mode, where the parameters are l1 ¼ l2 ¼ 0:3,

r1 ¼ 0, r2 ¼ 2, P1 ¼ 0. It can be observed from

Fig. 13 that as the temperature increment DT
increases, the two modes have larger force-response

amplitudes and wider unstable regions, which indi-

cates that the instability of the nonlinear system

becomes larger. When the transverse excitation F

becomes bigger, unstable response amplitudes appear

in both modes at the same time, the difference in

response amplitudes of the first-order mode between

different temperature increments decreases, while the

difference in response amplitudes of the second-order

mode between different temperature increments

increases. This is due to the energy transfer between

the two modes. Since the main energy is concentrated

in the first-order mode, it can be seen that the response

amplitudes of the first-order mode is considerably

larger than those of the second-order mode.

Fig. 14 The bifurcation

diagrams of the Pattern-K
distributed sandwich shell

structure versus the

transverse excitation F, a
the variations of w1 with F,
b the variations of w2 with F
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5 Bifurcation and chaotic dynamics

The bifurcation and chaotic dynamics of Pattern-K
distributed sandwich truncated shell structure with

varying stiffness under 1:1 internal resonance are

explored in the present part. The numerical simulation

is conducted by adopting the Runge–Kutta algorithm

to solve the averaged Eq. (37) in Cartesian coordinate

form. The impacts of transverse force, in-plane

excitation, and damping parameter on the nonlinear

dynamics of the porous sandwich shell structure with

variable thickness are analyzed by applying

bifurcation diagrams, time history diagrams, two-

dimensional and three-dimensional phase portraits.

Unless otherwise specified, the default initial position

is �0:1;�0:01;�0:025;�0:01ð Þ, and the detuning

parameters are r1 ¼ 1:5, r2 ¼ 0:6.

The bifurcation diagrams of the Pattern-K dis-

tributed variable thickness porous sandwich conical

shell under 1:1 internal resonance for transverse force

F are demonstrated in Fig. 14, where Fig. 14a and b

individually represent the bifurcation diagrams for the

variations of the first-order and second-order modal

amplitudes with the transverse excitation F. The in-

Fig. 15 The chaotic motion of porous truncated sandwich shell structure when F ¼ 2000
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plane force P1 is chosen as 0, and the damping

coefficients l1 and l2 are equal to l, which takes the

value of 0.01. The transverse excitation F is selected

within the range of 1000–8000. It can be mentioned

from Fig. 14 that with increasing transverse force F,

the nonlinear dynamic responses of the structure

successively go through chaotic motion, quasi-peri-

odic motion, and finally into periodic motion.

Figures 15, 16 and 17 display the response curves

of the Pattern-K distributed truncated varying thick-

ness sandwich conical shells at different motion states

when the transverse force F is considered to be 2000,

5000 and 8000, respectively. Specifically, (a) and (c)

depict the phase portraits on planes x1; x2ð Þ and

x3; x4ð Þ, (b) and (d) portray the first and second order

modal time history diagrams on planes s; x1ð Þ and

s; x3ð Þ, and (e) plots the three-dimensional phase

portraits in space x1; x2; x3ð Þ. As observed in Figs. 15,

16 and 17, the structure experiences chaotic motion as

the transverse force is F ¼ 2000, quasi-period motion

as the transverse force is F ¼ 5000, and finally

stabilizes at periodic motion as the transverse force

is F ¼ 8000.

Figure 18 depicts the variation of motion state of

the Pattern-K distributed variable thickness porous

sandwich shell structure with in-plane excitation P1

under 1: 1 internal resonance. The first-order and

second-order modal bifurcation diagrams as the in-

Fig. 16 The quasi-period motion of varying thickness sandwich structure when F ¼ 5000
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plane force P1 varies from 2200 to 2900 are portrayed

in Fig. 18a and b, in which the damping coefficient l is
0.01 and the transverse excitation F is 8000. It can be

marked that when the in-plane force rises, the motion

state of two amplitudes w1 and w2 exhibits the

phenomenon of alternating periodic motion and

quasi-periodic motion. The nonlinear motion

responses of the shell structure with Pattern-K distri-

bution and variable stiffness are specifically presented

as: quasi-period motion ? period motion ? period-

doubling bifurcation ? quasi-period motion ? pe-

riod motion ? period-doubling bifurcation ? quasi-

period motion. After the in-plane force exceeds 2800,

the amplitude of quasi-periodic motion becomes

larger, indicating that the motion of the system is

beginning to be chaotic.

Matching to the nonlinear vibration responses

presented in Figs. 18, 19 and 20 provide the various

motion response curves when the in-plane force P1 is

taken as various values for Pattern-K distributed

sandwich shell structure with varying thickness.

Figure 19 exhibits the periodic motions of the varying

thickness sandwich porous structure as the in-plane

force is provided as P1 ¼ 2600, and Fig. 20 indicates

Fig. 17 The period motion of Pattern-K distributed sandwich shell structure when F ¼ 8000
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the quasi-period motion of the sandwich structure with

varying stiffness as the in-plane force is P1 ¼ 2800.

The bifurcation diagrams for the variation of the

amplitudes w1 and w2 with damping parameter l of

Pattern-K distributed varying thickness conical shell

are confirmed in Fig. 21. The damping parameter is

selected from 0.06 to 0.14, and the load parameters are

F ¼ 8000, P1 ¼ 0. It is noted that with increasing

damping parameter l, the motion state of the two

amplitudes w1 and w2 of the structure is: periodic

motion ? period-doubling bifurcation ? quasi-pe-

riod motion ? periodic motion ? period-doubling

bifurcation ? quasi-period motion, showing the

alternating occurrence of periodic motion and quasi-

period motion. Figures 22 and 23 describe the periodic

motion and quasi-period motion of Pattern-K dis-

tributed variable thickness porous sandwich shell

structure as the damping coefficients are selected as

l ¼ 0:065 and l ¼ 0:09, individually.

6 Conclusion

The nonlinear resonant dynamics and bifurcation

behaviors of the sandwich porous truncated conical

shell with varying stiffness under simply supported

Fig. 18 The bifurcation

diagrams of varying

thickness shell structure

versus the in-plane

excitation P1, a the

bifurcation diagram for w1

with P1, b the bifurcation

diagram for w2 with P1
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boundary and 1:1 internal resonance are examined in

this work. The sandwich porous sandwich with

varying thickness is made of two skins with carbon

fiber and a porous middle core with aluminum foam,

which has five various porosity distribution schemes

along thickness direction and an exponentially vari-

able thickness along the meridional direction. A

complex combination of the in-plane excitation,

transverse load, supersonic aerodynamic pressure

and thermal stress impacts the sandwich shell structure

with varying thickness. By means of FSDT, von-

Karman geometrical nonlinear relations and Hamil-

ton’s principle, the nonlinear partial differential

dynamic formulations are identified for the porous

sandwich shell structure. Utilizing Galerkin technique,

the 2DOF second-order ordinary differential nonlinear

dynamic formulations are ultimately established. The

multiple-scale technique is adopted for yielding the

Fig. 19 The period motion of the varying thickness porous sandwich structure when P1 ¼ 2600
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1:1 internal resonant averaged equations in polar and

Cartesian coordinate forms for the sandwich porous

shell structure. The comparative investigation is

adopted to validate the accuracy of current approach.

The variation of the first two order natural frequency

parameters with length-to-thickness ratio of the core

with five porosity distribution schemes are provided to

explore the nonlinear vibration behaviors internal

resonance conditions for the sandwich porous struc-

ture with varying thickness.

The frequency-amplitude and force–amplitude

characteristic curves of the porous sandwich shell

structure with varying thickness and Pattern-K poros-

ity distribution scheme under 1:1 internal resonance

and external combined resonance are exhibited by

solving the polar coordinate averaged formulations.

It’s marked that the energy is mainly concentrated in

Fig. 20 The quasi-period motion of the varying stiffness sandwich structure when P1 ¼ 2900
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the first-order mode, whose amplitudes are higher than

those the second-order mode. With decreasing damp-

ing coefficient and increasing temperature increment,

transverse and in-plane excitations, the system has a

larger frequency–response resonant peak and per-

forms hardening-spring characteristic. The detuning

parameter has complex impact on the first two order

frequency-amplitude response characteristics. More-

over, as the damping coefficient increases, and the in-

plane excitation and two detuning parameters

decrease, the first-order force-response resonant

amplitude eventually becomes lower, while the sec-

ond-order force-response resonant amplitude ulti-

mately rises. As the result indicates, a significant

amount of energy is transferred between the first two

modes. However, as the temperature increment

increases, the force-response resonant amplitudes of

the two modes become larger.

The nonlinear dynamic responses and bifurcations

of the sandwich Pattern-K distributed conical shell

with varying stiffness under 1:1 internal resonance are

presented. The numerical calculations are performed

Fig. 21 The bifurcation

diagrams of the varying

stiffness sandwich structure

versus the damping

parameter l, a the first-order
bifurcation diagram, b the

second-order bifurcation

diagram
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by applying the Runge–Kutta procedure to solve the

Cartesian coordinate averaged formulations and

obtain the phase portraits, bifurcation and time history

diagrams. With increasing transverse load, the non-

linear resonant motions of the porous sandwich shell

structure sequentially experience chaotic motion,

quasi-periodic motion, and eventually periodic

motion. As the in-plane excitation and damping

parameter increases, the motion of the two order

modal amplitudes w1 and w2 indicates the occurrence

of alternating periodic motion and quasi-period

motion. Additionally, the nonlinear system moves

Fig. 22 The period motion of porous sandwich structure with variable thickness when l ¼ 0:065

123

Nonlinear dynamic response and bifurcation of variable thickness sandwich conical shell 8961



from period motion to quasi-periodic motion through

the period-doubling bifurcation.
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