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Abstract Many problems of physical interest involve

the nonlinear interactionof twooscillatorswith different

frequencies. Such mode interactions are double Hopf

bifurcation. In this paper, stability and double Hopf

bifurcation dynamics are focused on for a multi-delay

neural network when the combined influences of

coupling delay and self-connection strength are taken

into account. The complex dynamics near the critical

point of weak resonance are derived using the pertur-

bation scheme, which is different from the previously

published works. Finally, numerical examples agree

well with the main analysis. Double Hopf bifurcation

dynamics play an important role in improving network

systems and expanding their related application fields.

Keywords Weak resonance � Double Hopf
bifurcation � Perturbation � Multiple delays �
Coexistence

1 Introduction

Time delay is ubiquitous due to finite propagation

speeds of signals, reaction times, and processing times

in various natural systems such as biological systems

[1], neural activity [2–4], mechanical systems [5], and

so on. Marcus andWestervelt [6] pointed out that time

delay has a qualitative impact on neural dynamics,

even for a tiny time delay that destabilizes systems.

Time delay is also an effective tool to adjust the

stability of the system and secure communication

[7–9]. Even if the delay does not affect the asymptotic

behavior of the system, it can influence the boundary

of the basin of attraction of the stable equilibria [10].

So the effects of time delay are not ignored on

dynamics. Recently, some researchers have intro-

duced different [11–15] or more time delays [16–21]

into various types of neural systemmodels because the

communications may be inconsistent among different

neurons. It is more realistic and meaningful to

consider different time delays in artificial neural

networks.

It is well known that mode interactions are very

important in the analysis of multi-parameter nonlinear

autonomous differential equations. A vital mode

interaction is double Hopf singularity, which is

characterized by the coexistence of two periodic

modes of the linearized differential equations for a

certain point in two parameter spaces. Note that

double Hopf bifurcations in nonlinear autonomous

differential equations have been widely discussed

[22–28]. The bifurcation dynamics of neural networks

play an important role in cognitive calculation

[15, 29, 30]. Until now, in the existing relative

literatures, very few results on the exploration on
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double Hopf bifurcation mechanism of multi-delay

neural network models, which, however, is meaning-

ful and challenging since it is hard to analyze the

transcendental characteristic equation with multiple

time delays. Hence, some investigation of the mech-

anism of complex dynamics near double Hopf bifur-

cation is of great necessity and interest for multi-

delayed neural systems.

In 2000, Shayer and Campbell [31] considered the

Hopf-Hopf interaction occurring in a two-neuron

neural system with multiple delays

dx1 tð Þ
dt

¼ �kx1 tð Þ þ af x1 t � sð Þð Þ þ J12f x2 t � s12ð Þð Þ;

dx2 tð Þ
dt

¼ �kx2 tð Þ þ af x2 t � sð Þð Þ þ J21f x1 t � s21ð Þð Þ;

8
>><

>>:

with the initial function

x1 tð Þ ¼/1 tð Þ; x2 tð Þ ¼ /2 tð Þ;
t 2 �smax; 0½ �; smax ¼ max s12; s21; sf g

by providing numerical simulations, and did not make

some bifurcation analysis in the neighbor of double

Hopf bifurcation point. Afterwards, Huang et al.

studied Hopf bifurcation with the relation s12 þ s21 ¼
2s [32] (i.e., the original system with three delays was

transformed into the system with one single time

delay). Song et al. analyzed the non-resonant double

Hopf bifurcation of the network by applying normal

form technique and center manifold method (CMR)

[33]. Ma studied the weak resonant double Hopf

bifurcation induced by self-connection delay s and k

with the assumption on coupled weights J12J21\0 by

means of the CMR [34]. We previously have studied

the occurrence of a pitchfork-Hopf interaction about

the trivial equilibrium point with the identical coupled

delays s12 ¼ s21 by performing the perturbation

scheme due to its less computation and ease of

application [35].

Motivated by the above facts, here we are interested

in dealing with double Hopf bifurcations of weak

resonance and harmonic analytical solutions without

using the CMR. So we consider a multi-delayed model

consisting of two coupled neurons including the above

mentioned model [31–35], which is described by

dx1 tð Þ
dt

¼ �k1x1 tð Þ þ af x1 t � sð Þð Þ þ J12f x2 t � s12ð Þð Þ;

dx2 tð Þ
dt

¼ �k2x2 tð Þ þ af x2 t � sð Þð Þ þ J21f x1 t � s21ð Þð Þ;

8
>><

>>:

ð1Þ

where xj j ¼ 1; 2ð Þ represents the voltage of the jth

neuron, the real constants k1 and k2 denote the rate

with which the neuron resets its potential to the resting

state in isolation when disconnected from the network

and external inputs; a denotes the feedback weight; J12
and J21 represent the coupled connection weights; s is

the self- connection delay between one neuron from

itself; s12 and s21 are the signal transmission delays

between two coupled neurons; the activation function

is chosen as f xð Þ ¼ tanh xð Þ. For the network (1) to

make sense physically, k1,k2,s,s12, and s21 should be

nonnegative, but the connection weight a,J12 and J21
are unrestricted. The topological connection of the

neural network is shown in Fig. 1.

The main contributions in this paper can be

summarized as follows.

(1) Without any restriction on time delays and

system parameters, system (1) is more general

and includes the ones in the already literatures

[31–35].

(2) Not only are three communication delays dis-

cussed, but the system (1) is not transformed

into a system with a single delay like the

traditional way. Compared with the case of a

single delay, the direct discussion of multiple

delays is more realistic and challenging.

(3) Selecting self-connection weight and coupling

delay as bifurcation parameters, we mainly

concentrate on stability and double Hopf bifur-

cation of weak resonance, which differs from

the previous literature [31–35].

(4) The mechanisms of complex dynamics in the

vicinity of the weak resonant point are derived

by extending the perturbation scheme. The

search for the explicit periodic solution is

converted to the problem of solving four

algebraic equations. The advantage of the

Fig. 1 Graph of architecture for two coupled neuron systems

with three delays (1)
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perturbation scheme lies in its simplicity and

ease of application.

The rest of this paper is organized as follows. In

Sect. 2, the existence of resonant double Hopf singu-

larity is obtained by analyzing the corresponding

linearization system. Section 3 presents a clear pro-

cedure for investigating the double Hopf bifurcation of

weak resonance via the perturbation scheme in a

general multi-delayed nonlinear differential system. In

Sect. 4, employing the perturbation scheme, the

classification and bifurcation sets of double Hopf

bifurcation of weak resonance are displayed for the

system (1). Section 5 contains some numerical exam-

ples to verify the theoretical analysis. Finally, conclu-

sions are made in Sect. 6.

2 Existence of double Hopf bifurcation of weak

resonance

When the system has only a pair of purely imaginary

eigenvalues, system dynamics change from a static

stable state to a periodic oscillation or vice versa. The

dynamics become quite complicated when the system

has two pairs of purely imaginary eigenvalues, which

may give rise to double Hopf bifurcations. Here we

concentrate on the dynamic stability of the trivial

equilibrium to find double Hopf bifurcations at a

critical value of time delay by employing Hopf

bifurcation. So we let
Q2

i¼1 a� kið Þ 6¼ J12J21 and k ¼
0 is not the root of the characteristic equation in the

present paper.

The linearization of the system (1) about the origin

of the state space is

dx1 tð Þ
dt

¼ �k1x1 tð Þ þ ax1 t � sð Þ þ J12x2 t � s12ð Þ;

dx2 tð Þ
dt

¼ �k2x2 tð Þ þ ax2 t � sð Þ þ J21x1 t � s21ð Þ:

8
>><

>>:

ð2Þ

The associated characteristic equation of system (2)

is expressed as follows.

kþ k1 � ae�ks �J12e
�ks12

�J21e
�ks21 kþ k2 � ae�ks

j ¼ 0

�
�
�
�
�

,

which produces

kþ k1 � ae�ks
� �

kþ k2 � ae�ks
� �

�J12J21e
�2k s21þs12ð Þ ¼ 0:

That is,

k2 þ k k1 þ k2 � 2ae�sk
� �

þ k1k2 þ a2e�2sk

�ae�sk k1 þ k2ð Þ � e�2ksJ12J21 ¼ 0:
ð3Þ

where s12 þ s21 ¼ 2s.
Due to the influences of two delays, the discussion

on the stability of the trivial equilibrium is very

complicated. We firstly discuss the case of s ¼ s ¼ 0,

then the case of s ¼ 0 and s[ 0 with a single delay,

and finally the case of s[ 0 and s[ 0. Time delay-

induced double Hopf bifurcations are found at some

critical values as follows.

Case 1 s ¼ s ¼ 0.

When the neural system (1) has no time delay,

i.e.,s ¼ s12 ¼ s21 ¼ 0, Eq. (3) is simplified to

k2 þ k k1 þ k2 � 2að Þ þ a� k1ð Þ a� k2ð Þ � J12J21ð Þ ¼ 0

ð4Þ

It is obvious that two roots of Eq. (4) have negative

real parts if and only if the following conditions hold.

k1 þ k2 � 2a[ 0; a� k1ð Þ a� k2ð Þ � J12J21 [ 0:

ð5Þ

Lemma 1 When the system (1) is absent of time

delay, i.e.,s ¼ s12 ¼ s21 ¼ 0, the trivial equilibrium

point is locally asymptotically stable if the conditions

(5) are satisfied. Otherwise, the trivial equilibrium

point is unstable.

With a single delay increasing, the trivial equilib-

rium point may change from a static stable state to a

periodic oscillation or vice versa. Here we concentrate

on considering the impacts of coupling delay s on the

dynamics of the system (1).

Case 2 s ¼ 0 and s[ 0.

If s12 þ s21 ¼ 2s[ 0, then one or two of coupled

delays is nonzero, i.e., s12 [ 0 or s21 [ 0. Accord-

ingly, the characteristic Eq. (3) with s ¼ 0 becomes

k2 þ k k1 þ k2 � 2að Þ þ a� k1ð Þ a� k2ð Þ � e�2ksJ12J21
� �

¼ 0

ð6Þ
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Substituting k ¼ im into Eq. (6) and separating the

real and imaginary parts, one haswhich produces

a2 � m2 � ak2 � ak2 þ k1k2 ¼ cos 2sm½ �J12J21;
m 2a� k1 � k2ð Þ ¼ sin 2sm½ �J12J21;

(

cos 2sm½ � ¼ a2 � m2 � ak1 � ak2 þ k1k2
J12J21

;

sin 2sm½ � ¼ m 2a� k1 � k2ð Þ
J12J21

:

ð7Þ

Squaring and adding both equations of Eq. (7) leads

to the following equation on m

m4þm2 a� k1ð Þ2þ a� k2ð Þ2
� �

þ a� k1ð Þ2 a� k2ð Þ2�J212J
2
21 ¼ 0:

ð8Þ

It is no difficulty to obtain that there exists only a

positive real root in Eq. (8).

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� a�k1ð Þ2� a�k2ð Þ2þ

ffiffiffi
D

p

2

q

,

if a� k1ð Þ2 a� k2ð Þ2\J212J
2
21 where

D ¼ 4J212J
2
21 þ k1 � k2ð Þ2 �2aþ k1 þ k2ð Þ2 [ 0.

Otherwise, Eq. (8) has no positive real root. The

following result is obtained.

Lemma 2 When s ¼ 0 and s[ 0, the neural system

(1) has only a pair of purely imaginary eigenvalues if

the condition a� k1ð Þ2 a� k2ð Þ2\J212J
2
21. Otherwise,

the system (1) has no purely imaginary eigenvalue.

Based on Lemma 2, it is necessary to discuss two

delays to make system (1) have two pairs of purely

imaginary eigenvalues, which may give rise to double

Hopf bifurcations.

Case 3 s[ 0 and s[ 0.

Substituting the simple eigenvalue k ¼ ix x[ 0ð Þ
into Eq. (3), one can obtain the following equations

cosui ¼
�x2

i þ a2 cos 2xis½ � � 2ax sin xis½ �
J12J21

�

a cos xis½ �k1 þ a cos xis½ �k2 � k1k2
J12J21

;

sinui ¼
xi þ a sin xis½ �ð Þ 2a cos xis½ � � k1 � k2ð Þ

J12J21
:

ð9Þ

Based on cos2 2sx½ � þ sin2 2sx½ � ¼ 1, one can

obtain the equation on x as follows.

H xð Þ ¼ x4 þ B3x
3 þ B2x

2 þ B1xþ B0 ¼ 0; ð10Þ

where

B0 ¼a4 cos 2sx½ �2�J212J
2
21 � 2a3 cos sx½ � cos 2sx½ �k1

þ a2 cos sx½ �2k21 � 2a3 cos sx½ � cos 2sx½ �k2
þ 2a2 cos sx½ �2k1k2 þ 2a2 cos 2sx½ �k1k2
� 2a cos sx½ �k21k2 þ a2 cos sx½ �2k22
þ a2 sin sx½ �2 2a cos sx½ � � k1 � k2ð Þ2

� 2a cos sx½ �k1k22 þ k21k
2
2;

B1 ¼ �4a3 cos 2sx½ � sin sx½ � þ 4a2 cos sx½ � sin sx½ �k1
þ2a sin sx½ � 2a cos sx½ � � k1 � k2ð Þ2

þ4a2 cos sx½ � sin sx½ �k2 � 4a sin sx½ �k1k2;

B2 ¼� 2a2 cos 2sx½ � þ 4a2 sin sx½ �2þ2a cos sx½ �k1
þ 2a cos sx½ � � k1 � k2ð Þ2þ2a cos sx½ �k2 � 2k1k2;

B3 ¼ 4a sin sx½ �:

If Eq. (10) has positive and simple roots

xi i ¼ 1; 2; � � �ð Þ, then the critical delay values are

computed from Eq. (9)

sji ¼
ui þ 2jp

2xi
; i ¼ 1; 2; � � � ; j ¼ 0; 1; 2; � � � ;

where ui 2 0; 2p½ Þð Þ satisfy

cosui ¼
�x2

i þ a2 cos 2xis½ � � 2ax sin xis½ �
J12J21

�

a cos xis½ �k1 þ a cos xis½ �k2 � k1k2
J12J21

;

sinui ¼
xi þ a sin xis½ �ð Þ 2a cos xis½ � � k1 � k2ð Þ

J12J21
:

To make Hopf bifurcation occur, the transversality

condition should be satisfied. So differentiating k on s
in Eq. (3), one gets

k0 sð Þ ¼

� s
k
�
e2k �sþsð Þ asþ esk 1þ 2kð Þ

� �
�aþ esk 1þ kþ k2

� �� �

J12J21
;

which leads to
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Re k0 sð Þð Þ½ ��1
k¼ixj ¼ h0 þ xh1 þ x2h2 þ x3h3

2xJ212J
2
21

;

where

h0 ¼ 2a3 sin sx½ � þ a3s sin sx½ �k1 þ a3s sin sx½ �k2
þ a sin sx½ �k22 þ as sin sx½ �k1k22
� a2 sin 2sx½ � k2 þ k1 1þ 2sk2ð Þð Þ
þ a sin sx½ �k21 1þ sk2ð Þ;

h1 ¼ 2a2 þ 2a3s cos sx½ � þ 4a2 sin sx½ �2þk21 þ k22

þ a cos sx½ � �2k1 þ sk21 þ k2 �2þ sk2ð Þ
� �

� 2a2s cos 2sx½ � k1 þ k2ð Þ;

h2 ¼ 6a sin sx½ � þ 4a2s cos sx½ � sin sx½ �
þ as sin sx½ � k1 þ k2ð Þ;

h3 ¼ 2þ 2as cos sx½ �:
Noticing that

sign Re k0 sð Þð Þ k¼ixjf g ¼ sign Re k0 sð Þð Þ½ ��1
k¼ixj

n o
:

The dynamics become quite complex when the

system has only two pairs of purely imaginary

eigenvalues k1 ¼ �ix1 and k2 ¼ �ix2

0\x1\x2ð Þ at a critical value of coupling delay.

Next, we only focus on such cases.

Remark 1 Two families of delay surfaces denoted by

s� and sþ corresponding to x1 and x2 respectively,

can be computed by.

cos 2x1s�ð Þ ¼ �x2
1 þ a2 cos 2x1s½ � � 2ax1 sin x1s½ �

J12J21
�

a cos x1s½ �k1 þ a cos x1s½ �k2 � k1k2
J12J21

;

cos 2x2sþð Þ ¼ �x2
2 þ a2 cos 2x2s½ � � 2ax2 sin x2s½ �

J12J21
�

a cos x2s½ �k1 þ a cos x2s½ �k2 � k1k2
J12J21

:

ð11Þ

Then a possible double Hopf bifurcation point

occurs when two such families of surfaces intersect

each other where s� ¼ sþ. If
x1

x2
¼ m1

m2
;m1\m2;m1 6¼

1;m2 6¼ 1;m1 2 Zþ; m2 2 Zþ, then such bifurcation is

named the double Hopf bifurcation of weak resonance.

The corresponding critical value of time delay is given

by

s0 ¼ s� ¼ sþ,

which is determined by Eq. (11). So the following

theorem is correct.

Theorem 3 If Eq. (10) has only two simple positive

real roots x1 and x2 x1\x2ð Þ satisfying the

transversal conditions Re k0 sð Þð Þ k¼ix1;2;s¼s0

�
� 6¼ 0, then

double Hopf bifurcations arises around the trivial

equilibrium point at s ¼ s0. Furthermore, if
x1

x2
¼ m1

m2
;m1\m2;m1 6¼ 1;m2 6¼ 1; m1 2 Zþ; m2 2 Zþ,

then the double Hopf bifurcations of weak resonance

produces at s ¼ s0 in the system (1).

Remark 2 In this paper, not only are three commu-

nication delays discussed, but also the considered

system (1) is not transformed into a system with a

single delay like the traditional way. Moreover,

without any restriction of time delays and system

parameters, selecting the self-connection weight and

coupling delay as two bifurcation parameters, we

focus on the double Hopf bifurcation of weak

resonance, which is different from the previously

published results [31–35].

In the next, we mainly discuss the complicated

behaviors near the weak resonant double Hopf bifur-

cation by extending the perturbation scheme [36] when

self-connection weight and coupling delay as two

bifurcation parameters. The methodology formulation

firstly will be presented for reader’s convenience.

3 Double Hopf bifurcation via perturbation

scheme (PS)

In [36], Xu et al. proposed a simple and efficient

method called a perturbation-incremental

scheme (PIS) to investigate weak resonant double

Hopf bifurcation in a single delay nonlinear differen-

tial system. The scheme is described in two steps,

namely, the perturbation step (noted as step one) for

bifurcation parameters close to the bifurcation point

and the incremental step (noted as step two) for those

far away from the bifurcation point.

In this section, we only provide a clear program on

step one of PIS to deal with the small-amplitude

bifurcating solutions from double Hopf bifurcation of
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weak resonance for a general multi-delayed nonlinear

differential system.

3.1 Critical values of double-Hopf bifurcation

The first-order delayed differential equations (DDEs)

with multiple delays and nonlinearities are written in

the general form by

_X tð Þ ¼CX tð Þ þ DX t � sð Þ þ B1X t � s1ð Þ þ þB2X t � s2ð Þ
þ eF X tð Þ;X t � sð Þ;X t � s1ð Þ;X t � s2ð Þð Þ;

where X tð Þ ¼

x1 tð Þ
x2 tð Þ
..
.

xn tð Þ

0

B
B
B
@

1

C
C
C
A
,B1; B2; C and D are n� n

real constant matrices, s denotes the self-feedback

delay and si i ¼ 1; 2ð Þ coupling delays, a nonlinear

function F �ð Þ satisfies F 0; 0; � � � ; 0ð Þ ¼ 0 and e is a

parameter representing the coupling degree between

nonlinearities.

It is obvious that a zero solution is the trivial point.

The characteristic equation around the zero solution

reads,

det kI � C � De�ks�B1e
�ks1 � B2e

�ks2
� �

¼ 0,

where I is the identity matrix.

Here we mainly discuss the complicated behaviors

near the weak resonant double Hopf bifurcation. In

order to facilitate analysis, the following assumption is

firstly needed.

(A1) The system undergoes double-Hopf bifurca-

tion of weak resonance at the trivial point for

bifurcation parameters D ¼ D0 and s1 ¼ s10. That is,
all eigenvalues of the above characteristic equation

have negative real parts except for two pairs of simple

purely imaginary eigenvalues k1 ¼ �ix1 and k2 ¼
�ix2 0\x1\x2ð Þ with x1 ¼ m1x and x2 ¼ m2x
m1 2 Zþ; m2 2 Zþð Þ at the critical point D0; s10ð Þ.

3.2 Bifurcation sets near double-Hopf bifurcation

For two bifurcation parametersD and s1, make a small

perturbation close to the double-Hopf bifurcation

point D0; s10ð Þ by setting

D ¼ D0 þ eDe, s ¼ s10 þ ese.
Accordingly, the above system is equivalent to be

transformed as

_X tð Þ ¼CX tð Þ þ D0X t � sð Þ þ B1X t � s10ð Þ
þ B2X t � s2ð Þ þ F̂ �ð Þ;

ð12Þ

where

F̂ �ð Þ ¼ eDeX t � sð Þ þ B1 X t � s1ð Þ � X t � s10ð Þ½ �
þeF X tð Þ;X t � sð Þ;X t � s1ð Þ;X t � s2ð Þð Þ:

For e ¼ 0 in Eq. (12), the periodic solutions are

expressed as

X0 tð Þ ¼

P2
i¼1 ai1 cos xitð Þ þ bi1 sin xitð Þð Þ

P2
i¼1 ai2 cos xitð Þ þ bi2 sin xitð Þð Þ

..

.

P2
i¼1 ain cos xitð Þ þ bin sin xitð Þð Þ

0

B
B
B
@

1

C
C
C
A
: ð13Þ

Bringing (13) into (12) when e ¼ 0, using the

harmonic balance, it is no difficult to get the coeffi-

cients aij and bij i ¼ 1; 2; j ¼ 1; 2; � � � ; nð Þ satisfying

the following equations

Mi

bi1

bi2

..

.

bin

0

B
B
B
B
@

1

C
C
C
C
A

¼ Ni

ai1

ai2

..

.

ain

0

B
B
B
B
@

1

C
C
C
C
A
;�Mi

ai1

ai2

..

.

ain

0

B
B
B
B
@

1

C
C
C
C
A

¼ Ni

bi1

bi2

..

.

bin

0

B
B
B
B
@

1

C
C
C
C
A
;

ð14Þ

where

Mi ¼ xiI þ D0 sin xisð Þ þ B1 sin xis10ð Þ
þ B2 sin xis2ð Þ;

Ni ¼ C þ D0 cos xisð Þ þ B1 cos xis10ð Þ
þ B2 cos xis2ð Þ:

For a small value e [ 0ð Þ, the bifurcation solutions

of the system (12) can be seen as a small perturbation

of harmonic solution (13) in a polar coordinate by the

following

X tð Þ ¼

P2
i¼1 ri1 eð Þ cos xi þ ri eð Þð Þt þ hið Þ

P2
i¼1 ri2 eð Þ cos xi þ ri eð Þð Þt þ hið Þ

..

.

P2
i¼1 rin eð Þ cos xi þ ri eð Þð Þt þ hið Þ

0

B
B
B
@

1

C
C
C
A
;

ð15Þ

where rij 0ð Þ ¼ ri,ri 0ð Þ ¼ 0,and hi are determined by

some initial conditions j ¼ 1; 2; � � � ; nð Þ:
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The values of rij eð Þ and ri eð Þ i ¼ 1; 2; j ¼ 1; 2; � � � ;ð
nÞ in Eq. (15) can be derived by the following theorem
with the aid of the Lemma 1.

Lemma 1 The adjoint system of the linearization of

the system (12) is as follows.

_Y tð Þ ¼ � CTY tð Þ � DT
0Y t þ sð Þ

� BT
1Y t þ s10ð Þ � BT

2Y t þ s2ð Þ:
ð16Þ

If Y tð Þ is the periodic solution of Eq. (16), then Y tð Þ
is derived by

Y tð Þ ¼

P2
i¼1 pi1 cos xitð Þ þ qi1 sin xitð Þð Þ

P2
i¼1 pi2 cos xitð Þ þ qi2 sin xitð Þð Þ

..

.

P2
i¼1 pin cos xitð Þ þ qin sin xitð Þð Þ

0

B
B
B
@

1

C
C
C
A
; ð17Þ

with the period 2p=x where the unknown coefficients

are computed by the following equations

MT
i

pi1

pi2

..

.

pin

0

B
B
B
B
@

1

C
C
C
C
A

¼ NT
i

qi1

qi2

..

.

qin

0

B
B
B
B
@

1

C
C
C
C
A
; �MT

i

qi1

qi2

..

.

qin

0

B
B
B
B
@

1

C
C
C
C
A

¼ NT
i

pi1

pi2

..

.

pin

0

B
B
B
B
@

1

C
C
C
C
A
;

ð18Þ

where the expressions ofMi and Ni are consistent with

ones in Eq. (14).

Theorem 2 If Y tð Þ is the periodic solution of

Eq. (16), then bifurcation solution X tð Þ in Eq. (12)

for a small value e [ 0ð Þ may be expressed by.

Y 0ð Þ½ �TC X
2p
x

� 	

�X 0ð Þ

 �

�
Z 0

�s

Y tþsð Þ½ �TD0 X tð Þ�X tþ2p
x

� 	
 �

dt

�
Z 0

�s10

Y tþs10ð Þ½ �TB1 X tð Þ�X tþ2p
x

� 	
 �

dt

�
Z 0

�s2

Y tþs2ð Þ½ �TB2 X tð Þ�X tþ2p
x

� 	
 �

dt

�
Z 2p

x

0

YT tð ÞF̂ �ð Þdt¼0:

ð19Þ

Proof Multiplying both sides of Eq. (12) by YT tð Þ
and integrating with regard to t, one has.

Z 2p
x

0

YT tð Þ _X tð Þdt ¼
Z 2p

x

0

YT tð Þ CX tð Þ þ D0X t � sð Þð Þdt

þ
Z 2p

x

0

YT tð Þ B1X t � s10ð Þ þ B2X t � s2ð Þð Þdt

þ
Z 2p

x

0

YT tð ÞF̂ �ð Þdt;

ð20Þ

where

Z 2p
x

0

YT tð Þ _X tð Þdt ¼YT 0ð Þ X
2p
x

� 	

� X 0ð Þ

 �

þ
Z 2p

x

0

YT tð ÞCX tð Þdt

þ
Z 2p

x

0

YT t þ sð ÞD0X tð Þdt

þ
Z 2p

x

0

YT t þ s10ð ÞB1X tð Þdt

þ
Z 2p

x

0

YT t þ s2ð ÞB2X tð Þdt:

ð21Þ

Z 2p
x

0

YT tð ÞD0X t � sð Þdt ¼
Z 2p

x

0

YT t þ sð ÞD0X tð Þdt

þ
Z 0

�s

YT t þ sð ÞD0 X tð Þ � X t þ 2p
x

� 	
 �

dt:

ð22Þ

Z 2p
x

0

YT tð ÞB1X t � s10ð Þdt ¼
Z 2p

x

0

YT t þ s10ð ÞB1X tð Þdt

þ
Z 0

�s10

YT t þ s10ð ÞB1 X tð Þ � X t þ 2p
x

� 	
 �

dt:

ð23Þ

Z 2p
x

0

YT tð ÞB2X t � s2ð Þdt ¼
Z 2p

x

0

YT t þ s2ð ÞB2X tð Þdt

þ
Z 0

�s2

YT t þ s2ð ÞB2 X tð Þ � X t þ 2p
x

� 	
 �

dt:

ð24Þ

Substituting Eqs. (21–24) into Eqs. (20), (19) is

derived. The theorem is proved.

Remark 3 To obtain the analytical solution (15),

Eq. (19) need to be expanded into e series, neglect

high order terms in e, and yield four algebraic

equations in ri eð Þ and ri eð Þ i ¼ 1; 2ð Þ. Therefore,

when two control parameters are close to the bifurca-

tion point, the approximate periodic solution is easy to

be obtained from four algebraic equations.
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4 Complex dynamics near double Hopf bifurcation

point

In this section, complex phenomena near double Hopf

bifurcation are demonstrated in the system (1) via the

above mentioned PS.

System parameters are fixed as

k1 ¼ 1:0, k2 ¼ 1:0, J12 ¼ 2:0, J21 ¼ 2:02863,

s ¼ 0:5,

a and s are chosen as bifurcation parameters.

From Eq. (10), the two frequencies corresponding

to Hopf bifurcation are computed as

x1 ¼ 5x ¼ 1:91085, x2 ¼ 9x ¼ 3:43953,

with x ¼ 0:38217.

The bifurcating critical values a ¼ a0 ¼ �1:59324

and s ¼ s0 ¼ 1:4831. And the corresponding transver-

sal conditions

Reðk0ðsÞÞ
�
�
�
k¼ix1

s¼s0

¼ �0:12\0;

Reðk0ðsÞÞ
�
�
�
k¼ix2

s¼s0

¼ 0:11[ 0:

That is, the characteristic Eq. (3) has only two pairs

of simple purely imaginary eigenvalues k1 ¼ �ix1

and k2 ¼ �ix2, and the other eigenvalues with

negative real parts. And the critical point a0; s0ð Þ ¼
�1:59324; 1:4831ð Þ is a double Hopf bifurcation

point of 5:9 weak resonance, which is usually thought

as codimesion-two bifurcation. This singularity point

is a source of more complicated dynamics, such as the

the coexistence of stable periodic behaviors.

By performing the numerical tool DDEBIFTOOL

[37] in MATLAB, the partial eigenvalues of Eq. (3)

are displayed in Fig. 2 where the green star represents

the eigenvalue with negative real part while the red

star represents the maximum eigenvalues k1 ¼ �ix1

and k2 ¼ �ix2.

According to Eq. (11), we can plot two Hopf

bifurcation curves for varying a on the a; sð Þ plane

shown in Fig. 3. It can be seen that two Hopf

bifurcation curves s� (the red line) and sþ (the green

line) intersect at the point a0; s0ð Þ ¼ �1:ð
59324; 1:4831Þ, which is the critical point of double

Hopf bifurcation, denoted by the black solid dot.

To use the above mentioned PS to get the analytical

solutions in the neighboring of a0; s0ð Þ ¼
�1:59324; 1:4831ð Þ with s ¼ s21 ¼ s12, we rescale

some variables

x1 tð Þ ! ex1 tð Þ, x2 tð Þ ! ex2 tð Þ, and two parameter

perturbations

a ¼ a0 þ e2d1, s ¼ s0 þ e2d2, where e2d1 and e2d2
are very small. System (1) can be transformed as the

form like the system (12)

Fig. 2 Roots of the characteristic equation in the complex

plane at the critical point a0; s0ð Þ ¼ �1:59324; 1:4831ð Þ in the

system (1) where the red stars denote the rightmost eigenvalues

which are two pairs of simple purely imaginary eigenvalues with

k1 ¼ �1:91085i and k2 ¼ �3:43953i and all the eigenvalues

with negative real parts in the green

Fig. 3 Variation of the critical values a versus s in the a; sð Þ
parameter plane of the linearized system (2) where the red line

denotes Hopf bifurcation curve s� and the green line sþ. The
intersection solid dot �1:59324; 1:4831ð Þ is the double Hopf

bifurcation point of weak resonance with the frequencies in the

ratio x1

x2
¼ 5

9
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X tð Þ ¼
x1 tð Þ
x2 tð Þ

� 	

;C ¼
�k1 0

0 �k2

� 	

;

D0 ¼
a0 0

0 a0

� 	

;B ¼ B1 þ B2 ¼
0 J12

J21 0

� 	

;

F̂ �ð Þ ¼ eD0X t � sð Þ þ B X t � sð Þ � X t � s0ð Þ½ � þ eF;

F �ð Þ ¼
� e2J12

3
x2 t � sð Þ3þh:o:t:

� e2J21
3

x1 t � sð Þ3þh:o:t:

0

B
B
@

1

C
C
A:

ð24Þ

From Eq. (18), it follows the adjoint periodic

solution Eq. (17)

Y tð Þ ¼
P2

i¼1 pi1 cos x1tð Þ þ qi1 sin xitð Þ
P2

i¼1 pi2 cos x1tð Þ þ qi2 sin xitð Þ


 �

; ð25Þ

where

p11 ¼ �1:00713p12; q11 ¼ �1:00713q12;

p21 ¼ 1:00713p22; q21 ¼ 1:00713q22:
ð26Þ

FromEq. (14), the periodic solution (13) with e ¼ 0

is obtained

X0 tð Þ ¼
P2

i¼1 ai1 cos x1tð Þ þ bi1 sin xitð Þ
P2

i¼1 ai2 cos x1tð Þ þ bi2 sin xitð Þ


 �

;

where

a11 ¼ �0:992919a12; b11 ¼ �0:992919b12;

a21 ¼ 0:992919r2a22; b21 ¼ 0:992919 b22:
ð27Þ

and the corresponding perturbation solution (15) is

rewritten as in polar coordinate

X tð Þ ¼

0:992919 cos h2 þ e2r2 þ x2

� �
t

� �
r2�

0:992919r1 cos h1 þ e2r1 þ x1

� �
t

� �

r1 cos h1 þ e2r1 þ x1

� �
t

� �
þ

r2 cos h2 þ e2r2 þ x2

� �
t

� �

0

B
B
B
B
@

1

C
C
C
C
A
; ð28Þ

where

a12 ¼ r1 cos h1ð Þ; b12 ¼ �r1 sin h1ð Þ;
a22 ¼ r2 cos h2ð Þ; b22 ¼ �r2 sin h2ð Þ

, and h1 and h2

are determined by the initial conditions.

Substituting Eqs. (25–28) into Eq. (19), noting that

pi2 and qi2 are independent and cos2 hið Þ þ sin2 hið Þ ¼
1 i ¼ 1; 2ð Þ, produces the following algebraic equa-

tions as

e2r1 �13:2952þ 9:49064aþ 19:1599s� 4:0812r21
� �

þ e2r1 �8:1624r22 þ 25:5654r1
� �

¼ 0;

e2r1 68:0562� 13:4249a� 60:3096s� 7:79857r21
� �

þ e2r1 �15:5971r22 � 55:6895r1
� �

¼ 0;

e2r2 38:1315� 16:2587a� 43:1768s� 28:0748r21
� �

þ e2r2 �14:0374r22 � 37:0022r2
� �

¼ 0;

e2r2 160:211þ 2:44013a� 105:403sþ 8:1624r21
� �

þ e2r2 4:0812r22 � 58:4011r2
� �

¼ 0:

ð29Þ

The search for an explicit periodic solution (28) is

converted to the problem of solving four algebraic

equations in (29). All local solutions and their stability

near a double Hopf bifurcation can be obtained from

Eq. (29). All solutions are easily solved as follows

r10; r20ð Þ ¼ 0; 0ð Þ;

r11; r20ð Þ ¼ 0:659051
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:39339þ a� 2:5623s

p
; 0

� �
;

r10; r21ð Þ ¼ 0; 1:03493
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:32579s� 3:55952� a

p� �
;

r12; r22ð Þ ¼
0:926733

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:53424s� 3:86867� a

p
;

0:804109
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:38079þ a� 1:87954s

p
 !

;

and

r1 ¼ 0:894014� 0:301892a� 0:927111s;

r2 ¼ 2:47687� 0:033067a� 1:70558s:

It is no difficulty to obtain that four bifurcation lines

denoted by different colors in Fig. 4 as follows.

Red: s ¼ 2:1049þ 0:390274a.

Green: s ¼ 2:68483þ 0:754268a.

Blue: s ¼ 2:52155þ 0:651788a.

Cyan: s ¼ 2:33078þ 0:532045a.

The six different dynamical regions are divided by

the above bifurcation lines as displayed in Fig. 4. The

solutions in the same region have the same topological

structure. It is easily seen that Eq. (29) has always a

zero root r10; r20ð Þ ¼ 0; 0ð Þ and the existence of other

roots is only dependent on the location of parameters

a; sð Þ. The zero root r10; r20ð Þ ¼ 0; 0ð Þ corresponds to
the trivial equilibrium of the origin system. The other

three roots r11; 0ð Þ; 0; r21ð Þ; and r12; r22ð Þ correspond

123

Exploration of bifurcation dynamics for a type of neural system with three delays 9315



to the limit cycles of the original system. A stable zero

root 0; 0ð Þ only exists in region I while there are four

roots 0; 0ð Þ; r11; 0ð Þ; 0; r21ð Þ; and r12; r22ð Þ in region IV
where two stable periodic attractors r11; 0ð Þ and

0; r21ð Þ coexist. Region I is an amplitude death one,

i.e., when the parameters are located on this region,

there is no vibration with non-zero amplitude in the

original system. In region II, there are two roots 0; 0ð Þ
and r11; 0ð Þwhere the equilibrium 0; 0ð Þ is unstable and
the periodic attractor r11; 0ð Þ is stable from Hopf

bifurcation at trivial equilibrium point. In region III,

there are three roots in which the periodic attractor

r11; 0ð Þ is stable and the other two roots 0; r21ð Þ and
0; 0ð Þ are unstable. In region V, system has a

stable periodic attractor 0; r21ð Þ, unstable periodic

motion r11; 0ð Þ and unstable equilibrium 0; 0ð Þ. In

region VI, there exists only a stable periodic attractor

0; r21ð Þ and unstable equilibrium 0; 0ð Þ.
In summary, it can be obtained from an analysis of

the stability that there exists a unique stable periodic

solution in the other four regions except in regions

(I) and (IV). All the solutions have been marked in

each region in Fig. 4, which are well agreement with

that provided by Guckenheimer and Holmes [38].

Fig. 4 Classification and bifurcation sets near the 5:9 resonant

double Hopf bifurcation point a0; s0ð Þ ¼ �1:59324; 1:4831ð Þ in
the a; sð Þ plane for the network (1) where the four color lines

represent bifurcation boundaries

cFig. 5 Eigenvalues in the complex plane in six regions (i.e., I-

VI) near the critical point a0; s0ð Þ ¼ �1:59324; 1:4831ð Þ in

Fig. 4 for system (1) where the red star denotes the rightmost

eigenvalue of the characteristic equation with positive real part

and the green star with negative real part. The trivial equilibrium

point is asymptotically stable only in region I, whereas

unstable in other five regions
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5 Numerical examples

This section validates the correctness of the theoretical

results by providing numerical computations for

system (1).

Firstly, with the aid of DDEBIFTOOL [37] in

MATLAB, the stability of the trivial equilibrium point

is determined from the real parts of the rightmost

eigenvalues shown by plotting Fig. 5. In Fig. 5, the

green star represents the eigenvalue of negative real

part while the red star represents the eigenvalue of

positive real part. In Fig. 5a, all the eigenvalues of the

characteristic equation denoted by green and have

negative real parts. Whereas in Fig. 5b–f, the right-

most eigenvalues are positive real parts. So the trivial

equilibrium point is asymptotically stable only in

region I, whereas unstable in the other five regions.

These agree well with theoretical analysis. The

stable trivial equilibrium point in region I can also

further be verified by time history (Fig. 6a) and phase

portrait (Fig. 6b).

In the next, the Runge–Kutta scheme is adopted to

obtain the numerical results in the neighbor of double

Hopf bifurcation point of weak resonance.

The parameter value a; sð Þ ¼ �1:5; 1:54ð Þ is

located in region I, the system (1) tends to the trivial

equilibrium point and is stable displayed by time

history of x1 in Fig. 6a and phase portrait of x1 in

Fig. 6b. Region I is a stability zone, which is called as

death zone.

Fix the parameter a ¼ �1:5 in Fig. 4. With the

decreasing of time delay, for example, if a; sð Þ ¼
�1:5; 1:3ð Þ is located in region II, the trivial equilib-

rium point becomes unstable and the system (1)

undergoes a Hopf bifurcation at the red line shown in

Fig. 4 and produces a stable periodic solution r11; 0ð Þ
with low frequency x1 as shown in Fig. 7a.

Fix the parameter a ¼ �1:7 in Fig. 4, some

numerical results of complex dynamical behaviors

are exhibted with the increasing value of time delay.

a; sð Þ ¼ �1:7; 1:41ð Þ in region III, when a; sð Þ cross-
ing the green line, there exist two periodic solutions

and the trivial equilibrium point. Whereas the periodic

solution 0; r21ð Þ and trivial equilibrium point are

unstable and there only exists a stable periodic solu-

tion r11; 0ð Þ in Fig. 7b. The increasing value of time

Fig. 5 continued
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delay s ¼ 1:42 is located in region IV, we can find that

there exists two stable limit cycles r11; 0ð Þ and

0; r21ð Þ(one resulting from each of the primary Hopf

bifurcation). When the initial value is chosen as

0:5;�0:5ð Þ, the system tends to a limit cycle. But,

when the initial value is used as 0:5; 0:5ð Þ, the system
finally tends to a second limit cycle in Fig. 8. Double

Hopf bifurcation produces bistability between two

limit cycles of different frequencies. Bistability of

Fig. 6 The trivial equilibrium point is locally asymptotically

stable in region I displayed by (a) time history of x1 and (b)
phase portrait of x1 for a; sð Þ ¼ �1:5; 1:54ð Þ in region I

cFig. 7 A stable periodic solution near the trivial equilibruium

point in four different regions are shown in phase portrait of x1
when two parameters a; sð Þ are chosen as (a) 1:5; 1:3ð Þ(b)
�1:7; 1:41ð Þ (c) �1:7; 1:44ð Þ and (d) �1:7; 1:5ð Þ, respectively
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periodic solutions is very important dynamical behav-

iors in neural networks.

Increasing delay s ¼ 1:44 located in region V, it

can be seen that a periodic solution r11; 0ð Þ lose its

stability and emerges a stable limit cycle 0; r21ð Þ with
high frequencyx2 in Fig. 7c. Increasing delay s ¼ 1:5

is located in region VI, the limit cycle 0; r21ð Þ is still
stable in Fig. 7d and the unstable limit cycle r11; 0ð Þ
disappears.

When two parameter values are chosen in the

neighbor of a double bifurcation point of weak

resonance, the numerical simulations in each region

are presented by the distribution of eigenvalues, time

histories or phase portraits in Figs. 5, 6, 7, 8,

respectively. It can be seen that numerical results are

in good agreement with the classification sets and

dynamical behaviors in Fig. 4.

6 Conclusions

In this paper, we concentrate on weak resonant double

Hopf bifurcations of a neural network composed of a

pair of neurons with three discrete delays. Compared

to prior works [31–35], the considered network cannot

be transformed into a system with a single delay like

the traditional way. We choose self-connection weight

and coupling delay as bifurcation parameters to get the

mechanism of complex dynamics near double Hopf

bifurcation of weak resonance including classification

sets by using the perturbation scheme, which are

different from the previous literature. Compared with

the CMR, it is simple and valid with less calculation.

In the neighborhood of the 5:9 resonant Hopf bifur-

cations, the neural system can have stable trivial

equilibrium, stable periodic and coexistence of two

periodic motions. Numerical examples agree well with

the analytical results.

The analytical results presented in this paper would

guide the researchers to dominate and optimize

networks at the right physical parameters to guarantee

the good performance of network systems in practical

applications. For example, to make the system stable,

physical parameters can be chosen in the region I near

double Hopf bifurcation point. There are many

references that consider the topic. We refer the readers

to [39–42]. Though the two-neuron neural system

Fig. 8 Bistability periodic attractors in region IV with different

initial conditions displayed by (a) time history of x1 and (b, c)
phase portrait of x1 for two parameters a; sð Þ ¼ �1:7; 1:42ð Þ in
region IV
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considered in this paper is relatively simple, it can

describe brain dynamics and provide a model for

better understanding human activity and memory.

Double Hopf bifurcation produces bistability between

two limit cycles of different frequencies. This is

interesting as it is generally considered that periodic

firing is one mechanism for transmitting information

in the neural system [43], with the frequencies of the

oscillations being the ‘‘message’’ transmitted. Thus,

bistability between limit cycles provides a mechanism

for the neural system to convey two different ‘‘mes-

sages’’ in response to different stimuli, for the same

parameter values.

By considering this simple model, one can vividly

observe the influences of connection weight and time

delay on it. Physically, the system may be regarded as

a basic element integrated into a large-scale system. It

is no hard that the same method and ideas can be used

to discuss bifurcation issues of tri-neuron or more

neuron neural systems with multiple time delays. In

near further, we will discuss how the PS is used to

study other resonances, for example, strong resonance.
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